drivers: media: pisp_be: Update seqeuence numbers of the buffers
[platform/kernel/linux-rpi.git] / drivers / clocksource / timer-atmel-tcb.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/init.h>
3 #include <linux/clocksource.h>
4 #include <linux/clockchips.h>
5 #include <linux/interrupt.h>
6 #include <linux/irq.h>
7
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/ioport.h>
12 #include <linux/io.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 #include <linux/sched_clock.h>
16 #include <linux/syscore_ops.h>
17 #include <soc/at91/atmel_tcb.h>
18
19
20 /*
21  * We're configured to use a specific TC block, one that's not hooked
22  * up to external hardware, to provide a time solution:
23  *
24  *   - Two channels combine to create a free-running 32 bit counter
25  *     with a base rate of 5+ MHz, packaged as a clocksource (with
26  *     resolution better than 200 nsec).
27  *   - Some chips support 32 bit counter. A single channel is used for
28  *     this 32 bit free-running counter. the second channel is not used.
29  *
30  *   - The third channel may be used to provide a clockevent source, used in
31  *   either periodic or oneshot mode. For 16-bit counter its runs at 32 KiHZ,
32  *   and can handle delays of up to two seconds. For 32-bit counters, it runs at
33  *   the same rate as the clocksource
34  *
35  * REVISIT behavior during system suspend states... we should disable
36  * all clocks and save the power.  Easily done for clockevent devices,
37  * but clocksources won't necessarily get the needed notifications.
38  * For deeper system sleep states, this will be mandatory...
39  */
40
41 static void __iomem *tcaddr;
42 static struct
43 {
44         u32 cmr;
45         u32 imr;
46         u32 rc;
47         bool clken;
48 } tcb_cache[3];
49 static u32 bmr_cache;
50
51 static const u8 atmel_tcb_divisors[] = { 2, 8, 32, 128 };
52
53 static u64 tc_get_cycles(struct clocksource *cs)
54 {
55         unsigned long   flags;
56         u32             lower, upper;
57
58         raw_local_irq_save(flags);
59         do {
60                 upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV));
61                 lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
62         } while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)));
63
64         raw_local_irq_restore(flags);
65         return (upper << 16) | lower;
66 }
67
68 static u64 tc_get_cycles32(struct clocksource *cs)
69 {
70         return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
71 }
72
73 static void tc_clksrc_suspend(struct clocksource *cs)
74 {
75         int i;
76
77         for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
78                 tcb_cache[i].cmr = readl(tcaddr + ATMEL_TC_REG(i, CMR));
79                 tcb_cache[i].imr = readl(tcaddr + ATMEL_TC_REG(i, IMR));
80                 tcb_cache[i].rc = readl(tcaddr + ATMEL_TC_REG(i, RC));
81                 tcb_cache[i].clken = !!(readl(tcaddr + ATMEL_TC_REG(i, SR)) &
82                                         ATMEL_TC_CLKSTA);
83         }
84
85         bmr_cache = readl(tcaddr + ATMEL_TC_BMR);
86 }
87
88 static void tc_clksrc_resume(struct clocksource *cs)
89 {
90         int i;
91
92         for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
93                 /* Restore registers for the channel, RA and RB are not used  */
94                 writel(tcb_cache[i].cmr, tcaddr + ATMEL_TC_REG(i, CMR));
95                 writel(tcb_cache[i].rc, tcaddr + ATMEL_TC_REG(i, RC));
96                 writel(0, tcaddr + ATMEL_TC_REG(i, RA));
97                 writel(0, tcaddr + ATMEL_TC_REG(i, RB));
98                 /* Disable all the interrupts */
99                 writel(0xff, tcaddr + ATMEL_TC_REG(i, IDR));
100                 /* Reenable interrupts that were enabled before suspending */
101                 writel(tcb_cache[i].imr, tcaddr + ATMEL_TC_REG(i, IER));
102                 /* Start the clock if it was used */
103                 if (tcb_cache[i].clken)
104                         writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(i, CCR));
105         }
106
107         /* Dual channel, chain channels */
108         writel(bmr_cache, tcaddr + ATMEL_TC_BMR);
109         /* Finally, trigger all the channels*/
110         writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
111 }
112
113 static struct clocksource clksrc = {
114         .rating         = 200,
115         .read           = tc_get_cycles,
116         .mask           = CLOCKSOURCE_MASK(32),
117         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
118         .suspend        = tc_clksrc_suspend,
119         .resume         = tc_clksrc_resume,
120 };
121
122 static u64 notrace tc_sched_clock_read(void)
123 {
