mm/memory.c: fix race when faulting a device private page
[platform/kernel/linux-starfive.git] / drivers / clocksource / timer-fttmr010.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Faraday Technology FTTMR010 timer driver
4  * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
5  *
6  * Based on a rewrite of arch/arm/mach-gemini/timer.c:
7  * Copyright (C) 2001-2006 Storlink, Corp.
8  * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
9  */
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 #include <linux/clockchips.h>
16 #include <linux/clocksource.h>
17 #include <linux/sched_clock.h>
18 #include <linux/clk.h>
19 #include <linux/slab.h>
20 #include <linux/bitops.h>
21 #include <linux/delay.h>
22
23 /*
24  * Register definitions common for all the timer variants.
25  */
26 #define TIMER1_COUNT            (0x00)
27 #define TIMER1_LOAD             (0x04)
28 #define TIMER1_MATCH1           (0x08)
29 #define TIMER1_MATCH2           (0x0c)
30 #define TIMER2_COUNT            (0x10)
31 #define TIMER2_LOAD             (0x14)
32 #define TIMER2_MATCH1           (0x18)
33 #define TIMER2_MATCH2           (0x1c)
34 #define TIMER3_COUNT            (0x20)
35 #define TIMER3_LOAD             (0x24)
36 #define TIMER3_MATCH1           (0x28)
37 #define TIMER3_MATCH2           (0x2c)
38 #define TIMER_CR                (0x30)
39
40 /*
41  * Control register set to clear for ast2600 only.
42  */
43 #define AST2600_TIMER_CR_CLR    (0x3c)
44
45 /*
46  * Control register (TMC30) bit fields for fttmr010/gemini/moxart timers.
47  */
48 #define TIMER_1_CR_ENABLE       BIT(0)
49 #define TIMER_1_CR_CLOCK        BIT(1)
50 #define TIMER_1_CR_INT          BIT(2)
51 #define TIMER_2_CR_ENABLE       BIT(3)
52 #define TIMER_2_CR_CLOCK        BIT(4)
53 #define TIMER_2_CR_INT          BIT(5)
54 #define TIMER_3_CR_ENABLE       BIT(6)
55 #define TIMER_3_CR_CLOCK        BIT(7)
56 #define TIMER_3_CR_INT          BIT(8)
57 #define TIMER_1_CR_UPDOWN       BIT(9)
58 #define TIMER_2_CR_UPDOWN       BIT(10)
59 #define TIMER_3_CR_UPDOWN       BIT(11)
60
61 /*
62  * Control register (TMC30) bit fields for aspeed ast2400/ast2500 timers.
63  * The aspeed timers move bits around in the control register and lacks
64  * bits for setting the timer to count upwards.
65  */
66 #define TIMER_1_CR_ASPEED_ENABLE        BIT(0)
67 #define TIMER_1_CR_ASPEED_CLOCK         BIT(1)
68 #define TIMER_1_CR_ASPEED_INT           BIT(2)
69 #define TIMER_2_CR_ASPEED_ENABLE        BIT(4)
70 #define TIMER_2_CR_ASPEED_CLOCK         BIT(5)
71 #define TIMER_2_CR_ASPEED_INT           BIT(6)
72 #define TIMER_3_CR_ASPEED_ENABLE        BIT(8)
73 #define TIMER_3_CR_ASPEED_CLOCK         BIT(9)
74 #define TIMER_3_CR_ASPEED_INT           BIT(10)
75
76 /*
77  * Interrupt status/mask register definitions for fttmr010/gemini/moxart
78  * timers.
79  * The registers don't exist and they are not needed on aspeed timers
80  * because:
81  *   - aspeed timer overflow interrupt is controlled by bits in Control
82  *     Register (TMC30).
83  *   - aspeed timers always generate interrupt when either one of the
84  *     Match registers equals to Status register.
