26f73cf609baf4eaeae1ee966efb7ad04e979ce4
[platform/kernel/linux-stable.git] / drivers / clocksource / sh_cmt.c
1 /*
2  * SuperH Timer Support - CMT
3  *
4  *  Copyright (C) 2008 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  */
19
20 #include <linux/init.h>
21 #include <linux/platform_device.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/ioport.h>
25 #include <linux/io.h>
26 #include <linux/clk.h>
27 #include <linux/irq.h>
28 #include <linux/err.h>
29 #include <linux/delay.h>
30 #include <linux/clocksource.h>
31 #include <linux/clockchips.h>
32 #include <linux/sh_timer.h>
33 #include <linux/slab.h>
34 #include <linux/module.h>
35 #include <linux/pm_domain.h>
36 #include <linux/pm_runtime.h>
37
38 struct sh_cmt_device;
39
40 struct sh_cmt_channel {
41         struct sh_cmt_device *cmt;
42
43         unsigned long flags;
44         unsigned long match_value;
45         unsigned long next_match_value;
46         unsigned long max_match_value;
47         unsigned long rate;
48         raw_spinlock_t lock;
49         struct clock_event_device ced;
50         struct clocksource cs;
51         unsigned long total_cycles;
52         bool cs_enabled;
53 };
54
55 struct sh_cmt_device {
56         struct platform_device *pdev;
57
58         void __iomem *mapbase;
59         void __iomem *mapbase_str;
60         struct clk *clk;
61
62         struct sh_cmt_channel channel;
63
64         unsigned long width; /* 16 or 32 bit version of hardware block */
65         unsigned long overflow_bit;
66         unsigned long clear_bits;
67
68         /* callbacks for CMSTR and CMCSR access */
69         unsigned long (*read_control)(void __iomem *base, unsigned long offs);
70         void (*write_control)(void __iomem *base, unsigned long offs,
71                               unsigned long value);
72
73         /* callbacks for CMCNT and CMCOR access */
74         unsigned long (*read_count)(void __iomem *base, unsigned long offs);
75         void (*write_count)(void __iomem *base, unsigned long offs,
76                             unsigned long value);
77 };
78
79 /* Examples of supported CMT timer register layouts and I/O access widths:
80  *
81  * "16-bit counter and 16-bit control" as found on sh7263:
82  * CMSTR 0xfffec000 16-bit
83  * CMCSR 0xfffec002 16-bit
84  * CMCNT 0xfffec004 16-bit
85  * CMCOR 0xfffec006 16-bit
86  *
87  * "32-bit counter and 16-bit control" as found on sh7372, sh73a0, r8a7740:
88  * CMSTR 0xffca0000 16-bit
89  * CMCSR 0xffca0060 16-bit
90  * CMCNT 0xffca0064 32-bit
91  * CMCOR 0xffca0068 32-bit
92  *
93  * "32-bit counter and 32-bit control" as found on r8a73a4 and r8a7790:
94  * CMSTR 0xffca0500 32-bit
95  * CMCSR 0xffca0510 32-bit
96  * CMCNT 0xffca0514 32-bit
97  * CMCOR 0xffca0518 32-bit
98  */
99
100 static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
101 {
102         return ioread16(base + (offs << 1));
103 }
104
105 static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
106 {
107         return ioread32(base + (offs << 2));
108 }
109
110 static void sh_cmt_write16(void __iomem *base, unsigned long offs,
111                            unsigned long value)
112 {
113         iowrite16(value, base + (offs << 1));
114 }
115
116 static void sh_cmt_write32(void __iomem *base, unsigned long offs,
117                            unsigned long value)
118 {
119         iowrite32(value, base + (offs << 2));
120 }
121
122 #define CMCSR 0 /* channel register */
123 #define CMCNT 1 /* channel register */
124 #define CMCOR 2 /* channel register */
125
126 static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
127 {
128         return ch->cmt->read_control(ch->cmt->mapbase_str, 0);
129 }
130
131 static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
132 {
133         return ch->cmt->read_control(ch->cmt->mapbase, CMCSR);
134 }
135
136 static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
137 {
138         return ch->cmt->read_count(ch->cmt->mapbase, CMCNT);
139 }
140
