Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / clocksource / tcb_clksrc.c
1 #include <linux/init.h>
2 #include <linux/clocksource.h>
3 #include <linux/clockchips.h>
4 #include <linux/interrupt.h>
5 #include <linux/irq.h>
6
7 #include <linux/clk.h>
8 #include <linux/err.h>
9 #include <linux/ioport.h>
10 #include <linux/io.h>
11 #include <linux/platform_device.h>
12 #include <linux/atmel_tc.h>
13
14
15 /*
16  * We're configured to use a specific TC block, one that's not hooked
17  * up to external hardware, to provide a time solution:
18  *
19  *   - Two channels combine to create a free-running 32 bit counter
20  *     with a base rate of 5+ MHz, packaged as a clocksource (with
21  *     resolution better than 200 nsec).
22  *   - Some chips support 32 bit counter. A single channel is used for
23  *     this 32 bit free-running counter. the second channel is not used.
24  *
25  *   - The third channel may be used to provide a 16-bit clockevent
26  *     source, used in either periodic or oneshot mode.  This runs
27  *     at 32 KiHZ, and can handle delays of up to two seconds.
28  *
29  * A boot clocksource and clockevent source are also currently needed,
30  * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
31  * this code can be used when init_timers() is called, well before most
32  * devices are set up.  (Some low end AT91 parts, which can run uClinux,
33  * have only the timers in one TC block... they currently don't support
34  * the tclib code, because of that initialization issue.)
35  *
36  * REVISIT behavior during system suspend states... we should disable
37  * all clocks and save the power.  Easily done for clockevent devices,
38  * but clocksources won't necessarily get the needed notifications.
39  * For deeper system sleep states, this will be mandatory...
40  */
41
42 static void __iomem *tcaddr;
43
44 static cycle_t tc_get_cycles(struct clocksource *cs)
45 {
46         unsigned long   flags;
47         u32             lower, upper;
48
49         raw_local_irq_save(flags);
50         do {
51                 upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
52                 lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
53         } while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));
54
55         raw_local_irq_restore(flags);
56         return (upper << 16) | lower;
57 }
58
59 static cycle_t tc_get_cycles32(struct clocksource *cs)
60 {
61         return __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
62 }
63
64 static struct clocksource clksrc = {
65         .name           = "tcb_clksrc",
66         .rating         = 200,
67         .read           = tc_get_cycles,
68         .mask           = CLOCKSOURCE_MASK(32),
69         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
70 };
71
72 #ifdef CONFIG_GENERIC_CLOCKEVENTS
73
74 struct tc_clkevt_device {
75         struct clock_event_device       clkevt;
76         struct clk                      *clk;
77         void __iomem                    *regs;
78 };
79
80 static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
81 {
82         return container_of(clkevt, struct tc_clkevt_device, clkevt);
83 }
84
85 /* For now, we always use the 32K clock ... this optimizes for NO_HZ,
86  * because using one of the divided clocks would usually mean the
87  * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
88  *
89  * A divided clock could be good for high resolution timers, since
90  * 30.5 usec resolution can seem "low".
91  */
92 static u32 timer_clock;
93
94 static void tc_mode(enum clock_event_mode m, struct clock_event_device *d)
95 {
96         struct tc_clkevt_device *tcd = to_tc_clkevt(d);
97         void __iomem            *regs = tcd->regs;
98
99         if (tcd->clkevt.mode == CLOCK_EVT_MODE_PERIODIC
100                         || tcd->clkevt.mode == CLOCK_EVT_MODE_ONESHOT) {
101                 __raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
102                 __raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
103                 clk_disable(tcd->clk);
104         }
105
106         switch (m) {
107
108         /* By not making the gentime core emulate periodic mode on top
109          * of oneshot, we get lower overhead and improved accuracy.
110          */
111         case CLOCK_EVT_MODE_PERIODIC:
112                 clk_enable(tcd->clk);
113
114                 /* slow clock, count up to RC, then irq and restart */
115                 __raw_writel(timer_clock
116                                 | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
117                                 regs + ATMEL_TC_REG(2, CMR));
118                 __raw_writel((32768 + HZ/2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
119
120                 /* Enable clock and interrupts on RC compare */
121                 __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
122
123                 /* go go gadget! */
124                 __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
125                                 regs + ATMEL_TC_REG(2, CCR));
126                 break;
127
128         case CLOCK_EVT_MODE_ONESHOT:
129                 clk_enable(tcd->clk);
130
131                 /* slow clock, count up to RC, then irq and stop */
132                 __raw_writel(timer_clock | ATMEL_TC_CPCSTOP
133                                 | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
134                                 regs + ATMEL_TC_REG(2, CMR));
135                 __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
136
137                 /* set_next_event() configures and starts the timer */
138                 break;
139
140         default:
141                 break;
142         }
143 }
144
145 static int tc_next_event(unsigned long delta, struct clock_event_device *d)
146 {
147         __raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));
148
149         /* go go gadget! */
150         __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
151                         tcaddr + ATMEL_TC_REG(2, CCR));
152         return 0;
153 }
154
155 static struct tc_clkevt_device clkevt = {
156         .clkevt = {
157                 .name           = "tc_clkevt",
158                 .features       = CLOCK_EVT_FEAT_PERIODIC
159                                         | CLOCK_EVT_FEAT_ONESHOT,
160                 .shift          = 32,
161                 /* Should be lower than at91rm9200's system timer */
162                 .rating         = 125,
163                 .set_next_event = tc_next_event,
164                 .set_mode       = tc_mode,
