drm/amd/display: Fix build breakage with CONFIG_DEBUG_FS=n
[platform/kernel/linux-starfive.git] / drivers / clocksource / arm_arch_timer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8
9 #define pr_fmt(fmt)     "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/sched/clock.h>
26 #include <linux/sched_clock.h>
27 #include <linux/acpi.h>
28 #include <linux/arm-smccc.h>
29 #include <linux/ptp_kvm.h>
30
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33
34 #include <clocksource/arm_arch_timer.h>
35
36 #define CNTTIDR         0x08
37 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
38
39 #define CNTACR(n)       (0x40 + ((n) * 4))
40 #define CNTACR_RPCT     BIT(0)
41 #define CNTACR_RVCT     BIT(1)
42 #define CNTACR_RFRQ     BIT(2)
43 #define CNTACR_RVOFF    BIT(3)
44 #define CNTACR_RWVT     BIT(4)
45 #define CNTACR_RWPT     BIT(5)
46
47 #define CNTPCT_LO       0x00
48 #define CNTVCT_LO       0x08
49 #define CNTFRQ          0x10
50 #define CNTP_CVAL_LO    0x20
51 #define CNTP_CTL        0x2c
52 #define CNTV_CVAL_LO    0x30
53 #define CNTV_CTL        0x3c
54
55 /*
56  * The minimum amount of time a generic counter is guaranteed to not roll over
57  * (40 years)
58  */
59 #define MIN_ROLLOVER_SECS       (40ULL * 365 * 24 * 3600)
60
61 static unsigned arch_timers_present __initdata;
62
63 struct arch_timer {
64         void __iomem *base;
65         struct clock_event_device evt;
66 };
67
68 static struct arch_timer *arch_timer_mem __ro_after_init;
69
70 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
71
72 static u32 arch_timer_rate __ro_after_init;
73 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
74
75 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
76         [ARCH_TIMER_PHYS_SECURE_PPI]    = "sec-phys",
77         [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
78         [ARCH_TIMER_VIRT_PPI]           = "virt",
79         [ARCH_TIMER_HYP_PPI]            = "hyp-phys",
80         [ARCH_TIMER_HYP_VIRT_PPI]       = "hyp-virt",
81 };
82
83 static struct clock_event_device __percpu *arch_timer_evt;
84
85 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
86 static bool arch_timer_c3stop __ro_after_init;
87 static bool arch_timer_mem_use_virtual __ro_after_init;
88 static bool arch_counter_suspend_stop __ro_after_init;
89 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
90 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
91 #else
92 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
93 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
94
95 static cpumask_t evtstrm_available = CPU_MASK_NONE;
96 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
97
98 static int __init early_evtstrm_cfg(char *buf)
99 {
100         return strtobool(buf, &evtstrm_enable);
101 }
102 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
103
104 /*
105  * Makes an educated guess at a valid counter width based on the Generic Timer
106  * specification. Of note:
107  *   1) the system counter is at least 56 bits wide
108  *   2) a roll-over time of not less than 40 years
109  *
110  * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
111  */
112 static int arch_counter_get_width(void)
113 {
114         u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
115
116         /* guarantee the returned width is within the valid range */
117         return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
118 }
119
120 /*
121  * Architected system timer support.
122  */
123
124 static __always_inline
125 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val,
126                           struct clock_event_device *clk)
127 {
128         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
129                 struct arch_timer *timer = to_arch_timer(clk);
130                 switch (reg) {
131                 case ARCH_TIMER_REG_CTRL:
132                         writel_relaxed((u32)val, timer->base + CNTP_CTL);
133                         break;
134                 case ARCH_TIMER_REG_CVAL:
135                         /*
136                          * Not guaranteed to be atomic, so the timer
137                          * must be disabled at this point.
