1 // SPDX-License-Identifier: GPL-2.0
3 * SuperH Timer Support - CMT
5 * Copyright (C) 2008 Magnus Damm
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
16 #include <linux/iopoll.h>
17 #include <linux/ioport.h>
18 #include <linux/irq.h>
19 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
29 #include <asm/platform_early.h>
35 * The CMT comes in 5 different identified flavours, depending not only on the
36 * SoC but also on the particular instance. The following table lists the main
37 * characteristics of those flavours.
39 * 16B 32B 32B-F 48B R-Car Gen2
40 * -----------------------------------------------------------------------------
41 * Channels 2 1/4 1 6 2/8
42 * Control Width 16 16 16 16 32
43 * Counter Width 16 32 32 32/48 32/48
44 * Shared Start/Stop Y Y Y Y N
46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47 * located in the channel registers block. All other versions have a shared
48 * start/stop register located in the global space.
50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
51 * infers the start/stop bit position in the control register and the channel
52 * registers block address. Some CMT instances have a subset of channels
53 * available, in which case the index in the documentation doesn't match the
54 * "real" index as implemented in hardware. This is for instance the case with
55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56 * in the documentation but using start/stop bit 5 and having its registers
59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
72 enum sh_cmt_model model;
74 unsigned int channels_mask;
76 unsigned long width; /* 16 or 32 bit version of hardware block */
80 /* callbacks for CMSTR and CMCSR access */
81 u32 (*read_control)(void __iomem *base, unsigned long offs);
82 void (*write_control)(void __iomem *base, unsigned long offs,
85 /* callbacks for CMCNT and CMCOR access */
86 u32 (*read_count)(void __iomem *base, unsigned long offs);
87 void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
90 struct sh_cmt_channel {
91 struct sh_cmt_device *cmt;
93 unsigned int index; /* Index in the documentation */
94 unsigned int hwidx; /* Real hardware index */
96 void __iomem *iostart;
99 unsigned int timer_bit;
102 u32 next_match_value;
105 struct clock_event_device ced;
106 struct clocksource cs;
111 struct sh_cmt_device {
112 struct platform_device *pdev;
114 const struct sh_cmt_info *info;
116 void __iomem *mapbase;
119 unsigned int reg_delay;
121 raw_spinlock_t lock; /* Protect the shared start/stop register */
123 struct sh_cmt_channel *channels;
124 unsigned int num_channels;
125 unsigned int hw_channels;
128 bool has_clocksource;
131 #define SH_CMT16_CMCSR_CMF (1 << 7)
132 #define SH_CMT16_CMCSR_CMIE (1 << 6)
133 #define SH_CMT16_CMCSR_CKS8 (0 << 0)
134 #define SH_CMT16_CMCSR_CKS32 (1 << 0)
135 #define SH_CMT16_CMCSR_CKS128 (2 << 0)
136 #define SH_CMT16_CMCSR_CKS512 (3 << 0)
137 #define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
139 #define SH_CMT32_CMCSR_CMF (1 << 15)
140 #define SH_CMT32_CMCSR_OVF (1 << 14)
141 #define SH_CMT32_CMCSR_WRFLG (1 << 13)
142 #define SH_CMT32_CMCSR_STTF (1 << 12)
143 #define SH_CMT32_CMCSR_STPF (1 << 11)
144 #define SH_CMT32_CMCSR_SSIE (1 << 10)
145 #define SH_CMT32_CMCSR_CMS (1 << 9)
146 #define SH_CMT32_CMCSR_CMM (1 << 8)
147 #define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
148 #define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
149 #define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
150 #define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
151 #define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
152 #define SH_CMT32_CMCSR_DBGIVD (1 << 3)
153 #define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
156 #define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
157 #define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
159 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
161 return ioread16(base + (offs << 1));
164 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
166 return ioread32(base + (offs << 2));
169 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