85  */
86 #define TIMER_INTR_STATE        (0x34)
87 #define TIMER_INTR_MASK         (0x38)
88 #define TIMER_1_INT_MATCH1      BIT(0)
89 #define TIMER_1_INT_MATCH2      BIT(1)
90 #define TIMER_1_INT_OVERFLOW    BIT(2)
91 #define TIMER_2_INT_MATCH1      BIT(3)
92 #define TIMER_2_INT_MATCH2      BIT(4)
93 #define TIMER_2_INT_OVERFLOW    BIT(5)
94 #define TIMER_3_INT_MATCH1      BIT(6)
95 #define TIMER_3_INT_MATCH2      BIT(7)
96 #define TIMER_3_INT_OVERFLOW    BIT(8)
97 #define TIMER_INT_ALL_MASK      0x1ff
98
99 struct fttmr010 {
100         void __iomem *base;
101         unsigned int tick_rate;
102         bool is_aspeed;
103         u32 t1_enable_val;
104         struct clock_event_device clkevt;
105         int (*timer_shutdown)(struct clock_event_device *evt);
106 #ifdef CONFIG_ARM
107         struct delay_timer delay_timer;
108 #endif
109 };
110
111 /*
112  * A local singleton used by sched_clock and delay timer reads, which are
113  * fast and stateless
114  */
115 static struct fttmr010 *local_fttmr;
116
117 static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
118 {
119         return container_of(evt, struct fttmr010, clkevt);
120 }
121
122 static unsigned long fttmr010_read_current_timer_up(void)
123 {
124         return readl(local_fttmr->base + TIMER2_COUNT);
125 }
126
127 static unsigned long fttmr010_read_current_timer_down(void)
128 {
129         return ~readl(local_fttmr->base + TIMER2_COUNT);
130 }
131
132 static u64 notrace fttmr010_read_sched_clock_up(void)
133 {
134         return fttmr010_read_current_timer_up();
135 }
136
137 static u64 notrace fttmr010_read_sched_clock_down(void)
138 {
139         return fttmr010_read_current_timer_down();
140 }
141
142 static int fttmr010_timer_set_next_event(unsigned long cycles,
143                                        struct clock_event_device *evt)
144 {
145         struct fttmr010 *fttmr010 = to_fttmr010(evt);
146         u32 cr;
147
148         /* Stop */
149         fttmr010->timer_shutdown(evt);
150
151         if (fttmr010->is_aspeed) {
152                 /*
153                  * ASPEED Timer Controller will load TIMER1_LOAD register
154                  * into TIMER1_COUNT register when the timer is re-enabled.
155                  */
156                 writel(cycles, fttmr010->base + TIMER1_LOAD);
157         } else {
158                 /* Setup the match register forward in time */
159                 cr = readl(fttmr010->base + TIMER1_COUNT);
160                 writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
161         }
162
163         /* Start */
164         cr = readl(fttmr010->base + TIMER_CR);
165         cr |= fttmr010->t1_enable_val;
166         writel(cr, fttmr010->base + TIMER_CR);
167
168         return 0;
169 }
170
171 static int ast2600_timer_shutdown(struct clock_event_device *evt)
172 {
173         struct fttmr010 *fttmr010 = to_fttmr010(evt);
174
175         /* Stop */
176         writel(fttmr010->t1_enable_val, fttmr010->base + AST2600_TIMER_CR_CLR);
177
178         return 0;
179 }
180
181 static int fttmr010_timer_shutdown(struct clock_event_device *evt)
182 {
183         struct fttmr010 *fttmr010 = to_fttmr010(evt);
184         u32 cr;
185
186         /* Stop */
187         cr = readl(fttmr010->base + TIMER_CR);
188         cr &= ~fttmr010->t1_enable_val;
189         writel(cr, fttmr010->base + TIMER_CR);
190
191         return 0;
192 }
193
194 static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
195 {
196         struct fttmr010 *fttmr010 = to_fttmr010(evt);
197         u32 cr;
198
199         /* Stop */
200         fttmr010->timer_shutdown(evt);
201
202         /* Setup counter start from 0 or ~0 */
203         writel(0, fttmr010->base + TIMER1_COUNT);
204         if (fttmr010->is_aspeed) {
205                 writel(~0, fttmr010->base + TIMER1_LOAD);
206         } else {
207                 writel(0, fttmr010->base + TIMER1_LOAD);
208
209                 /* Enable interrupt */
210                 cr = readl(fttmr010->base + TIMER_INTR_MASK);
211                 cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
212                 cr |= TIMER_1_INT_MATCH1;
213                 writel(cr, fttmr010->base + TIMER_INTR_MASK);
214         }
215
216         return 0;
217 }
218
219 static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
220 {
221         struct fttmr010 *fttmr010 = to_fttmr010(evt);
