1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/drivers/clocksource/arm_arch_timer.c
5 * Copyright (C) 2011 ARM Ltd.
9 #define pr_fmt(fmt) "arch_timer: " fmt
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
24 #include <linux/slab.h>
25 #include <linux/sched/clock.h>
26 #include <linux/sched_clock.h>
27 #include <linux/acpi.h>
28 #include <linux/arm-smccc.h>
29 #include <linux/ptp_kvm.h>
31 #include <asm/arch_timer.h>
34 #include <clocksource/arm_arch_timer.h>
37 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
39 #define CNTACR(n) (0x40 + ((n) * 4))
40 #define CNTACR_RPCT BIT(0)
41 #define CNTACR_RVCT BIT(1)
42 #define CNTACR_RFRQ BIT(2)
43 #define CNTACR_RVOFF BIT(3)
44 #define CNTACR_RWVT BIT(4)
45 #define CNTACR_RWPT BIT(5)
47 #define CNTVCT_LO 0x08
48 #define CNTVCT_HI 0x0c
50 #define CNTP_TVAL 0x28
52 #define CNTV_TVAL 0x38
55 static unsigned arch_timers_present __initdata;
57 static void __iomem *arch_counter_base __ro_after_init;
61 struct clock_event_device evt;
64 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
66 static u32 arch_timer_rate __ro_after_init;
67 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
69 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
70 [ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys",
71 [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
72 [ARCH_TIMER_VIRT_PPI] = "virt",
73 [ARCH_TIMER_HYP_PPI] = "hyp-phys",
74 [ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt",
77 static struct clock_event_device __percpu *arch_timer_evt;
79 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
80 static bool arch_timer_c3stop __ro_after_init;
81 static bool arch_timer_mem_use_virtual __ro_after_init;
82 static bool arch_counter_suspend_stop __ro_after_init;
83 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
84 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
86 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
87 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
89 static cpumask_t evtstrm_available = CPU_MASK_NONE;
90 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
92 static int __init early_evtstrm_cfg(char *buf)
94 return strtobool(buf, &evtstrm_enable);
96 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
99 * Architected system timer support.
102 static __always_inline
103 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
104 struct clock_event_device *clk)
106 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
107 struct arch_timer *timer = to_arch_timer(clk);
109 case ARCH_TIMER_REG_CTRL:
110 writel_relaxed(val, timer->base + CNTP_CTL);
112 case ARCH_TIMER_REG_TVAL:
113 writel_relaxed(val, timer->base + CNTP_TVAL);
116 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
117 struct arch_timer *timer = to_arch_timer(clk);
119 case ARCH_TIMER_REG_CTRL:
120 writel_relaxed(val, timer->base + CNTV_CTL);
122 case ARCH_TIMER_REG_TVAL:
123 writel_relaxed(val, timer->base + CNTV_TVAL);
127 arch_timer_reg_write_cp15(access, reg, val);
131 static __always_inline
132 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
133 struct clock_event_device *clk)
137 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
138 struct arch_timer *timer = to_arch_timer(clk);
140 case ARCH_TIMER_REG_CTRL:
141 val = readl_relaxed(timer->base + CNTP_CTL);
143 case ARCH_TIMER_REG_TVAL:
144 val = readl_relaxed(timer->base + CNTP_TVAL);
147 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
148 struct arch_timer *timer = to_arch_timer(clk);
150 case ARCH_TIMER_REG_CTRL:
151 val = readl_relaxed(timer->base + CNTV_CTL);
153 case ARCH_TIMER_REG_TVAL:
154 val = readl_relaxed(timer->base + CNTV_TVAL);
158 val = arch_timer_reg_read_cp15(access, reg);
164 static notrace u64 arch_counter_get_cntpct_stable(void)
166 return __arch_counter_get_cntpct_stable();
169 static notrace u64 arch_counter_get_cntpct(void)
171 return __arch_counter_get_cntpct();
174 static notrace u64 arch_counter_get_cntvct_stable(void)
176 return __arch_counter_get_cntvct_stable();
179 static notrace u64 arch_counter_get_cntvct(void)
181 return __arch_counter_get_cntvct();
185 * Default to cp15 based access because arm64 uses this function for
186 * sched_clock() before DT is probed and the cp15 method is guaranteed
187 * to exist on arm64. arm doesn't use this before DT is probed so even
188 * if we don't have the cp15 accessors we won't have a problem.
