Merge tag 'leds-6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/pavel/linux...
[platform/kernel/linux-starfive.git] / drivers / clocksource / timer-stm32.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Maxime Coquelin 2015
4  * Author:  Maxime Coquelin <mcoquelin.stm32@gmail.com>
5  *
6  * Inspired by time-efm32.c from Uwe Kleine-Koenig
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/clocksource.h>
11 #include <linux/clockchips.h>
12 #include <linux/delay.h>
13 #include <linux/irq.h>
14 #include <linux/interrupt.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/clk.h>
19 #include <linux/reset.h>
20 #include <linux/sched_clock.h>
21 #include <linux/slab.h>
22
23 #include "timer-of.h"
24
25 #define TIM_CR1         0x00
26 #define TIM_DIER        0x0c
27 #define TIM_SR          0x10
28 #define TIM_EGR         0x14
29 #define TIM_CNT         0x24
30 #define TIM_PSC         0x28
31 #define TIM_ARR         0x2c
32 #define TIM_CCR1        0x34
33
34 #define TIM_CR1_CEN     BIT(0)
35 #define TIM_CR1_UDIS    BIT(1)
36 #define TIM_CR1_OPM     BIT(3)
37 #define TIM_CR1_ARPE    BIT(7)
38
39 #define TIM_DIER_UIE    BIT(0)
40 #define TIM_DIER_CC1IE  BIT(1)
41
42 #define TIM_SR_UIF      BIT(0)
43
44 #define TIM_EGR_UG      BIT(0)
45
46 #define TIM_PSC_MAX     USHRT_MAX
47 #define TIM_PSC_CLKRATE 10000
48
49 struct stm32_timer_private {
50         int bits;
51 };
52
53 /**
54  * stm32_timer_of_bits_set - set accessor helper
55  * @to: a timer_of structure pointer
56  * @bits: the number of bits (16 or 32)
57  *
58  * Accessor helper to set the number of bits in the timer-of private
59  * structure.
60  *
61  */
62 static void stm32_timer_of_bits_set(struct timer_of *to, int bits)
63 {
64         struct stm32_timer_private *pd = to->private_data;
65
66         pd->bits = bits;
67 }
68
69 /**
70  * stm32_timer_of_bits_get - get accessor helper
71  * @to: a timer_of structure pointer
72  *
73  * Accessor helper to get the number of bits in the timer-of private
74  * structure.
75  *
76  * Returns an integer corresponding to the number of bits.
77  */
78 static int stm32_timer_of_bits_get(struct timer_of *to)
79 {
80         struct stm32_timer_private *pd = to->private_data;
81
82         return pd->bits;
83 }
84
85 static void __iomem *stm32_timer_cnt __read_mostly;
86
87 static u64 notrace stm32_read_sched_clock(void)
88 {
89         return readl_relaxed(stm32_timer_cnt);
90 }
91
92 static struct delay_timer stm32_timer_delay;
93
94 static unsigned long stm32_read_delay(void)
95 {
96         return readl_relaxed(stm32_timer_cnt);
97 }
98
99 static void stm32_clock_event_disable(struct timer_of *to)
100 {
101         writel_relaxed(0, timer_of_base(to) + TIM_DIER);
102 }
103
104 /**
105  * stm32_timer_start - Start the counter without event
106  * @to: a timer_of structure pointer
107  *
108  * Start the timer in order to have the counter reset and start
109  * incrementing but disable interrupt event when there is a counter
110  * overflow. By default, the counter direction is used as upcounter.