138                          */
139                         writeq_relaxed(val, timer->base + CNTP_CVAL_LO);
140                         break;
141                 default:
142                         BUILD_BUG();
143                 }
144         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
145                 struct arch_timer *timer = to_arch_timer(clk);
146                 switch (reg) {
147                 case ARCH_TIMER_REG_CTRL:
148                         writel_relaxed((u32)val, timer->base + CNTV_CTL);
149                         break;
150                 case ARCH_TIMER_REG_CVAL:
151                         /* Same restriction as above */
152                         writeq_relaxed(val, timer->base + CNTV_CVAL_LO);
153                         break;
154                 default:
155                         BUILD_BUG();
156                 }
157         } else {
158                 arch_timer_reg_write_cp15(access, reg, val);
159         }
160 }
161
162 static __always_inline
163 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
164                         struct clock_event_device *clk)
165 {
166         u32 val;
167
168         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
169                 struct arch_timer *timer = to_arch_timer(clk);
170                 switch (reg) {
171                 case ARCH_TIMER_REG_CTRL:
172                         val = readl_relaxed(timer->base + CNTP_CTL);
173                         break;
174                 default:
175                         BUILD_BUG();
176                 }
177         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
178                 struct arch_timer *timer = to_arch_timer(clk);
179                 switch (reg) {
180                 case ARCH_TIMER_REG_CTRL:
181                         val = readl_relaxed(timer->base + CNTV_CTL);
182                         break;
183                 default:
184                         BUILD_BUG();
185                 }
186         } else {
187                 val = arch_timer_reg_read_cp15(access, reg);
188         }
189
190         return val;
191 }
192
193 static notrace u64 arch_counter_get_cntpct_stable(void)
194 {
195         return __arch_counter_get_cntpct_stable();
196 }
197
198 static notrace u64 arch_counter_get_cntpct(void)
199 {
200         return __arch_counter_get_cntpct();
201 }
202
203 static notrace u64 arch_counter_get_cntvct_stable(void)
204 {
205         return __arch_counter_get_cntvct_stable();
206 }
207
208 static notrace u64 arch_counter_get_cntvct(void)
209 {
210         return __arch_counter_get_cntvct();
211 }
212
213 /*
214  * Default to cp15 based access because arm64 uses this function for
215  * sched_clock() before DT is probed and the cp15 method is guaranteed
216  * to exist on arm64. arm doesn't use this before DT is probed so even
217  * if we don't have the cp15 accessors we won't have a problem.
218  */
219 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
220 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
221
222 static u64 arch_counter_read(struct clocksource *cs)
223 {
224         return arch_timer_read_counter();
225 }
226
227 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
228 {
229         return arch_timer_read_counter();
230 }
231
232 static struct clocksource clocksource_counter = {
233         .name   = "arch_sys_counter",
234         .id     = CSID_ARM_ARCH_COUNTER,
235         .rating = 400,
236         .read   = arch_counter_read,
237         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
238 };
239
240 static struct cyclecounter cyclecounter __ro_after_init = {
241         .read   = arch_counter_read_cc,
242 };
243
244 struct ate_acpi_oem_info {
245         char oem_id[ACPI_OEM_ID_SIZE + 1];
246         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
247         u32 oem_revision;
248 };
249
250 #ifdef CONFIG_FSL_ERRATUM_A008585
251 /*
252  * The number of retries is an arbitrary value well beyond the highest number
253  * of iterations the loop has been observed to take.
254  */
255 #define __fsl_a008585_read_reg(reg) ({                  \
256         u64 _old, _new;                                 \
257         int _retries = 200;                             \
258                                                         \
259         do {                                            \
260                 _old = read_sysreg(reg);                \
261                 _new = read_sysreg(reg);                \
262                 _retries--;                             \
263         } while (unlikely(_old != _new) && _retries);   \
264                                                         \
265         WARN_ON_ONCE(!_retries);                        \
266         _new;                                           \
267 })
268
269 static u64 notrace fsl_a008585_read_cntpct_el0(void)
270 {
271         return __fsl_a008585_read_reg(cntpct_el0);
272 }
273
274 static u64 notrace fsl_a008585_read_cntvct_el0(void)
275 {
276         return __fsl_a008585_read_reg(cntvct_el0);
277 }
278 #endif
279
280 #ifdef CONFIG_HISILICON_ERRATUM_161010101
281 /*
282  * Verify whether the value of the second read is larger than the first by
283  * less than 32 is the only way to confirm the value is correct, so clear the
284  * lower 5 bits to check whether the difference is greater than 32 or not.
