Merge tag 'cleanup-for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / clocksource / exynos_mct.c
1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/platform_device.h>
20 #include <linux/delay.h>
21 #include <linux/percpu.h>
22 #include <linux/of.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/clocksource.h>
26
27 #include <asm/localtimer.h>
28
29 #include <plat/cpu.h>
30
31 #include <mach/map.h>
32 #include <mach/irqs.h>
33 #include <asm/mach/time.h>
34
35 #define EXYNOS4_MCTREG(x)               (x)
36 #define EXYNOS4_MCT_G_CNT_L             EXYNOS4_MCTREG(0x100)
37 #define EXYNOS4_MCT_G_CNT_U             EXYNOS4_MCTREG(0x104)
38 #define EXYNOS4_MCT_G_CNT_WSTAT         EXYNOS4_MCTREG(0x110)
39 #define EXYNOS4_MCT_G_COMP0_L           EXYNOS4_MCTREG(0x200)
40 #define EXYNOS4_MCT_G_COMP0_U           EXYNOS4_MCTREG(0x204)
41 #define EXYNOS4_MCT_G_COMP0_ADD_INCR    EXYNOS4_MCTREG(0x208)
42 #define EXYNOS4_MCT_G_TCON              EXYNOS4_MCTREG(0x240)
43 #define EXYNOS4_MCT_G_INT_CSTAT         EXYNOS4_MCTREG(0x244)
44 #define EXYNOS4_MCT_G_INT_ENB           EXYNOS4_MCTREG(0x248)
45 #define EXYNOS4_MCT_G_WSTAT             EXYNOS4_MCTREG(0x24C)
46 #define _EXYNOS4_MCT_L_BASE             EXYNOS4_MCTREG(0x300)
47 #define EXYNOS4_MCT_L_BASE(x)           (_EXYNOS4_MCT_L_BASE + (0x100 * x))
48 #define EXYNOS4_MCT_L_MASK              (0xffffff00)
49
50 #define MCT_L_TCNTB_OFFSET              (0x00)
51 #define MCT_L_ICNTB_OFFSET              (0x08)
52 #define MCT_L_TCON_OFFSET               (0x20)
53 #define MCT_L_INT_CSTAT_OFFSET          (0x30)
54 #define MCT_L_INT_ENB_OFFSET            (0x34)
55 #define MCT_L_WSTAT_OFFSET              (0x40)
56 #define MCT_G_TCON_START                (1 << 8)
57 #define MCT_G_TCON_COMP0_AUTO_INC       (1 << 1)
58 #define MCT_G_TCON_COMP0_ENABLE         (1 << 0)
59 #define MCT_L_TCON_INTERVAL_MODE        (1 << 2)
60 #define MCT_L_TCON_INT_START            (1 << 1)
61 #define MCT_L_TCON_TIMER_START          (1 << 0)
62
63 #define TICK_BASE_CNT   1
64
65 enum {
66         MCT_INT_SPI,
67         MCT_INT_PPI
68 };
69
70 enum {
71         MCT_G0_IRQ,
72         MCT_G1_IRQ,
73         MCT_G2_IRQ,
74         MCT_G3_IRQ,
75         MCT_L0_IRQ,
76         MCT_L1_IRQ,
77         MCT_L2_IRQ,
78         MCT_L3_IRQ,
79         MCT_NR_IRQS,
80 };
81
82 static void __iomem *reg_base;
83 static unsigned long clk_rate;
84 static unsigned int mct_int_type;
85 static int mct_irqs[MCT_NR_IRQS];
86
87 struct mct_clock_event_device {
88         struct clock_event_device *evt;
89         unsigned long base;
90         char name[10];
91 };
92
93 static void exynos4_mct_write(unsigned int value, unsigned long offset)
94 {
95         unsigned long stat_addr;
96         u32 mask;
97         u32 i;
98
99         __raw_writel(value, reg_base + offset);
100
101         if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
102                 stat_addr = (offset & ~EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
103                 switch (offset & EXYNOS4_MCT_L_MASK) {
104                 case MCT_L_TCON_OFFSET:
105                         mask = 1 << 3;          /* L_TCON write status */
106                         break;
107                 case MCT_L_ICNTB_OFFSET:
108                         mask = 1 << 1;          /* L_ICNTB write status */
109                         break;
110                 case MCT_L_TCNTB_OFFSET:
111                         mask = 1 << 0;          /* L_TCNTB write status */
112                         break;
113                 default:
114                         return;
115                 }
116         } else {
117                 switch (offset) {
118                 case EXYNOS4_MCT_G_TCON:
119                         stat_addr = EXYNOS4_MCT_G_WSTAT;
120                         mask = 1 << 16;         /* G_TCON write status */
121                         break;
122                 case EXYNOS4_MCT_G_COMP0_L:
123                         stat_addr = EXYNOS4_MCT_G_WSTAT;
124                         mask = 1 << 0;          /* G_COMP0_L write status */
125                         break;
126                 case EXYNOS4_MCT_G_COMP0_U:
127                         stat_addr = EXYNOS4_MCT_G_WSTAT;
128                         mask = 1 << 1;          /* G_COMP0_U write status */
129                         break;
130                 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
131                         stat_addr = EXYNOS4_MCT_G_WSTAT;
132                         mask = 1 << 2;          /* G_COMP0_ADD_INCR w status */
133                         break;
134                 case EXYNOS4_MCT_G_CNT_L:
135                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
136                         mask = 1 << 0;          /* G_CNT_L write status */
137                         break;
138                 case EXYNOS4_MCT_G_CNT_U:
139                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
140                         mask = 1 << 1;          /* G_CNT_U write status */
