mm/memory.c: fix race when faulting a device private page
[platform/kernel/linux-starfive.git] / drivers / clocksource / renesas-ostm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Renesas Timer Support - OSTM
4  *
5  * Copyright (C) 2017 Renesas Electronics America, Inc.
6  * Copyright (C) 2017 Chris Brandt
7  */
8
9 #include <linux/clk.h>
10 #include <linux/clockchips.h>
11 #include <linux/interrupt.h>
12 #include <linux/platform_device.h>
13 #include <linux/reset.h>
14 #include <linux/sched_clock.h>
15 #include <linux/slab.h>
16
17 #include "timer-of.h"
18
19 /*
20  * The OSTM contains independent channels.
21  * The first OSTM channel probed will be set up as a free running
22  * clocksource. Additionally we will use this clocksource for the system
23  * schedule timer sched_clock().
24  *
25  * The second (or more) channel probed will be set up as an interrupt
26  * driven clock event.
27  */
28
29 static void __iomem *system_clock;      /* For sched_clock() */
30
31 /* OSTM REGISTERS */
32 #define OSTM_CMP                0x000   /* RW,32 */
33 #define OSTM_CNT                0x004   /* R,32 */
34 #define OSTM_TE                 0x010   /* R,8 */
35 #define OSTM_TS                 0x014   /* W,8 */
36 #define OSTM_TT                 0x018   /* W,8 */
37 #define OSTM_CTL                0x020   /* RW,8 */
38
39 #define TE                      0x01
40 #define TS                      0x01
41 #define TT                      0x01
42 #define CTL_PERIODIC            0x00
43 #define CTL_ONESHOT             0x02
44 #define CTL_FREERUN             0x02
45
46 static void ostm_timer_stop(struct timer_of *to)
47 {
48         if (readb(timer_of_base(to) + OSTM_TE) & TE) {
49                 writeb(TT, timer_of_base(to) + OSTM_TT);
50
51                 /*
52                  * Read back the register simply to confirm the write operation
53                  * has completed since I/O writes can sometimes get queued by
54                  * the bus architecture.
55                  */
56                 while (readb(timer_of_base(to) + OSTM_TE) & TE)
57                         ;
58         }
59 }
60
61 static int __init ostm_init_clksrc(struct timer_of *to)
62 {
63         ostm_timer_stop(to);
64
65         writel(0, timer_of_base(to) + OSTM_CMP);
66         writeb(CTL_FREERUN, timer_of_base(to) + OSTM_CTL);
67         writeb(TS, timer_of_base(to) + OSTM_TS);
68
69         return clocksource_mmio_init(timer_of_base(to) + OSTM_CNT,
70                                      to->np->full_name, timer_of_rate(to), 300,
71                                      32, clocksource_mmio_readl_up);
72 }
73
74 static u64 notrace ostm_read_sched_clock(void)
75 {
76         return readl(system_clock);
77 }
78
79 static void __init ostm_init_sched_clock(struct timer_of *to)
80 {
81         system_clock = timer_of_base(to) + OSTM_CNT;
82         sched_clock_register(ostm_read_sched_clock, 32, timer_of_rate(to));
83 }
84
85 static int ostm_clock_event_next(unsigned long delta,
86                                  struct clock_event_device *ced)
87 {
88         struct timer_of *to = to_timer_of(ced);
89
90         ostm_timer_stop(to);
91
92         writel(delta, timer_of_base(to) + OSTM_CMP);
93         writeb(CTL_ONESHOT, timer_of_base(to) + OSTM_CTL);
94         writeb(TS, timer_of_base(to) + OSTM_TS);
95
96         return 0;
97 }
98
99 static int ostm_shutdown(struct clock_event_device *ced)
100 {
101         struct timer_of *to = to_timer_of(ced);
102
103         ostm_timer_stop(to);
104
105         return 0;
106 }
107 static int ostm_set_periodic(struct clock_event_device *ced)
108 {
109         struct timer_of *to = to_timer_of(ced);
110
111         if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
112                 ostm_timer_stop(to);
113
114         writel(timer_of_period(to) - 1, timer_of_base(to) + OSTM_CMP);
115         writeb(CTL_PERIODIC, timer_of_base(to) + OSTM_CTL);
116         writeb(TS, timer_of_base(to) + OSTM_TS);
117