171 iowrite16(value, base + (offs << 1));
174 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
176 iowrite32(value, base + (offs << 2));
179 static const struct sh_cmt_info sh_cmt_info[] = {
181 .model = SH_CMT_16BIT,
183 .overflow_bit = SH_CMT16_CMCSR_CMF,
184 .clear_bits = ~SH_CMT16_CMCSR_CMF,
185 .read_control = sh_cmt_read16,
186 .write_control = sh_cmt_write16,
187 .read_count = sh_cmt_read16,
188 .write_count = sh_cmt_write16,
191 .model = SH_CMT_32BIT,
193 .overflow_bit = SH_CMT32_CMCSR_CMF,
194 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
195 .read_control = sh_cmt_read16,
196 .write_control = sh_cmt_write16,
197 .read_count = sh_cmt_read32,
198 .write_count = sh_cmt_write32,
201 .model = SH_CMT_48BIT,
202 .channels_mask = 0x3f,
204 .overflow_bit = SH_CMT32_CMCSR_CMF,
205 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
206 .read_control = sh_cmt_read32,
207 .write_control = sh_cmt_write32,
208 .read_count = sh_cmt_read32,
209 .write_count = sh_cmt_write32,
211 [SH_CMT0_RCAR_GEN2] = {
212 .model = SH_CMT0_RCAR_GEN2,
213 .channels_mask = 0x60,
215 .overflow_bit = SH_CMT32_CMCSR_CMF,
216 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
217 .read_control = sh_cmt_read32,
218 .write_control = sh_cmt_write32,
219 .read_count = sh_cmt_read32,
220 .write_count = sh_cmt_write32,
222 [SH_CMT1_RCAR_GEN2] = {
223 .model = SH_CMT1_RCAR_GEN2,
224 .channels_mask = 0xff,
226 .overflow_bit = SH_CMT32_CMCSR_CMF,
227 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
228 .read_control = sh_cmt_read32,
229 .write_control = sh_cmt_write32,
230 .read_count = sh_cmt_read32,
231 .write_count = sh_cmt_write32,
235 #define CMCSR 0 /* channel register */
236 #define CMCNT 1 /* channel register */
237 #define CMCOR 2 /* channel register */
239 #define CMCLKE 0x1000 /* CLK Enable Register (R-Car Gen2) */
241 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
244 return ch->cmt->info->read_control(ch->iostart, 0);
246 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
249 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
251 u32 old_value = sh_cmt_read_cmstr(ch);
253 if (value != old_value) {
255 ch->cmt->info->write_control(ch->iostart, 0, value);
256 udelay(ch->cmt->reg_delay);
258 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
259 udelay(ch->cmt->reg_delay);
264 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
266 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
269 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
271 u32 old_value = sh_cmt_read_cmcsr(ch);
273 if (value != old_value) {
274 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
275 udelay(ch->cmt->reg_delay);
279 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
281 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
284 static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
286 /* Tests showed that we need to wait 3 clocks here */
287 unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
290 if (ch->cmt->info->model > SH_CMT_16BIT) {
291 int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
292 !(reg & SH_CMT32_CMCSR_WRFLG),
293 1, cmcnt_delay, false, ch);
298 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
303 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
305 u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
307 if (value != old_value) {
308 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
309 udelay(ch->cmt->reg_delay);
313 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
318 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
320 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
323 v1 = sh_cmt_read_cmcnt(ch);
324 v2 = sh_cmt_read_cmcnt(ch);
325 v3 = sh_cmt_read_cmcnt(ch);
326 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
327 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
328 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
334 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
339 /* start stop register shared by multiple timer channels */
340 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