285  * Theoretically the erratum should not occur more than twice in succession
286  * when reading the system counter, but it is possible that some interrupts
287  * may lead to more than twice read errors, triggering the warning, so setting
288  * the number of retries far beyond the number of iterations the loop has been
289  * observed to take.
290  */
291 #define __hisi_161010101_read_reg(reg) ({                               \
292         u64 _old, _new;                                         \
293         int _retries = 50;                                      \
294                                                                 \
295         do {                                                    \
296                 _old = read_sysreg(reg);                        \
297                 _new = read_sysreg(reg);                        \
298                 _retries--;                                     \
299         } while (unlikely((_new - _old) >> 5) && _retries);     \
300                                                                 \
301         WARN_ON_ONCE(!_retries);                                \
302         _new;                                                   \
303 })
304
305 static u64 notrace hisi_161010101_read_cntpct_el0(void)
306 {
307         return __hisi_161010101_read_reg(cntpct_el0);
308 }
309
310 static u64 notrace hisi_161010101_read_cntvct_el0(void)
311 {
312         return __hisi_161010101_read_reg(cntvct_el0);
313 }
314
315 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
316         /*
317          * Note that trailing spaces are required to properly match
318          * the OEM table information.
319          */
320         {
321                 .oem_id         = "HISI  ",
322                 .oem_table_id   = "HIP05   ",
323                 .oem_revision   = 0,
324         },
325         {
326                 .oem_id         = "HISI  ",
327                 .oem_table_id   = "HIP06   ",
328                 .oem_revision   = 0,
329         },
330         {
331                 .oem_id         = "HISI  ",
332                 .oem_table_id   = "HIP07   ",
333                 .oem_revision   = 0,
334         },
335         { /* Sentinel indicating the end of the OEM array */ },
336 };
337 #endif
338
339 #ifdef CONFIG_ARM64_ERRATUM_858921
340 static u64 notrace arm64_858921_read_cntpct_el0(void)
341 {
342         u64 old, new;
343
344         old = read_sysreg(cntpct_el0);
345         new = read_sysreg(cntpct_el0);
346         return (((old ^ new) >> 32) & 1) ? old : new;
347 }
348
349 static u64 notrace arm64_858921_read_cntvct_el0(void)
350 {
351         u64 old, new;
352
353         old = read_sysreg(cntvct_el0);
354         new = read_sysreg(cntvct_el0);
355         return (((old ^ new) >> 32) & 1) ? old : new;
356 }
357 #endif
358
359 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
360 /*
361  * The low bits of the counter registers are indeterminate while bit 10 or
362  * greater is rolling over. Since the counter value can jump both backward
363  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
364  * with all ones or all zeros in the low bits. Bound the loop by the maximum
365  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
366  */
367 #define __sun50i_a64_read_reg(reg) ({                                   \
368         u64 _val;                                                       \
369         int _retries = 150;                                             \
370                                                                         \
371         do {                                                            \
372                 _val = read_sysreg(reg);                                \
373                 _retries--;                                             \
374         } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries);        \
375                                                                         \
376         WARN_ON_ONCE(!_retries);                                        \
377         _val;                                                           \
378 })
379
380 static u64 notrace sun50i_a64_read_cntpct_el0(void)
381 {
382         return __sun50i_a64_read_reg(cntpct_el0);
383 }
384
385 static u64 notrace sun50i_a64_read_cntvct_el0(void)
386 {
387         return __sun50i_a64_read_reg(cntvct_el0);
388 }
389 #endif
390
391 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
392 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
393 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
394
395 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
396
397 /*
398  * Force the inlining of this function so that the register accesses
399  * can be themselves correctly inlined.
