1 // SPDX-License-Identifier: GPL-2.0-only
2 /* linux/arch/arm/mach-exynos4/mct.c
4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com
7 * Exynos4 MCT(Multi-Core Timer) support
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/err.h>
13 #include <linux/clk.h>
14 #include <linux/clockchips.h>
15 #include <linux/cpu.h>
16 #include <linux/delay.h>
17 #include <linux/percpu.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_address.h>
21 #include <linux/clocksource.h>
22 #include <linux/sched_clock.h>
24 #define EXYNOS4_MCTREG(x) (x)
25 #define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
26 #define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
27 #define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
28 #define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
29 #define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
30 #define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
31 #define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
32 #define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
33 #define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
34 #define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
35 #define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
36 #define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x))
37 #define EXYNOS4_MCT_L_MASK (0xffffff00)
39 #define MCT_L_TCNTB_OFFSET (0x00)
40 #define MCT_L_ICNTB_OFFSET (0x08)
41 #define MCT_L_TCON_OFFSET (0x20)
42 #define MCT_L_INT_CSTAT_OFFSET (0x30)
43 #define MCT_L_INT_ENB_OFFSET (0x34)
44 #define MCT_L_WSTAT_OFFSET (0x40)
45 #define MCT_G_TCON_START (1 << 8)
46 #define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
47 #define MCT_G_TCON_COMP0_ENABLE (1 << 0)
48 #define MCT_L_TCON_INTERVAL_MODE (1 << 2)
49 #define MCT_L_TCON_INT_START (1 << 1)
50 #define MCT_L_TCON_TIMER_START (1 << 0)
52 #define TICK_BASE_CNT 1
55 /* Use values higher than ARM arch timer. See 6282edb72bed. */
56 #define MCT_CLKSOURCE_RATING 450
57 #define MCT_CLKEVENTS_RATING 500
59 #define MCT_CLKSOURCE_RATING 350
60 #define MCT_CLKEVENTS_RATING 350
63 /* There are four Global timers starting with 0 offset */
65 /* Local timers count starts after global timer count */
67 /* Max number of IRQ as per DT binding document */
68 #define MCT_NR_IRQS 20
75 static void __iomem *reg_base;
76 static unsigned long clk_rate;
77 static unsigned int mct_int_type;
78 static int mct_irqs[MCT_NR_IRQS];
80 struct mct_clock_event_device {
81 struct clock_event_device evt;
84 * The length of the name must be adjusted if number of
85 * local timer interrupts grow over two digits
90 static void exynos4_mct_write(unsigned int value, unsigned long offset)
92 unsigned long stat_addr;
96 writel_relaxed(value, reg_base + offset);
98 if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
99 stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
100 switch (offset & ~EXYNOS4_MCT_L_MASK) {
101 case MCT_L_TCON_OFFSET:
102 mask = 1 << 3; /* L_TCON write status */
104 case MCT_L_ICNTB_OFFSET:
105 mask = 1 << 1; /* L_ICNTB write status */
107 case MCT_L_TCNTB_OFFSET:
108 mask = 1 << 0; /* L_TCNTB write status */
115 case EXYNOS4_MCT_G_TCON:
116 stat_addr = EXYNOS4_MCT_G_WSTAT;
117 mask = 1 << 16; /* G_TCON write status */
119 case EXYNOS4_MCT_G_COMP0_L:
120 stat_addr = EXYNOS4_MCT_G_WSTAT;
121 mask = 1 << 0; /* G_COMP0_L write status */
123 case EXYNOS4_MCT_G_COMP0_U:
124 stat_addr = EXYNOS4_MCT_G_WSTAT;
125 mask = 1 << 1; /* G_COMP0_U write status */
127 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
128 stat_addr = EXYNOS4_MCT_G_WSTAT;
129 mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
131 case EXYNOS4_MCT_G_CNT_L:
132 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
133 mask = 1 << 0; /* G_CNT_L write status */
135 case EXYNOS4_MCT_G_CNT_U:
136 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
137 mask = 1 << 1; /* G_CNT_U write status */
144 /* Wait maximum 1 ms until written values are applied */
145 for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
146 if (readl_relaxed(reg_base + stat_addr) & mask) {
147 writel_relaxed(mask, reg_base + stat_addr);
151 panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
154 /* Clocksource handling */
155 static void exynos4_mct_frc_start(void)
159 reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
160 reg |= MCT_G_TCON_START;
161 exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
165 * exynos4_read_count_64 - Read all 64-bits of the global counter
167 * This will read all 64-bits of the global counter taking care to make sure
168 * that the upper and lower half match. Note that reading the MCT can be quite
169 * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
170 * only) version when possible.
