drm/amdgpu: add gfx support for GC 11.0.4
[platform/kernel/linux-starfive.git] / drivers / clocksource / sh_cmt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - CMT
4  *
5  *  Copyright (C) 2008 Magnus Damm
6  */
7
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/ioport.h>
18 #include <linux/irq.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_domain.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/sh_timer.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28
29 #ifdef CONFIG_SUPERH
30 #include <asm/platform_early.h>
31 #endif
32
33 struct sh_cmt_device;
34
35 /*
36  * The CMT comes in 5 different identified flavours, depending not only on the
37  * SoC but also on the particular instance. The following table lists the main
38  * characteristics of those flavours.
39  *
40  *                      16B     32B     32B-F   48B     R-Car Gen2
41  * -----------------------------------------------------------------------------
42  * Channels             2       1/4     1       6       2/8
43  * Control Width        16      16      16      16      32
44  * Counter Width        16      32      32      32/48   32/48
45  * Shared Start/Stop    Y       Y       Y       Y       N
46  *
47  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
48  * located in the channel registers block. All other versions have a shared
49  * start/stop register located in the global space.
50  *
51  * Channels are indexed from 0 to N-1 in the documentation. The channel index
52  * infers the start/stop bit position in the control register and the channel
53  * registers block address. Some CMT instances have a subset of channels
54  * available, in which case the index in the documentation doesn't match the
55  * "real" index as implemented in hardware. This is for instance the case with
56  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
57  * in the documentation but using start/stop bit 5 and having its registers
58  * block at 0x60.
59  *
60  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
61  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
62  */
63
64 enum sh_cmt_model {
65         SH_CMT_16BIT,
66         SH_CMT_32BIT,
67         SH_CMT_48BIT,
68         SH_CMT0_RCAR_GEN2,
69         SH_CMT1_RCAR_GEN2,
70 };
71
72 struct sh_cmt_info {
73         enum sh_cmt_model model;
74
75         unsigned int channels_mask;
76
77         unsigned long width; /* 16 or 32 bit version of hardware block */
78         u32 overflow_bit;
79         u32 clear_bits;
80
81         /* callbacks for CMSTR and CMCSR access */
82         u32 (*read_control)(void __iomem *base, unsigned long offs);
83         void (*write_control)(void __iomem *base, unsigned long offs,
84                               u32 value);
85
86         /* callbacks for CMCNT and CMCOR access */
87         u32 (*read_count)(void __iomem *base, unsigned long offs);
88         void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
89 };
90
91 struct sh_cmt_channel {
92         struct sh_cmt_device *cmt;
93
94         unsigned int index;     /* Index in the documentation */
95         unsigned int hwidx;     /* Real hardware index */
96
97         void __iomem *iostart;
98         void __iomem *ioctrl;
99
100         unsigned int timer_bit;
101         unsigned long flags;
102         u32 match_value;
103         u32 next_match_value;
104         u32 max_match_value;
105         raw_spinlock_t lock;
106         struct clock_event_device ced;
107         struct clocksource cs;
108         u64 total_cycles;
109         bool cs_enabled;
110 };
111
112 struct sh_cmt_device {
113         struct platform_device *pdev;
114
115         const struct sh_cmt_info *info;
116
117         void __iomem *mapbase;
118         struct clk *clk;
119         unsigned long rate;
120         unsigned int reg_delay;
121
122         raw_spinlock_t lock; /* Protect the shared start/stop register */
123
124         struct sh_cmt_channel *channels;
125         unsigned int num_channels;
126         unsigned int hw_channels;
127
128         bool has_clockevent;
129         bool has_clocksource;
130 };
131
132 #define SH_CMT16_CMCSR_CMF              (1 << 7)
133 #define SH_CMT16_CMCSR_CMIE             (1 << 6)
134 #define SH_CMT16_CMCSR_CKS8             (0 << 0)
135 #define SH_CMT16_CMCSR_CKS32            (1 << 0)
136 #define SH_CMT16_CMCSR_CKS128           (2 << 0)
137 #define SH_CMT16_CMCSR_CKS512           (3 << 0)
138 #define SH_CMT16_CMCSR_CKS_MASK         (3 << 0)
139
140 #define SH_CMT32_CMCSR_CMF              (1 << 15)
141 #define SH_CMT32_CMCSR_OVF              (1 << 14)
142 #define SH_CMT32_CMCSR_WRFLG            (1 << 13)
143 #define SH_CMT32_CMCSR_STTF             (1 << 12)
144 #define SH_CMT32_CMCSR_STPF             (1 << 11)
145 #define SH_CMT32_CMCSR_SSIE             (1 << 10)
146 #define SH_CMT32_CMCSR_CMS              (1 << 9)
147 #define SH_CMT32_CMCSR_CMM              (1 << 8)
148 #define SH_CMT32_CMCSR_CMTOUT_IE        (1 << 7)
149 #define SH_CMT32_CMCSR_CMR_NONE         (0 << 4)
150 #define SH_CMT32_CMCSR_CMR_DMA          (1 << 4)
