Merge drm/drm-next into drm-misc-next
[platform/kernel/linux-rpi.git] / drivers / clocksource / sh_mtu2.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - MTU2
4  *
5  *  Copyright (C) 2009 Magnus Damm
6  */
7
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/delay.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/ioport.h>
16 #include <linux/irq.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_domain.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sh_timer.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25
26 #ifdef CONFIG_SUPERH
27 #include <asm/platform_early.h>
28 #endif
29
30 struct sh_mtu2_device;
31
32 struct sh_mtu2_channel {
33         struct sh_mtu2_device *mtu;
34         unsigned int index;
35
36         void __iomem *base;
37
38         struct clock_event_device ced;
39 };
40
41 struct sh_mtu2_device {
42         struct platform_device *pdev;
43
44         void __iomem *mapbase;
45         struct clk *clk;
46
47         raw_spinlock_t lock; /* Protect the shared registers */
48
49         struct sh_mtu2_channel *channels;
50         unsigned int num_channels;
51
52         bool has_clockevent;
53 };
54
55 #define TSTR -1 /* shared register */
56 #define TCR  0 /* channel register */
57 #define TMDR 1 /* channel register */
58 #define TIOR 2 /* channel register */
59 #define TIER 3 /* channel register */
60 #define TSR  4 /* channel register */
61 #define TCNT 5 /* channel register */
62 #define TGR  6 /* channel register */
63
64 #define TCR_CCLR_NONE           (0 << 5)
65 #define TCR_CCLR_TGRA           (1 << 5)
66 #define TCR_CCLR_TGRB           (2 << 5)
67 #define TCR_CCLR_SYNC           (3 << 5)
68 #define TCR_CCLR_TGRC           (5 << 5)
69 #define TCR_CCLR_TGRD           (6 << 5)
70 #define TCR_CCLR_MASK           (7 << 5)
71 #define TCR_CKEG_RISING         (0 << 3)
72 #define TCR_CKEG_FALLING        (1 << 3)
73 #define TCR_CKEG_BOTH           (2 << 3)
74 #define TCR_CKEG_MASK           (3 << 3)
75 /* Values 4 to 7 are channel-dependent */
76 #define TCR_TPSC_P1             (0 << 0)
77 #define TCR_TPSC_P4             (1 << 0)
78 #define TCR_TPSC_P16            (2 << 0)
79 #define TCR_TPSC_P64            (3 << 0)
80 #define TCR_TPSC_CH0_TCLKA      (4 << 0)
81 #define TCR_TPSC_CH0_TCLKB      (5 << 0)
82 #define TCR_TPSC_CH0_TCLKC      (6 << 0)
83 #define TCR_TPSC_CH0_TCLKD      (7 << 0)
84 #define TCR_TPSC_CH1_TCLKA      (4 << 0)
85 #define TCR_TPSC_CH1_TCLKB      (5 << 0)
86 #define TCR_TPSC_CH1_P256       (6 << 0)
87 #define TCR_TPSC_CH1_TCNT2      (7 << 0)
88 #define TCR_TPSC_CH2_TCLKA      (4 << 0)
89 #define TCR_TPSC_CH2_TCLKB      (5 << 0)
90 #define TCR_TPSC_CH2_TCLKC      (6 << 0)
91 #define TCR_TPSC_CH2_P1024      (7 << 0)
92 #define TCR_TPSC_CH34_P256      (4 << 0)
93 #define TCR_TPSC_CH34_P1024     (5 << 0)
94 #define TCR_TPSC_CH34_TCLKA     (6 << 0)
95 #define TCR_TPSC_CH34_TCLKB     (7 << 0)
96 #define TCR_TPSC_MASK           (7 << 0)
97
98 #define TMDR_BFE                (1 << 6)
99 #define TMDR_BFB                (1 << 5)
100 #define TMDR_BFA                (1 << 4)
101 #define TMDR_MD_NORMAL          (0 << 0)
102 #define TMDR_MD_PWM_1           (2 << 0)
103 #define TMDR_MD_PWM_2           (3 << 0)
104 #define TMDR_MD_PHASE_1         (4 << 0)
105 #define TMDR_MD_PHASE_2         (5 << 0)
106 #define TMDR_MD_PHASE_3         (6 << 0)
107 #define TMDR_MD_PHASE_4         (7 << 0)
