Merge tag 'leds-6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/pavel/linux...
[platform/kernel/linux-starfive.git] / drivers / clocksource / sh_tmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - TMU
4  *
5  *  Copyright (C) 2009 Magnus Damm
6  */
7
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/sh_timer.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26
27 #ifdef CONFIG_SUPERH
28 #include <asm/platform_early.h>
29 #endif
30
31 enum sh_tmu_model {
32         SH_TMU,
33         SH_TMU_SH3,
34 };
35
36 struct sh_tmu_device;
37
38 struct sh_tmu_channel {
39         struct sh_tmu_device *tmu;
40         unsigned int index;
41
42         void __iomem *base;
43         int irq;
44
45         unsigned long periodic;
46         struct clock_event_device ced;
47         struct clocksource cs;
48         bool cs_enabled;
49         unsigned int enable_count;
50 };
51
52 struct sh_tmu_device {
53         struct platform_device *pdev;
54
55         void __iomem *mapbase;
56         struct clk *clk;
57         unsigned long rate;
58
59         enum sh_tmu_model model;
60
61         raw_spinlock_t lock; /* Protect the shared start/stop register */
62
63         struct sh_tmu_channel *channels;
64         unsigned int num_channels;
65
66         bool has_clockevent;
67         bool has_clocksource;
68 };
69
70 #define TSTR -1 /* shared register */
71 #define TCOR  0 /* channel register */
72 #define TCNT 1 /* channel register */
73 #define TCR 2 /* channel register */
74
75 #define TCR_UNF                 (1 << 8)
76 #define TCR_UNIE                (1 << 5)
77 #define TCR_TPSC_CLK4           (0 << 0)
78 #define TCR_TPSC_CLK16          (1 << 0)
79 #define TCR_TPSC_CLK64          (2 << 0)
80 #define TCR_TPSC_CLK256         (3 << 0)
81 #define TCR_TPSC_CLK1024        (4 << 0)
82 #define TCR_TPSC_MASK           (7 << 0)
83
84 static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
85 {
86         unsigned long offs;
87
88         if (reg_nr == TSTR) {
89                 switch (ch->tmu->model) {
90                 case SH_TMU_SH3:
91                         return ioread8(ch->tmu->mapbase + 2);
92                 case SH_TMU:
93                         return ioread8(ch->tmu->mapbase + 4);
94                 }
95         }
96
97         offs = reg_nr << 2;
98
99         if (reg_nr == TCR)
100                 return ioread16(ch->base + offs);
101         else
102                 return ioread32(ch->base + offs);
103 }
104
105 static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
106                                 unsigned long value)
107 {
108         unsigned long offs;
109
110         if (reg_nr == TSTR) {
111                 switch (ch->tmu->model) {
112                 case SH_TMU_SH3:
113                         return iowrite8(value, ch->tmu->mapbase + 2);
114                 case SH_TMU:
115                         return iowrite8(value, ch->tmu->mapbase + 4);
116                 }
117         }
118
119         offs = reg_nr << 2;
120
121         if (reg_nr == TCR)
122                 iowrite16(value, ch->base + offs);
123         else
124                 iowrite32(value, ch->base + offs);
125 }
126
127 static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
128 {
129         unsigned long flags, value;
130
131         /* start stop register shared by multiple timer channels */
132         raw_spin_lock_irqsave(&ch->tmu->lock, flags);
133         value = sh_tmu_read(ch, TSTR);
134
135         if (start)
136                 value |= 1 << ch->index;
137         else
138                 value &= ~(1 << ch->index);
139
140         sh_tmu_write(ch, TSTR, value);
141         raw_spin_unlock_irqrestore(&ch->tmu->lock, flags);
142 }
143
144 static int __sh_tmu_enable(struct sh_tmu_channel *ch)
145 {
146         int ret;
147
148         /* enable clock */
149         ret = clk_enable(ch->tmu->clk);
150         if (ret) {
151                 dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
152                         ch->index);
153                 return ret;
154         }
155
156         /* make sure channel is disabled */
157         sh_tmu_start_stop_ch(ch, 0);
158
159         /* maximum timeout */
160         sh_tmu_write(ch, TCOR, 0xffffffff);
161         sh_tmu_write(ch, TCNT, 0xffffffff);
162
163         /* configure channel to parent clock / 4, irq off */
164         sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
165
