clocksource: sh_tmu: Hardcode TMU clock event and source ratings to 200
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / clocksource / sh_tmu.c
1 /*
2  * SuperH Timer Support - TMU
3  *
4  *  Copyright (C) 2009 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  */
19
20 #include <linux/init.h>
21 #include <linux/platform_device.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/io.h>
27 #include <linux/clk.h>
28 #include <linux/irq.h>
29 #include <linux/err.h>
30 #include <linux/clocksource.h>
31 #include <linux/clockchips.h>
32 #include <linux/sh_timer.h>
33 #include <linux/slab.h>
34 #include <linux/module.h>
35 #include <linux/pm_domain.h>
36 #include <linux/pm_runtime.h>
37
38 struct sh_tmu_device;
39
40 struct sh_tmu_channel {
41         struct sh_tmu_device *tmu;
42         unsigned int index;
43
44         void __iomem *base;
45         int irq;
46
47         unsigned long rate;
48         unsigned long periodic;
49         struct clock_event_device ced;
50         struct clocksource cs;
51         bool cs_enabled;
52         unsigned int enable_count;
53 };
54
55 struct sh_tmu_device {
56         struct platform_device *pdev;
57
58         void __iomem *mapbase;
59         struct clk *clk;
60
61         struct sh_tmu_channel *channels;
62         unsigned int num_channels;
63 };
64
65 static DEFINE_RAW_SPINLOCK(sh_tmu_lock);
66
67 #define TSTR -1 /* shared register */
68 #define TCOR  0 /* channel register */
69 #define TCNT 1 /* channel register */
70 #define TCR 2 /* channel register */
71
72 #define TCR_UNF                 (1 << 8)
73 #define TCR_UNIE                (1 << 5)
74 #define TCR_TPSC_CLK4           (0 << 0)
75 #define TCR_TPSC_CLK16          (1 << 0)
76 #define TCR_TPSC_CLK64          (2 << 0)
77 #define TCR_TPSC_CLK256         (3 << 0)
78 #define TCR_TPSC_CLK1024        (4 << 0)
79 #define TCR_TPSC_MASK           (7 << 0)
80
81 static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
82 {
83         unsigned long offs;
84
85         if (reg_nr == TSTR)
86                 return ioread8(ch->tmu->mapbase);
87
88         offs = reg_nr << 2;
89
90         if (reg_nr == TCR)
91                 return ioread16(ch->base + offs);
92         else
93                 return ioread32(ch->base + offs);
94 }
95
96 static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
97                                 unsigned long value)
98 {
99         unsigned long offs;
100
101         if (reg_nr == TSTR) {
102                 iowrite8(value, ch->tmu->mapbase);
103                 return;
104         }
105
106         offs = reg_nr << 2;
107
108         if (reg_nr == TCR)
109                 iowrite16(value, ch->base + offs);
110         else
111                 iowrite32(value, ch->base + offs);
112 }
113
114 static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
115 {
116         unsigned long flags, value;
117
118         /* start stop register shared by multiple timer channels */
119         raw_spin_lock_irqsave(&sh_tmu_lock, flags);
120         value = sh_tmu_read(ch, TSTR);
121
122         if (start)
123                 value |= 1 << ch->index;
124         else
125                 value &= ~(1 << ch->index);
126
127         sh_tmu_write(ch, TSTR, value);
128         raw_spin_unlock_irqrestore(&sh_tmu_lock, flags);
129 }
130
131 static int __sh_tmu_enable(struct sh_tmu_channel *ch)
132 {
133         int ret;
134
135         /* enable clock */
136         ret = clk_enable(ch->tmu->clk);
137         if (ret) {
138                 dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
139                         ch->index);
140                 return ret;
141         }
142
143         /* make sure channel is disabled */
144         sh_tmu_start_stop_ch(ch, 0);
145
146         /* maximum timeout */
147         sh_tmu_write(ch, TCOR, 0xffffffff);
148         sh_tmu_write(ch, TCNT, 0xffffffff);
149
150         /* configure channel to parent clock / 4, irq off */
151         ch->rate = clk_get_rate(ch->tmu->clk) / 4;
152         sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
153
154         /* enable channel */
155         sh_tmu_start_stop_ch(ch, 1);
156
157         return 0;
158 }
159
160 static int sh_tmu_enable(struct sh_tmu_channel *ch)
161 {
162         if (ch->enable_count++ > 0)
163                 return 0;
164
165         pm_runtime_get_sync(&ch->tmu->pdev->dev);
166         dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
167
168         return __sh_tmu_enable(ch);
169 }
170
171 static void __sh_tmu_disable(struct sh_tmu_channel *ch)
172 {
173         /* disable channel */
174         sh_tmu_start_stop_ch(ch, 0);
175
176         /* disable interrupts in TMU block */