108 #define TMDR_MD_PWM_SYNC        (8 << 0)
109 #define TMDR_MD_PWM_COMP_CREST  (13 << 0)
110 #define TMDR_MD_PWM_COMP_TROUGH (14 << 0)
111 #define TMDR_MD_PWM_COMP_BOTH   (15 << 0)
112 #define TMDR_MD_MASK            (15 << 0)
113
114 #define TIOC_IOCH(n)            ((n) << 4)
115 #define TIOC_IOCL(n)            ((n) << 0)
116 #define TIOR_OC_RETAIN          (0 << 0)
117 #define TIOR_OC_0_CLEAR         (1 << 0)
118 #define TIOR_OC_0_SET           (2 << 0)
119 #define TIOR_OC_0_TOGGLE        (3 << 0)
120 #define TIOR_OC_1_CLEAR         (5 << 0)
121 #define TIOR_OC_1_SET           (6 << 0)
122 #define TIOR_OC_1_TOGGLE        (7 << 0)
123 #define TIOR_IC_RISING          (8 << 0)
124 #define TIOR_IC_FALLING         (9 << 0)
125 #define TIOR_IC_BOTH            (10 << 0)
126 #define TIOR_IC_TCNT            (12 << 0)
127 #define TIOR_MASK               (15 << 0)
128
129 #define TIER_TTGE               (1 << 7)
130 #define TIER_TTGE2              (1 << 6)
131 #define TIER_TCIEU              (1 << 5)
132 #define TIER_TCIEV              (1 << 4)
133 #define TIER_TGIED              (1 << 3)
134 #define TIER_TGIEC              (1 << 2)
135 #define TIER_TGIEB              (1 << 1)
136 #define TIER_TGIEA              (1 << 0)
137
138 #define TSR_TCFD                (1 << 7)
139 #define TSR_TCFU                (1 << 5)
140 #define TSR_TCFV                (1 << 4)
141 #define TSR_TGFD                (1 << 3)
142 #define TSR_TGFC                (1 << 2)
143 #define TSR_TGFB                (1 << 1)
144 #define TSR_TGFA                (1 << 0)
145
146 static unsigned long mtu2_reg_offs[] = {
147         [TCR] = 0,
148         [TMDR] = 1,
149         [TIOR] = 2,
150         [TIER] = 4,
151         [TSR] = 5,
152         [TCNT] = 6,
153         [TGR] = 8,
154 };
155
156 static inline unsigned long sh_mtu2_read(struct sh_mtu2_channel *ch, int reg_nr)
157 {
158         unsigned long offs;
159
160         if (reg_nr == TSTR)
161                 return ioread8(ch->mtu->mapbase + 0x280);
162
163         offs = mtu2_reg_offs[reg_nr];
164
165         if ((reg_nr == TCNT) || (reg_nr == TGR))
166                 return ioread16(ch->base + offs);
167         else
168                 return ioread8(ch->base + offs);
169 }
170
171 static inline void sh_mtu2_write(struct sh_mtu2_channel *ch, int reg_nr,
172                                 unsigned long value)
173 {
174         unsigned long offs;
175
176         if (reg_nr == TSTR)
177                 return iowrite8(value, ch->mtu->mapbase + 0x280);
178
179         offs = mtu2_reg_offs[reg_nr];
180
181         if ((reg_nr == TCNT) || (reg_nr == TGR))
182                 iowrite16(value, ch->base + offs);
183         else
184                 iowrite8(value, ch->base + offs);
185 }
186
187 static void sh_mtu2_start_stop_ch(struct sh_mtu2_channel *ch, int start)
188 {
189         unsigned long flags, value;
190
191         /* start stop register shared by multiple timer channels */
192         raw_spin_lock_irqsave(&ch->mtu->lock, flags);
193         value = sh_mtu2_read(ch, TSTR);
194
195         if (start)
196                 value |= 1 << ch->index;
197         else
198                 value &= ~(1 << ch->index);
199
200         sh_mtu2_write(ch, TSTR, value);
201         raw_spin_unlock_irqrestore(&ch->mtu->lock, flags);
202 }
203
204 static int sh_mtu2_enable(struct sh_mtu2_channel *ch)
205 {