151 #define SH_CMT32_CMCSR_CMR_IRQ          (2 << 4)
152 #define SH_CMT32_CMCSR_CMR_MASK         (3 << 4)
153 #define SH_CMT32_CMCSR_DBGIVD           (1 << 3)
154 #define SH_CMT32_CMCSR_CKS_RCLK8        (4 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK32       (5 << 0)
156 #define SH_CMT32_CMCSR_CKS_RCLK128      (6 << 0)
157 #define SH_CMT32_CMCSR_CKS_RCLK1        (7 << 0)
158 #define SH_CMT32_CMCSR_CKS_MASK         (7 << 0)
159
160 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
161 {
162         return ioread16(base + (offs << 1));
163 }
164
165 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
166 {
167         return ioread32(base + (offs << 2));
168 }
169
170 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
171 {
172         iowrite16(value, base + (offs << 1));
173 }
174
175 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
176 {
177         iowrite32(value, base + (offs << 2));
178 }
179
180 static const struct sh_cmt_info sh_cmt_info[] = {
181         [SH_CMT_16BIT] = {
182                 .model = SH_CMT_16BIT,
183                 .width = 16,
184                 .overflow_bit = SH_CMT16_CMCSR_CMF,
185                 .clear_bits = ~SH_CMT16_CMCSR_CMF,
186                 .read_control = sh_cmt_read16,
187                 .write_control = sh_cmt_write16,
188                 .read_count = sh_cmt_read16,
189                 .write_count = sh_cmt_write16,
190         },
191         [SH_CMT_32BIT] = {
192                 .model = SH_CMT_32BIT,
193                 .width = 32,
194                 .overflow_bit = SH_CMT32_CMCSR_CMF,
195                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
196                 .read_control = sh_cmt_read16,
197                 .write_control = sh_cmt_write16,
198                 .read_count = sh_cmt_read32,
199                 .write_count = sh_cmt_write32,
200         },
201         [SH_CMT_48BIT] = {
202                 .model = SH_CMT_48BIT,
203                 .channels_mask = 0x3f,
204                 .width = 32,
205                 .overflow_bit = SH_CMT32_CMCSR_CMF,
206                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
207                 .read_control = sh_cmt_read32,
208                 .write_control = sh_cmt_write32,
209                 .read_count = sh_cmt_read32,
210                 .write_count = sh_cmt_write32,
211         },
212         [SH_CMT0_RCAR_GEN2] = {
213                 .model = SH_CMT0_RCAR_GEN2,
214                 .channels_mask = 0x60,
215                 .width = 32,
216                 .overflow_bit = SH_CMT32_CMCSR_CMF,
217                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
218                 .read_control = sh_cmt_read32,
219                 .write_control = sh_cmt_write32,
220                 .read_count = sh_cmt_read32,
221                 .write_count = sh_cmt_write32,
222         },
223         [SH_CMT1_RCAR_GEN2] = {
224                 .model = SH_CMT1_RCAR_GEN2,
225                 .channels_mask = 0xff,
226                 .width = 32,
227                 .overflow_bit = SH_CMT32_CMCSR_CMF,
228                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
229                 .read_control = sh_cmt_read32,
230                 .write_control = sh_cmt_write32,
231                 .read_count = sh_cmt_read32,
232                 .write_count = sh_cmt_write32,
233         },
234 };
235
236 #define CMCSR 0 /* channel register */
237 #define CMCNT 1 /* channel register */
238 #define CMCOR 2 /* channel register */
239
240 #define CMCLKE  0x1000  /* CLK Enable Register (R-Car Gen2) */
241
242 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
243 {
244         if (ch->iostart)
245                 return ch->cmt->info->read_control(ch->iostart, 0);
246         else
247                 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
248 }
249
250 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
251 {
252         u32 old_value = sh_cmt_read_cmstr(ch);
253
254         if (value != old_value) {
255                 if (ch->iostart) {
256                         ch->cmt->info->write_control(ch->iostart, 0, value);
257                         udelay(ch->cmt->reg_delay);
258                 } else {
259                         ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
260                         udelay(ch->cmt->reg_delay);
261                 }
262         }
263 }
264
265 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
266 {
267         return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
268 }
269
270 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
271 {
272         u32 old_value = sh_cmt_read_cmcsr(ch);
273
274         if (value != old_value) {
275                 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
276                 udelay(ch->cmt->reg_delay);
277         }
278 }
279
280 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
281 {
282         return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
283 }
284
285 static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
286 {
287         /* Tests showed that we need to wait 3 clocks here */
