clocksource: sh_tmu: Allocate channels dynamically
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / clocksource / sh_tmu.c
1 /*
2  * SuperH Timer Support - TMU
3  *
4  *  Copyright (C) 2009 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  */
19
20 #include <linux/init.h>
21 #include <linux/platform_device.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/io.h>
27 #include <linux/clk.h>
28 #include <linux/irq.h>
29 #include <linux/err.h>
30 #include <linux/clocksource.h>
31 #include <linux/clockchips.h>
32 #include <linux/sh_timer.h>
33 #include <linux/slab.h>
34 #include <linux/module.h>
35 #include <linux/pm_domain.h>
36 #include <linux/pm_runtime.h>
37
38 struct sh_tmu_device;
39
40 struct sh_tmu_channel {
41         struct sh_tmu_device *tmu;
42         unsigned int index;
43
44         void __iomem *base;
45         int irq;
46
47         unsigned long rate;
48         unsigned long periodic;
49         struct clock_event_device ced;
50         struct clocksource cs;
51         bool cs_enabled;
52         unsigned int enable_count;
53 };
54
55 struct sh_tmu_device {
56         struct platform_device *pdev;
57
58         void __iomem *mapbase;
59         struct clk *clk;
60
61         struct sh_tmu_channel *channels;
62         unsigned int num_channels;
63 };
64
65 static DEFINE_RAW_SPINLOCK(sh_tmu_lock);
66
67 #define TSTR -1 /* shared register */
68 #define TCOR  0 /* channel register */
69 #define TCNT 1 /* channel register */
70 #define TCR 2 /* channel register */
71
72 static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
73 {
74         unsigned long offs;
75
76         if (reg_nr == TSTR)
77                 return ioread8(ch->tmu->mapbase);
78
79         offs = reg_nr << 2;
80
81         if (reg_nr == TCR)
82                 return ioread16(ch->base + offs);
83         else
84                 return ioread32(ch->base + offs);
85 }
86
87 static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
88                                 unsigned long value)
89 {
90         unsigned long offs;
91
92         if (reg_nr == TSTR) {
93                 iowrite8(value, ch->tmu->mapbase);
94                 return;
95         }
96
97         offs = reg_nr << 2;
98
99         if (reg_nr == TCR)
100                 iowrite16(value, ch->base + offs);
101         else
102                 iowrite32(value, ch->base + offs);
103 }
104
105 static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
106 {
107         unsigned long flags, value;
108
109         /* start stop register shared by multiple timer channels */
110         raw_spin_lock_irqsave(&sh_tmu_lock, flags);
111         value = sh_tmu_read(ch, TSTR);
112
113         if (start)
114                 value |= 1 << ch->index;
115         else
116                 value &= ~(1 << ch->index);
117
118         sh_tmu_write(ch, TSTR, value);
119         raw_spin_unlock_irqrestore(&sh_tmu_lock, flags);
120 }
121
122 static int __sh_tmu_enable(struct sh_tmu_channel *ch)
123 {
124         int ret;
125
126         /* enable clock */
127         ret = clk_enable(ch->tmu->clk);
128         if (ret) {
129                 dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
130                         ch->index);
131                 return ret;
132         }
133
134         /* make sure channel is disabled */
135         sh_tmu_start_stop_ch(ch, 0);
136
137         /* maximum timeout */
138         sh_tmu_write(ch, TCOR, 0xffffffff);
139         sh_tmu_write(ch, TCNT, 0xffffffff);
140
141         /* configure channel to parent clock / 4, irq off */
142         ch->rate = clk_get_rate(ch->tmu->clk) / 4;
143         sh_tmu_write(ch, TCR, 0x0000);
144
145         /* enable channel */
146         sh_tmu_start_stop_ch(ch, 1);
147
148         return 0;
149 }
150
151 static int sh_tmu_enable(struct sh_tmu_channel *ch)
152 {
153         if (ch->enable_count++ > 0)
154                 return 0;
155
156         pm_runtime_get_sync(&ch->tmu->pdev->dev);
157         dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
158
159         return __sh_tmu_enable(ch);
160 }
161
162 static void __sh_tmu_disable(struct sh_tmu_channel *ch)
163 {
164         /* disable channel */
165         sh_tmu_start_stop_ch(ch, 0);
166
167         /* disable interrupts in TMU block */
168         sh_tmu_write(ch, TCR, 0x0000);
169
170         /* stop clock */
171         clk_disable(ch->tmu->clk);
172 }
173
174 static void sh_tmu_disable(struct sh_tmu_channel *ch)
175 {
176         if (WARN_ON(ch->enable_count == 0))
177                 return;
178
