fbd9ccd5e114ccdf1eb2db91499315689f6ed407
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/clockchips.h>
17 #include <linux/interrupt.h>
18 #include <linux/of_irq.h>
19 #include <linux/of_address.h>
20 #include <linux/io.h>
21 #include <linux/slab.h>
22
23 #include <asm/arch_timer.h>
24 #include <asm/virt.h>
25
26 #include <clocksource/arm_arch_timer.h>
27
28 #define CNTTIDR         0x08
29 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
30
31 #define CNTVCT_LO       0x08
32 #define CNTVCT_HI       0x0c
33 #define CNTFRQ          0x10
34 #define CNTP_TVAL       0x28
35 #define CNTP_CTL        0x2c
36 #define CNTV_TVAL       0x38
37 #define CNTV_CTL        0x3c
38
39 #define ARCH_CP15_TIMER BIT(0)
40 #define ARCH_MEM_TIMER  BIT(1)
41 static unsigned arch_timers_present __initdata;
42
43 static void __iomem *arch_counter_base;
44
45 struct arch_timer {
46         void __iomem *base;
47         struct clock_event_device evt;
48 };
49
50 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
51
52 static u32 arch_timer_rate;
53
54 enum ppi_nr {
55         PHYS_SECURE_PPI,
56         PHYS_NONSECURE_PPI,
57         VIRT_PPI,
58         HYP_PPI,
59         MAX_TIMER_PPI
60 };
61
62 static int arch_timer_ppi[MAX_TIMER_PPI];
63
64 static struct clock_event_device __percpu *arch_timer_evt;
65
66 static bool arch_timer_use_virtual = true;
67 static bool arch_timer_mem_use_virtual;
68
69 /*
70  * Architected system timer support.
71  */
72
73 static __always_inline
74 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
75                           struct clock_event_device *clk)
76 {
77         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
78                 struct arch_timer *timer = to_arch_timer(clk);
79                 switch (reg) {
80                 case ARCH_TIMER_REG_CTRL:
81                         writel_relaxed(val, timer->base + CNTP_CTL);
82                         break;
83                 case ARCH_TIMER_REG_TVAL:
84                         writel_relaxed(val, timer->base + CNTP_TVAL);
85                         break;
86                 }
87         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
88                 struct arch_timer *timer = to_arch_timer(clk);
89                 switch (reg) {
90                 case ARCH_TIMER_REG_CTRL:
91                         writel_relaxed(val, timer->base + CNTV_CTL);
92                         break;
93                 case ARCH_TIMER_REG_TVAL:
94                         writel_relaxed(val, timer->base + CNTV_TVAL);
95                         break;
96                 }
97         } else {
98                 arch_timer_reg_write_cp15(access, reg, val);
99         }
100 }
101
102 static __always_inline
103 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
104                         struct clock_event_device *clk)
105 {
106         u32 val;
107
108         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
109                 struct arch_timer *timer = to_arch_timer(clk);
110                 switch (reg) {
111                 case ARCH_TIMER_REG_CTRL:
112                         val = readl_relaxed(timer->base + CNTP_CTL);
113                         break;
114                 case ARCH_TIMER_REG_TVAL:
115                         val = readl_relaxed(timer->base + CNTP_TVAL);
116                         break;
117                 }
118         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
119                 struct arch_timer *timer = to_arch_timer(clk);
120                 switch (reg) {
121                 case ARCH_TIMER_REG_CTRL:
122                         val = readl_relaxed(timer->base + CNTV_CTL);
123                         break;
124                 case ARCH_TIMER_REG_TVAL:
125                         val = readl_relaxed(timer->base + CNTV_TVAL);
126                         break;
127                 }
128         } else {
129                 val = arch_timer_reg_read_cp15(access, reg);
130         }
131
132         return val;
133 }
134
135 static __always_inline irqreturn_t timer_handler(const int access,
136                                         struct clock_event_device *evt)
137 {
138         unsigned long ctrl;
139
140         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
141         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
142                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
143                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
144                 evt->event_handler(evt);
145                 return IRQ_HANDLED;
146         }
147
148         return IRQ_NONE;
149 }
150
151 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
152 {
153         struct clock_event_device *evt = dev_id;
154
155         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
156 }
157
158 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
159 {
160         struct clock_event_device *evt = dev_id;
161
162         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
163 }
164
165 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
166 {
167         struct clock_event_device *evt = dev_id;
168
169         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
170 }
171
172 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
173 {
174         struct clock_event_device *evt = dev_id;
175
176         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
177 }
178
179 static __always_inline void timer_set_mode(const int access, int mode,
180                                   struct clock_event_device *clk)
181 {
182         unsigned long ctrl;
183         switch (mode) {
184         case CLOCK_EVT_MODE_UNUSED:
185         case CLOCK_EVT_MODE_SHUTDOWN:
186                 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
187                 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
188                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
189                 break;
190         default:
191                 break;
192         }
193 }
194
195 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
196                                      struct clock_event_device *clk)
