Merge tag 'drm-msm-fixes-2022-06-28' into msm-next-staging
[platform/kernel/linux-starfive.git] / drivers / clocksource / jcore-pit.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * J-Core SoC PIT/clocksource driver
4  *
5  * Copyright (C) 2015-2016 Smart Energy Instruments, Inc.
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/clockchips.h>
12 #include <linux/clocksource.h>
13 #include <linux/sched_clock.h>
14 #include <linux/cpu.h>
15 #include <linux/cpuhotplug.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18
19 #define PIT_IRQ_SHIFT           12
20 #define PIT_PRIO_SHIFT          20
21 #define PIT_ENABLE_SHIFT        26
22 #define PIT_PRIO_MASK           0xf
23
24 #define REG_PITEN               0x00
25 #define REG_THROT               0x10
26 #define REG_COUNT               0x14
27 #define REG_BUSPD               0x18
28 #define REG_SECHI               0x20
29 #define REG_SECLO               0x24
30 #define REG_NSEC                0x28
31
32 struct jcore_pit {
33         struct clock_event_device       ced;
34         void __iomem                    *base;
35         unsigned long                   periodic_delta;
36         u32                             enable_val;
37 };
38
39 static void __iomem *jcore_pit_base;
40 static struct jcore_pit __percpu *jcore_pit_percpu;
41
42 static notrace u64 jcore_sched_clock_read(void)
43 {
44         u32 seclo, nsec, seclo0;
45         __iomem void *base = jcore_pit_base;
46
47         seclo = readl(base + REG_SECLO);
48         do {
49                 seclo0 = seclo;
50                 nsec  = readl(base + REG_NSEC);
51                 seclo = readl(base + REG_SECLO);
52         } while (seclo0 != seclo);
53
54         return seclo * NSEC_PER_SEC + nsec;
55 }
56
57 static u64 jcore_clocksource_read(struct clocksource *cs)
58 {
59         return jcore_sched_clock_read();
60 }
61
62 static int jcore_pit_disable(struct jcore_pit *pit)
63 {
64         writel(0, pit->base + REG_PITEN);
65         return 0;
66 }
67
68 static int jcore_pit_set(unsigned long delta, struct jcore_pit *pit)
69 {
70         jcore_pit_disable(pit);
71         writel(delta, pit->base + REG_THROT);
72         writel(pit->enable_val, pit->base + REG_PITEN);
73         return 0;
74 }
75
76 static int jcore_pit_set_state_shutdown(struct clock_event_device *ced)
77 {
78         struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced);
79
80         return jcore_pit_disable(pit);
81 }
82
83 static int jcore_pit_set_state_oneshot(struct clock_event_device *ced)
84 {
85         struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced);
86
87         return jcore_pit_disable(pit);
88 }
89
90 static int jcore_pit_set_state_periodic(struct clock_event_device *ced)
91 {
92         struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced);
93
94         return jcore_pit_set(pit->periodic_delta, pit);
95 }
96
97 static int jcore_pit_set_next_event(unsigned long delta,
98                                     struct clock_event_device *ced)
99 {
100         struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced);
101
102         return jcore_pit_set(delta, pit);
103 }
104
105 static int jcore_pit_local_init(unsigned cpu)
106 {
107         struct jcore_pit *pit = this_cpu_ptr(jcore_pit_percpu);
108         unsigned buspd, freq;
109
110         pr_info("Local J-Core PIT init on cpu %u\n", cpu);
111
112         buspd = readl(pit->base + REG_BUSPD);
113         freq = DIV_ROUND_CLOSEST(NSEC_PER_SEC, buspd);
114         pit->periodic_delta = DIV_ROUND_CLOSEST(NSEC_PER_SEC, HZ * buspd);
115
116         clockevents_config_and_register(&pit->ced, freq, 1, ULONG_MAX);
117
118         return 0;
119 }
120
121 static irqreturn_t jcore_timer_interrupt(int irq, void *dev_id)
122 {
123         struct jcore_pit *pit = this_cpu_ptr(dev_id);
124
125         if (clockevent_state_oneshot(&pit->ced))
126                 jcore_pit_disable(pit);
127
128         pit->ced.event_handler(&pit->ced);
129
130         return IRQ_HANDLED;
131 }
132
133 static int __init jcore_pit_init(struct device_node *node)
134 {
135         int err;
136         unsigned pit_irq, cpu;
137         unsigned long hwirq;
138         u32 irqprio, enable_val;
139
140         jcore_pit_base = of_iomap(node, 0);
141         if (!jcore_pit_base) {
142                 pr_err("Error: Cannot map base address for J-Core PIT\n");
143                 return -ENXIO;
144         }
145
146         pit_irq = irq_of_parse_and_map(node, 0);