400  */
401 static __always_inline
402 void erratum_set_next_event_generic(const int access, unsigned long evt,
403                                     struct clock_event_device *clk)
404 {
405         unsigned long ctrl;
406         u64 cval;
407
408         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
409         ctrl |= ARCH_TIMER_CTRL_ENABLE;
410         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
411
412         if (access == ARCH_TIMER_PHYS_ACCESS) {
413                 cval = evt + arch_counter_get_cntpct_stable();
414                 write_sysreg(cval, cntp_cval_el0);
415         } else {
416                 cval = evt + arch_counter_get_cntvct_stable();
417                 write_sysreg(cval, cntv_cval_el0);
418         }
419
420         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
421 }
422
423 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
424                                             struct clock_event_device *clk)
425 {
426         erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
427         return 0;
428 }
429
430 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
431                                             struct clock_event_device *clk)
432 {
433         erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
434         return 0;
435 }
436
437 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
438 #ifdef CONFIG_FSL_ERRATUM_A008585
439         {
440                 .match_type = ate_match_dt,
441                 .id = "fsl,erratum-a008585",
442                 .desc = "Freescale erratum a005858",
443                 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
444                 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
445                 .set_next_event_phys = erratum_set_next_event_phys,
446                 .set_next_event_virt = erratum_set_next_event_virt,
447         },
448 #endif
449 #ifdef CONFIG_HISILICON_ERRATUM_161010101
450         {
451                 .match_type = ate_match_dt,
452                 .id = "hisilicon,erratum-161010101",
453                 .desc = "HiSilicon erratum 161010101",
454                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
455                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
456                 .set_next_event_phys = erratum_set_next_event_phys,
457                 .set_next_event_virt = erratum_set_next_event_virt,
458         },
459         {
460                 .match_type = ate_match_acpi_oem_info,
461                 .id = hisi_161010101_oem_info,
462                 .desc = "HiSilicon erratum 161010101",
463                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
464                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
465                 .set_next_event_phys = erratum_set_next_event_phys,
466                 .set_next_event_virt = erratum_set_next_event_virt,
467         },
468 #endif
469 #ifdef CONFIG_ARM64_ERRATUM_858921
470         {
471                 .match_type = ate_match_local_cap_id,
472                 .id = (void *)ARM64_WORKAROUND_858921,
473                 .desc = "ARM erratum 858921",
474                 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
475                 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
476                 .set_next_event_phys = erratum_set_next_event_phys,
477                 .set_next_event_virt = erratum_set_next_event_virt,
478         },
479 #endif
480 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
481         {
482                 .match_type = ate_match_dt,
483                 .id = "allwinner,erratum-unknown1",
484                 .desc = "Allwinner erratum UNKNOWN1",
485                 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
486                 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
487                 .set_next_event_phys = erratum_set_next_event_phys,
488                 .set_next_event_virt = erratum_set_next_event_virt,
489         },
490 #endif
491 #ifdef CONFIG_ARM64_ERRATUM_1418040
492         {
493                 .match_type = ate_match_local_cap_id,
494                 .id = (void *)ARM64_WORKAROUND_1418040,
495                 .desc = "ARM erratum 1418040",
496                 .disable_compat_vdso = true,
497         },
498 #endif
499 };
500
501 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
502                                const void *);
503
504 static
505 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
506                                  const void *arg)
507 {
508         const struct device_node *np = arg;
509
510         return of_property_read_bool(np, wa->id);
511 }
512
513 static
514 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
515                                         const void *arg)
516 {
517         return this_cpu_has_cap((uintptr_t)wa->id);
518 }
519
520
521 static
522 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
523                                        const void *arg)
524 {
525         static const struct ate_acpi_oem_info empty_oem_info = {};
526         const struct ate_acpi_oem_info *info = wa->id;
527         const struct acpi_table_header *table = arg;
528
529         /* Iterate over the ACPI OEM info array, looking for a match */
530         while (memcmp(info, &empty_oem_info, sizeof(*info))) {
531                 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
532                     !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
533                     info->oem_revision == table->oem_revision)
534                         return true;
535
536                 info++;
537         }
538
539         return false;
540 }
541
542 static const struct arch_timer_erratum_workaround *
543 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
544                           ate_match_fn_t match_fn,
545                           void *arg)
546 {
547         int i;
548
549         for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
550                 if (ool_workarounds[i].match_type != type)
551                         continue;
552
553                 if (match_fn(&ool_workarounds[i], arg))
554                         return &ool_workarounds[i];
555         }
556
557         return NULL;
558 }
559
560 static
561 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
562                                   bool local)
563 {
564         int i;
565
566         if (local) {
567                 __this_cpu_write(timer_unstable_counter_workaround, wa);
568         } else {
569                 for_each_possible_cpu(i)
570                         per_cpu(timer_unstable_counter_workaround, i) = wa;
571         }
572
573         if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
574                 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
575
576         /*
577          * Don't use the vdso fastpath if errata require using the
578          * out-of-line counter accessor. We may change our mind pretty
579          * late in the game (with a per-CPU erratum, for example), so
580          * change both the default value and the vdso itself.