141                         break;
142                 default:
143                         return;
144                 }
145         }
146
147         /* Wait maximum 1 ms until written values are applied */
148         for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
149                 if (__raw_readl(reg_base + stat_addr) & mask) {
150                         __raw_writel(mask, reg_base + stat_addr);
151                         return;
152                 }
153
154         panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
155 }
156
157 /* Clocksource handling */
158 static void exynos4_mct_frc_start(u32 hi, u32 lo)
159 {
160         u32 reg;
161
162         exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
163         exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
164
165         reg = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
166         reg |= MCT_G_TCON_START;
167         exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
168 }
169
170 static cycle_t exynos4_frc_read(struct clocksource *cs)
171 {
172         unsigned int lo, hi;
173         u32 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
174
175         do {
176                 hi = hi2;
177                 lo = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_L);
178                 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
179         } while (hi != hi2);
180
181         return ((cycle_t)hi << 32) | lo;
182 }
183
184 static void exynos4_frc_resume(struct clocksource *cs)
185 {
186         exynos4_mct_frc_start(0, 0);
187 }
188
189 struct clocksource mct_frc = {
190         .name           = "mct-frc",
191         .rating         = 400,
192         .read           = exynos4_frc_read,
193         .mask           = CLOCKSOURCE_MASK(64),
194         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
195         .resume         = exynos4_frc_resume,
196 };
197
198 static void __init exynos4_clocksource_init(void)
199 {
200         exynos4_mct_frc_start(0, 0);
201
202         if (clocksource_register_hz(&mct_frc, clk_rate))
203                 panic("%s: can't register clocksource\n", mct_frc.name);
204 }
205
206 static void exynos4_mct_comp0_stop(void)
207 {
208         unsigned int tcon;
209
210         tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
211         tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
212
213         exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
214         exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
215 }
216
217 static void exynos4_mct_comp0_start(enum clock_event_mode mode,
218                                     unsigned long cycles)
219 {
220         unsigned int tcon;
221         cycle_t comp_cycle;
222
223         tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
224
225         if (mode == CLOCK_EVT_MODE_PERIODIC) {
226                 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
227                 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
228         }
229
230         comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
231         exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
232         exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
233
234         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
235
236         tcon |= MCT_G_TCON_COMP0_ENABLE;
237         exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
238 }
239
240 static int exynos4_comp_set_next_event(unsigned long cycles,
241                                        struct clock_event_device *evt)
242 {
243         exynos4_mct_comp0_start(evt->mode, cycles);
244
245         return 0;
246 }
247
248 static void exynos4_comp_set_mode(enum clock_event_mode mode,
249                                   struct clock_event_device *evt)
250 {
251         unsigned long cycles_per_jiffy;
252         exynos4_mct_comp0_stop();
253
254         switch (mode) {
255         case CLOCK_EVT_MODE_PERIODIC:
256                 cycles_per_jiffy =
257                         (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
258                 exynos4_mct_comp0_start(mode, cycles_per_jiffy);
259                 break;
260
261         case CLOCK_EVT_MODE_ONESHOT:
262         case CLOCK_EVT_MODE_UNUSED:
263         case CLOCK_EVT_MODE_SHUTDOWN:
264         case CLOCK_EVT_MODE_RESUME:
265                 break;
266         }
267 }
268
269 static struct clock_event_device mct_comp_device = {
270         .name           = "mct-comp",
271         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
272         .rating         = 250,
273         .set_next_event = exynos4_comp_set_next_event,
274         .set_mode       = exynos4_comp_set_mode,
275 };
276
277 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
278 {
279         struct clock_event_device *evt = dev_id;
280
281         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
282
283         evt->event_handler(evt);
284
285         return IRQ_HANDLED;
286 }
287
288 static struct irqaction mct_comp_event_irq = {