124         return tc_get_cycles(&clksrc);
125 }
126
127 static u64 notrace tc_sched_clock_read32(void)
128 {
129         return tc_get_cycles32(&clksrc);
130 }
131
132 static struct delay_timer tc_delay_timer;
133
134 static unsigned long tc_delay_timer_read(void)
135 {
136         return tc_get_cycles(&clksrc);
137 }
138
139 static unsigned long notrace tc_delay_timer_read32(void)
140 {
141         return tc_get_cycles32(&clksrc);
142 }
143
144 #ifdef CONFIG_GENERIC_CLOCKEVENTS
145
146 struct tc_clkevt_device {
147         struct clock_event_device       clkevt;
148         struct clk                      *clk;
149         u32                             rate;
150         void __iomem                    *regs;
151 };
152
153 static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
154 {
155         return container_of(clkevt, struct tc_clkevt_device, clkevt);
156 }
157
158 static u32 timer_clock;
159
160 static int tc_shutdown(struct clock_event_device *d)
161 {
162         struct tc_clkevt_device *tcd = to_tc_clkevt(d);
163         void __iomem            *regs = tcd->regs;
164
165         writel(0xff, regs + ATMEL_TC_REG(2, IDR));
166         writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
167         if (!clockevent_state_detached(d))
168                 clk_disable(tcd->clk);
169
170         return 0;
171 }
172
173 static int tc_set_oneshot(struct clock_event_device *d)
174 {
175         struct tc_clkevt_device *tcd = to_tc_clkevt(d);
176         void __iomem            *regs = tcd->regs;
177
178         if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
179                 tc_shutdown(d);
180
181         clk_enable(tcd->clk);
182
183         /* count up to RC, then irq and stop */
184         writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
185                      ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
186         writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
187
188         /* set_next_event() configures and starts the timer */
189         return 0;
190 }
191
192 static int tc_set_periodic(struct clock_event_device *d)
193 {
194         struct tc_clkevt_device *tcd = to_tc_clkevt(d);
195         void __iomem            *regs = tcd->regs;
196
197         if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
198                 tc_shutdown(d);
199
200         /* By not making the gentime core emulate periodic mode on top
201          * of oneshot, we get lower overhead and improved accuracy.
202          */
203         clk_enable(tcd->clk);
204
205         /* count up to RC, then irq and restart */
206         writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
207                      regs + ATMEL_TC_REG(2, CMR));
208         writel((tcd->rate + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
209
210         /* Enable clock and interrupts on RC compare */
211         writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
212
213         /* go go gadget! */
214         writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
215                      ATMEL_TC_REG(2, CCR));
216         return 0;
217 }
218
219 static int tc_next_event(unsigned long delta, struct clock_event_device *d)
220 {
221         writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC));
222
223         /* go go gadget! */
224         writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
225                         tcaddr + ATMEL_TC_REG(2, CCR));
226         return 0;
227 }
228
229 static struct tc_clkevt_device clkevt = {
230         .clkevt = {
231                 .features               = CLOCK_EVT_FEAT_PERIODIC |
232                                           CLOCK_EVT_FEAT_ONESHOT,
233                 /* Should be lower than at91rm9200's system timer */
234                 .rating                 = 125,
235                 .set_next_event         = tc_next_event,
236                 .set_state_shutdown     = tc_shutdown,
237                 .set_state_periodic     = tc_set_periodic,
238                 .set_state_oneshot      = tc_set_oneshot,
239         },
240 };
241
242 static irqreturn_t ch2_irq(int irq, void *handle)
243 {
244         struct tc_clkevt_device *dev = handle;
245         unsigned int            sr;
246
247         sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR));
248         if (sr & ATMEL_TC_CPCS) {
249                 dev->clkevt.event_handler(&dev->clkevt);
250                 return IRQ_HANDLED;
251         }
252
253         return IRQ_NONE;
254 }
255
256 static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx)
257 {
258         int ret;
259         struct clk *t2_clk = tc->clk[2];
260         int irq = tc->irq[2];
261         int bits = tc->tcb_config->counter_width;
262