147         if (!pit_irq) {
148                 pr_err("Error: J-Core PIT has no IRQ\n");
149                 return -ENXIO;
150         }
151
152         pr_info("Initializing J-Core PIT at %p IRQ %d\n",
153                 jcore_pit_base, pit_irq);
154
155         err = clocksource_mmio_init(jcore_pit_base, "jcore_pit_cs",
156                                     NSEC_PER_SEC, 400, 32,
157                                     jcore_clocksource_read);
158         if (err) {
159                 pr_err("Error registering clocksource device: %d\n", err);
160                 return err;
161         }
162
163         sched_clock_register(jcore_sched_clock_read, 32, NSEC_PER_SEC);
164
165         jcore_pit_percpu = alloc_percpu(struct jcore_pit);
166         if (!jcore_pit_percpu) {
167                 pr_err("Failed to allocate memory for clock event device\n");
168                 return -ENOMEM;
169         }
170
171         err = request_irq(pit_irq, jcore_timer_interrupt,
172                           IRQF_TIMER | IRQF_PERCPU,
173                           "jcore_pit", jcore_pit_percpu);
174         if (err) {
175                 pr_err("pit irq request failed: %d\n", err);
176                 free_percpu(jcore_pit_percpu);
177                 return err;
178         }
179
180         /*
181          * The J-Core PIT is not hard-wired to a particular IRQ, but
182          * integrated with the interrupt controller such that the IRQ it
183          * generates is programmable, as follows:
184          *
185          * The bit layout of the PIT enable register is:
186          *
187          *      .....e..ppppiiiiiiii............
188          *
189          * where the .'s indicate unrelated/unused bits, e is enable,
190          * p is priority, and i is hard irq number.
191          *
192          * For the PIT included in AIC1 (obsolete but still in use),
193          * any hard irq (trap number) can be programmed via the 8
194          * iiiiiiii bits, and a priority (0-15) is programmable
195          * separately in the pppp bits.
196          *
197          * For the PIT included in AIC2 (current), the programming
198          * interface is equivalent modulo interrupt mapping. This is
199          * why a different compatible tag was not used. However only
200          * traps 64-127 (the ones actually intended to be used for
201          * interrupts, rather than syscalls/exceptions/etc.) can be
202          * programmed (the high 2 bits of i are ignored) and the
203          * priority pppp is <<2'd and or'd onto the irq number. This
204          * choice seems to have been made on the hardware engineering
205          * side under an assumption that preserving old AIC1 priority
206          * mappings was important. Future models will likely ignore
207          * the pppp field.
208          */
209         hwirq = irq_get_irq_data(pit_irq)->hwirq;
210         irqprio = (hwirq >> 2) & PIT_PRIO_MASK;
211         enable_val = (1U << PIT_ENABLE_SHIFT)
212                    | (hwirq << PIT_IRQ_SHIFT)
213                    | (irqprio << PIT_PRIO_SHIFT);
214
215         for_each_present_cpu(cpu) {
216                 struct jcore_pit *pit = per_cpu_ptr(jcore_pit_percpu, cpu);
217
218                 pit->base = of_iomap(node, cpu);
219                 if (!pit->base) {
220                         pr_err("Unable to map PIT for cpu %u\n", cpu);
221                         continue;
222                 }
223
224                 pit->ced.name = "jcore_pit";
225                 pit->ced.features = CLOCK_EVT_FEAT_PERIODIC
226                                   | CLOCK_EVT_FEAT_ONESHOT
227                                   | CLOCK_EVT_FEAT_PERCPU;
228                 pit->ced.cpumask = cpumask_of(cpu);
229                 pit->ced.rating = 400;
230                 pit->ced.irq = pit_irq;
231                 pit->ced.set_state_shutdown = jcore_pit_set_state_shutdown;
232                 pit->ced.set_state_periodic = jcore_pit_set_state_periodic;
233                 pit->ced.set_state_oneshot = jcore_pit_set_state_oneshot;
234                 pit->ced.set_next_event = jcore_pit_set_next_event;
235
236                 pit->enable_val = enable_val;
237         }
238
239         cpuhp_setup_state(CPUHP_AP_JCORE_TIMER_STARTING,
240                           "clockevents/jcore:starting",
241                           jcore_pit_local_init, NULL);
242
243         return 0;
244 }
245
246 TIMER_OF_DECLARE(jcore_pit, "jcore,pit", jcore_pit_init);