341 value = sh_cmt_read_cmstr(ch);
344 value |= 1 << ch->timer_bit;
346 value &= ~(1 << ch->timer_bit);
348 sh_cmt_write_cmstr(ch, value);
349 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
352 static int sh_cmt_enable(struct sh_cmt_channel *ch)
356 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
359 ret = clk_enable(ch->cmt->clk);
361 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
366 /* make sure channel is disabled */
367 sh_cmt_start_stop_ch(ch, 0);
369 /* configure channel, periodic mode and maximum timeout */
370 if (ch->cmt->info->width == 16) {
371 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
372 SH_CMT16_CMCSR_CKS512);
374 u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
375 SH_CMT32_CMCSR_CMTOUT_IE : 0;
376 sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
377 SH_CMT32_CMCSR_CMR_IRQ |
378 SH_CMT32_CMCSR_CKS_RCLK8);
381 sh_cmt_write_cmcor(ch, 0xffffffff);
382 ret = sh_cmt_write_cmcnt(ch, 0);
384 if (ret || sh_cmt_read_cmcnt(ch)) {
385 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
392 sh_cmt_start_stop_ch(ch, 1);
396 clk_disable(ch->cmt->clk);
402 static void sh_cmt_disable(struct sh_cmt_channel *ch)
404 /* disable channel */
405 sh_cmt_start_stop_ch(ch, 0);
407 /* disable interrupts in CMT block */
408 sh_cmt_write_cmcsr(ch, 0);
411 clk_disable(ch->cmt->clk);
413 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
417 #define FLAG_CLOCKEVENT (1 << 0)
418 #define FLAG_CLOCKSOURCE (1 << 1)
419 #define FLAG_REPROGRAM (1 << 2)
420 #define FLAG_SKIPEVENT (1 << 3)
421 #define FLAG_IRQCONTEXT (1 << 4)
423 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
426 u32 value = ch->next_match_value;
432 now = sh_cmt_get_counter(ch, &has_wrapped);
433 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
436 /* we're competing with the interrupt handler.
437 * -> let the interrupt handler reprogram the timer.
438 * -> interrupt number two handles the event.
440 ch->flags |= FLAG_SKIPEVENT;
448 /* reprogram the timer hardware,
449 * but don't save the new match value yet.
451 new_match = now + value + delay;
452 if (new_match > ch->max_match_value)
453 new_match = ch->max_match_value;
455 sh_cmt_write_cmcor(ch, new_match);
457 now = sh_cmt_get_counter(ch, &has_wrapped);
458 if (has_wrapped && (new_match > ch->match_value)) {
459 /* we are changing to a greater match value,
460 * so this wrap must be caused by the counter
461 * matching the old value.
462 * -> first interrupt reprograms the timer.
463 * -> interrupt number two handles the event.
465 ch->flags |= FLAG_SKIPEVENT;
470 /* we are changing to a smaller match value,
471 * so the wrap must be caused by the counter
472 * matching the new value.
473 * -> save programmed match value.
474 * -> let isr handle the event.
476 ch->match_value = new_match;
480 /* be safe: verify hardware settings */
481 if (now < new_match) {
482 /* timer value is below match value, all good.
483 * this makes sure we won't miss any match events.
484 * -> save programmed match value.
485 * -> let isr handle the event.
487 ch->match_value = new_match;
491 /* the counter has reached a value greater
492 * than our new match value. and since the
493 * has_wrapped flag isn't set we must have
494 * programmed a too close event.
495 * -> increase delay and retry.
503 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
509 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
511 if (delta > ch->max_match_value)
512 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
515 ch->next_match_value = delta;
516 sh_cmt_clock_event_program_verify(ch, 0);
519 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
523 raw_spin_lock_irqsave(&ch->lock, flags);
524 __sh_cmt_set_next(ch, delta);
525 raw_spin_unlock_irqrestore(&ch->lock, flags);
528 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
530 struct sh_cmt_channel *ch = dev_id;
533 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
534 ch->cmt->info->clear_bits);
536 /* update clock source counter to begin with if enabled
537 * the wrap flag should be cleared by the timer specific
538 * isr before we end up here.