288         unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
289         u32 reg;
290
291         if (ch->cmt->info->model > SH_CMT_16BIT) {
292                 int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
293                                                    !(reg & SH_CMT32_CMCSR_WRFLG),
294                                                    1, cmcnt_delay, false, ch);
295                 if (ret < 0)
296                         return ret;
297         }
298
299         ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
300         udelay(cmcnt_delay);
301         return 0;
302 }
303
304 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
305 {
306         u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
307
308         if (value != old_value) {
309                 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
310                 udelay(ch->cmt->reg_delay);
311         }
312 }
313
314 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
315 {
316         u32 v1, v2, v3;
317         u32 o1, o2;
318
319         o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
320
321         /* Make sure the timer value is stable. Stolen from acpi_pm.c */
322         do {
323                 o2 = o1;
324                 v1 = sh_cmt_read_cmcnt(ch);
325                 v2 = sh_cmt_read_cmcnt(ch);
326                 v3 = sh_cmt_read_cmcnt(ch);
327                 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
328         } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
329                           || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
330
331         *has_wrapped = o1;
332         return v2;
333 }
334
335 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
336 {
337         unsigned long flags;
338         u32 value;
339
340         /* start stop register shared by multiple timer channels */
341         raw_spin_lock_irqsave(&ch->cmt->lock, flags);
342         value = sh_cmt_read_cmstr(ch);
343
344         if (start)
345                 value |= 1 << ch->timer_bit;
346         else
347                 value &= ~(1 << ch->timer_bit);
348
349         sh_cmt_write_cmstr(ch, value);
350         raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
351 }
352
353 static int sh_cmt_enable(struct sh_cmt_channel *ch)
354 {
355         int ret;
356
357         dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
358
359         /* enable clock */
360         ret = clk_enable(ch->cmt->clk);
361         if (ret) {
362                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
363                         ch->index);
364                 goto err0;
365         }
366
367         /* make sure channel is disabled */
368         sh_cmt_start_stop_ch(ch, 0);
369
370         /* configure channel, periodic mode and maximum timeout */
371         if (ch->cmt->info->width == 16) {
372                 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
373                                    SH_CMT16_CMCSR_CKS512);
374         } else {
375                 u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
376                               SH_CMT32_CMCSR_CMTOUT_IE : 0;
377                 sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
378                                    SH_CMT32_CMCSR_CMR_IRQ |
379                                    SH_CMT32_CMCSR_CKS_RCLK8);
380         }
381
382         sh_cmt_write_cmcor(ch, 0xffffffff);
383         ret = sh_cmt_write_cmcnt(ch, 0);
384
385         if (ret || sh_cmt_read_cmcnt(ch)) {
386                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
387                         ch->index);
388                 ret = -ETIMEDOUT;
389                 goto err1;
390         }
391
392         /* enable channel */
393         sh_cmt_start_stop_ch(ch, 1);
394         return 0;
395  err1:
396         /* stop clock */
397         clk_disable(ch->cmt->clk);
398
399  err0:
400         return ret;
401 }
402
403 static void sh_cmt_disable(struct sh_cmt_channel *ch)
404 {
405         /* disable channel */
406         sh_cmt_start_stop_ch(ch, 0);
407
408         /* disable interrupts in CMT block */
409         sh_cmt_write_cmcsr(ch, 0);
410
411         /* stop clock */
412         clk_disable(ch->cmt->clk);
413
414         dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
415 }
416
417 /* private flags */
418 #define FLAG_CLOCKEVENT (1 << 0)
419 #define FLAG_CLOCKSOURCE (1 << 1)
420 #define FLAG_REPROGRAM (1 << 2)
421 #define FLAG_SKIPEVENT (1 << 3)
422 #define FLAG_IRQCONTEXT (1 << 4)
423
424 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
425                                               int absolute)
426 {
427         u32 value = ch->next_match_value;
428         u32 new_match;
429         u32 delay = 0;
430         u32 now = 0;
431         u32 has_wrapped;
432
433         now = sh_cmt_get_counter(ch, &has_wrapped);
434         ch->flags |= FLAG_REPROGRAM; /* force reprogram */
435
436         if (has_wrapped) {
437                 /* we're competing with the interrupt handler.