166         /* enable channel */
167         sh_tmu_start_stop_ch(ch, 1);
168
169         return 0;
170 }
171
172 static int sh_tmu_enable(struct sh_tmu_channel *ch)
173 {
174         if (ch->enable_count++ > 0)
175                 return 0;
176
177         pm_runtime_get_sync(&ch->tmu->pdev->dev);
178         dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
179
180         return __sh_tmu_enable(ch);
181 }
182
183 static void __sh_tmu_disable(struct sh_tmu_channel *ch)
184 {
185         /* disable channel */
186         sh_tmu_start_stop_ch(ch, 0);
187
188         /* disable interrupts in TMU block */
189         sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
190
191         /* stop clock */
192         clk_disable(ch->tmu->clk);
193 }
194
195 static void sh_tmu_disable(struct sh_tmu_channel *ch)
196 {
197         if (WARN_ON(ch->enable_count == 0))
198                 return;
199
200         if (--ch->enable_count > 0)
201                 return;
202
203         __sh_tmu_disable(ch);
204
205         dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
206         pm_runtime_put(&ch->tmu->pdev->dev);
207 }
208
209 static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
210                             int periodic)
211 {
212         /* stop timer */
213         sh_tmu_start_stop_ch(ch, 0);
214
215         /* acknowledge interrupt */
216         sh_tmu_read(ch, TCR);
217
218         /* enable interrupt */
219         sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
220
221         /* reload delta value in case of periodic timer */
222         if (periodic)
223                 sh_tmu_write(ch, TCOR, delta);
224         else
225                 sh_tmu_write(ch, TCOR, 0xffffffff);
226
227         sh_tmu_write(ch, TCNT, delta);
228
229         /* start timer */
230         sh_tmu_start_stop_ch(ch, 1);
231 }
232
233 static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
234 {
235         struct sh_tmu_channel *ch = dev_id;
236
237         /* disable or acknowledge interrupt */
238         if (clockevent_state_oneshot(&ch->ced))
239                 sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
240         else
241                 sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
242
243         /* notify clockevent layer */
244         ch->ced.event_handler(&ch->ced);
245         return IRQ_HANDLED;
246 }
247
248 static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
249 {
250         return container_of(cs, struct sh_tmu_channel, cs);
251 }
252
253 static u64 sh_tmu_clocksource_read(struct clocksource *cs)
254 {
255         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
256
257         return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
258 }
259
260 static int sh_tmu_clocksource_enable(struct clocksource *cs)
261 {
262         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
263         int ret;
264
265         if (WARN_ON(ch->cs_enabled))
266                 return 0;
267
268         ret = sh_tmu_enable(ch);
269         if (!ret)
270                 ch->cs_enabled = true;
271
272         return ret;
273 }
274
275 static void sh_tmu_clocksource_disable(struct clocksource *cs)
276 {
277         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
278
279         if (WARN_ON(!ch->cs_enabled))
280                 return;
281
282         sh_tmu_disable(ch);
283         ch->cs_enabled = false;
284 }
285
286 static void sh_tmu_clocksource_suspend(struct clocksource *cs)
287 {
288         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
289
290         if (!ch->cs_enabled)
291                 return;
292
293         if (--ch->enable_count == 0) {
294                 __sh_tmu_disable(ch);
295                 dev_pm_genpd_suspend(&ch->tmu->pdev->dev);
296         }
297 }
298
299 static void sh_tmu_clocksource_resume(struct clocksource *cs)
300 {
301         struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
302
303         if (!ch->cs_enabled)
304                 return;
305
306         if (ch->enable_count++ == 0) {
307                 dev_pm_genpd_resume(&ch->tmu->pdev->dev);
308                 __sh_tmu_enable(ch);
309         }
310 }
311
312 static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
313                                        const char *name)
314 {
315         struct clocksource *cs = &ch->cs;
316
317         cs->name = name;
318         cs->rating = 200;
319         cs->read = sh_tmu_clocksource_read;