111  */
112 static void stm32_timer_start(struct timer_of *to)
113 {
114         writel_relaxed(TIM_CR1_UDIS | TIM_CR1_CEN, timer_of_base(to) + TIM_CR1);
115 }
116
117 static int stm32_clock_event_shutdown(struct clock_event_device *clkevt)
118 {
119         struct timer_of *to = to_timer_of(clkevt);
120
121         stm32_clock_event_disable(to);
122
123         return 0;
124 }
125
126 static int stm32_clock_event_set_next_event(unsigned long evt,
127                                             struct clock_event_device *clkevt)
128 {
129         struct timer_of *to = to_timer_of(clkevt);
130         unsigned long now, next;
131
132         next = readl_relaxed(timer_of_base(to) + TIM_CNT) + evt;
133         writel_relaxed(next, timer_of_base(to) + TIM_CCR1);
134         now = readl_relaxed(timer_of_base(to) + TIM_CNT);
135
136         if ((next - now) > evt)
137                 return -ETIME;
138
139         writel_relaxed(TIM_DIER_CC1IE, timer_of_base(to) + TIM_DIER);
140
141         return 0;
142 }
143
144 static int stm32_clock_event_set_periodic(struct clock_event_device *clkevt)
145 {
146         struct timer_of *to = to_timer_of(clkevt);
147
148         stm32_timer_start(to);
149
150         return stm32_clock_event_set_next_event(timer_of_period(to), clkevt);
151 }
152
153 static int stm32_clock_event_set_oneshot(struct clock_event_device *clkevt)
154 {
155         struct timer_of *to = to_timer_of(clkevt);
156
157         stm32_timer_start(to);
158
159         return 0;
160 }
161
162 static irqreturn_t stm32_clock_event_handler(int irq, void *dev_id)
163 {
164         struct clock_event_device *clkevt = (struct clock_event_device *)dev_id;
165         struct timer_of *to = to_timer_of(clkevt);
166
167         writel_relaxed(0, timer_of_base(to) + TIM_SR);
168
169         if (clockevent_state_periodic(clkevt))
170                 stm32_clock_event_set_periodic(clkevt);
171         else
172                 stm32_clock_event_shutdown(clkevt);
173
174         clkevt->event_handler(clkevt);
175
176         return IRQ_HANDLED;
177 }
178
179 /**
180  * stm32_timer_width - Sort out the timer width (32/16)
181  * @to: a pointer to a timer-of structure
182  *
183  * Write the 32-bit max value and read/return the result. If the timer
184  * is 32 bits wide, the result will be UINT_MAX, otherwise it will
185  * be truncated by the 16-bit register to USHRT_MAX.
186  *
187  */
188 static void __init stm32_timer_set_width(struct timer_of *to)
189 {
190         u32 width;
191
192         writel_relaxed(UINT_MAX, timer_of_base(to) + TIM_ARR);
193
194         width = readl_relaxed(timer_of_base(to) + TIM_ARR);
195
196         stm32_timer_of_bits_set(to, width == UINT_MAX ? 32 : 16);
197 }
198
199 /**
200  * stm32_timer_set_prescaler - Compute and set the prescaler register
201  * @to: a pointer to a timer-of structure
202  *
203  * Depending on the timer width, compute the prescaler to always
204  * target a 10MHz timer rate for 16 bits. 32-bit timers are
205  * considered precise and long enough to not use the prescaler.
206  */
207 static void __init stm32_timer_set_prescaler(struct timer_of *to)
208 {
209         int prescaler = 1;
210
211         if (stm32_timer_of_bits_get(to) != 32) {
212                 prescaler = DIV_ROUND_CLOSEST(timer_of_rate(to),
213                                               TIM_PSC_CLKRATE);
214                 /*
215                  * The prescaler register is an u16, the variable
216                  * can't be greater than TIM_PSC_MAX, let's cap it in
217                  * this case.
218                  */
219                 prescaler = prescaler < TIM_PSC_MAX ? prescaler : TIM_PSC_MAX;
220         }
221
222         writel_relaxed(prescaler - 1, timer_of_base(to) + TIM_PSC);
223         writel_relaxed(TIM_EGR_UG, timer_of_base(to) + TIM_EGR);
224         writel_relaxed(0, timer_of_base(to) + TIM_SR);
225
226         /* Adjust rate and period given the prescaler value */
227         to->of_clk.rate = DIV_ROUND_CLOSEST(to->of_clk.rate, prescaler);
228         to->of_clk.period = DIV_ROUND_UP(to->of_clk.rate, HZ);
229 }
230
231 static int __init stm32_clocksource_init(struct timer_of *to)
232 {
233         u32 bits = stm32_timer_of_bits_get(to);
234         const char *name = to->np->full_name;
235
236         /*
237          * This driver allows to register several timers and relies on
238          * the generic time framework to select the right one.