438                  *  -> let the interrupt handler reprogram the timer.
439                  *  -> interrupt number two handles the event.
440                  */
441                 ch->flags |= FLAG_SKIPEVENT;
442                 return;
443         }
444
445         if (absolute)
446                 now = 0;
447
448         do {
449                 /* reprogram the timer hardware,
450                  * but don't save the new match value yet.
451                  */
452                 new_match = now + value + delay;
453                 if (new_match > ch->max_match_value)
454                         new_match = ch->max_match_value;
455
456                 sh_cmt_write_cmcor(ch, new_match);
457
458                 now = sh_cmt_get_counter(ch, &has_wrapped);
459                 if (has_wrapped && (new_match > ch->match_value)) {
460                         /* we are changing to a greater match value,
461                          * so this wrap must be caused by the counter
462                          * matching the old value.
463                          * -> first interrupt reprograms the timer.
464                          * -> interrupt number two handles the event.
465                          */
466                         ch->flags |= FLAG_SKIPEVENT;
467                         break;
468                 }
469
470                 if (has_wrapped) {
471                         /* we are changing to a smaller match value,
472                          * so the wrap must be caused by the counter
473                          * matching the new value.
474                          * -> save programmed match value.
475                          * -> let isr handle the event.
476                          */
477                         ch->match_value = new_match;
478                         break;
479                 }
480
481                 /* be safe: verify hardware settings */
482                 if (now < new_match) {
483                         /* timer value is below match value, all good.
484                          * this makes sure we won't miss any match events.
485                          * -> save programmed match value.
486                          * -> let isr handle the event.
487                          */
488                         ch->match_value = new_match;
489                         break;
490                 }
491
492                 /* the counter has reached a value greater
493                  * than our new match value. and since the
494                  * has_wrapped flag isn't set we must have
495                  * programmed a too close event.
496                  * -> increase delay and retry.
497                  */
498                 if (delay)
499                         delay <<= 1;
500                 else
501                         delay = 1;
502
503                 if (!delay)
504                         dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
505                                  ch->index);
506
507         } while (delay);
508 }
509
510 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
511 {
512         if (delta > ch->max_match_value)
513                 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
514                          ch->index);
515
516         ch->next_match_value = delta;
517         sh_cmt_clock_event_program_verify(ch, 0);
518 }
519
520 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
521 {
522         unsigned long flags;
523
524         raw_spin_lock_irqsave(&ch->lock, flags);
525         __sh_cmt_set_next(ch, delta);
526         raw_spin_unlock_irqrestore(&ch->lock, flags);
527 }
528
529 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
530 {
531         struct sh_cmt_channel *ch = dev_id;
532
533         /* clear flags */
534         sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
535                            ch->cmt->info->clear_bits);
536
537         /* update clock source counter to begin with if enabled
538          * the wrap flag should be cleared by the timer specific
539          * isr before we end up here.