141 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
142                                       unsigned long value)
143 {
144         ch->cmt->write_control(ch->cmt->mapbase_str, 0, value);
145 }
146
147 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
148                                       unsigned long value)
149 {
150         ch->cmt->write_control(ch->cmt->mapbase, CMCSR, value);
151 }
152
153 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
154                                       unsigned long value)
155 {
156         ch->cmt->write_count(ch->cmt->mapbase, CMCNT, value);
157 }
158
159 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
160                                       unsigned long value)
161 {
162         ch->cmt->write_count(ch->cmt->mapbase, CMCOR, value);
163 }
164
165 static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
166                                         int *has_wrapped)
167 {
168         unsigned long v1, v2, v3;
169         int o1, o2;
170
171         o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->overflow_bit;
172
173         /* Make sure the timer value is stable. Stolen from acpi_pm.c */
174         do {
175                 o2 = o1;
176                 v1 = sh_cmt_read_cmcnt(ch);
177                 v2 = sh_cmt_read_cmcnt(ch);
178                 v3 = sh_cmt_read_cmcnt(ch);
179                 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->overflow_bit;
180         } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
181                           || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
182
183         *has_wrapped = o1;
184         return v2;
185 }
186
187 static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
188
189 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
190 {
191         struct sh_timer_config *cfg = ch->cmt->pdev->dev.platform_data;
192         unsigned long flags, value;
193
194         /* start stop register shared by multiple timer channels */
195         raw_spin_lock_irqsave(&sh_cmt_lock, flags);
196         value = sh_cmt_read_cmstr(ch);
197
198         if (start)
199                 value |= 1 << cfg->timer_bit;
200         else
201                 value &= ~(1 << cfg->timer_bit);
202
203         sh_cmt_write_cmstr(ch, value);
204         raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
205 }
206
207 static int sh_cmt_enable(struct sh_cmt_channel *ch, unsigned long *rate)
208 {
209         int k, ret;
210
211         pm_runtime_get_sync(&ch->cmt->pdev->dev);
212         dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
213
214         /* enable clock */
215         ret = clk_enable(ch->cmt->clk);
216         if (ret) {
217                 dev_err(&ch->cmt->pdev->dev, "cannot enable clock\n");
218                 goto err0;
219         }
220
221         /* make sure channel is disabled */
222         sh_cmt_start_stop_ch(ch, 0);
223
224         /* configure channel, periodic mode and maximum timeout */
225         if (ch->cmt->width == 16) {
226                 *rate = clk_get_rate(ch->cmt->clk) / 512;
227                 sh_cmt_write_cmcsr(ch, 0x43);
228         } else {
229                 *rate = clk_get_rate(ch->cmt->clk) / 8;
230                 sh_cmt_write_cmcsr(ch, 0x01a4);
231         }
232
233         sh_cmt_write_cmcor(ch, 0xffffffff);
234         sh_cmt_write_cmcnt(ch, 0);
235
236         /*
237          * According to the sh73a0 user's manual, as CMCNT can be operated
238          * only by the RCLK (Pseudo 32 KHz), there's one restriction on
239          * modifying CMCNT register; two RCLK cycles are necessary before
240          * this register is either read or any modification of the value
241          * it holds is reflected in the LSI's actual operation.
242          *
243          * While at it, we're supposed to clear out the CMCNT as of this
244          * moment, so make sure it's processed properly here.  This will
245          * take RCLKx2 at maximum.