190 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
191 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
193 static u64 arch_counter_read(struct clocksource *cs)
195 return arch_timer_read_counter();
198 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
200 return arch_timer_read_counter();
203 static struct clocksource clocksource_counter = {
204 .name = "arch_sys_counter",
205 .id = CSID_ARM_ARCH_COUNTER,
207 .read = arch_counter_read,
208 .mask = CLOCKSOURCE_MASK(56),
209 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
212 static struct cyclecounter cyclecounter __ro_after_init = {
213 .read = arch_counter_read_cc,
214 .mask = CLOCKSOURCE_MASK(56),
217 struct ate_acpi_oem_info {
218 char oem_id[ACPI_OEM_ID_SIZE + 1];
219 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
223 #ifdef CONFIG_FSL_ERRATUM_A008585
225 * The number of retries is an arbitrary value well beyond the highest number
226 * of iterations the loop has been observed to take.
228 #define __fsl_a008585_read_reg(reg) ({ \
230 int _retries = 200; \
233 _old = read_sysreg(reg); \
234 _new = read_sysreg(reg); \
236 } while (unlikely(_old != _new) && _retries); \
238 WARN_ON_ONCE(!_retries); \
242 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
244 return __fsl_a008585_read_reg(cntp_tval_el0);
247 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
249 return __fsl_a008585_read_reg(cntv_tval_el0);
252 static u64 notrace fsl_a008585_read_cntpct_el0(void)
254 return __fsl_a008585_read_reg(cntpct_el0);
257 static u64 notrace fsl_a008585_read_cntvct_el0(void)
259 return __fsl_a008585_read_reg(cntvct_el0);
263 #ifdef CONFIG_HISILICON_ERRATUM_161010101
265 * Verify whether the value of the second read is larger than the first by
266 * less than 32 is the only way to confirm the value is correct, so clear the
267 * lower 5 bits to check whether the difference is greater than 32 or not.
268 * Theoretically the erratum should not occur more than twice in succession
269 * when reading the system counter, but it is possible that some interrupts
270 * may lead to more than twice read errors, triggering the warning, so setting
271 * the number of retries far beyond the number of iterations the loop has been
274 #define __hisi_161010101_read_reg(reg) ({ \
279 _old = read_sysreg(reg); \
280 _new = read_sysreg(reg); \
282 } while (unlikely((_new - _old) >> 5) && _retries); \
284 WARN_ON_ONCE(!_retries); \
288 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
290 return __hisi_161010101_read_reg(cntp_tval_el0);
293 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
295 return __hisi_161010101_read_reg(cntv_tval_el0);
298 static u64 notrace hisi_161010101_read_cntpct_el0(void)
300 return __hisi_161010101_read_reg(cntpct_el0);
303 static u64 notrace hisi_161010101_read_cntvct_el0(void)
305 return __hisi_161010101_read_reg(cntvct_el0);
308 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
310 * Note that trailing spaces are required to properly match
311 * the OEM table information.