540          */
541         if (ch->flags & FLAG_CLOCKSOURCE)
542                 ch->total_cycles += ch->match_value + 1;
543
544         if (!(ch->flags & FLAG_REPROGRAM))
545                 ch->next_match_value = ch->max_match_value;
546
547         ch->flags |= FLAG_IRQCONTEXT;
548
549         if (ch->flags & FLAG_CLOCKEVENT) {
550                 if (!(ch->flags & FLAG_SKIPEVENT)) {
551                         if (clockevent_state_oneshot(&ch->ced)) {
552                                 ch->next_match_value = ch->max_match_value;
553                                 ch->flags |= FLAG_REPROGRAM;
554                         }
555
556                         ch->ced.event_handler(&ch->ced);
557                 }
558         }
559
560         ch->flags &= ~FLAG_SKIPEVENT;
561
562         if (ch->flags & FLAG_REPROGRAM) {
563                 ch->flags &= ~FLAG_REPROGRAM;
564                 sh_cmt_clock_event_program_verify(ch, 1);
565
566                 if (ch->flags & FLAG_CLOCKEVENT)
567                         if ((clockevent_state_shutdown(&ch->ced))
568                             || (ch->match_value == ch->next_match_value))
569                                 ch->flags &= ~FLAG_REPROGRAM;
570         }
571
572         ch->flags &= ~FLAG_IRQCONTEXT;
573
574         return IRQ_HANDLED;
575 }
576
577 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
578 {
579         int ret = 0;
580         unsigned long flags;
581
582         if (flag & FLAG_CLOCKSOURCE)
583                 pm_runtime_get_sync(&ch->cmt->pdev->dev);
584
585         raw_spin_lock_irqsave(&ch->lock, flags);
586
587         if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
588                 if (flag & FLAG_CLOCKEVENT)
589                         pm_runtime_get_sync(&ch->cmt->pdev->dev);
590                 ret = sh_cmt_enable(ch);
591         }
592
593         if (ret)
594                 goto out;
595         ch->flags |= flag;
596
597         /* setup timeout if no clockevent */
598         if (ch->cmt->num_channels == 1 &&
599             flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
600                 __sh_cmt_set_next(ch, ch->max_match_value);
601  out:
602         raw_spin_unlock_irqrestore(&ch->lock, flags);
603
604         return ret;
605 }
606
607 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
608 {
609         unsigned long flags;
610         unsigned long f;
611
612         raw_spin_lock_irqsave(&ch->lock, flags);
613
614         f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
615         ch->flags &= ~flag;
616
617         if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
618                 sh_cmt_disable(ch);
619                 if (flag & FLAG_CLOCKEVENT)
620                         pm_runtime_put(&ch->cmt->pdev->dev);
621         }
622
623         /* adjust the timeout to maximum if only clocksource left */
624         if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
625                 __sh_cmt_set_next(ch, ch->max_match_value);
626
627         raw_spin_unlock_irqrestore(&ch->lock, flags);
628
629         if (flag & FLAG_CLOCKSOURCE)
630                 pm_runtime_put(&ch->cmt->pdev->dev);
631 }
632
633 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
634 {
635         return container_of(cs, struct sh_cmt_channel, cs);
636 }
637
638 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
639 {
640         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
641         u32 has_wrapped;
642
643         if (ch->cmt->num_channels == 1) {
644                 unsigned long flags;
645                 u64 value;
646                 u32 raw;
647
648                 raw_spin_lock_irqsave(&ch->lock, flags);
649                 value = ch->total_cycles;
650                 raw = sh_cmt_get_counter(ch, &has_wrapped);
651
652                 if (unlikely(has_wrapped))
653                         raw += ch->match_value + 1;
654                 raw_spin_unlock_irqrestore(&ch->lock, flags);
655
656                 return value + raw;
657         }
658
659         return sh_cmt_get_counter(ch, &has_wrapped);
660 }
661
662 static int sh_cmt_clocksource_enable(struct clocksource *cs)
663 {
664         int ret;
665         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
666
667         WARN_ON(ch->cs_enabled);
668
669         ch->total_cycles = 0;
670
671         ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
672         if (!ret)
673                 ch->cs_enabled = true;
674
675         return ret;
676 }
677
678 static void sh_cmt_clocksource_disable(struct clocksource *cs)
679 {
680         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
681
682         WARN_ON(!ch->cs_enabled);
683
684         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
685         ch->cs_enabled = false;
686 }
687
688 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
689 {
690         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
691
692         if (!ch->cs_enabled)
693                 return;
694
695         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
696         dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
697 }
698
699 static void sh_cmt_clocksource_resume(struct clocksource *cs)
700 {
701         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
702
703         if (!ch->cs_enabled)
704                 return;
705
706         dev_pm_genpd_resume(&ch->cmt->pdev->dev);
707         sh_cmt_start(ch, FLAG_CLOCKSOURCE);
708 }
709
710 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
711                                        const char *name)
712 {
713         struct clocksource *cs = &ch->cs;
714
715         cs->name = name;
716         cs->rating = 125;
717         cs->read = sh_cmt_clocksource_read;
718         cs->enable = sh_cmt_clocksource_enable;
719         cs->disable = sh_cmt_clocksource_disable;
720         cs->suspend = sh_cmt_clocksource_suspend;
721         cs->resume = sh_cmt_clocksource_resume;