263         /* try to enable t2 clk to avoid future errors in mode change */
264         ret = clk_prepare_enable(t2_clk);
265         if (ret)
266                 return ret;
267
268         clkevt.regs = tc->regs;
269         clkevt.clk = t2_clk;
270
271         if (bits == 32) {
272                 timer_clock = divisor_idx;
273                 clkevt.rate = clk_get_rate(t2_clk) / atmel_tcb_divisors[divisor_idx];
274         } else {
275                 ret = clk_prepare_enable(tc->slow_clk);
276                 if (ret) {
277                         clk_disable_unprepare(t2_clk);
278                         return ret;
279                 }
280
281                 clkevt.rate = clk_get_rate(tc->slow_clk);
282                 timer_clock = ATMEL_TC_TIMER_CLOCK5;
283         }
284
285         clk_disable(t2_clk);
286
287         clkevt.clkevt.cpumask = cpumask_of(0);
288
289         ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
290         if (ret) {
291                 clk_unprepare(t2_clk);
292                 if (bits != 32)
293                         clk_disable_unprepare(tc->slow_clk);
294                 return ret;
295         }
296
297         clockevents_config_and_register(&clkevt.clkevt, clkevt.rate, 1, BIT(bits) - 1);
298
299         return ret;
300 }
301
302 #else /* !CONFIG_GENERIC_CLOCKEVENTS */
303
304 static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx)
305 {
306         /* NOTHING */
307         return 0;
308 }
309
310 #endif
311
312 static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
313 {
314         /* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
315         writel(mck_divisor_idx                  /* likely divide-by-8 */
316                         | ATMEL_TC_WAVE
317                         | ATMEL_TC_WAVESEL_UP           /* free-run */
318                         | ATMEL_TC_ASWTRG_SET           /* TIOA0 rises at software trigger */
319                         | ATMEL_TC_ACPA_SET             /* TIOA0 rises at 0 */
320                         | ATMEL_TC_ACPC_CLEAR,          /* (duty cycle 50%) */
321                         tcaddr + ATMEL_TC_REG(0, CMR));
322         writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
323         writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
324         writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));    /* no irqs */
325         writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
326
327         /* channel 1:  waveform mode, input TIOA0 */
328         writel(ATMEL_TC_XC1                     /* input: TIOA0 */
329                         | ATMEL_TC_WAVE
330                         | ATMEL_TC_WAVESEL_UP,          /* free-run */
331                         tcaddr + ATMEL_TC_REG(1, CMR));
332         writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));    /* no irqs */
333         writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
334
335         /* chain channel 0 to channel 1*/
336         writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
337         /* then reset all the timers */
338         writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
339 }
340
341 static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
342 {
343         /* channel 0:  waveform mode, input mclk/8 */
344         writel(mck_divisor_idx                  /* likely divide-by-8 */
345                         | ATMEL_TC_WAVE
346                         | ATMEL_TC_WAVESEL_UP,          /* free-run */
347                         tcaddr + ATMEL_TC_REG(0, CMR));
348         writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));    /* no irqs */
349         writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
350
351         /* then reset all the timers */
352         writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
353 }
354
355 static struct atmel_tcb_config tcb_rm9200_config = {
356         .counter_width = 16,
357 };
358
359 static struct atmel_tcb_config tcb_sam9x5_config = {
360         .counter_width = 32,
361 };
362
363 static struct atmel_tcb_config tcb_sama5d2_config = {
364         .counter_width = 32,
365         .has_gclk = 1,
366 };
367
368 static const struct of_device_id atmel_tcb_of_match[] = {
369         { .compatible = "atmel,at91rm9200-tcb", .data = &tcb_rm9200_config, },
370         { .compatible = "atmel,at91sam9x5-tcb", .data = &tcb_sam9x5_config, },
371         { .compatible = "atmel,sama5d2-tcb", .data = &tcb_sama5d2_config, },
372         { /* sentinel */ }
373 };
374
375 static int __init tcb_clksrc_init(struct device_node *node)
376 {
377         struct atmel_tc tc;
378         struct clk *t0_clk;
379         const struct of_device_id *match;
380         u64 (*tc_sched_clock)(void);
381         u32 rate, divided_rate = 0;