315 .oem_table_id = "HIP05 ",
320 .oem_table_id = "HIP06 ",
325 .oem_table_id = "HIP07 ",
328 { /* Sentinel indicating the end of the OEM array */ },
332 #ifdef CONFIG_ARM64_ERRATUM_858921
333 static u64 notrace arm64_858921_read_cntpct_el0(void)
337 old = read_sysreg(cntpct_el0);
338 new = read_sysreg(cntpct_el0);
339 return (((old ^ new) >> 32) & 1) ? old : new;
342 static u64 notrace arm64_858921_read_cntvct_el0(void)
346 old = read_sysreg(cntvct_el0);
347 new = read_sysreg(cntvct_el0);
348 return (((old ^ new) >> 32) & 1) ? old : new;
352 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
354 * The low bits of the counter registers are indeterminate while bit 10 or
355 * greater is rolling over. Since the counter value can jump both backward
356 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
357 * with all ones or all zeros in the low bits. Bound the loop by the maximum
358 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
360 #define __sun50i_a64_read_reg(reg) ({ \
362 int _retries = 150; \
365 _val = read_sysreg(reg); \
367 } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \
369 WARN_ON_ONCE(!_retries); \
373 static u64 notrace sun50i_a64_read_cntpct_el0(void)
375 return __sun50i_a64_read_reg(cntpct_el0);
378 static u64 notrace sun50i_a64_read_cntvct_el0(void)
380 return __sun50i_a64_read_reg(cntvct_el0);
383 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
385 return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
388 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
390 return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
394 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
395 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
396 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
398 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
400 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
401 struct clock_event_device *clk)
406 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
407 ctrl |= ARCH_TIMER_CTRL_ENABLE;
408 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
410 if (access == ARCH_TIMER_PHYS_ACCESS) {
411 cval = evt + arch_counter_get_cntpct_stable();
412 write_sysreg(cval, cntp_cval_el0);
414 cval = evt + arch_counter_get_cntvct_stable();
415 write_sysreg(cval, cntv_cval_el0);
418 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
421 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
422 struct clock_event_device *clk)
424 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
428 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
429 struct clock_event_device *clk)
431 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
435 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
436 #ifdef CONFIG_FSL_ERRATUM_A008585
438 .match_type = ate_match_dt,
439 .id = "fsl,erratum-a008585",
440 .desc = "Freescale erratum a005858",
441 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
442 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
443 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
444 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
445 .set_next_event_phys = erratum_set_next_event_tval_phys,
446 .set_next_event_virt = erratum_set_next_event_tval_virt,
449 #ifdef CONFIG_HISILICON_ERRATUM_161010101
451 .match_type = ate_match_dt,
452 .id = "hisilicon,erratum-161010101",
453 .desc = "HiSilicon erratum 161010101",
454 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
455 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
456 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
457 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
458 .set_next_event_phys = erratum_set_next_event_tval_phys,
459 .set_next_event_virt = erratum_set_next_event_tval_virt,
462 .match_type = ate_match_acpi_oem_info,
463 .id = hisi_161010101_oem_info,
464 .desc = "HiSilicon erratum 161010101",
465 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
466 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
467 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
468 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
469 .set_next_event_phys = erratum_set_next_event_tval_phys,
470 .set_next_event_virt = erratum_set_next_event_tval_virt,
473 #ifdef CONFIG_ARM64_ERRATUM_858921
475 .match_type = ate_match_local_cap_id,
476 .id = (void *)ARM64_WORKAROUND_858921,
477 .desc = "ARM erratum 858921",
478 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
479 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
482 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
484 .match_type = ate_match_dt,
485 .id = "allwinner,erratum-unknown1",
486 .desc = "Allwinner erratum UNKNOWN1",
487 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
488 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
489 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
490 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
491 .set_next_event_phys = erratum_set_next_event_tval_phys,
492 .set_next_event_virt = erratum_set_next_event_tval_virt,
495 #ifdef CONFIG_ARM64_ERRATUM_1418040
497 .match_type = ate_match_local_cap_id,
498 .id = (void *)ARM64_WORKAROUND_1418040,
499 .desc = "ARM erratum 1418040",
500 .disable_compat_vdso = true,
505 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
509 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
512 const struct device_node *np = arg;
514 return of_property_read_bool(np, wa->id);
518 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
521 return this_cpu_has_cap((uintptr_t)wa->id);
526 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
529 static const struct ate_acpi_oem_info empty_oem_info = {};
530 const struct ate_acpi_oem_info *info = wa->id;
531 const struct acpi_table_header *table = arg;
533 /* Iterate over the ACPI OEM info array, looking for a match */
534 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
535 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
536 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
537 info->oem_revision == table->oem_revision)
546 static const struct arch_timer_erratum_workaround *
547 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
548 ate_match_fn_t match_fn,
553 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
554 if (ool_workarounds[i].match_type != type)
557 if (match_fn(&ool_workarounds[i], arg))
558 return &ool_workarounds[i];
565 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
571 __this_cpu_write(timer_unstable_counter_workaround, wa);
573 for_each_possible_cpu(i)
574 per_cpu(timer_unstable_counter_workaround, i) = wa;
577 if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
578 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
581 * Don't use the vdso fastpath if errata require using the
582 * out-of-line counter accessor. We may change our mind pretty
583 * late in the game (with a per-CPU erratum, for example), so
584 * change both the default value and the vdso itself.