172 * Returns the number of cycles in the global counter.
174 static u64 exynos4_read_count_64(void)
177 u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
181 lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
182 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
185 return ((u64)hi << 32) | lo;
189 * exynos4_read_count_32 - Read the lower 32-bits of the global counter
191 * This will read just the lower 32-bits of the global counter. This is marked
192 * as notrace so it can be used by the scheduler clock.
194 * Returns the number of cycles in the global counter (lower 32 bits).
196 static u32 notrace exynos4_read_count_32(void)
198 return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
201 static u64 exynos4_frc_read(struct clocksource *cs)
203 return exynos4_read_count_32();
206 static void exynos4_frc_resume(struct clocksource *cs)
208 exynos4_mct_frc_start();
211 static struct clocksource mct_frc = {
213 .rating = MCT_CLKSOURCE_RATING,
214 .read = exynos4_frc_read,
215 .mask = CLOCKSOURCE_MASK(32),
216 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
217 .resume = exynos4_frc_resume,
220 static u64 notrace exynos4_read_sched_clock(void)
222 return exynos4_read_count_32();
225 #if defined(CONFIG_ARM)
226 static struct delay_timer exynos4_delay_timer;
228 static cycles_t exynos4_read_current_timer(void)
230 BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
231 "cycles_t needs to move to 32-bit for ARM64 usage");
232 return exynos4_read_count_32();
236 static int __init exynos4_clocksource_init(void)
238 exynos4_mct_frc_start();
240 #if defined(CONFIG_ARM)
241 exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
242 exynos4_delay_timer.freq = clk_rate;
243 register_current_timer_delay(&exynos4_delay_timer);
246 if (clocksource_register_hz(&mct_frc, clk_rate))
247 panic("%s: can't register clocksource\n", mct_frc.name);
249 sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
254 static void exynos4_mct_comp0_stop(void)
258 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
259 tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
261 exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
262 exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
265 static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
270 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
273 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
274 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
277 comp_cycle = exynos4_read_count_64() + cycles;
278 exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
279 exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
281 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
283 tcon |= MCT_G_TCON_COMP0_ENABLE;
284 exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
287 static int exynos4_comp_set_next_event(unsigned long cycles,
288 struct clock_event_device *evt)
290 exynos4_mct_comp0_start(false, cycles);
295 static int mct_set_state_shutdown(struct clock_event_device *evt)
297 exynos4_mct_comp0_stop();
301 static int mct_set_state_periodic(struct clock_event_device *evt)
303 unsigned long cycles_per_jiffy;
305 cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
307 exynos4_mct_comp0_stop();
308 exynos4_mct_comp0_start(true, cycles_per_jiffy);
312 static struct clock_event_device mct_comp_device = {
314 .features = CLOCK_EVT_FEAT_PERIODIC |
315 CLOCK_EVT_FEAT_ONESHOT,
317 .set_next_event = exynos4_comp_set_next_event,
318 .set_state_periodic = mct_set_state_periodic,
319 .set_state_shutdown = mct_set_state_shutdown,
320 .set_state_oneshot = mct_set_state_shutdown,
321 .set_state_oneshot_stopped = mct_set_state_shutdown,
322 .tick_resume = mct_set_state_shutdown,
325 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