206         unsigned long periodic;
207         unsigned long rate;
208         int ret;
209
210         pm_runtime_get_sync(&ch->mtu->pdev->dev);
211         dev_pm_syscore_device(&ch->mtu->pdev->dev, true);
212
213         /* enable clock */
214         ret = clk_enable(ch->mtu->clk);
215         if (ret) {
216                 dev_err(&ch->mtu->pdev->dev, "ch%u: cannot enable clock\n",
217                         ch->index);
218                 return ret;
219         }
220
221         /* make sure channel is disabled */
222         sh_mtu2_start_stop_ch(ch, 0);
223
224         rate = clk_get_rate(ch->mtu->clk) / 64;
225         periodic = (rate + HZ/2) / HZ;
226
227         /*
228          * "Periodic Counter Operation"
229          * Clear on TGRA compare match, divide clock by 64.
230          */
231         sh_mtu2_write(ch, TCR, TCR_CCLR_TGRA | TCR_TPSC_P64);
232         sh_mtu2_write(ch, TIOR, TIOC_IOCH(TIOR_OC_0_CLEAR) |
233                       TIOC_IOCL(TIOR_OC_0_CLEAR));
234         sh_mtu2_write(ch, TGR, periodic);
235         sh_mtu2_write(ch, TCNT, 0);
236         sh_mtu2_write(ch, TMDR, TMDR_MD_NORMAL);
237         sh_mtu2_write(ch, TIER, TIER_TGIEA);
238
239         /* enable channel */
240         sh_mtu2_start_stop_ch(ch, 1);
241
242         return 0;
243 }
244
245 static void sh_mtu2_disable(struct sh_mtu2_channel *ch)
246 {
247         /* disable channel */
248         sh_mtu2_start_stop_ch(ch, 0);
249
250         /* stop clock */
251         clk_disable(ch->mtu->clk);
252
253         dev_pm_syscore_device(&ch->mtu->pdev->dev, false);
254         pm_runtime_put(&ch->mtu->pdev->dev);
255 }
256
257 static irqreturn_t sh_mtu2_interrupt(int irq, void *dev_id)
258 {
259         struct sh_mtu2_channel *ch = dev_id;
260
261         /* acknowledge interrupt */
262         sh_mtu2_read(ch, TSR);
263         sh_mtu2_write(ch, TSR, ~TSR_TGFA);
264
265         /* notify clockevent layer */
266         ch->ced.event_handler(&ch->ced);
267         return IRQ_HANDLED;
268 }
269
270 static struct sh_mtu2_channel *ced_to_sh_mtu2(struct clock_event_device *ced)
271 {
272         return container_of(ced, struct sh_mtu2_channel, ced);
273 }
274
275 static int sh_mtu2_clock_event_shutdown(struct clock_event_device *ced)
276 {
277         struct sh_mtu2_channel *ch = ced_to_sh_mtu2(ced);
278
279         if (clockevent_state_periodic(ced))
280                 sh_mtu2_disable(ch);
281
282         return 0;
283 }
284
285 static int sh_mtu2_clock_event_set_periodic(struct clock_event_device *ced)
286 {
287         struct sh_mtu2_channel *ch = ced_to_sh_mtu2(ced);
288
289         if (clockevent_state_periodic(ced))
290                 sh_mtu2_disable(ch);
291
292         dev_info(&ch->mtu->pdev->dev, "ch%u: used for periodic clock events\n",
293                  ch->index);
294         sh_mtu2_enable(ch);
295         return 0;
296 }
297
298 static void sh_mtu2_clock_event_suspend(struct clock_event_device *ced)
299 {
300         dev_pm_genpd_suspend(&ced_to_sh_mtu2(ced)->mtu->pdev->dev);
301 }
302
303 static void sh_mtu2_clock_event_resume(struct clock_event_device *ced)
304 {
305         dev_pm_genpd_resume(&ced_to_sh_mtu2(ced)->mtu->pdev->dev);
306 }
307
308 static void sh_mtu2_register_clockevent(struct sh_mtu2_channel *ch,
309                                         const char *name)
310 {
311         struct clock_event_device *ced = &ch->ced;
312