586 if (wa->read_cntvct_el0) {
587 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
588 vdso_default = VDSO_CLOCKMODE_NONE;
589 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
590 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
591 clocksource_counter.vdso_clock_mode = vdso_default;
595 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
598 const struct arch_timer_erratum_workaround *wa, *__wa;
599 ate_match_fn_t match_fn = NULL;
604 match_fn = arch_timer_check_dt_erratum;
606 case ate_match_local_cap_id:
607 match_fn = arch_timer_check_local_cap_erratum;
610 case ate_match_acpi_oem_info:
611 match_fn = arch_timer_check_acpi_oem_erratum;
618 wa = arch_timer_iterate_errata(type, match_fn, arg);
622 __wa = __this_cpu_read(timer_unstable_counter_workaround);
623 if (__wa && wa != __wa)
624 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
625 wa->desc, __wa->desc);
630 arch_timer_enable_workaround(wa, local);
631 pr_info("Enabling %s workaround for %s\n",
632 local ? "local" : "global", wa->desc);
635 static bool arch_timer_this_cpu_has_cntvct_wa(void)
637 return has_erratum_handler(read_cntvct_el0);
640 static bool arch_timer_counter_has_wa(void)
642 return atomic_read(&timer_unstable_counter_workaround_in_use);
645 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
646 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
647 #define arch_timer_counter_has_wa() ({false;})
648 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
650 static __always_inline irqreturn_t timer_handler(const int access,
651 struct clock_event_device *evt)
655 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
656 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
657 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
658 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
659 evt->event_handler(evt);
666 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
668 struct clock_event_device *evt = dev_id;
670 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
673 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
675 struct clock_event_device *evt = dev_id;
677 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
680 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
682 struct clock_event_device *evt = dev_id;
684 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
687 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
689 struct clock_event_device *evt = dev_id;
691 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
694 static __always_inline int timer_shutdown(const int access,
695 struct clock_event_device *clk)
699 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
700 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
701 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
706 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
708 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
711 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
713 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
716 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
718 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
721 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
723 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
726 static __always_inline void set_next_event(const int access, unsigned long evt,
727 struct clock_event_device *clk)
730 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
731 ctrl |= ARCH_TIMER_CTRL_ENABLE;
732 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
733 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
734 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
737 static int arch_timer_set_next_event_virt(unsigned long evt,
738 struct clock_event_device *clk)
740 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
744 static int arch_timer_set_next_event_phys(unsigned long evt,
745 struct clock_event_device *clk)
747 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
751 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
752 struct clock_event_device *clk)
754 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
758 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
759 struct clock_event_device *clk)
761 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
765 static void __arch_timer_setup(unsigned type,
766 struct clock_event_device *clk)
768 clk->features = CLOCK_EVT_FEAT_ONESHOT;
770 if (type == ARCH_TIMER_TYPE_CP15) {
771 typeof(clk->set_next_event) sne;
773 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
775 if (arch_timer_c3stop)
776 clk->features |= CLOCK_EVT_FEAT_C3STOP;
777 clk->name = "arch_sys_timer";
779 clk->cpumask = cpumask_of(smp_processor_id());
780 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
781 switch (arch_timer_uses_ppi) {
782 case ARCH_TIMER_VIRT_PPI:
783 clk->set_state_shutdown = arch_timer_shutdown_virt;
784 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
785 sne = erratum_handler(set_next_event_virt);
787 case ARCH_TIMER_PHYS_SECURE_PPI:
788 case ARCH_TIMER_PHYS_NONSECURE_PPI:
789 case ARCH_TIMER_HYP_PPI:
790 clk->set_state_shutdown = arch_timer_shutdown_phys;
791 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
792 sne = erratum_handler(set_next_event_phys);
798 clk->set_next_event = sne;
800 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
801 clk->name = "arch_mem_timer";
803 clk->cpumask = cpu_possible_mask;
804 if (arch_timer_mem_use_virtual) {
805 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
806 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
807 clk->set_next_event =
808 arch_timer_set_next_event_virt_mem;
810 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
811 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
812 clk->set_next_event =
813 arch_timer_set_next_event_phys_mem;
817 clk->set_state_shutdown(clk);
819 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
822 static void arch_timer_evtstrm_enable(int divider)
824 u32 cntkctl = arch_timer_get_cntkctl();
826 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
827 /* Set the divider and enable virtual event stream */
828 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
829 | ARCH_TIMER_VIRT_EVT_EN;
830 arch_timer_set_cntkctl(cntkctl);
831 arch_timer_set_evtstrm_feature();
832 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
835 static void arch_timer_configure_evtstream(void)
837 int evt_stream_div, lsb;
840 * As the event stream can at most be generated at half the frequency
841 * of the counter, use half the frequency when computing the divider.