722         cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
723         cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
724
725         dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
726                  ch->index);
727
728         clocksource_register_hz(cs, ch->cmt->rate);
729         return 0;
730 }
731
732 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
733 {
734         return container_of(ced, struct sh_cmt_channel, ced);
735 }
736
737 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
738 {
739         sh_cmt_start(ch, FLAG_CLOCKEVENT);
740
741         if (periodic)
742                 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
743         else
744                 sh_cmt_set_next(ch, ch->max_match_value);
745 }
746
747 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
748 {
749         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
750
751         sh_cmt_stop(ch, FLAG_CLOCKEVENT);
752         return 0;
753 }
754
755 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
756                                         int periodic)
757 {
758         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
759
760         /* deal with old setting first */
761         if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
762                 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
763
764         dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
765                  ch->index, periodic ? "periodic" : "oneshot");
766         sh_cmt_clock_event_start(ch, periodic);
767         return 0;
768 }
769
770 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
771 {
772         return sh_cmt_clock_event_set_state(ced, 0);
773 }
774
775 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
776 {
777         return sh_cmt_clock_event_set_state(ced, 1);
778 }
779
780 static int sh_cmt_clock_event_next(unsigned long delta,
781                                    struct clock_event_device *ced)
782 {
783         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
784
785         BUG_ON(!clockevent_state_oneshot(ced));
786         if (likely(ch->flags & FLAG_IRQCONTEXT))
787                 ch->next_match_value = delta - 1;
788         else
789                 sh_cmt_set_next(ch, delta - 1);
790
791         return 0;
792 }
793
794 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
795 {
796         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
797
798         dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
799         clk_unprepare(ch->cmt->clk);
800 }
801
802 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
803 {
804         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
805
806         clk_prepare(ch->cmt->clk);
807         dev_pm_genpd_resume(&ch->cmt->pdev->dev);
808 }
809
810 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
811                                       const char *name)
812 {
813         struct clock_event_device *ced = &ch->ced;
814         int irq;
815         int ret;
816
817         irq = platform_get_irq(ch->cmt->pdev, ch->index);
818         if (irq < 0)
819                 return irq;
820
821         ret = request_irq(irq, sh_cmt_interrupt,
822                           IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
823                           dev_name(&ch->cmt->pdev->dev), ch);
824         if (ret) {
825                 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
826                         ch->index, irq);
827                 return ret;
828         }
829
830         ced->name = name;
831         ced->features = CLOCK_EVT_FEAT_PERIODIC;
832         ced->features |= CLOCK_EVT_FEAT_ONESHOT;
833         ced->rating = 125;
834         ced->cpumask = cpu_possible_mask;
835         ced->set_next_event = sh_cmt_clock_event_next;
836         ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
837         ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
838         ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
839         ced->suspend = sh_cmt_clock_event_suspend;
840         ced->resume = sh_cmt_clock_event_resume;
841
842         /* TODO: calculate good shift from rate and counter bit width */
843         ced->shift = 32;
844         ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
845         ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
846         ced->max_delta_ticks = ch->max_match_value;
847         ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
848         ced->min_delta_ticks = 0x1f;
849
850         dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
851                  ch->index);
852         clockevents_register_device(ced);
853
854         return 0;
855 }
856
857 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
858                            bool clockevent, bool clocksource)
859 {
860         int ret;
861
862         if (clockevent) {
863                 ch->cmt->has_clockevent = true;
864                 ret = sh_cmt_register_clockevent(ch, name);
865                 if (ret < 0)
866                         return ret;
867         }
868
869         if (clocksource) {
870                 ch->cmt->has_clocksource = true;
871                 sh_cmt_register_clocksource(ch, name);
872         }
873
874         return 0;
875 }
876
877 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
878                                 unsigned int hwidx, bool clockevent,
879                                 bool clocksource, struct sh_cmt_device *cmt)
880 {
881         u32 value;
882         int ret;
883
884         /* Skip unused channels. */
885         if (!clockevent && !clocksource)
886                 return 0;
887
888         ch->cmt = cmt;
889         ch->index = index;
890         ch->hwidx = hwidx;
891         ch->timer_bit = hwidx;
892
893         /*
894          * Compute the address of the channel control register block. For the
895          * timers with a per-channel start/stop register, compute its address
896          * as well.