179         if (--ch->enable_count > 0)
180                 return;
181
182         __sh_tmu_disable(ch);
183
184         dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
185         pm_runtime_put(&ch->tmu->pdev->dev);
186 }
187
188 static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
189                             int periodic)
190 {
191         /* stop timer */
192         sh_tmu_start_stop_ch(ch, 0);
193
194         /* acknowledge interrupt */
195         sh_tmu_read(ch, TCR);
196
197         /* enable interrupt */
198         sh_tmu_write(ch, TCR, 0x0020);
199
200         /* reload delta value in case of periodic timer */
201         if (periodic)
202                 sh_tmu_write(ch, TCOR, delta);
203         else
204                 sh_tmu_write(ch, TCOR, 0xffffffff);
205
206         sh_tmu_write(ch, TCNT, delta);
207
208         /* start timer */
209         sh_tmu_start_stop_ch(ch, 1);
210 }
211
212 static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
213 {
214         struct sh_tmu_channel *ch = dev_id;
215
216         /* disable or acknowledge interrupt */
217         if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT)
218                 sh_tmu_write(ch, TCR, 0x0000);
219         else
220                 sh_tmu_write(ch, TCR, 0x0020);
221
222         /* notify clockevent layer */
223         ch->ced.event_handler(&ch->ced);
224         return IRQ_HANDLED;
225 }
226
227 static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
228 {
229         return container_of(cs, struct sh_tmu_channel, cs);
230 }
231
232 static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
233 {
234         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
235
236         return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
237 }
238
239 static int sh_tmu_clocksource_enable(struct clocksource *cs)
240 {
241         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
242         int ret;
243
244         if (WARN_ON(ch->cs_enabled))
245                 return 0;
246
247         ret = sh_tmu_enable(ch);
248         if (!ret) {
249                 __clocksource_updatefreq_hz(cs, ch->rate);
250                 ch->cs_enabled = true;
251         }
252
253         return ret;
254 }
255
256 static void sh_tmu_clocksource_disable(struct clocksource *cs)
257 {
258         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
259
260         if (WARN_ON(!ch->cs_enabled))
261                 return;
262
263         sh_tmu_disable(ch);
264         ch->cs_enabled = false;
265 }
266
267 static void sh_tmu_clocksource_suspend(struct clocksource *cs)
268 {
269         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
270
271         if (!ch->cs_enabled)
272                 return;
273
274         if (--ch->enable_count == 0) {
275                 __sh_tmu_disable(ch);
276                 pm_genpd_syscore_poweroff(&ch->tmu->pdev->dev);
277         }
278 }
279
280 static void sh_tmu_clocksource_resume(struct clocksource *cs)
281 {
282         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
283
284         if (!ch->cs_enabled)
285                 return;
286
287         if (ch->enable_count++ == 0) {
288                 pm_genpd_syscore_poweron(&ch->tmu->pdev->dev);
289                 __sh_tmu_enable(ch);
290         }
291 }
292
293 static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
294                                        const char *name, unsigned long rating)
295 {
296         struct clocksource *cs = &ch->cs;
297
298         cs->name = name;
299         cs->rating = rating;
300         cs->read = sh_tmu_clocksource_read;
301         cs->enable = sh_tmu_clocksource_enable;
302         cs->disable = sh_tmu_clocksource_disable;
303         cs->suspend = sh_tmu_clocksource_suspend;
304         cs->resume = sh_tmu_clocksource_resume;
305         cs->mask = CLOCKSOURCE_MASK(32);
306         cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
307
308         dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
309                  ch->index);
310
311         /* Register with dummy 1 Hz value, gets updated in ->enable() */
312         clocksource_register_hz(cs, 1);
313         return 0;
314 }
315
316 static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
317 {
318         return container_of(ced, struct sh_tmu_channel, ced);
319 }
320
321 static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
322 {
323         struct clock_event_device *ced = &ch->ced;
324
325         sh_tmu_enable(ch);
326
327         clockevents_config(ced, ch->rate);