843 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
846 * Find the closest power of two to the divisor. If the adjacent bit
847 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
849 lsb = fls(evt_stream_div) - 1;
850 if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
853 /* enable event stream */
854 arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
857 static void arch_counter_set_user_access(void)
859 u32 cntkctl = arch_timer_get_cntkctl();
861 /* Disable user access to the timers and both counters */
862 /* Also disable virtual event stream */
863 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
864 | ARCH_TIMER_USR_VT_ACCESS_EN
865 | ARCH_TIMER_USR_VCT_ACCESS_EN
866 | ARCH_TIMER_VIRT_EVT_EN
867 | ARCH_TIMER_USR_PCT_ACCESS_EN);
870 * Enable user access to the virtual counter if it doesn't
871 * need to be workaround. The vdso may have been already
874 if (arch_timer_this_cpu_has_cntvct_wa())
875 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
877 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
879 arch_timer_set_cntkctl(cntkctl);
882 static bool arch_timer_has_nonsecure_ppi(void)
884 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
885 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
888 static u32 check_ppi_trigger(int irq)
890 u32 flags = irq_get_trigger_type(irq);
892 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
893 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
894 pr_warn("WARNING: Please fix your firmware\n");
895 flags = IRQF_TRIGGER_LOW;
901 static int arch_timer_starting_cpu(unsigned int cpu)
903 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
906 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
908 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
909 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
911 if (arch_timer_has_nonsecure_ppi()) {
912 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
913 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
917 arch_counter_set_user_access();
919 arch_timer_configure_evtstream();
924 static int validate_timer_rate(void)
926 if (!arch_timer_rate)
929 /* Arch timer frequency < 1MHz can cause trouble */
930 WARN_ON(arch_timer_rate < 1000000);
936 * For historical reasons, when probing with DT we use whichever (non-zero)
937 * rate was probed first, and don't verify that others match. If the first node
938 * probed has a clock-frequency property, this overrides the HW register.
940 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
942 /* Who has more than one independent system counter? */
946 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
947 arch_timer_rate = rate;
949 /* Check the timer frequency. */
950 if (validate_timer_rate())
951 pr_warn("frequency not available\n");
954 static void __init arch_timer_banner(unsigned type)
956 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
957 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
958 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
960 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
961 (unsigned long)arch_timer_rate / 1000000,
962 (unsigned long)(arch_timer_rate / 10000) % 100,
963 type & ARCH_TIMER_TYPE_CP15 ?
964 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
966 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
967 type & ARCH_TIMER_TYPE_MEM ?
968 arch_timer_mem_use_virtual ? "virt" : "phys" :
972 u32 arch_timer_get_rate(void)
974 return arch_timer_rate;
977 bool arch_timer_evtstrm_available(void)
980 * We might get called from a preemptible context. This is fine
981 * because availability of the event stream should be always the same
982 * for a preemptible context and context where we might resume a task.