313         ced->name = name;
314         ced->features = CLOCK_EVT_FEAT_PERIODIC;
315         ced->rating = 200;
316         ced->cpumask = cpu_possible_mask;
317         ced->set_state_shutdown = sh_mtu2_clock_event_shutdown;
318         ced->set_state_periodic = sh_mtu2_clock_event_set_periodic;
319         ced->suspend = sh_mtu2_clock_event_suspend;
320         ced->resume = sh_mtu2_clock_event_resume;
321
322         dev_info(&ch->mtu->pdev->dev, "ch%u: used for clock events\n",
323                  ch->index);
324         clockevents_register_device(ced);
325 }
326
327 static int sh_mtu2_register(struct sh_mtu2_channel *ch, const char *name)
328 {
329         ch->mtu->has_clockevent = true;
330         sh_mtu2_register_clockevent(ch, name);
331
332         return 0;
333 }
334
335 static const unsigned int sh_mtu2_channel_offsets[] = {
336         0x300, 0x380, 0x000,
337 };
338
339 static int sh_mtu2_setup_channel(struct sh_mtu2_channel *ch, unsigned int index,
340                                  struct sh_mtu2_device *mtu)
341 {
342         char name[6];
343         int irq;
344         int ret;
345
346         ch->mtu = mtu;
347
348         sprintf(name, "tgi%ua", index);
349         irq = platform_get_irq_byname(mtu->pdev, name);
350         if (irq < 0) {
351                 /* Skip channels with no declared interrupt. */
352                 return 0;
353         }
354
355         ret = request_irq(irq, sh_mtu2_interrupt,
356                           IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
357                           dev_name(&ch->mtu->pdev->dev), ch);
358         if (ret) {
359                 dev_err(&ch->mtu->pdev->dev, "ch%u: failed to request irq %d\n",
360                         index, irq);
361                 return ret;
362         }
363
364         ch->base = mtu->mapbase + sh_mtu2_channel_offsets[index];
365         ch->index = index;
366
367         return sh_mtu2_register(ch, dev_name(&mtu->pdev->dev));
368 }
369
370 static int sh_mtu2_map_memory(struct sh_mtu2_device *mtu)
371 {
372         struct resource *res;
373
374         res = platform_get_resource(mtu->pdev, IORESOURCE_MEM, 0);
375         if (!res) {
376                 dev_err(&mtu->pdev->dev, "failed to get I/O memory\n");
377                 return -ENXIO;
378         }
379
380         mtu->mapbase = ioremap(res->start, resource_size(res));
381         if (mtu->mapbase == NULL)
382                 return -ENXIO;
383
384         return 0;
385 }
386
387 static int sh_mtu2_setup(struct sh_mtu2_device *mtu,
388                          struct platform_device *pdev)
389 {
390         unsigned int i;
391         int ret;
392
393         mtu->pdev = pdev;
394
395         raw_spin_lock_init(&mtu->lock);
396
397         /* Get hold of clock. */
398         mtu->clk = clk_get(&mtu->pdev->dev, "fck");
399         if (IS_ERR(mtu->clk)) {
400                 dev_err(&mtu->pdev->dev, "cannot get clock\n");
401                 return PTR_ERR(mtu->clk);
402         }
403
404         ret = clk_prepare(mtu->clk);
405         if (ret < 0)
406                 goto err_clk_put;
407
408         /* Map the memory resource. */
409         ret = sh_mtu2_map_memory(mtu);
410         if (ret < 0) {
411                 dev_err(&mtu->pdev->dev, "failed to remap I/O memory\n");
412                 goto err_clk_unprepare;
413         }
414