289         .name           = "mct_comp_irq",
290         .flags          = IRQF_TIMER | IRQF_IRQPOLL,
291         .handler        = exynos4_mct_comp_isr,
292         .dev_id         = &mct_comp_device,
293 };
294
295 static void exynos4_clockevent_init(void)
296 {
297         mct_comp_device.cpumask = cpumask_of(0);
298         clockevents_config_and_register(&mct_comp_device, clk_rate,
299                                         0xf, 0xffffffff);
300         setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
301 }
302
303 #ifdef CONFIG_LOCAL_TIMERS
304
305 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
306
307 /* Clock event handling */
308 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
309 {
310         unsigned long tmp;
311         unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
312         unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
313
314         tmp = __raw_readl(reg_base + offset);
315         if (tmp & mask) {
316                 tmp &= ~mask;
317                 exynos4_mct_write(tmp, offset);
318         }
319 }
320
321 static void exynos4_mct_tick_start(unsigned long cycles,
322                                    struct mct_clock_event_device *mevt)
323 {
324         unsigned long tmp;
325
326         exynos4_mct_tick_stop(mevt);
327
328         tmp = (1 << 31) | cycles;       /* MCT_L_UPDATE_ICNTB */
329
330         /* update interrupt count buffer */
331         exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
332
333         /* enable MCT tick interrupt */
334         exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
335
336         tmp = __raw_readl(reg_base + mevt->base + MCT_L_TCON_OFFSET);
337         tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
338                MCT_L_TCON_INTERVAL_MODE;
339         exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
340 }
341
342 static int exynos4_tick_set_next_event(unsigned long cycles,
343                                        struct clock_event_device *evt)
344 {
345         struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
346
347         exynos4_mct_tick_start(cycles, mevt);
348
349         return 0;
350 }
351
352 static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
353                                          struct clock_event_device *evt)
354 {
355         struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
356         unsigned long cycles_per_jiffy;
357
358         exynos4_mct_tick_stop(mevt);
359
360         switch (mode) {
361         case CLOCK_EVT_MODE_PERIODIC:
362                 cycles_per_jiffy =
363                         (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
364                 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
365                 break;
366
367         case CLOCK_EVT_MODE_ONESHOT:
368         case CLOCK_EVT_MODE_UNUSED:
369         case CLOCK_EVT_MODE_SHUTDOWN:
370         case CLOCK_EVT_MODE_RESUME:
371                 break;
372         }
373 }
374
375 static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
376 {
377         struct clock_event_device *evt = mevt->evt;
378
379         /*
380          * This is for supporting oneshot mode.
381          * Mct would generate interrupt periodically
382          * without explicit stopping.
383          */
384         if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
385                 exynos4_mct_tick_stop(mevt);
386
387         /* Clear the MCT tick interrupt */
388         if (__raw_readl(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
389                 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
390                 return 1;
391         } else {
392                 return 0;
393         }
394 }
395
396 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
397 {
398         struct mct_clock_event_device *mevt = dev_id;
399         struct clock_event_device *evt = mevt->evt;
400
401         exynos4_mct_tick_clear(mevt);
402
403         evt->event_handler(evt);
404
405         return IRQ_HANDLED;
406 }
407
408 static struct irqaction mct_tick0_event_irq = {
409         .name           = "mct_tick0_irq",
410         .flags          = IRQF_TIMER | IRQF_NOBALANCING,
411         .handler        = exynos4_mct_tick_isr,
412 };
413
414 static struct irqaction mct_tick1_event_irq = {
415         .name           = "mct_tick1_irq",
416         .flags          = IRQF_TIMER | IRQF_NOBALANCING,
417         .handler        = exynos4_mct_tick_isr,
418 };
419
420 static int __cpuinit exynos4_local_timer_setup(struct clock_event_device *evt)
421 {
422         struct mct_clock_event_device *mevt;
423         unsigned int cpu = smp_processor_id();
424
425         mevt = this_cpu_ptr(&percpu_mct_tick);
426         mevt->evt = evt;
427
428         mevt->base = EXYNOS4_MCT_L_BASE(cpu);
429         sprintf(mevt->name, "mct_tick%d", cpu);
430
431         evt->name = mevt->name;
432         evt->cpumask = cpumask_of(cpu);
433         evt->set_next_event = exynos4_tick_set_next_event;