328
329         if (periodic) {
330                 ch->periodic = (ch->rate + HZ/2) / HZ;
331                 sh_tmu_set_next(ch, ch->periodic, 1);
332         }
333 }
334
335 static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
336                                     struct clock_event_device *ced)
337 {
338         struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
339         int disabled = 0;
340
341         /* deal with old setting first */
342         switch (ced->mode) {
343         case CLOCK_EVT_MODE_PERIODIC:
344         case CLOCK_EVT_MODE_ONESHOT:
345                 sh_tmu_disable(ch);
346                 disabled = 1;
347                 break;
348         default:
349                 break;
350         }
351
352         switch (mode) {
353         case CLOCK_EVT_MODE_PERIODIC:
354                 dev_info(&ch->tmu->pdev->dev,
355                          "ch%u: used for periodic clock events\n", ch->index);
356                 sh_tmu_clock_event_start(ch, 1);
357                 break;
358         case CLOCK_EVT_MODE_ONESHOT:
359                 dev_info(&ch->tmu->pdev->dev,
360                          "ch%u: used for oneshot clock events\n", ch->index);
361                 sh_tmu_clock_event_start(ch, 0);
362                 break;
363         case CLOCK_EVT_MODE_UNUSED:
364                 if (!disabled)
365                         sh_tmu_disable(ch);
366                 break;
367         case CLOCK_EVT_MODE_SHUTDOWN:
368         default:
369                 break;
370         }
371 }
372
373 static int sh_tmu_clock_event_next(unsigned long delta,
374                                    struct clock_event_device *ced)
375 {
376         struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
377
378         BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
379
380         /* program new delta value */
381         sh_tmu_set_next(ch, delta, 0);
382         return 0;
383 }
384
385 static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
386 {
387         pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
388 }
389
390 static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
391 {
392         pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
393 }
394
395 static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
396                                        const char *name, unsigned long rating)
397 {
398         struct clock_event_device *ced = &ch->ced;
399         int ret;
400
401         ced->name = name;
402         ced->features = CLOCK_EVT_FEAT_PERIODIC;
403         ced->features |= CLOCK_EVT_FEAT_ONESHOT;
404         ced->rating = rating;
405         ced->cpumask = cpumask_of(0);
406         ced->set_next_event = sh_tmu_clock_event_next;
407         ced->set_mode = sh_tmu_clock_event_mode;
408         ced->suspend = sh_tmu_clock_event_suspend;
409         ced->resume = sh_tmu_clock_event_resume;
410
411         dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
412                  ch->index);
413
414         clockevents_config_and_register(ced, 1, 0x300, 0xffffffff);
415
416         ret = request_irq(ch->irq, sh_tmu_interrupt,
417                           IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
418                           dev_name(&ch->tmu->pdev->dev), ch);
419         if (ret) {
420                 dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
421                         ch->index, ch->irq);
422                 return;
423         }
424 }
425
426 static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
427                     unsigned long clockevent_rating,
428                     unsigned long clocksource_rating)
429 {
430         if (clockevent_rating)
431                 sh_tmu_register_clockevent(ch, name, clockevent_rating);
432         else if (clocksource_rating)
433                 sh_tmu_register_clocksource(ch, name, clocksource_rating);
434
435         return 0;
436 }
437
438 static int sh_tmu_channel_setup(struct sh_tmu_channel *ch,
439                                 struct sh_tmu_device *tmu)
440 {
441         struct sh_timer_config *cfg = tmu->pdev->dev.platform_data;
442
443         ch->tmu = tmu;
444
445         /*
446          * The SH3 variant (SH770x, SH7705, SH7710 and SH7720) maps channel
447          * registers blocks at base + 2 + 12 * index, while all other variants
448          * map them at base + 4 + 12 * index. We can compute the index by just
449          * dividing by 12, the 2 bytes or 4 bytes offset being hidden by the
450          * integer division.