177         sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
178
179         /* stop clock */
180         clk_disable(ch->tmu->clk);
181 }
182
183 static void sh_tmu_disable(struct sh_tmu_channel *ch)
184 {
185         if (WARN_ON(ch->enable_count == 0))
186                 return;
187
188         if (--ch->enable_count > 0)
189                 return;
190
191         __sh_tmu_disable(ch);
192
193         dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
194         pm_runtime_put(&ch->tmu->pdev->dev);
195 }
196
197 static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
198                             int periodic)
199 {
200         /* stop timer */
201         sh_tmu_start_stop_ch(ch, 0);
202
203         /* acknowledge interrupt */
204         sh_tmu_read(ch, TCR);
205
206         /* enable interrupt */
207         sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
208
209         /* reload delta value in case of periodic timer */
210         if (periodic)
211                 sh_tmu_write(ch, TCOR, delta);
212         else
213                 sh_tmu_write(ch, TCOR, 0xffffffff);
214
215         sh_tmu_write(ch, TCNT, delta);
216
217         /* start timer */
218         sh_tmu_start_stop_ch(ch, 1);
219 }
220
221 static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
222 {
223         struct sh_tmu_channel *ch = dev_id;
224
225         /* disable or acknowledge interrupt */
226         if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT)
227                 sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
228         else
229                 sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
230
231         /* notify clockevent layer */
232         ch->ced.event_handler(&ch->ced);
233         return IRQ_HANDLED;
234 }
235
236 static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
237 {
238         return container_of(cs, struct sh_tmu_channel, cs);
239 }
240
241 static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
242 {
243         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
244
245         return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
246 }
247
248 static int sh_tmu_clocksource_enable(struct clocksource *cs)
249 {
250         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
251         int ret;
252
253         if (WARN_ON(ch->cs_enabled))
254                 return 0;
255
256         ret = sh_tmu_enable(ch);
257         if (!ret) {
258                 __clocksource_updatefreq_hz(cs, ch->rate);
259                 ch->cs_enabled = true;
260         }
261
262         return ret;
263 }
264
265 static void sh_tmu_clocksource_disable(struct clocksource *cs)
266 {
267         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
268
269         if (WARN_ON(!ch->cs_enabled))
270                 return;
271
272         sh_tmu_disable(ch);
273         ch->cs_enabled = false;
274 }
275
276 static void sh_tmu_clocksource_suspend(struct clocksource *cs)
277 {
278         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
279
280         if (!ch->cs_enabled)
281                 return;
282
283         if (--ch->enable_count == 0) {
284                 __sh_tmu_disable(ch);
285                 pm_genpd_syscore_poweroff(&ch->tmu->pdev->dev);
286         }
287 }
288
289 static void sh_tmu_clocksource_resume(struct clocksource *cs)
290 {
291         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
292
293         if (!ch->cs_enabled)
294                 return;
295
296         if (ch->enable_count++ == 0) {
297                 pm_genpd_syscore_poweron(&ch->tmu->pdev->dev);
298                 __sh_tmu_enable(ch);
299         }
300 }
301
302 static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
303                                        const char *name)
304 {
305         struct clocksource *cs = &ch->cs;
306
307         cs->name = name;
308         cs->rating = 200;
309         cs->read = sh_tmu_clocksource_read;
310         cs->enable = sh_tmu_clocksource_enable;
311         cs->disable = sh_tmu_clocksource_disable;
312         cs->suspend = sh_tmu_clocksource_suspend;
313         cs->resume = sh_tmu_clocksource_resume;
314         cs->mask = CLOCKSOURCE_MASK(32);
315         cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
316
317         dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
318                  ch->index);
319
320         /* Register with dummy 1 Hz value, gets updated in ->enable() */
321         clocksource_register_hz(cs, 1);
322         return 0;
323 }
324
325 static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
326 {
327         return container_of(ced, struct sh_tmu_channel, ced);