897          */
898         switch (cmt->info->model) {
899         case SH_CMT_16BIT:
900                 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
901                 break;
902         case SH_CMT_32BIT:
903         case SH_CMT_48BIT:
904                 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
905                 break;
906         case SH_CMT0_RCAR_GEN2:
907         case SH_CMT1_RCAR_GEN2:
908                 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
909                 ch->ioctrl = ch->iostart + 0x10;
910                 ch->timer_bit = 0;
911
912                 /* Enable the clock supply to the channel */
913                 value = ioread32(cmt->mapbase + CMCLKE);
914                 value |= BIT(hwidx);
915                 iowrite32(value, cmt->mapbase + CMCLKE);
916                 break;
917         }
918
919         if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
920                 ch->max_match_value = ~0;
921         else
922                 ch->max_match_value = (1 << cmt->info->width) - 1;
923
924         ch->match_value = ch->max_match_value;
925         raw_spin_lock_init(&ch->lock);
926
927         ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
928                               clockevent, clocksource);
929         if (ret) {
930                 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
931                         ch->index);
932                 return ret;
933         }
934         ch->cs_enabled = false;
935
936         return 0;
937 }
938
939 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
940 {
941         struct resource *mem;
942
943         mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
944         if (!mem) {
945                 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
946                 return -ENXIO;
947         }
948
949         cmt->mapbase = ioremap(mem->start, resource_size(mem));
950         if (cmt->mapbase == NULL) {
951                 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
952                 return -ENXIO;
953         }
954
955         return 0;
956 }
957
958 static const struct platform_device_id sh_cmt_id_table[] = {
959         { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
960         { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
961         { }
962 };
963 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
964
965 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
966         {
967                 /* deprecated, preserved for backward compatibility */
968                 .compatible = "renesas,cmt-48",
969                 .data = &sh_cmt_info[SH_CMT_48BIT]
970         },
971         {
972                 /* deprecated, preserved for backward compatibility */
973                 .compatible = "renesas,cmt-48-gen2",
974                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
975         },
976         {
977                 .compatible = "renesas,r8a7740-cmt1",
978                 .data = &sh_cmt_info[SH_CMT_48BIT]
979         },
980         {
981                 .compatible = "renesas,sh73a0-cmt1",
982                 .data = &sh_cmt_info[SH_CMT_48BIT]
983         },
984         {
985                 .compatible = "renesas,rcar-gen2-cmt0",
986                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
987         },
988         {
989                 .compatible = "renesas,rcar-gen2-cmt1",
990                 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
991         },
992         {
993                 .compatible = "renesas,rcar-gen3-cmt0",
994                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
995         },
996         {
997                 .compatible = "renesas,rcar-gen3-cmt1",
998                 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
999         },
1000         {
1001                 .compatible = "renesas,rcar-gen4-cmt0",
1002                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1003         },
1004         {
1005                 .compatible = "renesas,rcar-gen4-cmt1",
1006                 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1007         },
1008         { }
1009 };
1010 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1011
1012 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1013 {
1014         unsigned int mask, i;
1015         unsigned long rate;
1016         int ret;
1017
1018         cmt->pdev = pdev;
1019         raw_spin_lock_init(&cmt->lock);
1020
1021         if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1022                 cmt->info = of_device_get_match_data(&pdev->dev);
1023                 cmt->hw_channels = cmt->info->channels_mask;
1024         } else if (pdev->dev.platform_data) {
1025                 struct sh_timer_config *cfg = pdev->dev.platform_data;
1026                 const struct platform_device_id *id = pdev->id_entry;
1027
1028                 cmt->info = (const struct sh_cmt_info *)id->driver_data;
1029                 cmt->hw_channels = cfg->channels_mask;
1030         } else {
1031                 dev_err(&cmt->pdev->dev, "missing platform data\n");
1032                 return -ENXIO;
1033         }
1034
1035         /* Get hold of clock. */
1036         cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1037         if (IS_ERR(cmt->clk)) {
1038                 dev_err(&cmt->pdev->dev, "cannot get clock\n");
1039                 return PTR_ERR(cmt->clk);
1040         }
1041
1042         ret = clk_prepare(cmt->clk);
1043         if (ret < 0)
1044                 goto err_clk_put;
1045
1046         /* Determine clock rate. */
1047         ret = clk_enable(cmt->clk);
1048         if (ret < 0)
1049                 goto err_clk_unprepare;
1050
1051         rate = clk_get_rate(cmt->clk);
1052         if (!rate) {
1053                 ret = -EINVAL;
1054                 goto err_clk_disable;
1055         }
1056
1057         /* We shall wait 2 input clks after register writes */
1058         if (cmt->info->model >= SH_CMT_48BIT)
1059                 cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1060         cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1061
1062         /* Map the memory resource(s). */
1063         ret = sh_cmt_map_memory(cmt);
1064         if (ret < 0)
1065                 goto err_clk_disable;
1066
1067         /* Allocate and setup the channels. */
1068         cmt->num_channels = hweight8(cmt->hw_channels);
1069         cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1070                                 GFP_KERNEL);
1071         if (cmt->channels == NULL) {
1072                 ret = -ENOMEM;
1073                 goto err_unmap;
1074         }
1075
1076         /*
1077          * Use the first channel as a clock event device and the second channel
1078          * as a clock source. If only one channel is available use it for both.