197 {
198         timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
199 }
200
201 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
202                                      struct clock_event_device *clk)
203 {
204         timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
205 }
206
207 static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
208                                          struct clock_event_device *clk)
209 {
210         timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
211 }
212
213 static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
214                                          struct clock_event_device *clk)
215 {
216         timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
217 }
218
219 static __always_inline void set_next_event(const int access, unsigned long evt,
220                                            struct clock_event_device *clk)
221 {
222         unsigned long ctrl;
223         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
224         ctrl |= ARCH_TIMER_CTRL_ENABLE;
225         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
226         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
227         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
228 }
229
230 static int arch_timer_set_next_event_virt(unsigned long evt,
231                                           struct clock_event_device *clk)
232 {
233         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
234         return 0;
235 }
236
237 static int arch_timer_set_next_event_phys(unsigned long evt,
238                                           struct clock_event_device *clk)
239 {
240         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
241         return 0;
242 }
243
244 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
245                                               struct clock_event_device *clk)
246 {
247         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
248         return 0;
249 }
250
251 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
252                                               struct clock_event_device *clk)
253 {
254         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
255         return 0;
256 }
257
258 static void __arch_timer_setup(unsigned type,
259                                struct clock_event_device *clk)
260 {
261         clk->features = CLOCK_EVT_FEAT_ONESHOT;
262
263         if (type == ARCH_CP15_TIMER) {
264                 clk->features |= CLOCK_EVT_FEAT_C3STOP;
265                 clk->name = "arch_sys_timer";
266                 clk->rating = 450;
267                 clk->cpumask = cpumask_of(smp_processor_id());
268                 if (arch_timer_use_virtual) {
269                         clk->irq = arch_timer_ppi[VIRT_PPI];
270                         clk->set_mode = arch_timer_set_mode_virt;
271                         clk->set_next_event = arch_timer_set_next_event_virt;
272                 } else {
273                         clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
274                         clk->set_mode = arch_timer_set_mode_phys;
275                         clk->set_next_event = arch_timer_set_next_event_phys;
276                 }
277         } else {
278                 clk->name = "arch_mem_timer";
279                 clk->rating = 400;
280                 clk->cpumask = cpu_all_mask;
281                 if (arch_timer_mem_use_virtual) {
282                         clk->set_mode = arch_timer_set_mode_virt_mem;
283                         clk->set_next_event =
284                                 arch_timer_set_next_event_virt_mem;
285                 } else {
286                         clk->set_mode = arch_timer_set_mode_phys_mem;
287                         clk->set_next_event =
288                                 arch_timer_set_next_event_phys_mem;
289                 }
290         }
291
292         clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
293
294         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
295 }
296
297 static int arch_timer_setup(struct clock_event_device *clk)
298 {
299         __arch_timer_setup(ARCH_CP15_TIMER, clk);
300
301         if (arch_timer_use_virtual)
302                 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
303         else {
304                 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
305                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
306                         enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
307         }
308
309         arch_counter_set_user_access();
310
311         return 0;
312 }
313
314 static void
315 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
316 {
317         /* Who has more than one independent system counter? */
318         if (arch_timer_rate)
319                 return;
320
321         /* Try to determine the frequency from the device tree or CNTFRQ */
322         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
323                 if (cntbase)
324                         arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
325                 else
326                         arch_timer_rate = arch_timer_get_cntfrq();
327         }
328
329         /* Check the timer frequency. */
330         if (arch_timer_rate == 0)
331                 pr_warn("Architected timer frequency not available\n");
332 }
333
334 static void arch_timer_banner(unsigned type)
335 {
336         pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
337                      type & ARCH_CP15_TIMER ? "cp15" : "",
338                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
339                      type & ARCH_MEM_TIMER ? "mmio" : "",
340                      (unsigned long)arch_timer_rate / 1000000,
341                      (unsigned long)(arch_timer_rate / 10000) % 100,
342                      type & ARCH_CP15_TIMER ?
343                         arch_timer_use_virtual ? "virt" : "phys" :
344                         "",
345                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
346                      type & ARCH_MEM_TIMER ?