320         cs->enable = sh_tmu_clocksource_enable;
321         cs->disable = sh_tmu_clocksource_disable;
322         cs->suspend = sh_tmu_clocksource_suspend;
323         cs->resume = sh_tmu_clocksource_resume;
324         cs->mask = CLOCKSOURCE_MASK(32);
325         cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
326
327         dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
328                  ch->index);
329
330         clocksource_register_hz(cs, ch->tmu->rate);
331         return 0;
332 }
333
334 static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
335 {
336         return container_of(ced, struct sh_tmu_channel, ced);
337 }
338
339 static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
340 {
341         sh_tmu_enable(ch);
342
343         if (periodic) {
344                 ch->periodic = (ch->tmu->rate + HZ/2) / HZ;
345                 sh_tmu_set_next(ch, ch->periodic, 1);
346         }
347 }
348
349 static int sh_tmu_clock_event_shutdown(struct clock_event_device *ced)
350 {
351         struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
352
353         if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
354                 sh_tmu_disable(ch);
355         return 0;
356 }
357
358 static int sh_tmu_clock_event_set_state(struct clock_event_device *ced,
359                                         int periodic)
360 {
361         struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
362
363         /* deal with old setting first */
364         if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
365                 sh_tmu_disable(ch);
366
367         dev_info(&ch->tmu->pdev->dev, "ch%u: used for %s clock events\n",
368                  ch->index, periodic ? "periodic" : "oneshot");
369         sh_tmu_clock_event_start(ch, periodic);
370         return 0;
371 }
372
373 static int sh_tmu_clock_event_set_oneshot(struct clock_event_device *ced)
374 {
375         return sh_tmu_clock_event_set_state(ced, 0);
376 }
377
378 static int sh_tmu_clock_event_set_periodic(struct clock_event_device *ced)
379 {
380         return sh_tmu_clock_event_set_state(ced, 1);
381 }
382
383 static int sh_tmu_clock_event_next(unsigned long delta,
384                                    struct clock_event_device *ced)
385 {
386         struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
387
388         BUG_ON(!clockevent_state_oneshot(ced));
389
390         /* program new delta value */
391         sh_tmu_set_next(ch, delta, 0);
392         return 0;
393 }
394
395 static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
396 {
397         dev_pm_genpd_suspend(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
398 }
399
400 static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
401 {
402         dev_pm_genpd_resume(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
403 }
404
405 static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
406                                        const char *name)
407 {
408         struct clock_event_device *ced = &ch->ced;
409         int ret;
410
411         ced->name = name;
412         ced->features = CLOCK_EVT_FEAT_PERIODIC;
413         ced->features |= CLOCK_EVT_FEAT_ONESHOT;
414         ced->rating = 200;
415         ced->cpumask = cpu_possible_mask;
416         ced->set_next_event = sh_tmu_clock_event_next;
417         ced->set_state_shutdown = sh_tmu_clock_event_shutdown;
418         ced->set_state_periodic = sh_tmu_clock_event_set_periodic;
419         ced->set_state_oneshot = sh_tmu_clock_event_set_oneshot;
420         ced->suspend = sh_tmu_clock_event_suspend;
421         ced->resume = sh_tmu_clock_event_resume;
422
423         dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
424                  ch->index);
425
426         clockevents_config_and_register(ced, ch->tmu->rate, 0x300, 0xffffffff);
427
428         ret = request_irq(ch->irq, sh_tmu_interrupt,
429                           IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
430                           dev_name(&ch->tmu->pdev->dev), ch);
431         if (ret) {
432                 dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
433                         ch->index, ch->irq);
434                 return;
435         }
436 }
437
438 static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
439                            bool clockevent, bool clocksource)
440 {
441         if (clockevent) {