239          * However, nothing allows to do the same for the
240          * sched_clock. We are not interested in a sched_clock for the
241          * 16-bit timers but only for the 32-bit one, so if no 32-bit
242          * timer is registered yet, we select this 32-bit timer as a
243          * sched_clock.
244          */
245         if (bits == 32 && !stm32_timer_cnt) {
246
247                 /*
248                  * Start immediately the counter as we will be using
249                  * it right after.
250                  */
251                 stm32_timer_start(to);
252
253                 stm32_timer_cnt = timer_of_base(to) + TIM_CNT;
254                 sched_clock_register(stm32_read_sched_clock, bits, timer_of_rate(to));
255                 pr_info("%s: STM32 sched_clock registered\n", name);
256
257                 stm32_timer_delay.read_current_timer = stm32_read_delay;
258                 stm32_timer_delay.freq = timer_of_rate(to);
259                 register_current_timer_delay(&stm32_timer_delay);
260                 pr_info("%s: STM32 delay timer registered\n", name);
261         }
262
263         return clocksource_mmio_init(timer_of_base(to) + TIM_CNT, name,
264                                      timer_of_rate(to), bits == 32 ? 250 : 100,
265                                      bits, clocksource_mmio_readl_up);
266 }
267
268 static void __init stm32_clockevent_init(struct timer_of *to)
269 {
270         u32 bits = stm32_timer_of_bits_get(to);
271
272         to->clkevt.name = to->np->full_name;
273         to->clkevt.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
274         to->clkevt.set_state_shutdown = stm32_clock_event_shutdown;
275         to->clkevt.set_state_periodic = stm32_clock_event_set_periodic;
276         to->clkevt.set_state_oneshot = stm32_clock_event_set_oneshot;
277         to->clkevt.tick_resume = stm32_clock_event_shutdown;
278         to->clkevt.set_next_event = stm32_clock_event_set_next_event;
279         to->clkevt.rating = bits == 32 ? 250 : 100;
280
281         clockevents_config_and_register(&to->clkevt, timer_of_rate(to), 0x1,
282                                         (1 <<  bits) - 1);
283
284         pr_info("%pOF: STM32 clockevent driver initialized (%d bits)\n",
285                 to->np, bits);
286 }
287
288 static int __init stm32_timer_init(struct device_node *node)
289 {
290         struct reset_control *rstc;
291         struct timer_of *to;
292         int ret;
293
294         to = kzalloc(sizeof(*to), GFP_KERNEL);
295         if (!to)
296                 return -ENOMEM;
297
298         to->flags = TIMER_OF_IRQ | TIMER_OF_CLOCK | TIMER_OF_BASE;
299         to->of_irq.handler = stm32_clock_event_handler;
300
301         ret = timer_of_init(node, to);
302         if (ret)
303                 goto err;
304
305         to->private_data = kzalloc(sizeof(struct stm32_timer_private),
306                                    GFP_KERNEL);
307         if (!to->private_data) {
308                 ret = -ENOMEM;
309                 goto deinit;
310         }
311
312         rstc = of_reset_control_get(node, NULL);
313         if (!IS_ERR(rstc)) {
314                 reset_control_assert(rstc);
315                 reset_control_deassert(rstc);
316         }
317
318         stm32_timer_set_width(to);
319
320         stm32_timer_set_prescaler(to);
321
322         ret = stm32_clocksource_init(to);
323         if (ret)
324                 goto deinit;
325
326         stm32_clockevent_init(to);
327         return 0;
328
329 deinit:
330         timer_of_cleanup(to);
331 err:
332         kfree(to);
333         return ret;
334 }
335
336 TIMER_OF_DECLARE(stm32, "st,stm32-timer", stm32_timer_init);