581          */
582         if (wa->read_cntvct_el0) {
583                 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
584                 vdso_default = VDSO_CLOCKMODE_NONE;
585         } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
586                 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
587                 clocksource_counter.vdso_clock_mode = vdso_default;
588         }
589 }
590
591 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
592                                             void *arg)
593 {
594         const struct arch_timer_erratum_workaround *wa, *__wa;
595         ate_match_fn_t match_fn = NULL;
596         bool local = false;
597
598         switch (type) {
599         case ate_match_dt:
600                 match_fn = arch_timer_check_dt_erratum;
601                 break;
602         case ate_match_local_cap_id:
603                 match_fn = arch_timer_check_local_cap_erratum;
604                 local = true;
605                 break;
606         case ate_match_acpi_oem_info:
607                 match_fn = arch_timer_check_acpi_oem_erratum;
608                 break;
609         default:
610                 WARN_ON(1);
611                 return;
612         }
613
614         wa = arch_timer_iterate_errata(type, match_fn, arg);
615         if (!wa)
616                 return;
617
618         __wa = __this_cpu_read(timer_unstable_counter_workaround);
619         if (__wa && wa != __wa)
620                 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
621                         wa->desc, __wa->desc);
622
623         if (__wa)
624                 return;
625
626         arch_timer_enable_workaround(wa, local);
627         pr_info("Enabling %s workaround for %s\n",
628                 local ? "local" : "global", wa->desc);
629 }
630
631 static bool arch_timer_this_cpu_has_cntvct_wa(void)
632 {
633         return has_erratum_handler(read_cntvct_el0);
634 }
635
636 static bool arch_timer_counter_has_wa(void)
637 {
638         return atomic_read(&timer_unstable_counter_workaround_in_use);
639 }
640 #else
641 #define arch_timer_check_ool_workaround(t,a)            do { } while(0)
642 #define arch_timer_this_cpu_has_cntvct_wa()             ({false;})
643 #define arch_timer_counter_has_wa()                     ({false;})
644 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
645
646 static __always_inline irqreturn_t timer_handler(const int access,
647                                         struct clock_event_device *evt)
648 {
649         unsigned long ctrl;
650
651         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
652         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
653                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
654                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
655                 evt->event_handler(evt);
656                 return IRQ_HANDLED;
657         }
658
659         return IRQ_NONE;
660 }
661
662 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
663 {
664         struct clock_event_device *evt = dev_id;
665
666         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
667 }
668
669 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
670 {
671         struct clock_event_device *evt = dev_id;
672
673         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
674 }
675
676 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
677 {
678         struct clock_event_device *evt = dev_id;
679
680         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
681 }
682
683 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
684 {
685         struct clock_event_device *evt = dev_id;
686
687         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
688 }
689
690 static __always_inline int timer_shutdown(const int access,
691                                           struct clock_event_device *clk)
692 {
693         unsigned long ctrl;
694
695         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
696         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
697         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
698
699         return 0;
700 }
701
702 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
703 {
704         return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
705 }
706
707 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
708 {
709         return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
710 }
711
712 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
713 {
714         return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
715 }
716
717 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
718 {
719         return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
720 }
721
722 static __always_inline void set_next_event(const int access, unsigned long evt,
723                                            struct clock_event_device *clk)
724 {
725         unsigned long ctrl;
726         u64 cnt;
727
728         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
729         ctrl |= ARCH_TIMER_CTRL_ENABLE;
730         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
731
732         if (access == ARCH_TIMER_PHYS_ACCESS)
733                 cnt = __arch_counter_get_cntpct();
734         else
735                 cnt = __arch_counter_get_cntvct();