540 if (ch->flags & FLAG_CLOCKSOURCE)
541 ch->total_cycles += ch->match_value + 1;
543 if (!(ch->flags & FLAG_REPROGRAM))
544 ch->next_match_value = ch->max_match_value;
546 ch->flags |= FLAG_IRQCONTEXT;
548 if (ch->flags & FLAG_CLOCKEVENT) {
549 if (!(ch->flags & FLAG_SKIPEVENT)) {
550 if (clockevent_state_oneshot(&ch->ced)) {
551 ch->next_match_value = ch->max_match_value;
552 ch->flags |= FLAG_REPROGRAM;
555 ch->ced.event_handler(&ch->ced);
559 ch->flags &= ~FLAG_SKIPEVENT;
561 if (ch->flags & FLAG_REPROGRAM) {
562 ch->flags &= ~FLAG_REPROGRAM;
563 sh_cmt_clock_event_program_verify(ch, 1);
565 if (ch->flags & FLAG_CLOCKEVENT)
566 if ((clockevent_state_shutdown(&ch->ced))
567 || (ch->match_value == ch->next_match_value))
568 ch->flags &= ~FLAG_REPROGRAM;
571 ch->flags &= ~FLAG_IRQCONTEXT;
576 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
581 if (flag & FLAG_CLOCKSOURCE)
582 pm_runtime_get_sync(&ch->cmt->pdev->dev);
584 raw_spin_lock_irqsave(&ch->lock, flags);
586 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
587 if (flag & FLAG_CLOCKEVENT)
588 pm_runtime_get_sync(&ch->cmt->pdev->dev);
589 ret = sh_cmt_enable(ch);
596 /* setup timeout if no clockevent */
597 if (ch->cmt->num_channels == 1 &&
598 flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
599 __sh_cmt_set_next(ch, ch->max_match_value);
601 raw_spin_unlock_irqrestore(&ch->lock, flags);
606 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
611 raw_spin_lock_irqsave(&ch->lock, flags);
613 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
616 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
618 if (flag & FLAG_CLOCKEVENT)
619 pm_runtime_put(&ch->cmt->pdev->dev);
622 /* adjust the timeout to maximum if only clocksource left */
623 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
624 __sh_cmt_set_next(ch, ch->max_match_value);
626 raw_spin_unlock_irqrestore(&ch->lock, flags);
628 if (flag & FLAG_CLOCKSOURCE)
629 pm_runtime_put(&ch->cmt->pdev->dev);
632 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
634 return container_of(cs, struct sh_cmt_channel, cs);
637 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
639 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
642 if (ch->cmt->num_channels == 1) {
647 raw_spin_lock_irqsave(&ch->lock, flags);
648 value = ch->total_cycles;
649 raw = sh_cmt_get_counter(ch, &has_wrapped);
651 if (unlikely(has_wrapped))
652 raw += ch->match_value + 1;
653 raw_spin_unlock_irqrestore(&ch->lock, flags);
658 return sh_cmt_get_counter(ch, &has_wrapped);
661 static int sh_cmt_clocksource_enable(struct clocksource *cs)
664 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
666 WARN_ON(ch->cs_enabled);
668 ch->total_cycles = 0;
670 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
672 ch->cs_enabled = true;
677 static void sh_cmt_clocksource_disable(struct clocksource *cs)
679 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
681 WARN_ON(!ch->cs_enabled);
683 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
684 ch->cs_enabled = false;
687 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
689 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
694 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
695 dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
698 static void sh_cmt_clocksource_resume(struct clocksource *cs)
700 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
705 dev_pm_genpd_resume(&ch->cmt->pdev->dev);
706 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
709 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
712 struct clocksource *cs = &ch->cs;
716 cs->read = sh_cmt_clocksource_read;
717 cs->enable = sh_cmt_clocksource_enable;
718 cs->disable = sh_cmt_clocksource_disable;
719 cs->suspend = sh_cmt_clocksource_suspend;
720 cs->resume = sh_cmt_clocksource_resume;
721 cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
722 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
724 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
727 clocksource_register_hz(cs, ch->cmt->rate);
731 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
733 return container_of(ced, struct sh_cmt_channel, ced);
736 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
738 sh_cmt_start(ch, FLAG_CLOCKEVENT);
741 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
743 sh_cmt_set_next(ch, ch->max_match_value);
746 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
748 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
750 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
754 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
