Merge branch 'bind_unbind' into driver-core-next
[platform/kernel/linux-rpi.git] / drivers / clocksource / jcore-pit.c
1 /*
2  * J-Core SoC PIT/clocksource driver
3  *
4  * Copyright (C) 2015-2016 Smart Energy Instruments, Inc.
5  *
6  * This file is subject to the terms and conditions of the GNU General Public
7  * License.  See the file "COPYING" in the main directory of this archive
8  * for more details.
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/interrupt.h>
14 #include <linux/clockchips.h>
15 #include <linux/clocksource.h>
16 #include <linux/sched_clock.h>
17 #include <linux/cpu.h>
18 #include <linux/cpuhotplug.h>
19 #include <linux/of_address.h>
20 #include <linux/of_irq.h>
21
22 #define PIT_IRQ_SHIFT           12
23 #define PIT_PRIO_SHIFT          20
24 #define PIT_ENABLE_SHIFT        26
25 #define PIT_PRIO_MASK           0xf
26
27 #define REG_PITEN               0x00
28 #define REG_THROT               0x10
29 #define REG_COUNT               0x14
30 #define REG_BUSPD               0x18
31 #define REG_SECHI               0x20
32 #define REG_SECLO               0x24
33 #define REG_NSEC                0x28
34
35 struct jcore_pit {
36         struct clock_event_device       ced;
37         void __iomem                    *base;
38         unsigned long                   periodic_delta;
39         u32                             enable_val;
40 };
41
42 static void __iomem *jcore_pit_base;
43 static struct jcore_pit __percpu *jcore_pit_percpu;
44
45 static notrace u64 jcore_sched_clock_read(void)
46 {
47         u32 seclo, nsec, seclo0;
48         __iomem void *base = jcore_pit_base;
49
50         seclo = readl(base + REG_SECLO);
51         do {
52                 seclo0 = seclo;
53                 nsec  = readl(base + REG_NSEC);
54                 seclo = readl(base + REG_SECLO);
55         } while (seclo0 != seclo);
56
57         return seclo * NSEC_PER_SEC + nsec;
58 }
59
60 static u64 jcore_clocksource_read(struct clocksource *cs)
61 {
62         return jcore_sched_clock_read();
63 }
64
65 static int jcore_pit_disable(struct jcore_pit *pit)
66 {
67         writel(0, pit->base + REG_PITEN);
68         return 0;
69 }
70
71 static int jcore_pit_set(unsigned long delta, struct jcore_pit *pit)
72 {
73         jcore_pit_disable(pit);
74         writel(delta, pit->base + REG_THROT);
75         writel(pit->enable_val, pit->base + REG_PITEN);
76         return 0;
77 }
78
79 static int jcore_pit_set_state_shutdown(struct clock_event_device *ced)
80 {
81         struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced);
82
83         return jcore_pit_disable(pit);
84 }
85
86 static int jcore_pit_set_state_oneshot(struct clock_event_device *ced)
87 {
88         struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced);
89
90         return jcore_pit_disable(pit);
91 }
92
93 static int jcore_pit_set_state_periodic(struct clock_event_device *ced)
94 {
95         struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced);
96
97         return jcore_pit_set(pit->periodic_delta, pit);
98 }
99
100 static int jcore_pit_set_next_event(unsigned long delta,
101                                     struct clock_event_device *ced)
102 {
103         struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced);
104
105         return jcore_pit_set(delta, pit);
106 }
107
108 static int jcore_pit_local_init(unsigned cpu)
109 {
110         struct jcore_pit *pit = this_cpu_ptr(jcore_pit_percpu);
111         unsigned buspd, freq;
112
113         pr_info("Local J-Core PIT init on cpu %u\n", cpu);
114
115         buspd = readl(pit->base + REG_BUSPD);
116         freq = DIV_ROUND_CLOSEST(NSEC_PER_SEC, buspd);
117         pit->periodic_delta = DIV_ROUND_CLOSEST(NSEC_PER_SEC, HZ * buspd);
118
119         clockevents_config_and_register(&pit->ced, freq, 1, ULONG_MAX);
120
121         return 0;
122 }
123
124 static irqreturn_t jcore_timer_interrupt(int irq, void *dev_id)
125 {
126         struct jcore_pit *pit = this_cpu_ptr(dev_id);
127
128         if (clockevent_state_oneshot(&pit->ced))
129                 jcore_pit_disable(pit);
130
131         pit->ced.event_handler(&pit->ced);
132
133         return IRQ_HANDLED;
134 }
135
136 static int __init jcore_pit_init(struct device_node *node)
137 {
138         int err;
139         unsigned pit_irq, cpu;
140         unsigned long hwirq;
141         u32 irqprio, enable_val;
142
143         jcore_pit_base = of_iomap(node, 0);
144         if (!jcore_pit_base) {
145                 pr_err("Error: Cannot map base address for J-Core PIT\n");
146                 return -ENXIO;