246          */
247         for (k = 0; k < 100; k++) {
248                 if (!sh_cmt_read_cmcnt(ch))
249                         break;
250                 udelay(1);
251         }
252
253         if (sh_cmt_read_cmcnt(ch)) {
254                 dev_err(&ch->cmt->pdev->dev, "cannot clear CMCNT\n");
255                 ret = -ETIMEDOUT;
256                 goto err1;
257         }
258
259         /* enable channel */
260         sh_cmt_start_stop_ch(ch, 1);
261         return 0;
262  err1:
263         /* stop clock */
264         clk_disable(ch->cmt->clk);
265
266  err0:
267         return ret;
268 }
269
270 static void sh_cmt_disable(struct sh_cmt_channel *ch)
271 {
272         /* disable channel */
273         sh_cmt_start_stop_ch(ch, 0);
274
275         /* disable interrupts in CMT block */
276         sh_cmt_write_cmcsr(ch, 0);
277
278         /* stop clock */
279         clk_disable(ch->cmt->clk);
280
281         dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
282         pm_runtime_put(&ch->cmt->pdev->dev);
283 }
284
285 /* private flags */
286 #define FLAG_CLOCKEVENT (1 << 0)
287 #define FLAG_CLOCKSOURCE (1 << 1)
288 #define FLAG_REPROGRAM (1 << 2)
289 #define FLAG_SKIPEVENT (1 << 3)
290 #define FLAG_IRQCONTEXT (1 << 4)
291
292 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
293                                               int absolute)
294 {
295         unsigned long new_match;
296         unsigned long value = ch->next_match_value;
297         unsigned long delay = 0;
298         unsigned long now = 0;
299         int has_wrapped;
300
301         now = sh_cmt_get_counter(ch, &has_wrapped);
302         ch->flags |= FLAG_REPROGRAM; /* force reprogram */
303
304         if (has_wrapped) {
305                 /* we're competing with the interrupt handler.
306                  *  -> let the interrupt handler reprogram the timer.
307                  *  -> interrupt number two handles the event.
308                  */
309                 ch->flags |= FLAG_SKIPEVENT;
310                 return;
311         }
312
313         if (absolute)
314                 now = 0;
315
316         do {
317                 /* reprogram the timer hardware,
318                  * but don't save the new match value yet.
319                  */
320                 new_match = now + value + delay;
321                 if (new_match > ch->max_match_value)
322                         new_match = ch->max_match_value;
323
324                 sh_cmt_write_cmcor(ch, new_match);
325
326                 now = sh_cmt_get_counter(ch, &has_wrapped);
327                 if (has_wrapped && (new_match > ch->match_value)) {
328                         /* we are changing to a greater match value,
329                          * so this wrap must be caused by the counter
330                          * matching the old value.
331                          * -> first interrupt reprograms the timer.
332                          * -> interrupt number two handles the event.
333                          */
334                         ch->flags |= FLAG_SKIPEVENT;
335                         break;
336                 }
337
338                 if (has_wrapped) {
339                         /* we are changing to a smaller match value,
340                          * so the wrap must be caused by the counter
341                          * matching the new value.
342                          * -> save programmed match value.
343                          * -> let isr handle the event.
344                          */
345                         ch->match_value = new_match;
346                         break;
347                 }
348
349                 /* be safe: verify hardware settings */
350                 if (now < new_match) {
351                         /* timer value is below match value, all good.
352                          * this makes sure we won't miss any match events.
353                          * -> save programmed match value.
354                          * -> let isr handle the event.
355                          */
356                         ch->match_value = new_match;
357                         break;
358                 }
359
360                 /* the counter has reached a value greater
361                  * than our new match value. and since the
362                  * has_wrapped flag isn't set we must have
363                  * programmed a too close event.
364                  * -> increase delay and retry.
