1 // SPDX-License-Identifier: GPL-2.0
4 * Clocksource driver for the synthetic counter and timers
5 * provided by the Hyper-V hypervisor to guest VMs, as described
6 * in the Hyper-V Top Level Functional Spec (TLFS). This driver
7 * is instruction set architecture independent.
9 * Copyright (C) 2019, Microsoft, Inc.
11 * Author: Michael Kelley <mikelley@microsoft.com>
14 #include <linux/percpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/clockchips.h>
17 #include <linux/clocksource.h>
18 #include <linux/sched_clock.h>
20 #include <linux/cpuhotplug.h>
21 #include <linux/interrupt.h>
22 #include <linux/irq.h>
23 #include <linux/acpi.h>
24 #include <clocksource/hyperv_timer.h>
25 #include <asm/hyperv-tlfs.h>
26 #include <asm/mshyperv.h>
28 static struct clock_event_device __percpu *hv_clock_event;
29 static u64 hv_sched_clock_offset __ro_after_init;
32 * If false, we're using the old mechanism for stimer0 interrupts
33 * where it sends a VMbus message when it expires. The old
34 * mechanism is used when running on older versions of Hyper-V
35 * that don't support Direct Mode. While Hyper-V provides
36 * four stimer's per CPU, Linux uses only stimer0.
38 * Because Direct Mode does not require processing a VMbus
39 * message, stimer interrupts can be enabled earlier in the
40 * process of booting a CPU, and consistent with when timer
41 * interrupts are enabled for other clocksource drivers.
42 * However, for legacy versions of Hyper-V when Direct Mode
43 * is not enabled, setting up stimer interrupts must be
44 * delayed until VMbus is initialized and can process the
47 static bool direct_mode_enabled;
49 static int stimer0_irq = -1;
50 static int stimer0_message_sint;
51 static DEFINE_PER_CPU(long, stimer0_evt);
54 * Common code for stimer0 interrupts coming via Direct Mode or
57 void hv_stimer0_isr(void)
59 struct clock_event_device *ce;
61 ce = this_cpu_ptr(hv_clock_event);
62 ce->event_handler(ce);
64 EXPORT_SYMBOL_GPL(hv_stimer0_isr);
67 * stimer0 interrupt handler for architectures that support
68 * per-cpu interrupts, which also implies Direct Mode.
70 static irqreturn_t hv_stimer0_percpu_isr(int irq, void *dev_id)
76 static int hv_ce_set_next_event(unsigned long delta,
77 struct clock_event_device *evt)
81 current_tick = hv_read_reference_counter();
82 current_tick += delta;
83 hv_set_register(HV_REGISTER_STIMER0_COUNT, current_tick);
87 static int hv_ce_shutdown(struct clock_event_device *evt)
89 hv_set_register(HV_REGISTER_STIMER0_COUNT, 0);
90 hv_set_register(HV_REGISTER_STIMER0_CONFIG, 0);
91 if (direct_mode_enabled && stimer0_irq >= 0)
92 disable_percpu_irq(stimer0_irq);
97 static int hv_ce_set_oneshot(struct clock_event_device *evt)
99 union hv_stimer_config timer_cfg;
101 timer_cfg.as_uint64 = 0;
102 timer_cfg.enable = 1;
103 timer_cfg.auto_enable = 1;
104 if (direct_mode_enabled) {
106 * When it expires, the timer will directly interrupt
107 * on the specified hardware vector/IRQ.
109 timer_cfg.direct_mode = 1;
110 timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR;
111 if (stimer0_irq >= 0)
112 enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE);
115 * When it expires, the timer will generate a VMbus message,
116 * to be handled by the normal VMbus interrupt handler.
118 timer_cfg.direct_mode = 0;
119 timer_cfg.sintx = stimer0_message_sint;
121 hv_set_register(HV_REGISTER_STIMER0_CONFIG, timer_cfg.as_uint64);
126 * hv_stimer_init - Per-cpu initialization of the clockevent
128 static int hv_stimer_init(unsigned int cpu)
130 struct clock_event_device *ce;
135 ce = per_cpu_ptr(hv_clock_event, cpu);
136 ce->name = "Hyper-V clockevent";
137 ce->features = CLOCK_EVT_FEAT_ONESHOT;
138 ce->cpumask = cpumask_of(cpu);
140 ce->set_state_shutdown = hv_ce_shutdown;
141 ce->set_state_oneshot = hv_ce_set_oneshot;
142 ce->set_next_event = hv_ce_set_next_event;
144 clockevents_config_and_register(ce,
147 HV_MAX_MAX_DELTA_TICKS);
152 * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
154 int hv_stimer_cleanup(unsigned int cpu)
156 struct clock_event_device *ce;
162 * In the legacy case where Direct Mode is not enabled
163 * (which can only be on x86/64), stimer cleanup happens
164 * relatively early in the CPU offlining process. We
165 * must unbind the stimer-based clockevent device so
166 * that the LAPIC timer can take over until clockevents
167 * are no longer needed in the offlining process. Note
168 * that clockevents_unbind_device() eventually calls
171 * The unbind should not be done when Direct Mode is
172 * enabled because we may be on an architecture where
173 * there are no other clockevent devices to fallback to.