984 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
987 static u64 arch_counter_get_cntvct_mem(void)
989 u32 vct_lo, vct_hi, tmp_hi;
992 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
993 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
994 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
995 } while (vct_hi != tmp_hi);
997 return ((u64) vct_hi << 32) | vct_lo;
1000 static struct arch_timer_kvm_info arch_timer_kvm_info;
1002 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1004 return &arch_timer_kvm_info;
1007 static void __init arch_counter_register(unsigned type)
1011 /* Register the CP15 based counter if we have one */
1012 if (type & ARCH_TIMER_TYPE_CP15) {
1015 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1016 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1017 if (arch_timer_counter_has_wa())
1018 rd = arch_counter_get_cntvct_stable;
1020 rd = arch_counter_get_cntvct;
1022 if (arch_timer_counter_has_wa())
1023 rd = arch_counter_get_cntpct_stable;
1025 rd = arch_counter_get_cntpct;
1028 arch_timer_read_counter = rd;
1029 clocksource_counter.vdso_clock_mode = vdso_default;
1031 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1034 if (!arch_counter_suspend_stop)
1035 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1036 start_count = arch_timer_read_counter();
1037 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1038 cyclecounter.mult = clocksource_counter.mult;
1039 cyclecounter.shift = clocksource_counter.shift;
1040 timecounter_init(&arch_timer_kvm_info.timecounter,
1041 &cyclecounter, start_count);
1043 /* 56 bits minimum, so we assume worst case rollover */
1044 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1047 static void arch_timer_stop(struct clock_event_device *clk)
1049 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1051 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1052 if (arch_timer_has_nonsecure_ppi())
1053 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1055 clk->set_state_shutdown(clk);
1058 static int arch_timer_dying_cpu(unsigned int cpu)
1060 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1062 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1064 arch_timer_stop(clk);
1068 #ifdef CONFIG_CPU_PM
1069 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1070 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1071 unsigned long action, void *hcpu)
1073 if (action == CPU_PM_ENTER) {
1074 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1076 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1077 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1078 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1080 if (arch_timer_have_evtstrm_feature())
1081 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1086 static struct notifier_block arch_timer_cpu_pm_notifier = {
1087 .notifier_call = arch_timer_cpu_pm_notify,
1090 static int __init arch_timer_cpu_pm_init(void)
1092 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1095 static void __init arch_timer_cpu_pm_deinit(void)
1097 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1101 static int __init arch_timer_cpu_pm_init(void)
1106 static void __init arch_timer_cpu_pm_deinit(void)
1111 static int __init arch_timer_register(void)
1116 arch_timer_evt = alloc_percpu(struct clock_event_device);
1117 if (!arch_timer_evt) {
1122 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1123 switch (arch_timer_uses_ppi) {
1124 case ARCH_TIMER_VIRT_PPI:
1125 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1126 "arch_timer", arch_timer_evt);
1128 case ARCH_TIMER_PHYS_SECURE_PPI:
1129 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1130 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1131 "arch_timer", arch_timer_evt);
1132 if (!err && arch_timer_has_nonsecure_ppi()) {
1133 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1134 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1135 "arch_timer", arch_timer_evt);
1137 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1141 case ARCH_TIMER_HYP_PPI:
1142 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1143 "arch_timer", arch_timer_evt);
1150 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1154 err = arch_timer_cpu_pm_init();
1156 goto out_unreg_notify;
1158 /* Register and immediately configure the timer on the boot CPU */
1159 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1160 "clockevents/arm/arch_timer:starting",
1161 arch_timer_starting_cpu, arch_timer_dying_cpu);
1163 goto out_unreg_cpupm;
1167 arch_timer_cpu_pm_deinit();
1170 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1171 if (arch_timer_has_nonsecure_ppi())
1172 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1176 free_percpu(arch_timer_evt);
1181 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1185 struct arch_timer *t;
1187 t = kzalloc(sizeof(*t), GFP_KERNEL);
1193 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1195 if (arch_timer_mem_use_virtual)
1196 func = arch_timer_handler_virt_mem;
1198 func = arch_timer_handler_phys_mem;
1200 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1202 pr_err("Failed to request mem timer irq\n");
1209 static const struct of_device_id arch_timer_of_match[] __initconst = {
1210 { .compatible = "arm,armv7-timer", },
1211 { .compatible = "arm,armv8-timer", },
1215 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1216 { .compatible = "arm,armv7-timer-mem", },
1220 static bool __init arch_timer_needs_of_probing(void)
1222 struct device_node *dn;
1223 bool needs_probing = false;
1224 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1226 /* We have two timers, and both device-tree nodes are probed. */
1227 if ((arch_timers_present & mask) == mask)
1231 * Only one type of timer is probed,
1232 * check if we have another type of timer node in device-tree.