365                  */
366                 if (delay)
367                         delay <<= 1;
368                 else
369                         delay = 1;
370
371                 if (!delay)
372                         dev_warn(&ch->cmt->pdev->dev, "too long delay\n");
373
374         } while (delay);
375 }
376
377 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
378 {
379         if (delta > ch->max_match_value)
380                 dev_warn(&ch->cmt->pdev->dev, "delta out of range\n");
381
382         ch->next_match_value = delta;
383         sh_cmt_clock_event_program_verify(ch, 0);
384 }
385
386 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
387 {
388         unsigned long flags;
389
390         raw_spin_lock_irqsave(&ch->lock, flags);
391         __sh_cmt_set_next(ch, delta);
392         raw_spin_unlock_irqrestore(&ch->lock, flags);
393 }
394
395 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
396 {
397         struct sh_cmt_channel *ch = dev_id;
398
399         /* clear flags */
400         sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) & ch->cmt->clear_bits);
401
402         /* update clock source counter to begin with if enabled
403          * the wrap flag should be cleared by the timer specific
404          * isr before we end up here.
405          */
406         if (ch->flags & FLAG_CLOCKSOURCE)
407                 ch->total_cycles += ch->match_value + 1;
408
409         if (!(ch->flags & FLAG_REPROGRAM))
410                 ch->next_match_value = ch->max_match_value;
411
412         ch->flags |= FLAG_IRQCONTEXT;
413
414         if (ch->flags & FLAG_CLOCKEVENT) {
415                 if (!(ch->flags & FLAG_SKIPEVENT)) {
416                         if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
417                                 ch->next_match_value = ch->max_match_value;
418                                 ch->flags |= FLAG_REPROGRAM;
419                         }
420
421                         ch->ced.event_handler(&ch->ced);
422                 }
423         }
424
425         ch->flags &= ~FLAG_SKIPEVENT;
426
427         if (ch->flags & FLAG_REPROGRAM) {
428                 ch->flags &= ~FLAG_REPROGRAM;
429                 sh_cmt_clock_event_program_verify(ch, 1);
430
431                 if (ch->flags & FLAG_CLOCKEVENT)
432                         if ((ch->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
433                             || (ch->match_value == ch->next_match_value))
434                                 ch->flags &= ~FLAG_REPROGRAM;
435         }
436
437         ch->flags &= ~FLAG_IRQCONTEXT;
438
439         return IRQ_HANDLED;
440 }
441
442 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
443 {
444         int ret = 0;
445         unsigned long flags;
446
447         raw_spin_lock_irqsave(&ch->lock, flags);
448
449         if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
450                 ret = sh_cmt_enable(ch, &ch->rate);
451
452         if (ret)
453                 goto out;
454         ch->flags |= flag;
455
456         /* setup timeout if no clockevent */
457         if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
458                 __sh_cmt_set_next(ch, ch->max_match_value);
459  out:
460         raw_spin_unlock_irqrestore(&ch->lock, flags);
461
462         return ret;
463 }
464
465 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
466 {
467         unsigned long flags;
468         unsigned long f;
469
470         raw_spin_lock_irqsave(&ch->lock, flags);
471
472         f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
473         ch->flags &= ~flag;
474
475         if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
476                 sh_cmt_disable(ch);
477
478         /* adjust the timeout to maximum if only clocksource left */
479         if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
480                 __sh_cmt_set_next(ch, ch->max_match_value);
481
482         raw_spin_unlock_irqrestore(&ch->lock, flags);
483 }
484
485 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
486 {
487         return container_of(cs, struct sh_cmt_channel, cs);
488 }
489
490 static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
491 {
492         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
493         unsigned long flags, raw;
494         unsigned long value;
495         int has_wrapped;
496
497         raw_spin_lock_irqsave(&ch->lock, flags);
498         value = ch->total_cycles;
499         raw = sh_cmt_get_counter(ch, &has_wrapped);
500
501         if (unlikely(has_wrapped))