175 ce = per_cpu_ptr(hv_clock_event, cpu);
176 if (direct_mode_enabled)
179 clockevents_unbind_device(ce, cpu);
183 EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
186 * These placeholders are overridden by arch specific code on
187 * architectures that need special setup of the stimer0 IRQ because
188 * they don't support per-cpu IRQs (such as x86/x64).
190 void __weak hv_setup_stimer0_handler(void (*handler)(void))
194 void __weak hv_remove_stimer0_handler(void)
198 /* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */
199 static int hv_setup_stimer0_irq(void)
203 ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR,
204 ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH);
206 pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret);
211 ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr,
212 "Hyper-V stimer0", &stimer0_evt);
214 pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d",
216 acpi_unregister_gsi(stimer0_irq);
222 static void hv_remove_stimer0_irq(void)
224 if (stimer0_irq == -1) {
225 hv_remove_stimer0_handler();
227 free_percpu_irq(stimer0_irq, &stimer0_evt);
228 acpi_unregister_gsi(stimer0_irq);
233 /* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
234 int hv_stimer_alloc(bool have_percpu_irqs)
239 * Synthetic timers are always available except on old versions of
240 * Hyper-V on x86. In that case, return as error as Linux will use a
241 * clockevent based on emulated LAPIC timer hardware.
243 if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
246 hv_clock_event = alloc_percpu(struct clock_event_device);
250 direct_mode_enabled = ms_hyperv.misc_features &
251 HV_STIMER_DIRECT_MODE_AVAILABLE;
254 * If Direct Mode isn't enabled, the remainder of the initialization
255 * is done later by hv_stimer_legacy_init()
257 if (!direct_mode_enabled)
260 if (have_percpu_irqs) {
261 ret = hv_setup_stimer0_irq();
263 goto free_clock_event;
265 hv_setup_stimer0_handler(hv_stimer0_isr);
269 * Since we are in Direct Mode, stimer initialization
270 * can be done now with a CPUHP value in the same range
271 * as other clockevent devices.
273 ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
274 "clockevents/hyperv/stimer:starting",
275 hv_stimer_init, hv_stimer_cleanup);
277 hv_remove_stimer0_irq();
278 goto free_clock_event;
283 free_percpu(hv_clock_event);
284 hv_clock_event = NULL;
287 EXPORT_SYMBOL_GPL(hv_stimer_alloc);
290 * hv_stimer_legacy_init -- Called from the VMbus driver to handle
291 * the case when Direct Mode is not enabled, and the stimer
292 * must be initialized late in the CPU onlining process.
295 void hv_stimer_legacy_init(unsigned int cpu, int sint)
297 if (direct_mode_enabled)
301 * This function gets called by each vCPU, so setting the
302 * global stimer_message_sint value each time is conceptually
303 * not ideal, but the value passed in is always the same and
304 * it avoids introducing yet another interface into this
305 * clocksource driver just to set the sint in the legacy case.
307 stimer0_message_sint = sint;
308 (void)hv_stimer_init(cpu);
310 EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
313 * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
314 * handle the case when Direct Mode is not enabled, and the
315 * stimer must be cleaned up early in the CPU offlining
318 void hv_stimer_legacy_cleanup(unsigned int cpu)
320 if (direct_mode_enabled)
322 (void)hv_stimer_cleanup(cpu);
324 EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
327 * Do a global cleanup of clockevents for the cases of kexec and
330 void hv_stimer_global_cleanup(void)
335 * hv_stime_legacy_cleanup() will stop the stimer if Direct
336 * Mode is not enabled, and fallback to the LAPIC timer.
338 for_each_present_cpu(cpu) {
339 hv_stimer_legacy_cleanup(cpu);
345 if (direct_mode_enabled) {
346 cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
347 hv_remove_stimer0_irq();
350 free_percpu(hv_clock_event);
351 hv_clock_event = NULL;
354 EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
357 * Code and definitions for the Hyper-V clocksources. Two
358 * clocksources are defined: one that reads the Hyper-V defined MSR, and
359 * the other that uses the TSC reference page feature as defined in the
360 * TLFS. The MSR version is for compatibility with old versions of
361 * Hyper-V and 32-bit x86. The TSC reference page version is preferred.