442                 ch->tmu->has_clockevent = true;
443                 sh_tmu_register_clockevent(ch, name);
444         } else if (clocksource) {
445                 ch->tmu->has_clocksource = true;
446                 sh_tmu_register_clocksource(ch, name);
447         }
448
449         return 0;
450 }
451
452 static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index,
453                                 bool clockevent, bool clocksource,
454                                 struct sh_tmu_device *tmu)
455 {
456         /* Skip unused channels. */
457         if (!clockevent && !clocksource)
458                 return 0;
459
460         ch->tmu = tmu;
461         ch->index = index;
462
463         if (tmu->model == SH_TMU_SH3)
464                 ch->base = tmu->mapbase + 4 + ch->index * 12;
465         else
466                 ch->base = tmu->mapbase + 8 + ch->index * 12;
467
468         ch->irq = platform_get_irq(tmu->pdev, index);
469         if (ch->irq < 0)
470                 return ch->irq;
471
472         ch->cs_enabled = false;
473         ch->enable_count = 0;
474
475         return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
476                                clockevent, clocksource);
477 }
478
479 static int sh_tmu_map_memory(struct sh_tmu_device *tmu)
480 {
481         struct resource *res;
482
483         res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
484         if (!res) {
485                 dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
486                 return -ENXIO;
487         }
488
489         tmu->mapbase = ioremap(res->start, resource_size(res));
490         if (tmu->mapbase == NULL)
491                 return -ENXIO;
492
493         return 0;
494 }
495
496 static int sh_tmu_parse_dt(struct sh_tmu_device *tmu)
497 {
498         struct device_node *np = tmu->pdev->dev.of_node;
499
500         tmu->model = SH_TMU;
501         tmu->num_channels = 3;
502
503         of_property_read_u32(np, "#renesas,channels", &tmu->num_channels);
504
505         if (tmu->num_channels != 2 && tmu->num_channels != 3) {
506                 dev_err(&tmu->pdev->dev, "invalid number of channels %u\n",
507                         tmu->num_channels);
508                 return -EINVAL;
509         }
510
511         return 0;
512 }
513
514 static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
515 {
516         unsigned int i;
517         int ret;
518
519         tmu->pdev = pdev;
520
521         raw_spin_lock_init(&tmu->lock);
522
523         if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
524                 ret = sh_tmu_parse_dt(tmu);
525                 if (ret < 0)
526                         return ret;
527         } else if (pdev->dev.platform_data) {
528                 const struct platform_device_id *id = pdev->id_entry;
529                 struct sh_timer_config *cfg = pdev->dev.platform_data;
530
531                 tmu->model = id->driver_data;
532                 tmu->num_channels = hweight8(cfg->channels_mask);
533         } else {
534                 dev_err(&tmu->pdev->dev, "missing platform data\n");
535                 return -ENXIO;
536         }
537
538         /* Get hold of clock. */
539         tmu->clk = clk_get(&tmu->pdev->dev, "fck");
540         if (IS_ERR(tmu->clk)) {
541                 dev_err(&tmu->pdev->dev, "cannot get clock\n");
542                 return PTR_ERR(tmu->clk);
543         }
544
545         ret = clk_prepare(tmu->clk);
546         if (ret < 0)
547                 goto err_clk_put;
548
549         /* Determine clock rate. */
550         ret = clk_enable(tmu->clk);
551         if (ret < 0)
552                 goto err_clk_unprepare;
553
554         tmu->rate = clk_get_rate(tmu->clk) / 4;
555         clk_disable(tmu->clk);
556
557         /* Map the memory resource. */
558         ret = sh_tmu_map_memory(tmu);
559         if (ret < 0) {
560                 dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
561                 goto err_clk_unprepare;
562         }
563
564         /* Allocate and setup the channels. */
565         tmu->channels = kcalloc(tmu->num_channels, sizeof(*tmu->channels),
566                                 GFP_KERNEL);
567         if (tmu->channels == NULL) {
568                 ret = -ENOMEM;
569                 goto err_unmap;
570         }
571
572         /*
573          * Use the first channel as a clock event device and the second channel
574          * as a clock source.