502                 raw += ch->match_value + 1;
503         raw_spin_unlock_irqrestore(&ch->lock, flags);
504
505         return value + raw;
506 }
507
508 static int sh_cmt_clocksource_enable(struct clocksource *cs)
509 {
510         int ret;
511         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
512
513         WARN_ON(ch->cs_enabled);
514
515         ch->total_cycles = 0;
516
517         ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
518         if (!ret) {
519                 __clocksource_updatefreq_hz(cs, ch->rate);
520                 ch->cs_enabled = true;
521         }
522         return ret;
523 }
524
525 static void sh_cmt_clocksource_disable(struct clocksource *cs)
526 {
527         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
528
529         WARN_ON(!ch->cs_enabled);
530
531         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
532         ch->cs_enabled = false;
533 }
534
535 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
536 {
537         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
538
539         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
540         pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
541 }
542
543 static void sh_cmt_clocksource_resume(struct clocksource *cs)
544 {
545         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
546
547         pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
548         sh_cmt_start(ch, FLAG_CLOCKSOURCE);
549 }
550
551 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
552                                        char *name, unsigned long rating)
553 {
554         struct clocksource *cs = &ch->cs;
555
556         cs->name = name;
557         cs->rating = rating;
558         cs->read = sh_cmt_clocksource_read;
559         cs->enable = sh_cmt_clocksource_enable;
560         cs->disable = sh_cmt_clocksource_disable;
561         cs->suspend = sh_cmt_clocksource_suspend;
562         cs->resume = sh_cmt_clocksource_resume;
563         cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
564         cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
565
566         dev_info(&ch->cmt->pdev->dev, "used as clock source\n");
567
568         /* Register with dummy 1 Hz value, gets updated in ->enable() */
569         clocksource_register_hz(cs, 1);
570         return 0;
571 }
572
573 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
574 {
575         return container_of(ced, struct sh_cmt_channel, ced);
576 }
577
578 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
579 {
580         struct clock_event_device *ced = &ch->ced;
581
582         sh_cmt_start(ch, FLAG_CLOCKEVENT);
583
584         /* TODO: calculate good shift from rate and counter bit width */
585
586         ced->shift = 32;
587         ced->mult = div_sc(ch->rate, NSEC_PER_SEC, ced->shift);
588         ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
589         ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
590
591         if (periodic)
592                 sh_cmt_set_next(ch, ((ch->rate + HZ/2) / HZ) - 1);
593         else
594                 sh_cmt_set_next(ch, ch->max_match_value);
595 }
596
597 static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
598                                     struct clock_event_device *ced)
599 {
600         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
601
602         /* deal with old setting first */
603         switch (ced->mode) {
604         case CLOCK_EVT_MODE_PERIODIC:
605         case CLOCK_EVT_MODE_ONESHOT:
606                 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
607                 break;
608         default:
609                 break;
610         }
611
612         switch (mode) {
613         case CLOCK_EVT_MODE_PERIODIC:
614                 dev_info(&ch->cmt->pdev->dev,
615                          "used for periodic clock events\n");
616                 sh_cmt_clock_event_start(ch, 1);
617                 break;
618         case CLOCK_EVT_MODE_ONESHOT:
619                 dev_info(&ch->cmt->pdev->dev,
620                          "used for oneshot clock events\n");
621                 sh_cmt_clock_event_start(ch, 0);
622                 break;
623         case CLOCK_EVT_MODE_SHUTDOWN:
624         case CLOCK_EVT_MODE_UNUSED:
625                 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
626                 break;
627         default:
628                 break;
629         }
630 }
631
632 static int sh_cmt_clock_event_next(unsigned long delta,
633                                    struct clock_event_device *ced)
634 {