1234 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1235 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1237 dn = of_find_matching_node(NULL, arch_timer_of_match);
1239 if (dn && of_device_is_available(dn))
1240 needs_probing = true;
1244 return needs_probing;
1247 static int __init arch_timer_common_init(void)
1249 arch_timer_banner(arch_timers_present);
1250 arch_counter_register(arch_timers_present);
1251 return arch_timer_arch_init();
1255 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1257 * If HYP mode is available, we know that the physical timer
1258 * has been configured to be accessible from PL1. Use it, so
1259 * that a guest can use the virtual timer instead.
1261 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1262 * accesses to CNTP_*_EL1 registers are silently redirected to
1263 * their CNTHP_*_EL2 counterparts, and use a different PPI
1266 * If no interrupt provided for virtual timer, we'll have to
1267 * stick to the physical timer. It'd better be accessible...
1268 * For arm64 we never use the secure interrupt.
1270 * Return: a suitable PPI type for the current system.
1272 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1274 if (is_kernel_in_hyp_mode())
1275 return ARCH_TIMER_HYP_PPI;
1277 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1278 return ARCH_TIMER_VIRT_PPI;
1280 if (IS_ENABLED(CONFIG_ARM64))
1281 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1283 return ARCH_TIMER_PHYS_SECURE_PPI;
1286 static void __init arch_timer_populate_kvm_info(void)
1288 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1289 if (is_kernel_in_hyp_mode())
1290 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1293 static int __init arch_timer_of_init(struct device_node *np)
1299 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1300 pr_warn("multiple nodes in dt, skipping\n");
1304 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1306 has_names = of_property_read_bool(np, "interrupt-names");
1308 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1310 irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1312 irq = of_irq_get(np, i);
1314 arch_timer_ppi[i] = irq;
1317 arch_timer_populate_kvm_info();
1319 rate = arch_timer_get_cntfrq();
1320 arch_timer_of_configure_rate(rate, np);
1322 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1324 /* Check for globally applicable workarounds */
1325 arch_timer_check_ool_workaround(ate_match_dt, np);
1328 * If we cannot rely on firmware initializing the timer registers then
1329 * we should use the physical timers instead.
1331 if (IS_ENABLED(CONFIG_ARM) &&
1332 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1333 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1335 arch_timer_uses_ppi = arch_timer_select_ppi();
1337 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1338 pr_err("No interrupt available, giving up\n");
1342 /* On some systems, the counter stops ticking when in suspend. */
1343 arch_counter_suspend_stop = of_property_read_bool(np,
1344 "arm,no-tick-in-suspend");
1346 ret = arch_timer_register();
1350 if (arch_timer_needs_of_probing())
1353 return arch_timer_common_init();
1355 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1356 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1359 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1364 base = ioremap(frame->cntbase, frame->size);
1366 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1370 rate = readl_relaxed(base + CNTFRQ);
1377 static struct arch_timer_mem_frame * __init
1378 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1380 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1381 void __iomem *cntctlbase;
1385 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1387 pr_err("Can't map CNTCTLBase @ %pa\n",
1388 &timer_mem->cntctlbase);
1392 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1395 * Try to find a virtual capable frame. Otherwise fall back to a
1396 * physical capable frame.