147         }
148
149         pit_irq = irq_of_parse_and_map(node, 0);
150         if (!pit_irq) {
151                 pr_err("Error: J-Core PIT has no IRQ\n");
152                 return -ENXIO;
153         }
154
155         pr_info("Initializing J-Core PIT at %p IRQ %d\n",
156                 jcore_pit_base, pit_irq);
157
158         err = clocksource_mmio_init(jcore_pit_base, "jcore_pit_cs",
159                                     NSEC_PER_SEC, 400, 32,
160                                     jcore_clocksource_read);
161         if (err) {
162                 pr_err("Error registering clocksource device: %d\n", err);
163                 return err;
164         }
165
166         sched_clock_register(jcore_sched_clock_read, 32, NSEC_PER_SEC);
167
168         jcore_pit_percpu = alloc_percpu(struct jcore_pit);
169         if (!jcore_pit_percpu) {
170                 pr_err("Failed to allocate memory for clock event device\n");
171                 return -ENOMEM;
172         }
173
174         err = request_irq(pit_irq, jcore_timer_interrupt,
175                           IRQF_TIMER | IRQF_PERCPU,
176                           "jcore_pit", jcore_pit_percpu);
177         if (err) {
178                 pr_err("pit irq request failed: %d\n", err);
179                 free_percpu(jcore_pit_percpu);
180                 return err;
181         }
182
183         /*
184          * The J-Core PIT is not hard-wired to a particular IRQ, but
185          * integrated with the interrupt controller such that the IRQ it
186          * generates is programmable, as follows:
187          *
188          * The bit layout of the PIT enable register is:
189          *
190          *      .....e..ppppiiiiiiii............
191          *
192          * where the .'s indicate unrelated/unused bits, e is enable,
193          * p is priority, and i is hard irq number.
194          *
195          * For the PIT included in AIC1 (obsolete but still in use),
196          * any hard irq (trap number) can be programmed via the 8
197          * iiiiiiii bits, and a priority (0-15) is programmable
198          * separately in the pppp bits.
199          *
200          * For the PIT included in AIC2 (current), the programming
201          * interface is equivalent modulo interrupt mapping. This is
202          * why a different compatible tag was not used. However only
203          * traps 64-127 (the ones actually intended to be used for
204          * interrupts, rather than syscalls/exceptions/etc.) can be
205          * programmed (the high 2 bits of i are ignored) and the
206          * priority pppp is <<2'd and or'd onto the irq number. This
207          * choice seems to have been made on the hardware engineering
208          * side under an assumption that preserving old AIC1 priority
209          * mappings was important. Future models will likely ignore
210          * the pppp field.
211          */
212         hwirq = irq_get_irq_data(pit_irq)->hwirq;
213         irqprio = (hwirq >> 2) & PIT_PRIO_MASK;
214         enable_val = (1U << PIT_ENABLE_SHIFT)
215                    | (hwirq << PIT_IRQ_SHIFT)
216                    | (irqprio << PIT_PRIO_SHIFT);
217
218         for_each_present_cpu(cpu) {
219                 struct jcore_pit *pit = per_cpu_ptr(jcore_pit_percpu, cpu);
220
221                 pit->base = of_iomap(node, cpu);
222                 if (!pit->base) {
223                         pr_err("Unable to map PIT for cpu %u\n", cpu);
224                         continue;
225                 }
226
227                 pit->ced.name = "jcore_pit";
228                 pit->ced.features = CLOCK_EVT_FEAT_PERIODIC
229                                   | CLOCK_EVT_FEAT_ONESHOT
230                                   | CLOCK_EVT_FEAT_PERCPU;
231                 pit->ced.cpumask = cpumask_of(cpu);
232                 pit->ced.rating = 400;
233                 pit->ced.irq = pit_irq;
234                 pit->ced.set_state_shutdown = jcore_pit_set_state_shutdown;
235                 pit->ced.set_state_periodic = jcore_pit_set_state_periodic;
236                 pit->ced.set_state_oneshot = jcore_pit_set_state_oneshot;
237                 pit->ced.set_next_event = jcore_pit_set_next_event;
238
239                 pit->enable_val = enable_val;
240         }
241
242         cpuhp_setup_state(CPUHP_AP_JCORE_TIMER_STARTING,
243                           "clockevents/jcore:starting",
244                           jcore_pit_local_init, NULL);
245
246         return 0;
247 }
248
249 TIMER_OF_DECLARE(jcore_pit, "jcore,pit", jcore_pit_init);