635         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
636
637         BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
638         if (likely(ch->flags & FLAG_IRQCONTEXT))
639                 ch->next_match_value = delta - 1;
640         else
641                 sh_cmt_set_next(ch, delta - 1);
642
643         return 0;
644 }
645
646 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
647 {
648         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
649
650         pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
651         clk_unprepare(ch->cmt->clk);
652 }
653
654 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
655 {
656         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
657
658         clk_prepare(ch->cmt->clk);
659         pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
660 }
661
662 static void sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
663                                        char *name, unsigned long rating)
664 {
665         struct clock_event_device *ced = &ch->ced;
666
667         memset(ced, 0, sizeof(*ced));
668
669         ced->name = name;
670         ced->features = CLOCK_EVT_FEAT_PERIODIC;
671         ced->features |= CLOCK_EVT_FEAT_ONESHOT;
672         ced->rating = rating;
673         ced->cpumask = cpumask_of(0);
674         ced->set_next_event = sh_cmt_clock_event_next;
675         ced->set_mode = sh_cmt_clock_event_mode;
676         ced->suspend = sh_cmt_clock_event_suspend;
677         ced->resume = sh_cmt_clock_event_resume;
678
679         dev_info(&ch->cmt->pdev->dev, "used for clock events\n");
680         clockevents_register_device(ced);
681 }
682
683 static int sh_cmt_register(struct sh_cmt_channel *ch, char *name,
684                            unsigned long clockevent_rating,
685                            unsigned long clocksource_rating)
686 {
687         if (clockevent_rating)
688                 sh_cmt_register_clockevent(ch, name, clockevent_rating);
689
690         if (clocksource_rating)
691                 sh_cmt_register_clocksource(ch, name, clocksource_rating);
692
693         return 0;
694 }
695
696 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch,
697                                 struct sh_cmt_device *cmt)
698 {
699         struct sh_timer_config *cfg = cmt->pdev->dev.platform_data;
700         int irq;
701         int ret;
702
703         memset(ch, 0, sizeof(*ch));
704         ch->cmt = cmt;
705
706         irq = platform_get_irq(cmt->pdev, 0);
707         if (irq < 0) {
708                 dev_err(&cmt->pdev->dev, "failed to get irq\n");
709                 return irq;
710         }
711
712         if (cmt->width == (sizeof(ch->max_match_value) * 8))
713                 ch->max_match_value = ~0;
714         else
715                 ch->max_match_value = (1 << cmt->width) - 1;
716
717         ch->match_value = ch->max_match_value;
718         raw_spin_lock_init(&ch->lock);
719
720         ret = sh_cmt_register(ch, (char *)dev_name(&cmt->pdev->dev),
721                               cfg->clockevent_rating,
722                               cfg->clocksource_rating);
723         if (ret) {
724                 dev_err(&cmt->pdev->dev, "registration failed\n");
725                 return ret;
726         }
727         ch->cs_enabled = false;
728
729         ret = request_irq(irq, sh_cmt_interrupt,
730                           IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
731                           dev_name(&cmt->pdev->dev), ch);
732         if (ret) {
733                 dev_err(&cmt->pdev->dev, "failed to request irq %d\n", irq);
734                 return ret;
735         }
736
737         return 0;
738 }
739
740 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
741 {
742         struct sh_timer_config *cfg = pdev->dev.platform_data;
743         struct resource *res, *res2;
744         int ret;
745         ret = -ENXIO;
746
747         memset(cmt, 0, sizeof(*cmt));
748         cmt->pdev = pdev;
749
750         if (!cfg) {
751                 dev_err(&cmt->pdev->dev, "missing platform data\n");
752                 goto err0;
753         }
754
755         res = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
756         if (!res) {
757                 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
758                 goto err0;
759         }
760
761         /* optional resource for the shared timer start/stop register */
762         res2 = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 1);
763
764         /* map memory, let mapbase point to our channel */