736
737         arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
738         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
739 }
740
741 static int arch_timer_set_next_event_virt(unsigned long evt,
742                                           struct clock_event_device *clk)
743 {
744         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
745         return 0;
746 }
747
748 static int arch_timer_set_next_event_phys(unsigned long evt,
749                                           struct clock_event_device *clk)
750 {
751         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
752         return 0;
753 }
754
755 static u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo)
756 {
757         u32 cnt_lo, cnt_hi, tmp_hi;
758
759         do {
760                 cnt_hi = readl_relaxed(t->base + offset_lo + 4);
761                 cnt_lo = readl_relaxed(t->base + offset_lo);
762                 tmp_hi = readl_relaxed(t->base + offset_lo + 4);
763         } while (cnt_hi != tmp_hi);
764
765         return ((u64) cnt_hi << 32) | cnt_lo;
766 }
767
768 static __always_inline void set_next_event_mem(const int access, unsigned long evt,
769                                            struct clock_event_device *clk)
770 {
771         struct arch_timer *timer = to_arch_timer(clk);
772         unsigned long ctrl;
773         u64 cnt;
774
775         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
776         ctrl |= ARCH_TIMER_CTRL_ENABLE;
777         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
778
779         if (access ==  ARCH_TIMER_MEM_VIRT_ACCESS)
780                 cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO);
781         else
782                 cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO);
783
784         arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
785         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
786 }
787
788 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
789                                               struct clock_event_device *clk)
790 {
791         set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
792         return 0;
793 }
794
795 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
796                                               struct clock_event_device *clk)
797 {
798         set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
799         return 0;
800 }
801
802 static u64 __arch_timer_check_delta(void)
803 {
804 #ifdef CONFIG_ARM64
805         const struct midr_range broken_cval_midrs[] = {
806                 /*
807                  * XGene-1 implements CVAL in terms of TVAL, meaning
808                  * that the maximum timer range is 32bit. Shame on them.
809                  */
810                 MIDR_ALL_VERSIONS(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
811                                                  APM_CPU_PART_POTENZA)),
812                 {},
813         };
814
815         if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) {
816                 pr_warn_once("Broken CNTx_CVAL_EL1, limiting width to 32bits");
817                 return CLOCKSOURCE_MASK(32);
818         }
819 #endif
820         return CLOCKSOURCE_MASK(arch_counter_get_width());
821 }
822
823 static void __arch_timer_setup(unsigned type,
824                                struct clock_event_device *clk)
825 {
826         u64 max_delta;
827
828         clk->features = CLOCK_EVT_FEAT_ONESHOT;
829
830         if (type == ARCH_TIMER_TYPE_CP15) {
831                 typeof(clk->set_next_event) sne;
832
833                 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
834
835                 if (arch_timer_c3stop)
836                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
837                 clk->name = "arch_sys_timer";
838                 clk->rating = 450;
839                 clk->cpumask = cpumask_of(smp_processor_id());
840                 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
841                 switch (arch_timer_uses_ppi) {
842                 case ARCH_TIMER_VIRT_PPI:
843                         clk->set_state_shutdown = arch_timer_shutdown_virt;
844                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
845                         sne = erratum_handler(set_next_event_virt);
846                         break;
847                 case ARCH_TIMER_PHYS_SECURE_PPI:
848                 case ARCH_TIMER_PHYS_NONSECURE_PPI:
849                 case ARCH_TIMER_HYP_PPI:
850                         clk->set_state_shutdown = arch_timer_shutdown_phys;
851                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
852                         sne = erratum_handler(set_next_event_phys);
853                         break;
854                 default:
855                         BUG();
856                 }
857
858                 clk->set_next_event = sne;
859                 max_delta = __arch_timer_check_delta();
860         } else {
861                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
862                 clk->name = "arch_mem_timer";
863                 clk->rating = 400;
864                 clk->cpumask = cpu_possible_mask;
865                 if (arch_timer_mem_use_virtual) {
866                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