364 u64 (*hv_read_reference_counter)(void);
365 EXPORT_SYMBOL_GPL(hv_read_reference_counter);
368 struct ms_hyperv_tsc_page page;
369 u8 reserved[PAGE_SIZE];
370 } tsc_pg __aligned(PAGE_SIZE);
372 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
376 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
378 static u64 notrace read_hv_clock_tsc(void)
380 u64 current_tick = hv_read_tsc_page(hv_get_tsc_page());
382 if (current_tick == U64_MAX)
383 current_tick = hv_get_register(HV_REGISTER_TIME_REF_COUNT);
388 static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
390 return read_hv_clock_tsc();
393 static u64 notrace read_hv_sched_clock_tsc(void)
395 return (read_hv_clock_tsc() - hv_sched_clock_offset) *
396 (NSEC_PER_SEC / HV_CLOCK_HZ);
399 static void suspend_hv_clock_tsc(struct clocksource *arg)
403 /* Disable the TSC page */
404 tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
405 tsc_msr &= ~BIT_ULL(0);
406 hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
410 static void resume_hv_clock_tsc(struct clocksource *arg)
412 phys_addr_t phys_addr = virt_to_phys(&tsc_pg);
415 /* Re-enable the TSC page */
416 tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
417 tsc_msr &= GENMASK_ULL(11, 0);
418 tsc_msr |= BIT_ULL(0) | (u64)phys_addr;
419 hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
422 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
423 static int hv_cs_enable(struct clocksource *cs)
425 vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
430 static struct clocksource hyperv_cs_tsc = {
431 .name = "hyperv_clocksource_tsc_page",
433 .read = read_hv_clock_tsc_cs,
434 .mask = CLOCKSOURCE_MASK(64),
435 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
436 .suspend= suspend_hv_clock_tsc,
437 .resume = resume_hv_clock_tsc,
438 #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK
439 .enable = hv_cs_enable,
440 .vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
442 .vdso_clock_mode = VDSO_CLOCKMODE_NONE,
446 static u64 notrace read_hv_clock_msr(void)
449 * Read the partition counter to get the current tick count. This count
450 * is set to 0 when the partition is created and is incremented in
451 * 100 nanosecond units.
453 return hv_get_register(HV_REGISTER_TIME_REF_COUNT);
456 static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
458 return read_hv_clock_msr();
461 static u64 notrace read_hv_sched_clock_msr(void)
463 return (read_hv_clock_msr() - hv_sched_clock_offset) *
464 (NSEC_PER_SEC / HV_CLOCK_HZ);
467 static struct clocksource hyperv_cs_msr = {
468 .name = "hyperv_clocksource_msr",
470 .read = read_hv_clock_msr_cs,
471 .mask = CLOCKSOURCE_MASK(64),
472 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
476 * Reference to pv_ops must be inline so objtool
477 * detection of noinstr violations can work correctly.
479 #ifdef CONFIG_GENERIC_SCHED_CLOCK
480 static __always_inline void hv_setup_sched_clock(void *sched_clock)
483 * We're on an architecture with generic sched clock (not x86/x64).
484 * The Hyper-V sched clock read function returns nanoseconds, not
485 * the normal 100ns units of the Hyper-V synthetic clock.
487 sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
489 #elif defined CONFIG_PARAVIRT
490 static __always_inline void hv_setup_sched_clock(void *sched_clock)
492 /* We're on x86/x64 *and* using PV ops */
493 paravirt_set_sched_clock(sched_clock);
495 #else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
496 static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
497 #endif /* CONFIG_GENERIC_SCHED_CLOCK */
499 static bool __init hv_init_tsc_clocksource(void)
502 phys_addr_t phys_addr;
504 if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
507 if (hv_root_partition)
511 * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly
512 * handles frequency and offset changes due to live migration,
513 * pause/resume, and other VM management operations. So lower the
514 * Hyper-V Reference TSC rating, causing the generic TSC to be used.
515 * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference
516 * TSC will be preferred over the virtualized ARM64 arch counter.
517 * While the Hyper-V MSR clocksource won't be used since the
518 * Reference TSC clocksource is present, change its rating as
519 * well for consistency.
521 if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) {
522 hyperv_cs_tsc.rating = 250;
523 hyperv_cs_msr.rating = 250;
526 hv_read_reference_counter = read_hv_clock_tsc;
527 phys_addr = virt_to_phys(hv_get_tsc_page());
530 * The Hyper-V TLFS specifies to preserve the value of reserved
531 * bits in registers. So read the existing value, preserve the
532 * low order 12 bits, and add in the guest physical address
533 * (which already has at least the low 12 bits set to zero since
534 * it is page aligned). Also set the "enable" bit, which is bit 0.
536 tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
537 tsc_msr &= GENMASK_ULL(11, 0);
538 tsc_msr = tsc_msr | 0x1 | (u64)phys_addr;
539 hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
541 clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
543 hv_sched_clock_offset = hv_read_reference_counter();
544 hv_setup_sched_clock(read_hv_sched_clock_tsc);
549 void __init hv_init_clocksource(void)
552 * Try to set up the TSC page clocksource. If it succeeds, we're
553 * done. Otherwise, set up the MSR clocksource. At least one of
554 * these will always be available except on very old versions of
555 * Hyper-V on x86. In that case we won't have a Hyper-V
556 * clocksource, but Linux will still run with a clocksource based
557 * on the emulated PIT or LAPIC timer.
559 if (hv_init_tsc_clocksource())
562 if (!(ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE))
565 hv_read_reference_counter = read_hv_clock_msr;
566 clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
568 hv_sched_clock_offset = hv_read_reference_counter();
569 hv_setup_sched_clock(read_hv_sched_clock_msr);
571 EXPORT_SYMBOL_GPL(hv_init_clocksource);