1079          */
1080         for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1081                 unsigned int hwidx = ffs(mask) - 1;
1082                 bool clocksource = i == 1 || cmt->num_channels == 1;
1083                 bool clockevent = i == 0;
1084
1085                 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1086                                            clockevent, clocksource, cmt);
1087                 if (ret < 0)
1088                         goto err_unmap;
1089
1090                 mask &= ~(1 << hwidx);
1091         }
1092
1093         clk_disable(cmt->clk);
1094
1095         platform_set_drvdata(pdev, cmt);
1096
1097         return 0;
1098
1099 err_unmap:
1100         kfree(cmt->channels);
1101         iounmap(cmt->mapbase);
1102 err_clk_disable:
1103         clk_disable(cmt->clk);
1104 err_clk_unprepare:
1105         clk_unprepare(cmt->clk);
1106 err_clk_put:
1107         clk_put(cmt->clk);
1108         return ret;
1109 }
1110
1111 static int sh_cmt_probe(struct platform_device *pdev)
1112 {
1113         struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1114         int ret;
1115
1116         if (!is_sh_early_platform_device(pdev)) {
1117                 pm_runtime_set_active(&pdev->dev);
1118                 pm_runtime_enable(&pdev->dev);
1119         }
1120
1121         if (cmt) {
1122                 dev_info(&pdev->dev, "kept as earlytimer\n");
1123                 goto out;
1124         }
1125
1126         cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1127         if (cmt == NULL)
1128                 return -ENOMEM;
1129
1130         ret = sh_cmt_setup(cmt, pdev);
1131         if (ret) {
1132                 kfree(cmt);
1133                 pm_runtime_idle(&pdev->dev);
1134                 return ret;
1135         }
1136         if (is_sh_early_platform_device(pdev))
1137                 return 0;
1138
1139  out:
1140         if (cmt->has_clockevent || cmt->has_clocksource)
1141                 pm_runtime_irq_safe(&pdev->dev);
1142         else
1143                 pm_runtime_idle(&pdev->dev);
1144
1145         return 0;
1146 }
1147
1148 static int sh_cmt_remove(struct platform_device *pdev)
1149 {
1150         return -EBUSY; /* cannot unregister clockevent and clocksource */
1151 }
1152
1153 static struct platform_driver sh_cmt_device_driver = {
1154         .probe          = sh_cmt_probe,
1155         .remove         = sh_cmt_remove,
1156         .driver         = {
1157                 .name   = "sh_cmt",
1158                 .of_match_table = of_match_ptr(sh_cmt_of_table),
1159         },
1160         .id_table       = sh_cmt_id_table,
1161 };
1162
1163 static int __init sh_cmt_init(void)
1164 {
1165         return platform_driver_register(&sh_cmt_device_driver);
1166 }
1167
1168 static void __exit sh_cmt_exit(void)
1169 {
1170         platform_driver_unregister(&sh_cmt_device_driver);
1171 }
1172
1173 #ifdef CONFIG_SUPERH
1174 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1175 #endif
1176
1177 subsys_initcall(sh_cmt_init);
1178 module_exit(sh_cmt_exit);
1179
1180 MODULE_AUTHOR("Magnus Damm");
1181 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1182 MODULE_LICENSE("GPL v2");