451          */
452         ch->index = cfg->channel_offset / 12;
453
454         ch->irq = platform_get_irq(tmu->pdev, 0);
455         if (ch->irq < 0) {
456                 dev_err(&tmu->pdev->dev, "ch%u: failed to get irq\n",
457                         ch->index);
458                 return ch->irq;
459         }
460
461         ch->cs_enabled = false;
462         ch->enable_count = 0;
463
464         return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
465                                cfg->clockevent_rating,
466                                cfg->clocksource_rating);
467 }
468
469 static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
470 {
471         struct sh_timer_config *cfg = pdev->dev.platform_data;
472         struct resource *res;
473         void __iomem *base;
474         int ret;
475         ret = -ENXIO;
476
477         tmu->pdev = pdev;
478
479         if (!cfg) {
480                 dev_err(&tmu->pdev->dev, "missing platform data\n");
481                 goto err0;
482         }
483
484         platform_set_drvdata(pdev, tmu);
485
486         res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
487         if (!res) {
488                 dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
489                 goto err0;
490         }
491
492         /*
493          * Map memory, let base point to our channel and mapbase to the
494          * start/stop shared register.
495          */
496         base = ioremap_nocache(res->start, resource_size(res));
497         if (base == NULL) {
498                 dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
499                 goto err0;
500         }
501
502         tmu->mapbase = base - cfg->channel_offset;
503
504         /* get hold of clock */
505         tmu->clk = clk_get(&tmu->pdev->dev, "tmu_fck");
506         if (IS_ERR(tmu->clk)) {
507                 dev_err(&tmu->pdev->dev, "cannot get clock\n");
508                 ret = PTR_ERR(tmu->clk);
509                 goto err1;
510         }
511
512         ret = clk_prepare(tmu->clk);
513         if (ret < 0)
514                 goto err2;
515
516         tmu->channels = kzalloc(sizeof(*tmu->channels), GFP_KERNEL);
517         if (tmu->channels == NULL) {
518                 ret = -ENOMEM;
519                 goto err3;
520         }
521
522         tmu->num_channels = 1;
523
524         tmu->channels[0].base = base;
525
526         ret = sh_tmu_channel_setup(&tmu->channels[0], tmu);
527         if (ret < 0)
528                 goto err3;
529
530         return 0;
531
532  err3:
533         kfree(tmu->channels);
534         clk_unprepare(tmu->clk);
535  err2:
536         clk_put(tmu->clk);
537  err1:
538         iounmap(base);
539  err0:
540         return ret;
541 }
542
543 static int sh_tmu_probe(struct platform_device *pdev)
544 {
545         struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
546         struct sh_timer_config *cfg = pdev->dev.platform_data;
547         int ret;
548
549         if (!is_early_platform_device(pdev)) {
550                 pm_runtime_set_active(&pdev->dev);
551                 pm_runtime_enable(&pdev->dev);
552         }
553
554         if (tmu) {
555                 dev_info(&pdev->dev, "kept as earlytimer\n");
556                 goto out;
557         }
558
559         tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
560         if (tmu == NULL) {
561                 dev_err(&pdev->dev, "failed to allocate driver data\n");
562                 return -ENOMEM;
563         }
564
565         ret = sh_tmu_setup(tmu, pdev);
566         if (ret) {
567                 kfree(tmu);
568                 pm_runtime_idle(&pdev->dev);
569                 return ret;
570         }
571         if (is_early_platform_device(pdev))
572                 return 0;
573
574  out:
575         if (cfg->clockevent_rating || cfg->clocksource_rating)
576                 pm_runtime_irq_safe(&pdev->dev);
577         else
578                 pm_runtime_idle(&pdev->dev);
579
580         return 0;
581 }
582
583 static int sh_tmu_remove(struct platform_device *pdev)
584 {
585         return -EBUSY; /* cannot unregister clockevent and clocksource */
586 }
587
588 static struct platform_driver sh_tmu_device_driver = {
589         .probe          = sh_tmu_probe,
590         .remove         = sh_tmu_remove,
591         .driver         = {
592                 .name   = "sh_tmu",
593         }
594 };
595
596 static int __init sh_tmu_init(void)
597 {
598         return platform_driver_register(&sh_tmu_device_driver);
599 }
600
601 static void __exit sh_tmu_exit(void)
602 {
603         platform_driver_unregister(&sh_tmu_device_driver);
604 }
605
606 early_platform_init("earlytimer", &sh_tmu_device_driver);
607 subsys_initcall(sh_tmu_init);
608 module_exit(sh_tmu_exit);
609
610 MODULE_AUTHOR("Magnus Damm");
611 MODULE_DESCRIPTION("SuperH TMU Timer Driver");
612 MODULE_LICENSE("GPL v2");