328 }
329
330 static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
331 {
332         struct clock_event_device *ced = &ch->ced;
333
334         sh_tmu_enable(ch);
335
336         clockevents_config(ced, ch->rate);
337
338         if (periodic) {
339                 ch->periodic = (ch->rate + HZ/2) / HZ;
340                 sh_tmu_set_next(ch, ch->periodic, 1);
341         }
342 }
343
344 static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
345                                     struct clock_event_device *ced)
346 {
347         struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
348         int disabled = 0;
349
350         /* deal with old setting first */
351         switch (ced->mode) {
352         case CLOCK_EVT_MODE_PERIODIC:
353         case CLOCK_EVT_MODE_ONESHOT:
354                 sh_tmu_disable(ch);
355                 disabled = 1;
356                 break;
357         default:
358                 break;
359         }
360
361         switch (mode) {
362         case CLOCK_EVT_MODE_PERIODIC:
363                 dev_info(&ch->tmu->pdev->dev,
364                          "ch%u: used for periodic clock events\n", ch->index);
365                 sh_tmu_clock_event_start(ch, 1);
366                 break;
367         case CLOCK_EVT_MODE_ONESHOT:
368                 dev_info(&ch->tmu->pdev->dev,
369                          "ch%u: used for oneshot clock events\n", ch->index);
370                 sh_tmu_clock_event_start(ch, 0);
371                 break;
372         case CLOCK_EVT_MODE_UNUSED:
373                 if (!disabled)
374                         sh_tmu_disable(ch);
375                 break;
376         case CLOCK_EVT_MODE_SHUTDOWN:
377         default:
378                 break;
379         }
380 }
381
382 static int sh_tmu_clock_event_next(unsigned long delta,
383                                    struct clock_event_device *ced)
384 {
385         struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
386
387         BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
388
389         /* program new delta value */
390         sh_tmu_set_next(ch, delta, 0);
391         return 0;
392 }
393
394 static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
395 {
396         pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
397 }
398
399 static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
400 {
401         pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
402 }
403
404 static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
405                                        const char *name)
406 {
407         struct clock_event_device *ced = &ch->ced;
408         int ret;
409
410         ced->name = name;
411         ced->features = CLOCK_EVT_FEAT_PERIODIC;
412         ced->features |= CLOCK_EVT_FEAT_ONESHOT;
413         ced->rating = 200;
414         ced->cpumask = cpumask_of(0);
415         ced->set_next_event = sh_tmu_clock_event_next;
416         ced->set_mode = sh_tmu_clock_event_mode;
417         ced->suspend = sh_tmu_clock_event_suspend;
418         ced->resume = sh_tmu_clock_event_resume;
419
420         dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
421                  ch->index);
422
423         clockevents_config_and_register(ced, 1, 0x300, 0xffffffff);
424
425         ret = request_irq(ch->irq, sh_tmu_interrupt,
426                           IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
427                           dev_name(&ch->tmu->pdev->dev), ch);
428         if (ret) {
429                 dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
430                         ch->index, ch->irq);
431                 return;
432         }
433 }
434
435 static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
436                            bool clockevent, bool clocksource)
437 {
438         if (clockevent)
439                 sh_tmu_register_clockevent(ch, name);
440         else if (clocksource)
441                 sh_tmu_register_clocksource(ch, name);
442
443         return 0;
444 }
445
446 static int sh_tmu_channel_setup(struct sh_tmu_channel *ch,
447                                 struct sh_tmu_device *tmu)
448 {
449         struct sh_timer_config *cfg = tmu->pdev->dev.platform_data;
450
451         ch->tmu = tmu;
452
453         /*
454          * The SH3 variant (SH770x, SH7705, SH7710 and SH7720) maps channel
455          * registers blocks at base + 2 + 12 * index, while all other variants
456          * map them at base + 4 + 12 * index. We can compute the index by just
457          * dividing by 12, the 2 bytes or 4 bytes offset being hidden by the
458          * integer division.