434         evt->set_mode = exynos4_tick_set_mode;
435         evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
436         evt->rating = 450;
437         clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
438                                         0xf, 0x7fffffff);
439
440         exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
441
442         if (mct_int_type == MCT_INT_SPI) {
443                 if (cpu == 0) {
444                         mct_tick0_event_irq.dev_id = mevt;
445                         evt->irq = mct_irqs[MCT_L0_IRQ];
446                         setup_irq(evt->irq, &mct_tick0_event_irq);
447                 } else {
448                         mct_tick1_event_irq.dev_id = mevt;
449                         evt->irq = mct_irqs[MCT_L1_IRQ];
450                         setup_irq(evt->irq, &mct_tick1_event_irq);
451                         irq_set_affinity(evt->irq, cpumask_of(1));
452                 }
453         } else {
454                 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
455         }
456
457         return 0;
458 }
459
460 static void exynos4_local_timer_stop(struct clock_event_device *evt)
461 {
462         unsigned int cpu = smp_processor_id();
463         evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
464         if (mct_int_type == MCT_INT_SPI)
465                 if (cpu == 0)
466                         remove_irq(evt->irq, &mct_tick0_event_irq);
467                 else
468                         remove_irq(evt->irq, &mct_tick1_event_irq);
469         else
470                 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
471 }
472
473 static struct local_timer_ops exynos4_mct_tick_ops __cpuinitdata = {
474         .setup  = exynos4_local_timer_setup,
475         .stop   = exynos4_local_timer_stop,
476 };
477 #endif /* CONFIG_LOCAL_TIMERS */
478
479 static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
480 {
481         struct clk *mct_clk, *tick_clk;
482
483         tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
484                                 clk_get(NULL, "fin_pll");
485         if (IS_ERR(tick_clk))
486                 panic("%s: unable to determine tick clock rate\n", __func__);
487         clk_rate = clk_get_rate(tick_clk);
488
489         mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
490         if (IS_ERR(mct_clk))
491                 panic("%s: unable to retrieve mct clock instance\n", __func__);
492         clk_prepare_enable(mct_clk);
493
494         reg_base = base;
495         if (!reg_base)
496                 panic("%s: unable to ioremap mct address space\n", __func__);
497
498 #ifdef CONFIG_LOCAL_TIMERS
499         if (mct_int_type == MCT_INT_PPI) {
500                 int err;
501
502                 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
503                                          exynos4_mct_tick_isr, "MCT",
504                                          &percpu_mct_tick);
505                 WARN(err, "MCT: can't request IRQ %d (%d)\n",
506                      mct_irqs[MCT_L0_IRQ], err);
507         }
508
509         local_timer_register(&exynos4_mct_tick_ops);
510 #endif /* CONFIG_LOCAL_TIMERS */
511 }
512
513 void __init mct_init(void)
514 {
515         if (soc_is_exynos4210()) {
516                 mct_irqs[MCT_G0_IRQ] = EXYNOS4_IRQ_MCT_G0;
517                 mct_irqs[MCT_L0_IRQ] = EXYNOS4_IRQ_MCT_L0;
518                 mct_irqs[MCT_L1_IRQ] = EXYNOS4_IRQ_MCT_L1;
519                 mct_int_type = MCT_INT_SPI;
520         } else {
521                 panic("unable to determine mct controller type\n");
522         }
523
524         exynos4_timer_resources(NULL, S5P_VA_SYSTIMER);
525         exynos4_clocksource_init();
526         exynos4_clockevent_init();
527 }
528
529 static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
530 {
531         u32 nr_irqs, i;
532
533         mct_int_type = int_type;
534
535         /* This driver uses only one global timer interrupt */
536         mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
537
538         /*
539          * Find out the number of local irqs specified. The local
540          * timer irqs are specified after the four global timer
541          * irqs are specified.
542          */
543 #ifdef CONFIG_OF
544         nr_irqs = of_irq_count(np);
545 #else
546         nr_irqs = 0;
547 #endif
548         for (i = MCT_L0_IRQ; i < nr_irqs; i++)
549                 mct_irqs[i] = irq_of_parse_and_map(np, i);
550
551         exynos4_timer_resources(np, of_iomap(np, 0));
552         exynos4_clocksource_init();
553         exynos4_clockevent_init();
554 }
555
556
557 static void __init mct_init_spi(struct device_node *np)
558 {
559         return mct_init_dt(np, MCT_INT_SPI);
560 }
561
562 static void __init mct_init_ppi(struct device_node *np)
563 {
564         return mct_init_dt(np, MCT_INT_PPI);
565 }
566 CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
567 CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);