327 struct clock_event_device *evt = dev_id;
329 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
331 evt->event_handler(evt);
336 static int exynos4_clockevent_init(void)
338 mct_comp_device.cpumask = cpumask_of(0);
339 clockevents_config_and_register(&mct_comp_device, clk_rate,
341 if (request_irq(mct_irqs[MCT_G0_IRQ], exynos4_mct_comp_isr,
342 IRQF_TIMER | IRQF_IRQPOLL, "mct_comp_irq",
344 pr_err("%s: request_irq() failed\n", "mct_comp_irq");
349 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
351 /* Clock event handling */
352 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
355 unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
356 unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
358 tmp = readl_relaxed(reg_base + offset);
361 exynos4_mct_write(tmp, offset);
365 static void exynos4_mct_tick_start(unsigned long cycles,
366 struct mct_clock_event_device *mevt)
370 exynos4_mct_tick_stop(mevt);
372 tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
374 /* update interrupt count buffer */
375 exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
377 /* enable MCT tick interrupt */
378 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
380 tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
381 tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
382 MCT_L_TCON_INTERVAL_MODE;
383 exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
386 static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
388 /* Clear the MCT tick interrupt */
389 if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
390 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
393 static int exynos4_tick_set_next_event(unsigned long cycles,
394 struct clock_event_device *evt)
396 struct mct_clock_event_device *mevt;
398 mevt = container_of(evt, struct mct_clock_event_device, evt);
399 exynos4_mct_tick_start(cycles, mevt);
403 static int set_state_shutdown(struct clock_event_device *evt)
405 struct mct_clock_event_device *mevt;
407 mevt = container_of(evt, struct mct_clock_event_device, evt);
408 exynos4_mct_tick_stop(mevt);
409 exynos4_mct_tick_clear(mevt);
413 static int set_state_periodic(struct clock_event_device *evt)
415 struct mct_clock_event_device *mevt;
416 unsigned long cycles_per_jiffy;
418 mevt = container_of(evt, struct mct_clock_event_device, evt);
419 cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
421 exynos4_mct_tick_stop(mevt);
422 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
426 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
428 struct mct_clock_event_device *mevt = dev_id;
429 struct clock_event_device *evt = &mevt->evt;
432 * This is for supporting oneshot mode.
433 * Mct would generate interrupt periodically
434 * without explicit stopping.
436 if (!clockevent_state_periodic(&mevt->evt))
437 exynos4_mct_tick_stop(mevt);
439 exynos4_mct_tick_clear(mevt);
441 evt->event_handler(evt);
446 static int exynos4_mct_starting_cpu(unsigned int cpu)
448 struct mct_clock_event_device *mevt =
449 per_cpu_ptr(&percpu_mct_tick, cpu);
450 struct clock_event_device *evt = &mevt->evt;
452 mevt->base = EXYNOS4_MCT_L_BASE(cpu);
453 snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
455 evt->name = mevt->name;
456 evt->cpumask = cpumask_of(cpu);
457 evt->set_next_event = exynos4_tick_set_next_event;
458 evt->set_state_periodic = set_state_periodic;
459 evt->set_state_shutdown = set_state_shutdown;
460 evt->set_state_oneshot = set_state_shutdown;
461 evt->set_state_oneshot_stopped = set_state_shutdown;
462 evt->tick_resume = set_state_shutdown;
463 evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
464 CLOCK_EVT_FEAT_PERCPU;
465 evt->rating = MCT_CLKEVENTS_RATING;
467 exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