757 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
759 /* deal with old setting first */
760 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
761 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
763 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
764 ch->index, periodic ? "periodic" : "oneshot");
765 sh_cmt_clock_event_start(ch, periodic);
769 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
771 return sh_cmt_clock_event_set_state(ced, 0);
774 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
776 return sh_cmt_clock_event_set_state(ced, 1);
779 static int sh_cmt_clock_event_next(unsigned long delta,
780 struct clock_event_device *ced)
782 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
784 BUG_ON(!clockevent_state_oneshot(ced));
785 if (likely(ch->flags & FLAG_IRQCONTEXT))
786 ch->next_match_value = delta - 1;
788 sh_cmt_set_next(ch, delta - 1);
793 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
795 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
797 dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
798 clk_unprepare(ch->cmt->clk);
801 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
803 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
805 clk_prepare(ch->cmt->clk);
806 dev_pm_genpd_resume(&ch->cmt->pdev->dev);
809 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
812 struct clock_event_device *ced = &ch->ced;
816 irq = platform_get_irq(ch->cmt->pdev, ch->index);
820 ret = request_irq(irq, sh_cmt_interrupt,
821 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
822 dev_name(&ch->cmt->pdev->dev), ch);
824 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
830 ced->features = CLOCK_EVT_FEAT_PERIODIC;
831 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
833 ced->cpumask = cpu_possible_mask;
834 ced->set_next_event = sh_cmt_clock_event_next;
835 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
836 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
837 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
838 ced->suspend = sh_cmt_clock_event_suspend;
839 ced->resume = sh_cmt_clock_event_resume;
841 /* TODO: calculate good shift from rate and counter bit width */
843 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
844 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
845 ced->max_delta_ticks = ch->max_match_value;
846 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
847 ced->min_delta_ticks = 0x1f;
849 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
851 clockevents_register_device(ced);
856 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
857 bool clockevent, bool clocksource)
862 ch->cmt->has_clockevent = true;
863 ret = sh_cmt_register_clockevent(ch, name);
869 ch->cmt->has_clocksource = true;
870 sh_cmt_register_clocksource(ch, name);
876 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
877 unsigned int hwidx, bool clockevent,
878 bool clocksource, struct sh_cmt_device *cmt)
883 /* Skip unused channels. */
884 if (!clockevent && !clocksource)
890 ch->timer_bit = hwidx;
893 * Compute the address of the channel control register block. For the
894 * timers with a per-channel start/stop register, compute its address
897 switch (cmt->info->model) {
899 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
903 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
905 case SH_CMT0_RCAR_GEN2:
906 case SH_CMT1_RCAR_GEN2:
907 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
908 ch->ioctrl = ch->iostart + 0x10;
911 /* Enable the clock supply to the channel */
912 value = ioread32(cmt->mapbase + CMCLKE);
914 iowrite32(value, cmt->mapbase + CMCLKE);
918 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
919 ch->max_match_value = ~0;
921 ch->max_match_value = (1 << cmt->info->width) - 1;
923 ch->match_value = ch->max_match_value;
924 raw_spin_lock_init(&ch->lock);
926 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
927 clockevent, clocksource);
929 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
933 ch->cs_enabled = false;
938 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
940 struct resource *mem;
942 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
944 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
948 cmt->mapbase = ioremap(mem->start, resource_size(mem));
949 if (cmt->mapbase == NULL) {
950 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
957 static const struct platform_device_id sh_cmt_id_table[] = {
958 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
959 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
962 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