459          */
460         ch->index = cfg->channel_offset / 12;
461
462         ch->irq = platform_get_irq(tmu->pdev, 0);
463         if (ch->irq < 0) {
464                 dev_err(&tmu->pdev->dev, "ch%u: failed to get irq\n",
465                         ch->index);
466                 return ch->irq;
467         }
468
469         ch->cs_enabled = false;
470         ch->enable_count = 0;
471
472         return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
473                                cfg->clockevent_rating != 0,
474                                cfg->clocksource_rating != 0);
475 }
476
477 static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
478 {
479         struct sh_timer_config *cfg = pdev->dev.platform_data;
480         struct resource *res;
481         void __iomem *base;
482         int ret;
483         ret = -ENXIO;
484
485         tmu->pdev = pdev;
486
487         if (!cfg) {
488                 dev_err(&tmu->pdev->dev, "missing platform data\n");
489                 goto err0;
490         }
491
492         platform_set_drvdata(pdev, tmu);
493
494         res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
495         if (!res) {
496                 dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
497                 goto err0;
498         }
499
500         /*
501          * Map memory, let base point to our channel and mapbase to the
502          * start/stop shared register.
503          */
504         base = ioremap_nocache(res->start, resource_size(res));
505         if (base == NULL) {
506                 dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
507                 goto err0;
508         }
509
510         tmu->mapbase = base - cfg->channel_offset;
511
512         /* get hold of clock */
513         tmu->clk = clk_get(&tmu->pdev->dev, "tmu_fck");
514         if (IS_ERR(tmu->clk)) {
515                 dev_err(&tmu->pdev->dev, "cannot get clock\n");
516                 ret = PTR_ERR(tmu->clk);
517                 goto err1;
518         }
519
520         ret = clk_prepare(tmu->clk);
521         if (ret < 0)
522                 goto err2;
523
524         tmu->channels = kzalloc(sizeof(*tmu->channels), GFP_KERNEL);
525         if (tmu->channels == NULL) {
526                 ret = -ENOMEM;
527                 goto err3;
528         }
529
530         tmu->num_channels = 1;
531
532         tmu->channels[0].base = base;
533
534         ret = sh_tmu_channel_setup(&tmu->channels[0], tmu);
535         if (ret < 0)
536                 goto err3;
537
538         return 0;
539
540  err3:
541         kfree(tmu->channels);
542         clk_unprepare(tmu->clk);
543  err2:
544         clk_put(tmu->clk);
545  err1:
546         iounmap(base);
547  err0:
548         return ret;
549 }
550
551 static int sh_tmu_probe(struct platform_device *pdev)
552 {
553         struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
554         struct sh_timer_config *cfg = pdev->dev.platform_data;
555         int ret;
556
557         if (!is_early_platform_device(pdev)) {
558                 pm_runtime_set_active(&pdev->dev);
559                 pm_runtime_enable(&pdev->dev);
560         }
561
562         if (tmu) {
563                 dev_info(&pdev->dev, "kept as earlytimer\n");
564                 goto out;
565         }
566
567         tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
568         if (tmu == NULL) {
569                 dev_err(&pdev->dev, "failed to allocate driver data\n");
570                 return -ENOMEM;
571         }
572
573         ret = sh_tmu_setup(tmu, pdev);
574         if (ret) {
575                 kfree(tmu);
576                 pm_runtime_idle(&pdev->dev);
577                 return ret;
578         }
579         if (is_early_platform_device(pdev))
580                 return 0;
581
582  out:
583         if (cfg->clockevent_rating || cfg->clocksource_rating)
584                 pm_runtime_irq_safe(&pdev->dev);
585         else
586                 pm_runtime_idle(&pdev->dev);
587
588         return 0;
589 }
590
591 static int sh_tmu_remove(struct platform_device *pdev)
592 {
593         return -EBUSY; /* cannot unregister clockevent and clocksource */
594 }
595
596 static struct platform_driver sh_tmu_device_driver = {
597         .probe          = sh_tmu_probe,
598         .remove         = sh_tmu_remove,
599         .driver         = {
600                 .name   = "sh_tmu",
601         }
602 };
603
604 static int __init sh_tmu_init(void)
605 {
606         return platform_driver_register(&sh_tmu_device_driver);
607 }
608
609 static void __exit sh_tmu_exit(void)
610 {
611         platform_driver_unregister(&sh_tmu_device_driver);
612 }
613
614 early_platform_init("earlytimer", &sh_tmu_device_driver);
615 subsys_initcall(sh_tmu_init);
616 module_exit(sh_tmu_exit);
617
618 MODULE_AUTHOR("Magnus Damm");
619 MODULE_DESCRIPTION("SuperH TMU Timer Driver");
620 MODULE_LICENSE("GPL v2");