575          */
576         for (i = 0; i < tmu->num_channels; ++i) {
577                 ret = sh_tmu_channel_setup(&tmu->channels[i], i,
578                                            i == 0, i == 1, tmu);
579                 if (ret < 0)
580                         goto err_unmap;
581         }
582
583         platform_set_drvdata(pdev, tmu);
584
585         return 0;
586
587 err_unmap:
588         kfree(tmu->channels);
589         iounmap(tmu->mapbase);
590 err_clk_unprepare:
591         clk_unprepare(tmu->clk);
592 err_clk_put:
593         clk_put(tmu->clk);
594         return ret;
595 }
596
597 static int sh_tmu_probe(struct platform_device *pdev)
598 {
599         struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
600         int ret;
601
602         if (!is_sh_early_platform_device(pdev)) {
603                 pm_runtime_set_active(&pdev->dev);
604                 pm_runtime_enable(&pdev->dev);
605         }
606
607         if (tmu) {
608                 dev_info(&pdev->dev, "kept as earlytimer\n");
609                 goto out;
610         }
611
612         tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
613         if (tmu == NULL)
614                 return -ENOMEM;
615
616         ret = sh_tmu_setup(tmu, pdev);
617         if (ret) {
618                 kfree(tmu);
619                 pm_runtime_idle(&pdev->dev);
620                 return ret;
621         }
622
623         if (is_sh_early_platform_device(pdev))
624                 return 0;
625
626  out:
627         if (tmu->has_clockevent || tmu->has_clocksource)
628                 pm_runtime_irq_safe(&pdev->dev);
629         else
630                 pm_runtime_idle(&pdev->dev);
631
632         return 0;
633 }
634
635 static int sh_tmu_remove(struct platform_device *pdev)
636 {
637         return -EBUSY; /* cannot unregister clockevent and clocksource */
638 }
639
640 static const struct platform_device_id sh_tmu_id_table[] = {
641         { "sh-tmu", SH_TMU },
642         { "sh-tmu-sh3", SH_TMU_SH3 },
643         { }
644 };
645 MODULE_DEVICE_TABLE(platform, sh_tmu_id_table);
646
647 static const struct of_device_id sh_tmu_of_table[] __maybe_unused = {
648         { .compatible = "renesas,tmu" },
649         { }
650 };
651 MODULE_DEVICE_TABLE(of, sh_tmu_of_table);
652
653 static struct platform_driver sh_tmu_device_driver = {
654         .probe          = sh_tmu_probe,
655         .remove         = sh_tmu_remove,
656         .driver         = {
657                 .name   = "sh_tmu",
658                 .of_match_table = of_match_ptr(sh_tmu_of_table),
659         },
660         .id_table       = sh_tmu_id_table,
661 };
662
663 static int __init sh_tmu_init(void)
664 {
665         return platform_driver_register(&sh_tmu_device_driver);
666 }
667
668 static void __exit sh_tmu_exit(void)
669 {
670         platform_driver_unregister(&sh_tmu_device_driver);
671 }
672
673 #ifdef CONFIG_SUPERH
674 sh_early_platform_init("earlytimer", &sh_tmu_device_driver);
675 #endif
676
677 subsys_initcall(sh_tmu_init);
678 module_exit(sh_tmu_exit);
679
680 MODULE_AUTHOR("Magnus Damm");
681 MODULE_DESCRIPTION("SuperH TMU Timer Driver");
682 MODULE_LICENSE("GPL v2");