382         int best_divisor_idx = -1;
383         int bits;
384         int i;
385         int ret;
386
387         /* Protect against multiple calls */
388         if (tcaddr)
389                 return 0;
390
391         tc.regs = of_iomap(node->parent, 0);
392         if (!tc.regs)
393                 return -ENXIO;
394
395         t0_clk = of_clk_get_by_name(node->parent, "t0_clk");
396         if (IS_ERR(t0_clk))
397                 return PTR_ERR(t0_clk);
398
399         tc.slow_clk = of_clk_get_by_name(node->parent, "slow_clk");
400         if (IS_ERR(tc.slow_clk))
401                 return PTR_ERR(tc.slow_clk);
402
403         tc.clk[0] = t0_clk;
404         tc.clk[1] = of_clk_get_by_name(node->parent, "t1_clk");
405         if (IS_ERR(tc.clk[1]))
406                 tc.clk[1] = t0_clk;
407         tc.clk[2] = of_clk_get_by_name(node->parent, "t2_clk");
408         if (IS_ERR(tc.clk[2]))
409                 tc.clk[2] = t0_clk;
410
411         tc.irq[2] = of_irq_get(node->parent, 2);
412         if (tc.irq[2] <= 0) {
413                 tc.irq[2] = of_irq_get(node->parent, 0);
414                 if (tc.irq[2] <= 0)
415                         return -EINVAL;
416         }
417
418         match = of_match_node(atmel_tcb_of_match, node->parent);
419         if (!match)
420                 return -ENODEV;
421
422         tc.tcb_config = match->data;
423         bits = tc.tcb_config->counter_width;
424
425         for (i = 0; i < ARRAY_SIZE(tc.irq); i++)
426                 writel(ATMEL_TC_ALL_IRQ, tc.regs + ATMEL_TC_REG(i, IDR));
427
428         ret = clk_prepare_enable(t0_clk);
429         if (ret) {
430                 pr_debug("can't enable T0 clk\n");
431                 return ret;
432         }
433
434         /* How fast will we be counting?  Pick something over 5 MHz.  */
435         rate = (u32) clk_get_rate(t0_clk);
436         i = 0;
437         if (tc.tcb_config->has_gclk)
438                 i = 1;
439         for (; i < ARRAY_SIZE(atmel_tcb_divisors); i++) {
440                 unsigned divisor = atmel_tcb_divisors[i];
441                 unsigned tmp;
442
443                 tmp = rate / divisor;
444                 pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
445                 if ((best_divisor_idx >= 0) && (tmp < 5 * 1000 * 1000))
446                         break;
447                 divided_rate = tmp;
448                 best_divisor_idx = i;
449         }
450
451         clksrc.name = kbasename(node->parent->full_name);
452         clkevt.clkevt.name = kbasename(node->parent->full_name);
453         pr_debug("%s at %d.%03d MHz\n", clksrc.name, divided_rate / 1000000,
454                         ((divided_rate % 1000000) + 500) / 1000);
455
456         tcaddr = tc.regs;
457
458         if (bits == 32) {
459                 /* use appropriate function to read 32 bit counter */
460                 clksrc.read = tc_get_cycles32;
461                 /* setup only channel 0 */
462                 tcb_setup_single_chan(&tc, best_divisor_idx);
463                 tc_sched_clock = tc_sched_clock_read32;
464                 tc_delay_timer.read_current_timer = tc_delay_timer_read32;
465         } else {
466                 /* we have three clocks no matter what the
467                  * underlying platform supports.
468                  */
469                 ret = clk_prepare_enable(tc.clk[1]);
470                 if (ret) {
471                         pr_debug("can't enable T1 clk\n");
472                         goto err_disable_t0;
473                 }
474                 /* setup both channel 0 & 1 */
475                 tcb_setup_dual_chan(&tc, best_divisor_idx);
476                 tc_sched_clock = tc_sched_clock_read;
477                 tc_delay_timer.read_current_timer = tc_delay_timer_read;
478         }
479
480         /* and away we go! */
481         ret = clocksource_register_hz(&clksrc, divided_rate);
482         if (ret)
483                 goto err_disable_t1;
484
485         /* channel 2:  periodic and oneshot timer support */
486         ret = setup_clkevents(&tc, best_divisor_idx);
487         if (ret)
488                 goto err_unregister_clksrc;
489
490         sched_clock_register(tc_sched_clock, 32, divided_rate);
491
492         tc_delay_timer.freq = divided_rate;
493         register_current_timer_delay(&tc_delay_timer);
494
495         return 0;
496
497 err_unregister_clksrc:
498         clocksource_unregister(&clksrc);
499
500 err_disable_t1:
501         if (bits != 32)
502                 clk_disable_unprepare(tc.clk[1]);
503
504 err_disable_t0:
505         clk_disable_unprepare(t0_clk);
506
507         tcaddr = NULL;
508
509         return ret;
510 }
511 TIMER_OF_DECLARE(atmel_tcb_clksrc, "atmel,tcb-timer", tcb_clksrc_init);