867                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
868                         clk->set_next_event =
869                                 arch_timer_set_next_event_virt_mem;
870                 } else {
871                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
872                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
873                         clk->set_next_event =
874                                 arch_timer_set_next_event_phys_mem;
875                 }
876
877                 max_delta = CLOCKSOURCE_MASK(56);
878         }
879
880         clk->set_state_shutdown(clk);
881
882         clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
883 }
884
885 static void arch_timer_evtstrm_enable(unsigned int divider)
886 {
887         u32 cntkctl = arch_timer_get_cntkctl();
888
889 #ifdef CONFIG_ARM64
890         /* ECV is likely to require a large divider. Use the EVNTIS flag. */
891         if (cpus_have_const_cap(ARM64_HAS_ECV) && divider > 15) {
892                 cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE;
893                 divider -= 8;
894         }
895 #endif
896
897         divider = min(divider, 15U);
898         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
899         /* Set the divider and enable virtual event stream */
900         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
901                         | ARCH_TIMER_VIRT_EVT_EN;
902         arch_timer_set_cntkctl(cntkctl);
903         arch_timer_set_evtstrm_feature();
904         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
905 }
906
907 static void arch_timer_configure_evtstream(void)
908 {
909         int evt_stream_div, lsb;
910
911         /*
912          * As the event stream can at most be generated at half the frequency
913          * of the counter, use half the frequency when computing the divider.
914          */
915         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
916
917         /*
918          * Find the closest power of two to the divisor. If the adjacent bit
919          * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
920          */
921         lsb = fls(evt_stream_div) - 1;
922         if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
923                 lsb++;
924
925         /* enable event stream */
926         arch_timer_evtstrm_enable(max(0, lsb));
927 }
928
929 static void arch_counter_set_user_access(void)
930 {
931         u32 cntkctl = arch_timer_get_cntkctl();
932
933         /* Disable user access to the timers and both counters */
934         /* Also disable virtual event stream */
935         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
936                         | ARCH_TIMER_USR_VT_ACCESS_EN
937                         | ARCH_TIMER_USR_VCT_ACCESS_EN
938                         | ARCH_TIMER_VIRT_EVT_EN
939                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
940
941         /*
942          * Enable user access to the virtual counter if it doesn't
943          * need to be workaround. The vdso may have been already
944          * disabled though.
945          */
946         if (arch_timer_this_cpu_has_cntvct_wa())
947                 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
948         else
949                 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
950
951         arch_timer_set_cntkctl(cntkctl);
952 }
953
954 static bool arch_timer_has_nonsecure_ppi(void)
955 {
956         return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
957                 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
958 }
959
960 static u32 check_ppi_trigger(int irq)
961 {
962         u32 flags = irq_get_trigger_type(irq);
963
964         if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
965                 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
966                 pr_warn("WARNING: Please fix your firmware\n");
967                 flags = IRQF_TRIGGER_LOW;
968         }
969
970         return flags;
971 }
972
973 static int arch_timer_starting_cpu(unsigned int cpu)
974 {
975         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
976         u32 flags;
977
978         __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
979
980         flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
981         enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
982
983         if (arch_timer_has_nonsecure_ppi()) {
984                 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
985                 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
986                                   flags);
987         }
988
989         arch_counter_set_user_access();
990         if (evtstrm_enable)
991                 arch_timer_configure_evtstream();
992
993         return 0;
994 }
995
996 static int validate_timer_rate(void)
997 {
998         if (!arch_timer_rate)
999                 return -EINVAL;
1000
1001         /* Arch timer frequency < 1MHz can cause trouble */
1002         WARN_ON(arch_timer_rate < 1000000);
1003
1004         return 0;
1005 }
1006
1007 /*
1008  * For historical reasons, when probing with DT we use whichever (non-zero)
1009  * rate was probed first, and don't verify that others match. If the first node
1010  * probed has a clock-frequency property, this overrides the HW register.