347                         arch_timer_mem_use_virtual ? "virt" : "phys" :
348                         "");
349 }
350
351 u32 arch_timer_get_rate(void)
352 {
353         return arch_timer_rate;
354 }
355
356 static u64 arch_counter_get_cntvct_mem(void)
357 {
358         u32 vct_lo, vct_hi, tmp_hi;
359
360         do {
361                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
362                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
363                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
364         } while (vct_hi != tmp_hi);
365
366         return ((u64) vct_hi << 32) | vct_lo;
367 }
368
369 /*
370  * Default to cp15 based access because arm64 uses this function for
371  * sched_clock() before DT is probed and the cp15 method is guaranteed
372  * to exist on arm64. arm doesn't use this before DT is probed so even
373  * if we don't have the cp15 accessors we won't have a problem.
374  */
375 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
376
377 static cycle_t arch_counter_read(struct clocksource *cs)
378 {
379         return arch_timer_read_counter();
380 }
381
382 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
383 {
384         return arch_timer_read_counter();
385 }
386
387 static struct clocksource clocksource_counter = {
388         .name   = "arch_sys_counter",
389         .rating = 400,
390         .read   = arch_counter_read,
391         .mask   = CLOCKSOURCE_MASK(56),
392         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
393 };
394
395 static struct cyclecounter cyclecounter = {
396         .read   = arch_counter_read_cc,
397         .mask   = CLOCKSOURCE_MASK(56),
398 };
399
400 static struct timecounter timecounter;
401
402 struct timecounter *arch_timer_get_timecounter(void)
403 {
404         return &timecounter;
405 }
406
407 static void __init arch_counter_register(unsigned type)
408 {
409         u64 start_count;
410
411         /* Register the CP15 based counter if we have one */
412         if (type & ARCH_CP15_TIMER)
413                 arch_timer_read_counter = arch_counter_get_cntvct;
414         else
415                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
416
417         start_count = arch_timer_read_counter();
418         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
419         cyclecounter.mult = clocksource_counter.mult;
420         cyclecounter.shift = clocksource_counter.shift;
421         timecounter_init(&timecounter, &cyclecounter, start_count);
422 }
423
424 static void arch_timer_stop(struct clock_event_device *clk)
425 {
426         pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
427                  clk->irq, smp_processor_id());
428
429         if (arch_timer_use_virtual)
430                 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
431         else {
432                 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
433                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
434                         disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
435         }
436
437         clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
438 }
439
440 static int arch_timer_cpu_notify(struct notifier_block *self,
441                                            unsigned long action, void *hcpu)
442 {
443         /*
444          * Grab cpu pointer in each case to avoid spurious
445          * preemptible warnings
446          */
447         switch (action & ~CPU_TASKS_FROZEN) {
448         case CPU_STARTING:
449                 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
450                 break;
451         case CPU_DYING:
452                 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
453                 break;
454         }
455
456         return NOTIFY_OK;
457 }
458
459 static struct notifier_block arch_timer_cpu_nb = {
460         .notifier_call = arch_timer_cpu_notify,
461 };
462
463 static int __init arch_timer_register(void)
464 {
465         int err;
466         int ppi;
467
468         arch_timer_evt = alloc_percpu(struct clock_event_device);
469         if (!arch_timer_evt) {
470                 err = -ENOMEM;
471                 goto out;
472         }
473
474         if (arch_timer_use_virtual) {
475                 ppi = arch_timer_ppi[VIRT_PPI];
476                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
477                                          "arch_timer", arch_timer_evt);
478         } else {
479                 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
480                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
481                                          "arch_timer", arch_timer_evt);
482                 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
483                         ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
484                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
485                                                  "arch_timer", arch_timer_evt);
486                         if (err)
487                                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
488                                                 arch_timer_evt);
489                 }
490         }
491
492         if (err) {
493                 pr_err("arch_timer: can't register interrupt %d (%d)\n",
494                        ppi, err);
495                 goto out_free;
496         }
497
498         err = register_cpu_notifier(&arch_timer_cpu_nb);
499         if (err)
500                 goto out_free_irq;
501
502         /* Immediately configure the timer on the boot CPU */
503         arch_timer_setup(this_cpu_ptr(arch_timer_evt));
504
505         return 0;
506
507 out_free_irq:
508         if (arch_timer_use_virtual)
509                 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
510         else {
511                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
512                                 arch_timer_evt);
513                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
514                         free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