469 if (mct_int_type == MCT_INT_SPI) {
474 irq_force_affinity(evt->irq, cpumask_of(cpu));
475 enable_irq(evt->irq);
477 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
479 clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
485 static int exynos4_mct_dying_cpu(unsigned int cpu)
487 struct mct_clock_event_device *mevt =
488 per_cpu_ptr(&percpu_mct_tick, cpu);
489 struct clock_event_device *evt = &mevt->evt;
491 evt->set_state_shutdown(evt);
492 if (mct_int_type == MCT_INT_SPI) {
494 disable_irq_nosync(evt->irq);
495 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
497 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
502 static int __init exynos4_timer_resources(struct device_node *np)
504 struct clk *mct_clk, *tick_clk;
506 reg_base = of_iomap(np, 0);
508 panic("%s: unable to ioremap mct address space\n", __func__);
510 tick_clk = of_clk_get_by_name(np, "fin_pll");
511 if (IS_ERR(tick_clk))
512 panic("%s: unable to determine tick clock rate\n", __func__);
513 clk_rate = clk_get_rate(tick_clk);
515 mct_clk = of_clk_get_by_name(np, "mct");
517 panic("%s: unable to retrieve mct clock instance\n", __func__);
518 clk_prepare_enable(mct_clk);
523 static int __init exynos4_timer_interrupts(struct device_node *np,
524 unsigned int int_type)
526 int nr_irqs, i, err, cpu;
528 mct_int_type = int_type;
530 /* This driver uses only one global timer interrupt */
531 mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
534 * Find out the number of local irqs specified. The local
535 * timer irqs are specified after the four global timer
536 * irqs are specified.
538 nr_irqs = of_irq_count(np);
539 if (nr_irqs > ARRAY_SIZE(mct_irqs)) {
540 pr_err("exynos-mct: too many (%d) interrupts configured in DT\n",
542 nr_irqs = ARRAY_SIZE(mct_irqs);
544 for (i = MCT_L0_IRQ; i < nr_irqs; i++)
545 mct_irqs[i] = irq_of_parse_and_map(np, i);
547 if (mct_int_type == MCT_INT_PPI) {
549 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
550 exynos4_mct_tick_isr, "MCT",
552 WARN(err, "MCT: can't request IRQ %d (%d)\n",
553 mct_irqs[MCT_L0_IRQ], err);
555 for_each_possible_cpu(cpu) {
557 struct mct_clock_event_device *pcpu_mevt =
558 per_cpu_ptr(&percpu_mct_tick, cpu);
560 pcpu_mevt->evt.irq = -1;
561 if (MCT_L0_IRQ + cpu >= ARRAY_SIZE(mct_irqs))
563 mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
565 irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
566 if (request_irq(mct_irq,
567 exynos4_mct_tick_isr,
568 IRQF_TIMER | IRQF_NOBALANCING,
569 pcpu_mevt->name, pcpu_mevt)) {
570 pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
575 pcpu_mevt->evt.irq = mct_irq;
579 /* Install hotplug callbacks which configure the timer on this CPU */
580 err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
581 "clockevents/exynos4/mct_timer:starting",
582 exynos4_mct_starting_cpu,
583 exynos4_mct_dying_cpu);
590 if (mct_int_type == MCT_INT_PPI) {
591 free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
593 for_each_possible_cpu(cpu) {
594 struct mct_clock_event_device *pcpu_mevt =
595 per_cpu_ptr(&percpu_mct_tick, cpu);
597 if (pcpu_mevt->evt.irq != -1) {
598 free_irq(pcpu_mevt->evt.irq, pcpu_mevt);
599 pcpu_mevt->evt.irq = -1;
606 static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
610 ret = exynos4_timer_resources(np);
614 ret = exynos4_timer_interrupts(np, int_type);
618 ret = exynos4_clocksource_init();
622 return exynos4_clockevent_init();
626 static int __init mct_init_spi(struct device_node *np)
628 return mct_init_dt(np, MCT_INT_SPI);
631 static int __init mct_init_ppi(struct device_node *np)
633 return mct_init_dt(np, MCT_INT_PPI);
635 TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
636 TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);