165         },
166 };
167
168 static irqreturn_t ch2_irq(int irq, void *handle)
169 {
170         struct tc_clkevt_device *dev = handle;
171         unsigned int            sr;
172
173         sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
174         if (sr & ATMEL_TC_CPCS) {
175                 dev->clkevt.event_handler(&dev->clkevt);
176                 return IRQ_HANDLED;
177         }
178
179         return IRQ_NONE;
180 }
181
182 static struct irqaction tc_irqaction = {
183         .name           = "tc_clkevt",
184         .flags          = IRQF_TIMER | IRQF_DISABLED,
185         .handler        = ch2_irq,
186 };
187
188 static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
189 {
190         struct clk *t2_clk = tc->clk[2];
191         int irq = tc->irq[2];
192
193         clkevt.regs = tc->regs;
194         clkevt.clk = t2_clk;
195         tc_irqaction.dev_id = &clkevt;
196
197         timer_clock = clk32k_divisor_idx;
198
199         clkevt.clkevt.mult = div_sc(32768, NSEC_PER_SEC, clkevt.clkevt.shift);
200         clkevt.clkevt.max_delta_ns
201                 = clockevent_delta2ns(0xffff, &clkevt.clkevt);
202         clkevt.clkevt.min_delta_ns = clockevent_delta2ns(1, &clkevt.clkevt) + 1;
203         clkevt.clkevt.cpumask = cpumask_of(0);
204
205         clockevents_register_device(&clkevt.clkevt);
206
207         setup_irq(irq, &tc_irqaction);
208 }
209
210 #else /* !CONFIG_GENERIC_CLOCKEVENTS */
211
212 static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
213 {
214         /* NOTHING */
215 }
216
217 #endif
218
219 static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
220 {
221         /* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
222         __raw_writel(mck_divisor_idx                    /* likely divide-by-8 */
223                         | ATMEL_TC_WAVE
224                         | ATMEL_TC_WAVESEL_UP           /* free-run */
225                         | ATMEL_TC_ACPA_SET             /* TIOA0 rises at 0 */
226                         | ATMEL_TC_ACPC_CLEAR,          /* (duty cycle 50%) */
227                         tcaddr + ATMEL_TC_REG(0, CMR));
228         __raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
229         __raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
230         __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));      /* no irqs */
231         __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
232
233         /* channel 1:  waveform mode, input TIOA0 */
234         __raw_writel(ATMEL_TC_XC1                       /* input: TIOA0 */
235                         | ATMEL_TC_WAVE
236                         | ATMEL_TC_WAVESEL_UP,          /* free-run */
237                         tcaddr + ATMEL_TC_REG(1, CMR));
238         __raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));      /* no irqs */
239         __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
240
241         /* chain channel 0 to channel 1*/
242         __raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
243         /* then reset all the timers */
244         __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
245 }
246
247 static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
248 {
249         /* channel 0:  waveform mode, input mclk/8 */
250         __raw_writel(mck_divisor_idx                    /* likely divide-by-8 */
251                         | ATMEL_TC_WAVE
252                         | ATMEL_TC_WAVESEL_UP,          /* free-run */
253                         tcaddr + ATMEL_TC_REG(0, CMR));
254         __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));      /* no irqs */
255         __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
256
257         /* then reset all the timers */
258         __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
259 }
260
261 static int __init tcb_clksrc_init(void)
262 {
263         static char bootinfo[] __initdata
264                 = KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
265
266         struct platform_device *pdev;
267         struct atmel_tc *tc;
268         struct clk *t0_clk;
269         u32 rate, divided_rate = 0;
270         int best_divisor_idx = -1;
271         int clk32k_divisor_idx = -1;
272         int i;
273
274         tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK, clksrc.name);
275         if (!tc) {
276                 pr_debug("can't alloc TC for clocksource\n");
277                 return -ENODEV;
278         }
279         tcaddr = tc->regs;
280         pdev = tc->pdev;
281
282         t0_clk = tc->clk[0];
283         clk_enable(t0_clk);
284
285         /* How fast will we be counting?  Pick something over 5 MHz.  */
286         rate = (u32) clk_get_rate(t0_clk);
287         for (i = 0; i < 5; i++) {
288                 unsigned divisor = atmel_tc_divisors[i];
289                 unsigned tmp;
290
291                 /* remember 32 KiHz clock for later */
292                 if (!divisor) {
293                         clk32k_divisor_idx = i;
294                         continue;
295                 }
296
297                 tmp = rate / divisor;
298                 pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
299                 if (best_divisor_idx > 0) {
300                         if (tmp < 5 * 1000 * 1000)
301                                 continue;
302                 }
303                 divided_rate = tmp;
304                 best_divisor_idx = i;
305         }
306
307
308         printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
309                         divided_rate / 1000000,
310                         ((divided_rate + 500000) % 1000000) / 1000);
311
312         if (tc->tcb_config && tc->tcb_config->counter_width == 32) {
313                 /* use apropriate function to read 32 bit counter */
314                 clksrc.read = tc_get_cycles32;
315                 /* setup ony channel 0 */
316                 tcb_setup_single_chan(tc, best_divisor_idx);
317         } else {
318                 /* tclib will give us three clocks no matter what the
319                  * underlying platform supports.
320                  */
321                 clk_enable(tc->clk[1]);
322                 /* setup both channel 0 & 1 */
323                 tcb_setup_dual_chan(tc, best_divisor_idx);
324         }
325
326         /* and away we go! */
327         clocksource_register_hz(&clksrc, divided_rate);
328
329         /* channel 2:  periodic and oneshot timer support */
330         setup_clkevents(tc, clk32k_divisor_idx);
331
332         return 0;
333 }
334 arch_initcall(tcb_clksrc_init);