515                                         arch_timer_evt);
516         }
517
518 out_free:
519         free_percpu(arch_timer_evt);
520 out:
521         return err;
522 }
523
524 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
525 {
526         int ret;
527         irq_handler_t func;
528         struct arch_timer *t;
529
530         t = kzalloc(sizeof(*t), GFP_KERNEL);
531         if (!t)
532                 return -ENOMEM;
533
534         t->base = base;
535         t->evt.irq = irq;
536         __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
537
538         if (arch_timer_mem_use_virtual)
539                 func = arch_timer_handler_virt_mem;
540         else
541                 func = arch_timer_handler_phys_mem;
542
543         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
544         if (ret) {
545                 pr_err("arch_timer: Failed to request mem timer irq\n");
546                 kfree(t);
547         }
548
549         return ret;
550 }
551
552 static const struct of_device_id arch_timer_of_match[] __initconst = {
553         { .compatible   = "arm,armv7-timer",    },
554         { .compatible   = "arm,armv8-timer",    },
555         {},
556 };
557
558 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
559         { .compatible   = "arm,armv7-timer-mem", },
560         {},
561 };
562
563 static void __init arch_timer_common_init(void)
564 {
565         unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
566
567         /* Wait until both nodes are probed if we have two timers */
568         if ((arch_timers_present & mask) != mask) {
569                 if (of_find_matching_node(NULL, arch_timer_mem_of_match) &&
570                                 !(arch_timers_present & ARCH_MEM_TIMER))
571                         return;
572                 if (of_find_matching_node(NULL, arch_timer_of_match) &&
573                                 !(arch_timers_present & ARCH_CP15_TIMER))
574                         return;
575         }
576
577         arch_timer_banner(arch_timers_present);
578         arch_counter_register(arch_timers_present);
579         arch_timer_arch_init();
580 }
581
582 static void __init arch_timer_init(struct device_node *np)
583 {
584         int i;
585
586         if (arch_timers_present & ARCH_CP15_TIMER) {
587                 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
588                 return;
589         }
590
591         arch_timers_present |= ARCH_CP15_TIMER;
592         for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
593                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
594         arch_timer_detect_rate(NULL, np);
595
596         /*
597          * If HYP mode is available, we know that the physical timer
598          * has been configured to be accessible from PL1. Use it, so
599          * that a guest can use the virtual timer instead.
600          *
601          * If no interrupt provided for virtual timer, we'll have to
602          * stick to the physical timer. It'd better be accessible...
603          */
604         if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
605                 arch_timer_use_virtual = false;
606
607                 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
608                     !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
609                         pr_warn("arch_timer: No interrupt available, giving up\n");
610                         return;
611                 }
612         }
613
614         arch_timer_register();
615         arch_timer_common_init();
616 }
617 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
618 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);
619
620 static void __init arch_timer_mem_init(struct device_node *np)
621 {
622         struct device_node *frame, *best_frame = NULL;
623         void __iomem *cntctlbase, *base;
624         unsigned int irq;
625         u32 cnttidr;
626
627         arch_timers_present |= ARCH_MEM_TIMER;
628         cntctlbase = of_iomap(np, 0);
629         if (!cntctlbase) {
630                 pr_err("arch_timer: Can't find CNTCTLBase\n");
631                 return;
632         }
633
634         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
635         iounmap(cntctlbase);
636
637         /*
638          * Try to find a virtual capable frame. Otherwise fall back to a
639          * physical capable frame.
640          */
641         for_each_available_child_of_node(np, frame) {
642                 int n;
643
644                 if (of_property_read_u32(frame, "frame-number", &n)) {
645                         pr_err("arch_timer: Missing frame-number\n");
646                         of_node_put(best_frame);
647                         of_node_put(frame);
648                         return;
649                 }
650
651                 if (cnttidr & CNTTIDR_VIRT(n)) {
652                         of_node_put(best_frame);
653                         best_frame = frame;
654                         arch_timer_mem_use_virtual = true;
655                         break;
656                 }
657                 of_node_put(best_frame);
658                 best_frame = of_node_get(frame);
659         }
660
661         base = arch_counter_base = of_iomap(best_frame, 0);
662         if (!base) {
663                 pr_err("arch_timer: Can't map frame's registers\n");
664                 of_node_put(best_frame);
665                 return;
666         }
667
668         if (arch_timer_mem_use_virtual)
669                 irq = irq_of_parse_and_map(best_frame, 1);
670         else
671                 irq = irq_of_parse_and_map(best_frame, 0);
672         of_node_put(best_frame);
673         if (!irq) {
674                 pr_err("arch_timer: Frame missing %s irq",
675                        arch_timer_mem_use_virtual ? "virt" : "phys");
676                 return;
677         }
678
679         arch_timer_detect_rate(base, np);
680         arch_timer_mem_register(base, irq);
681         arch_timer_common_init();
682 }
683 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
684                        arch_timer_mem_init);