964 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
966 /* deprecated, preserved for backward compatibility */
967 .compatible = "renesas,cmt-48",
968 .data = &sh_cmt_info[SH_CMT_48BIT]
971 /* deprecated, preserved for backward compatibility */
972 .compatible = "renesas,cmt-48-gen2",
973 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
976 .compatible = "renesas,r8a7740-cmt1",
977 .data = &sh_cmt_info[SH_CMT_48BIT]
980 .compatible = "renesas,sh73a0-cmt1",
981 .data = &sh_cmt_info[SH_CMT_48BIT]
984 .compatible = "renesas,rcar-gen2-cmt0",
985 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
988 .compatible = "renesas,rcar-gen2-cmt1",
989 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
992 .compatible = "renesas,rcar-gen3-cmt0",
993 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
996 .compatible = "renesas,rcar-gen3-cmt1",
997 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1000 .compatible = "renesas,rcar-gen4-cmt0",
1001 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1004 .compatible = "renesas,rcar-gen4-cmt1",
1005 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1009 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1011 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1013 unsigned int mask, i;
1018 raw_spin_lock_init(&cmt->lock);
1020 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1021 cmt->info = of_device_get_match_data(&pdev->dev);
1022 cmt->hw_channels = cmt->info->channels_mask;
1023 } else if (pdev->dev.platform_data) {
1024 struct sh_timer_config *cfg = pdev->dev.platform_data;
1025 const struct platform_device_id *id = pdev->id_entry;
1027 cmt->info = (const struct sh_cmt_info *)id->driver_data;
1028 cmt->hw_channels = cfg->channels_mask;
1030 dev_err(&cmt->pdev->dev, "missing platform data\n");
1034 /* Get hold of clock. */
1035 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1036 if (IS_ERR(cmt->clk)) {
1037 dev_err(&cmt->pdev->dev, "cannot get clock\n");
1038 return PTR_ERR(cmt->clk);
1041 ret = clk_prepare(cmt->clk);
1045 /* Determine clock rate. */
1046 ret = clk_enable(cmt->clk);
1048 goto err_clk_unprepare;
1050 rate = clk_get_rate(cmt->clk);
1053 goto err_clk_disable;
1056 /* We shall wait 2 input clks after register writes */
1057 if (cmt->info->model >= SH_CMT_48BIT)
1058 cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1059 cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1061 /* Map the memory resource(s). */
1062 ret = sh_cmt_map_memory(cmt);
1064 goto err_clk_disable;
1066 /* Allocate and setup the channels. */
1067 cmt->num_channels = hweight8(cmt->hw_channels);
1068 cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1070 if (cmt->channels == NULL) {
1076 * Use the first channel as a clock event device and the second channel
1077 * as a clock source. If only one channel is available use it for both.
1079 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1080 unsigned int hwidx = ffs(mask) - 1;
1081 bool clocksource = i == 1 || cmt->num_channels == 1;
1082 bool clockevent = i == 0;
1084 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1085 clockevent, clocksource, cmt);
1089 mask &= ~(1 << hwidx);
1092 clk_disable(cmt->clk);
1094 platform_set_drvdata(pdev, cmt);
1099 kfree(cmt->channels);
1100 iounmap(cmt->mapbase);
1102 clk_disable(cmt->clk);
1104 clk_unprepare(cmt->clk);
1110 static int sh_cmt_probe(struct platform_device *pdev)
1112 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1115 if (!is_sh_early_platform_device(pdev)) {
1116 pm_runtime_set_active(&pdev->dev);
1117 pm_runtime_enable(&pdev->dev);
1121 dev_info(&pdev->dev, "kept as earlytimer\n");
1125 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1129 ret = sh_cmt_setup(cmt, pdev);
1132 pm_runtime_idle(&pdev->dev);
1135 if (is_sh_early_platform_device(pdev))
1139 if (cmt->has_clockevent || cmt->has_clocksource)
1140 pm_runtime_irq_safe(&pdev->dev);
1142 pm_runtime_idle(&pdev->dev);
1147 static struct platform_driver sh_cmt_device_driver = {
1148 .probe = sh_cmt_probe,
1151 .of_match_table = of_match_ptr(sh_cmt_of_table),
1152 .suppress_bind_attrs = true,
1154 .id_table = sh_cmt_id_table,
1157 static int __init sh_cmt_init(void)
1159 return platform_driver_register(&sh_cmt_device_driver);
1162 static void __exit sh_cmt_exit(void)
1164 platform_driver_unregister(&sh_cmt_device_driver);
1167 #ifdef CONFIG_SUPERH
1168 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1171 subsys_initcall(sh_cmt_init);
1172 module_exit(sh_cmt_exit);
1174 MODULE_AUTHOR("Magnus Damm");
1175 MODULE_DESCRIPTION("SuperH CMT Timer Driver");