1398 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1399 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1400 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1402 frame = &timer_mem->frame[i];
1406 /* Try enabling everything, and see what sticks */
1407 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1408 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1410 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1411 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1413 arch_timer_mem_use_virtual = true;
1417 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1423 iounmap(cntctlbase);
1429 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1434 if (arch_timer_mem_use_virtual)
1435 irq = frame->virt_irq;
1437 irq = frame->phys_irq;
1440 pr_err("Frame missing %s irq.\n",
1441 arch_timer_mem_use_virtual ? "virt" : "phys");
1445 if (!request_mem_region(frame->cntbase, frame->size,
1449 base = ioremap(frame->cntbase, frame->size);
1451 pr_err("Can't map frame's registers\n");
1455 ret = arch_timer_mem_register(base, irq);
1461 arch_counter_base = base;
1462 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1467 static int __init arch_timer_mem_of_init(struct device_node *np)
1469 struct arch_timer_mem *timer_mem;
1470 struct arch_timer_mem_frame *frame;
1471 struct device_node *frame_node;
1472 struct resource res;
1476 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1480 if (of_address_to_resource(np, 0, &res))
1482 timer_mem->cntctlbase = res.start;
1483 timer_mem->size = resource_size(&res);
1485 for_each_available_child_of_node(np, frame_node) {
1487 struct arch_timer_mem_frame *frame;
1489 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1490 pr_err(FW_BUG "Missing frame-number.\n");
1491 of_node_put(frame_node);
1494 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1495 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1496 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1497 of_node_put(frame_node);
1500 frame = &timer_mem->frame[n];
1503 pr_err(FW_BUG "Duplicated frame-number.\n");
1504 of_node_put(frame_node);
1508 if (of_address_to_resource(frame_node, 0, &res)) {
1509 of_node_put(frame_node);
1512 frame->cntbase = res.start;
1513 frame->size = resource_size(&res);
1515 frame->virt_irq = irq_of_parse_and_map(frame_node,
1516 ARCH_TIMER_VIRT_SPI);
1517 frame->phys_irq = irq_of_parse_and_map(frame_node,
1518 ARCH_TIMER_PHYS_SPI);
1520 frame->valid = true;
1523 frame = arch_timer_mem_find_best_frame(timer_mem);
1525 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1526 &timer_mem->cntctlbase);
1531 rate = arch_timer_mem_frame_get_cntfrq(frame);
1532 arch_timer_of_configure_rate(rate, np);
1534 ret = arch_timer_mem_frame_register(frame);
1535 if (!ret && !arch_timer_needs_of_probing())
1536 ret = arch_timer_common_init();
1541 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1542 arch_timer_mem_of_init);
1544 #ifdef CONFIG_ACPI_GTDT
1546 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1548 struct arch_timer_mem_frame *frame;
1552 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1553 frame = &timer_mem->frame[i];
1558 rate = arch_timer_mem_frame_get_cntfrq(frame);
1559 if (rate == arch_timer_rate)
1562 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1564 (unsigned long)rate, (unsigned long)arch_timer_rate);
1572 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1574 struct arch_timer_mem *timers, *timer;
1575 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1576 int timer_count, i, ret = 0;
1578 timers = kcalloc(platform_timer_count, sizeof(*timers),
1583 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1584 if (ret || !timer_count)
1588 * While unlikely, it's theoretically possible that none of the frames
1589 * in a timer expose the combination of feature we want.
1591 for (i = 0; i < timer_count; i++) {
1594 frame = arch_timer_mem_find_best_frame(timer);
1598 ret = arch_timer_mem_verify_cntfrq(timer);
1600 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1604 if (!best_frame) /* implies !frame */
1606 * Only complain about missing suitable frames if we
1607 * haven't already found one in a previous iteration.
1609 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1610 &timer->cntctlbase);
1614 ret = arch_timer_mem_frame_register(best_frame);
1620 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1621 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1623 int ret, platform_timer_count;
1625 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1626 pr_warn("already initialized, skipping\n");
1630 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1632 ret = acpi_gtdt_init(table, &platform_timer_count);
1636 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1637 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1639 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1640 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1642 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1643 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1645 arch_timer_populate_kvm_info();
1648 * When probing via ACPI, we have no mechanism to override the sysreg
1649 * CNTFRQ value. This *must* be correct.
1651 arch_timer_rate = arch_timer_get_cntfrq();
1652 ret = validate_timer_rate();
1654 pr_err(FW_BUG "frequency not available.\n");
1658 arch_timer_uses_ppi = arch_timer_select_ppi();
1659 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1660 pr_err("No interrupt available, giving up\n");
1664 /* Always-on capability */
1665 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1667 /* Check for globally applicable workarounds */
1668 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1670 ret = arch_timer_register();
1674 if (platform_timer_count &&
1675 arch_timer_mem_acpi_init(platform_timer_count))
1676 pr_err("Failed to initialize memory-mapped timer.\n");
1678 return arch_timer_common_init();
1680 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1683 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1684 struct clocksource **cs)
1686 struct arm_smccc_res hvc_res;
1690 if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1693 if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1694 ptp_counter = KVM_PTP_VIRT_COUNTER;
1696 ptp_counter = KVM_PTP_PHYS_COUNTER;
1698 arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1699 ptp_counter, &hvc_res);
1701 if ((int)(hvc_res.a0) < 0)
1704 ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1705 *ts = ktime_to_timespec64(ktime);
1707 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1709 *cs = &clocksource_counter;
1713 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);