222         u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
223         u32 cr;
224
225         /* Stop */
226         fttmr010->timer_shutdown(evt);
227
228         /* Setup timer to fire at 1/HZ intervals. */
229         if (fttmr010->is_aspeed) {
230                 writel(period, fttmr010->base + TIMER1_LOAD);
231         } else {
232                 cr = 0xffffffff - (period - 1);
233                 writel(cr, fttmr010->base + TIMER1_COUNT);
234                 writel(cr, fttmr010->base + TIMER1_LOAD);
235
236                 /* Enable interrupt on overflow */
237                 cr = readl(fttmr010->base + TIMER_INTR_MASK);
238                 cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
239                 cr |= TIMER_1_INT_OVERFLOW;
240                 writel(cr, fttmr010->base + TIMER_INTR_MASK);
241         }
242
243         /* Start the timer */
244         cr = readl(fttmr010->base + TIMER_CR);
245         cr |= fttmr010->t1_enable_val;
246         writel(cr, fttmr010->base + TIMER_CR);
247
248         return 0;
249 }
250
251 /*
252  * IRQ handler for the timer
253  */
254 static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
255 {
256         struct clock_event_device *evt = dev_id;
257
258         evt->event_handler(evt);
259         return IRQ_HANDLED;
260 }
261
262 static irqreturn_t ast2600_timer_interrupt(int irq, void *dev_id)
263 {
264         struct clock_event_device *evt = dev_id;
265         struct fttmr010 *fttmr010 = to_fttmr010(evt);
266
267         writel(0x1, fttmr010->base + TIMER_INTR_STATE);
268
269         evt->event_handler(evt);
270         return IRQ_HANDLED;
271 }
272
273 static int __init fttmr010_common_init(struct device_node *np,
274                                        bool is_aspeed, bool is_ast2600)
275 {
276         struct fttmr010 *fttmr010;
277         int irq;
278         struct clk *clk;
279         int ret;
280         u32 val;
281
282         /*
283          * These implementations require a clock reference.
284          * FIXME: we currently only support clocking using PCLK
285          * and using EXTCLK is not supported in the driver.
286          */
287         clk = of_clk_get_by_name(np, "PCLK");
288         if (IS_ERR(clk)) {
289                 pr_err("could not get PCLK\n");
290                 return PTR_ERR(clk);
291         }
292         ret = clk_prepare_enable(clk);
293         if (ret) {
294                 pr_err("failed to enable PCLK\n");
295                 return ret;
296         }
297
298         fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
299         if (!fttmr010) {
300                 ret = -ENOMEM;
301                 goto out_disable_clock;
302         }
303         fttmr010->tick_rate = clk_get_rate(clk);
304
305         fttmr010->base = of_iomap(np, 0);
306         if (!fttmr010->base) {
307                 pr_err("Can't remap registers\n");
308                 ret = -ENXIO;
309                 goto out_free;
310         }
311         /* IRQ for timer 1 */
312         irq = irq_of_parse_and_map(np, 0);
313         if (irq <= 0) {
314                 pr_err("Can't parse IRQ\n");
315                 ret = -EINVAL;
316                 goto out_unmap;
317         }
318
319         /*
320          * The Aspeed timers move bits around in the control register.
321          */
322         if (is_aspeed) {
323                 fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
324                         TIMER_1_CR_ASPEED_INT;
325                 fttmr010->is_aspeed = true;
326         } else {
327                 fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
328
329                 /*
330                  * Reset the interrupt mask and status
331                  */
332                 writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
333                 writel(0, fttmr010->base + TIMER_INTR_STATE);
334         }
335
336         /*
337          * Enable timer 1 count up, timer 2 count up, except on Aspeed,
338          * where everything just counts down.
339          */
340         if (is_aspeed)
341                 val = TIMER_2_CR_ASPEED_ENABLE;
342         else {
343                 val = TIMER_2_CR_ENABLE | TIMER_1_CR_UPDOWN |
344                         TIMER_2_CR_UPDOWN;
345         }
346         writel(val, fttmr010->base + TIMER_CR);
347
348         /*
349          * Setup free-running clocksource timer (interrupts
350          * disabled.)