765         cmt->mapbase = ioremap_nocache(res->start, resource_size(res));
766         if (cmt->mapbase == NULL) {
767                 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
768                 goto err0;
769         }
770
771         /* map second resource for CMSTR */
772         cmt->mapbase_str = ioremap_nocache(res2 ? res2->start :
773                                            res->start - cfg->channel_offset,
774                                            res2 ? resource_size(res2) : 2);
775         if (cmt->mapbase_str == NULL) {
776                 dev_err(&cmt->pdev->dev, "failed to remap I/O second memory\n");
777                 goto err1;
778         }
779
780         /* get hold of clock */
781         cmt->clk = clk_get(&cmt->pdev->dev, "cmt_fck");
782         if (IS_ERR(cmt->clk)) {
783                 dev_err(&cmt->pdev->dev, "cannot get clock\n");
784                 ret = PTR_ERR(cmt->clk);
785                 goto err2;
786         }
787
788         ret = clk_prepare(cmt->clk);
789         if (ret < 0)
790                 goto err3;
791
792         if (res2 && (resource_size(res2) == 4)) {
793                 /* assume both CMSTR and CMCSR to be 32-bit */
794                 cmt->read_control = sh_cmt_read32;
795                 cmt->write_control = sh_cmt_write32;
796         } else {
797                 cmt->read_control = sh_cmt_read16;
798                 cmt->write_control = sh_cmt_write16;
799         }
800
801         if (resource_size(res) == 6) {
802                 cmt->width = 16;
803                 cmt->read_count = sh_cmt_read16;
804                 cmt->write_count = sh_cmt_write16;
805                 cmt->overflow_bit = 0x80;
806                 cmt->clear_bits = ~0x80;
807         } else {
808                 cmt->width = 32;
809                 cmt->read_count = sh_cmt_read32;
810                 cmt->write_count = sh_cmt_write32;
811                 cmt->overflow_bit = 0x8000;
812                 cmt->clear_bits = ~0xc000;
813         }
814
815         ret = sh_cmt_setup_channel(&cmt->channel, cmt);
816         if (ret < 0)
817                 goto err4;
818
819         platform_set_drvdata(pdev, cmt);
820
821         return 0;
822 err4:
823         clk_unprepare(cmt->clk);
824 err3:
825         clk_put(cmt->clk);
826 err2:
827         iounmap(cmt->mapbase_str);
828 err1:
829         iounmap(cmt->mapbase);
830 err0:
831         return ret;
832 }
833
834 static int sh_cmt_probe(struct platform_device *pdev)
835 {
836         struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
837         struct sh_timer_config *cfg = pdev->dev.platform_data;
838         int ret;
839
840         if (!is_early_platform_device(pdev)) {
841                 pm_runtime_set_active(&pdev->dev);
842                 pm_runtime_enable(&pdev->dev);
843         }
844
845         if (cmt) {
846                 dev_info(&pdev->dev, "kept as earlytimer\n");
847                 goto out;
848         }
849
850         cmt = kmalloc(sizeof(*cmt), GFP_KERNEL);
851         if (cmt == NULL) {
852                 dev_err(&pdev->dev, "failed to allocate driver data\n");
853                 return -ENOMEM;
854         }
855
856         ret = sh_cmt_setup(cmt, pdev);
857         if (ret) {
858                 kfree(cmt);
859                 pm_runtime_idle(&pdev->dev);
860                 return ret;
861         }
862         if (is_early_platform_device(pdev))
863                 return 0;
864
865  out:
866         if (cfg->clockevent_rating || cfg->clocksource_rating)
867                 pm_runtime_irq_safe(&pdev->dev);
868         else
869                 pm_runtime_idle(&pdev->dev);
870
871         return 0;
872 }
873
874 static int sh_cmt_remove(struct platform_device *pdev)
875 {
876         return -EBUSY; /* cannot unregister clockevent and clocksource */
877 }
878
879 static struct platform_driver sh_cmt_device_driver = {
880         .probe          = sh_cmt_probe,
881         .remove         = sh_cmt_remove,
882         .driver         = {
883                 .name   = "sh_cmt",
884         }
885 };
886
887 static int __init sh_cmt_init(void)
888 {
889         return platform_driver_register(&sh_cmt_device_driver);
890 }
891
892 static void __exit sh_cmt_exit(void)
893 {
894         platform_driver_unregister(&sh_cmt_device_driver);
895 }
896
897 early_platform_init("earlytimer", &sh_cmt_device_driver);
898 subsys_initcall(sh_cmt_init);
899 module_exit(sh_cmt_exit);
900
901 MODULE_AUTHOR("Magnus Damm");
902 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
903 MODULE_LICENSE("GPL v2");