118         return 0;
119 }
120
121 static int ostm_set_oneshot(struct clock_event_device *ced)
122 {
123         struct timer_of *to = to_timer_of(ced);
124
125         ostm_timer_stop(to);
126
127         return 0;
128 }
129
130 static irqreturn_t ostm_timer_interrupt(int irq, void *dev_id)
131 {
132         struct clock_event_device *ced = dev_id;
133
134         if (clockevent_state_oneshot(ced))
135                 ostm_timer_stop(to_timer_of(ced));
136
137         /* notify clockevent layer */
138         if (ced->event_handler)
139                 ced->event_handler(ced);
140
141         return IRQ_HANDLED;
142 }
143
144 static int __init ostm_init_clkevt(struct timer_of *to)
145 {
146         struct clock_event_device *ced = &to->clkevt;
147
148         ced->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC;
149         ced->set_state_shutdown = ostm_shutdown;
150         ced->set_state_periodic = ostm_set_periodic;
151         ced->set_state_oneshot = ostm_set_oneshot;
152         ced->set_next_event = ostm_clock_event_next;
153         ced->shift = 32;
154         ced->rating = 300;
155         ced->cpumask = cpumask_of(0);
156         clockevents_config_and_register(ced, timer_of_rate(to), 0xf,
157                                         0xffffffff);
158
159         return 0;
160 }
161
162 static int __init ostm_init(struct device_node *np)
163 {
164         struct reset_control *rstc;
165         struct timer_of *to;
166         int ret;
167
168         to = kzalloc(sizeof(*to), GFP_KERNEL);
169         if (!to)
170                 return -ENOMEM;
171
172         rstc = of_reset_control_get_optional_exclusive(np, NULL);
173         if (IS_ERR(rstc)) {
174                 ret = PTR_ERR(rstc);
175                 goto err_free;
176         }
177
178         reset_control_deassert(rstc);
179
180         to->flags = TIMER_OF_BASE | TIMER_OF_CLOCK;
181         if (system_clock) {
182                 /*
183                  * clock sources don't use interrupts, clock events do
184                  */
185                 to->flags |= TIMER_OF_IRQ;
186                 to->of_irq.flags = IRQF_TIMER | IRQF_IRQPOLL;
187                 to->of_irq.handler = ostm_timer_interrupt;
188         }
189
190         ret = timer_of_init(np, to);
191         if (ret)
192                 goto err_reset;
193
194         /*
195          * First probed device will be used as system clocksource. Any
196          * additional devices will be used as clock events.
197          */
198         if (!system_clock) {
199                 ret = ostm_init_clksrc(to);
200                 if (ret)
201                         goto err_cleanup;
202
203                 ostm_init_sched_clock(to);
204                 pr_info("%pOF: used for clocksource\n", np);
205         } else {
206                 ret = ostm_init_clkevt(to);
207                 if (ret)
208                         goto err_cleanup;
209
210                 pr_info("%pOF: used for clock events\n", np);
211         }
212
213         return 0;
214
215 err_cleanup:
216         timer_of_cleanup(to);
217 err_reset:
218         reset_control_assert(rstc);
219         reset_control_put(rstc);
220 err_free:
221         kfree(to);
222         return ret;
223 }
224
225 TIMER_OF_DECLARE(ostm, "renesas,ostm", ostm_init);
226
227 #ifdef CONFIG_ARCH_R9A07G044
228 static int __init ostm_probe(struct platform_device *pdev)
229 {
230         struct device *dev = &pdev->dev;
231
232         return ostm_init(dev->of_node);
233 }
234
235 static const struct of_device_id ostm_of_table[] = {
236         { .compatible = "renesas,ostm", },
237         { /* sentinel */ }
238 };
239
240 static struct platform_driver ostm_device_driver = {
241         .driver = {
242                 .name = "renesas_ostm",
243                 .of_match_table = of_match_ptr(ostm_of_table),
244                 .suppress_bind_attrs = true,
245         },
246 };
247 builtin_platform_driver_probe(ostm_device_driver, ostm_probe);
248 #endif