351          */
352         local_fttmr = fttmr010;
353         writel(0, fttmr010->base + TIMER2_COUNT);
354         writel(0, fttmr010->base + TIMER2_MATCH1);
355         writel(0, fttmr010->base + TIMER2_MATCH2);
356
357         if (fttmr010->is_aspeed) {
358                 writel(~0, fttmr010->base + TIMER2_LOAD);
359                 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
360                                       "FTTMR010-TIMER2",
361                                       fttmr010->tick_rate,
362                                       300, 32, clocksource_mmio_readl_down);
363                 sched_clock_register(fttmr010_read_sched_clock_down, 32,
364                                      fttmr010->tick_rate);
365         } else {
366                 writel(0, fttmr010->base + TIMER2_LOAD);
367                 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
368                                       "FTTMR010-TIMER2",
369                                       fttmr010->tick_rate,
370                                       300, 32, clocksource_mmio_readl_up);
371                 sched_clock_register(fttmr010_read_sched_clock_up, 32,
372                                      fttmr010->tick_rate);
373         }
374
375         /*
376          * Setup clockevent timer (interrupt-driven) on timer 1.
377          */
378         writel(0, fttmr010->base + TIMER1_COUNT);
379         writel(0, fttmr010->base + TIMER1_LOAD);
380         writel(0, fttmr010->base + TIMER1_MATCH1);
381         writel(0, fttmr010->base + TIMER1_MATCH2);
382
383         if (is_ast2600) {
384                 fttmr010->timer_shutdown = ast2600_timer_shutdown;
385                 ret = request_irq(irq, ast2600_timer_interrupt,
386                                   IRQF_TIMER, "FTTMR010-TIMER1",
387                                   &fttmr010->clkevt);
388         } else {
389                 fttmr010->timer_shutdown = fttmr010_timer_shutdown;
390                 ret = request_irq(irq, fttmr010_timer_interrupt,
391                                   IRQF_TIMER, "FTTMR010-TIMER1",
392                                   &fttmr010->clkevt);
393         }
394         if (ret) {
395                 pr_err("FTTMR010-TIMER1 no IRQ\n");
396                 goto out_unmap;
397         }
398
399         fttmr010->clkevt.name = "FTTMR010-TIMER1";
400         /* Reasonably fast and accurate clock event */
401         fttmr010->clkevt.rating = 300;
402         fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
403                 CLOCK_EVT_FEAT_ONESHOT;
404         fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
405         fttmr010->clkevt.set_state_shutdown = fttmr010->timer_shutdown;
406         fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
407         fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
408         fttmr010->clkevt.tick_resume = fttmr010->timer_shutdown;
409         fttmr010->clkevt.cpumask = cpumask_of(0);
410         fttmr010->clkevt.irq = irq;
411         clockevents_config_and_register(&fttmr010->clkevt,
412                                         fttmr010->tick_rate,
413                                         1, 0xffffffff);
414
415 #ifdef CONFIG_ARM
416         /* Also use this timer for delays */
417         if (fttmr010->is_aspeed)
418                 fttmr010->delay_timer.read_current_timer =
419                         fttmr010_read_current_timer_down;
420         else
421                 fttmr010->delay_timer.read_current_timer =
422                         fttmr010_read_current_timer_up;
423         fttmr010->delay_timer.freq = fttmr010->tick_rate;
424         register_current_timer_delay(&fttmr010->delay_timer);
425 #endif
426
427         return 0;
428
429 out_unmap:
430         iounmap(fttmr010->base);
431 out_free:
432         kfree(fttmr010);
433 out_disable_clock:
434         clk_disable_unprepare(clk);
435
436         return ret;
437 }
438
439 static __init int ast2600_timer_init(struct device_node *np)
440 {
441         return fttmr010_common_init(np, true, true);
442 }
443
444 static __init int aspeed_timer_init(struct device_node *np)
445 {
446         return fttmr010_common_init(np, true, false);
447 }
448
449 static __init int fttmr010_timer_init(struct device_node *np)
450 {
451         return fttmr010_common_init(np, false, false);
452 }
453
454 TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
455 TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
456 TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
457 TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
458 TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);
459 TIMER_OF_DECLARE(ast2600, "aspeed,ast2600-timer", ast2600_timer_init);