415         /* Allocate and setup the channels. */
416         ret = platform_irq_count(pdev);
417         if (ret < 0)
418                 goto err_unmap;
419
420         mtu->num_channels = min_t(unsigned int, ret,
421                                   ARRAY_SIZE(sh_mtu2_channel_offsets));
422
423         mtu->channels = kcalloc(mtu->num_channels, sizeof(*mtu->channels),
424                                 GFP_KERNEL);
425         if (mtu->channels == NULL) {
426                 ret = -ENOMEM;
427                 goto err_unmap;
428         }
429
430         for (i = 0; i < mtu->num_channels; ++i) {
431                 ret = sh_mtu2_setup_channel(&mtu->channels[i], i, mtu);
432                 if (ret < 0)
433                         goto err_unmap;
434         }
435
436         platform_set_drvdata(pdev, mtu);
437
438         return 0;
439
440 err_unmap:
441         kfree(mtu->channels);
442         iounmap(mtu->mapbase);
443 err_clk_unprepare:
444         clk_unprepare(mtu->clk);
445 err_clk_put:
446         clk_put(mtu->clk);
447         return ret;
448 }
449
450 static int sh_mtu2_probe(struct platform_device *pdev)
451 {
452         struct sh_mtu2_device *mtu = platform_get_drvdata(pdev);
453         int ret;
454
455         if (!is_sh_early_platform_device(pdev)) {
456                 pm_runtime_set_active(&pdev->dev);
457                 pm_runtime_enable(&pdev->dev);
458         }
459
460         if (mtu) {
461                 dev_info(&pdev->dev, "kept as earlytimer\n");
462                 goto out;
463         }
464
465         mtu = kzalloc(sizeof(*mtu), GFP_KERNEL);
466         if (mtu == NULL)
467                 return -ENOMEM;
468
469         ret = sh_mtu2_setup(mtu, pdev);
470         if (ret) {
471                 kfree(mtu);
472                 pm_runtime_idle(&pdev->dev);
473                 return ret;
474         }
475         if (is_sh_early_platform_device(pdev))
476                 return 0;
477
478  out:
479         if (mtu->has_clockevent)
480                 pm_runtime_irq_safe(&pdev->dev);
481         else
482                 pm_runtime_idle(&pdev->dev);
483
484         return 0;
485 }
486
487 static const struct platform_device_id sh_mtu2_id_table[] = {
488         { "sh-mtu2", 0 },
489         { },
490 };
491 MODULE_DEVICE_TABLE(platform, sh_mtu2_id_table);
492
493 static const struct of_device_id sh_mtu2_of_table[] __maybe_unused = {
494         { .compatible = "renesas,mtu2" },
495         { }
496 };
497 MODULE_DEVICE_TABLE(of, sh_mtu2_of_table);
498
499 static struct platform_driver sh_mtu2_device_driver = {
500         .probe          = sh_mtu2_probe,
501         .driver         = {
502                 .name   = "sh_mtu2",
503                 .of_match_table = of_match_ptr(sh_mtu2_of_table),
504                 .suppress_bind_attrs = true,
505         },
506         .id_table       = sh_mtu2_id_table,
507 };
508
509 static int __init sh_mtu2_init(void)
510 {
511         return platform_driver_register(&sh_mtu2_device_driver);
512 }
513
514 static void __exit sh_mtu2_exit(void)
515 {
516         platform_driver_unregister(&sh_mtu2_device_driver);
517 }
518
519 #ifdef CONFIG_SUPERH
520 sh_early_platform_init("earlytimer", &sh_mtu2_device_driver);
521 #endif
522
523 subsys_initcall(sh_mtu2_init);
524 module_exit(sh_mtu2_exit);
525
526 MODULE_AUTHOR("Magnus Damm");
527 MODULE_DESCRIPTION("SuperH MTU2 Timer Driver");