1011  */
1012 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
1013 {
1014         /* Who has more than one independent system counter? */
1015         if (arch_timer_rate)
1016                 return;
1017
1018         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
1019                 arch_timer_rate = rate;
1020
1021         /* Check the timer frequency. */
1022         if (validate_timer_rate())
1023                 pr_warn("frequency not available\n");
1024 }
1025
1026 static void __init arch_timer_banner(unsigned type)
1027 {
1028         pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1029                 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
1030                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
1031                         " and " : "",
1032                 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
1033                 (unsigned long)arch_timer_rate / 1000000,
1034                 (unsigned long)(arch_timer_rate / 10000) % 100,
1035                 type & ARCH_TIMER_TYPE_CP15 ?
1036                         (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
1037                         "",
1038                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
1039                 type & ARCH_TIMER_TYPE_MEM ?
1040                         arch_timer_mem_use_virtual ? "virt" : "phys" :
1041                         "");
1042 }
1043
1044 u32 arch_timer_get_rate(void)
1045 {
1046         return arch_timer_rate;
1047 }
1048
1049 bool arch_timer_evtstrm_available(void)
1050 {
1051         /*
1052          * We might get called from a preemptible context. This is fine
1053          * because availability of the event stream should be always the same
1054          * for a preemptible context and context where we might resume a task.
1055          */
1056         return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
1057 }
1058
1059 static u64 arch_counter_get_cntvct_mem(void)
1060 {
1061         return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO);
1062 }
1063
1064 static struct arch_timer_kvm_info arch_timer_kvm_info;
1065
1066 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1067 {
1068         return &arch_timer_kvm_info;
1069 }
1070
1071 static void __init arch_counter_register(unsigned type)
1072 {
1073         u64 start_count;
1074         int width;
1075
1076         /* Register the CP15 based counter if we have one */
1077         if (type & ARCH_TIMER_TYPE_CP15) {
1078                 u64 (*rd)(void);
1079
1080                 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1081                     arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1082                         if (arch_timer_counter_has_wa())
1083                                 rd = arch_counter_get_cntvct_stable;
1084                         else
1085                                 rd = arch_counter_get_cntvct;
1086                 } else {
1087                         if (arch_timer_counter_has_wa())
1088                                 rd = arch_counter_get_cntpct_stable;
1089                         else
1090                                 rd = arch_counter_get_cntpct;
1091                 }
1092
1093                 arch_timer_read_counter = rd;
1094                 clocksource_counter.vdso_clock_mode = vdso_default;
1095         } else {
1096                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1097         }
1098
1099         width = arch_counter_get_width();
1100         clocksource_counter.mask = CLOCKSOURCE_MASK(width);
1101         cyclecounter.mask = CLOCKSOURCE_MASK(width);
1102
1103         if (!arch_counter_suspend_stop)
1104                 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1105         start_count = arch_timer_read_counter();
1106         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1107         cyclecounter.mult = clocksource_counter.mult;
1108         cyclecounter.shift = clocksource_counter.shift;
1109         timecounter_init(&arch_timer_kvm_info.timecounter,
1110                          &cyclecounter, start_count);
1111
1112         sched_clock_register(arch_timer_read_counter, width, arch_timer_rate);
1113 }
1114
1115 static void arch_timer_stop(struct clock_event_device *clk)
1116 {
1117         pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1118
1119         disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1120         if (arch_timer_has_nonsecure_ppi())
1121                 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1122
1123         clk->set_state_shutdown(clk);
1124 }
1125
1126 static int arch_timer_dying_cpu(unsigned int cpu)
1127 {
1128         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1129
1130         cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1131
1132         arch_timer_stop(clk);
1133         return 0;
1134 }
1135
1136 #ifdef CONFIG_CPU_PM
1137 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1138 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1139                                     unsigned long action, void *hcpu)
1140 {
1141         if (action == CPU_PM_ENTER) {
1142                 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1143
1144                 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1145         } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1146                 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1147
1148                 if (arch_timer_have_evtstrm_feature())
1149                         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1150         }
1151         return NOTIFY_OK;
1152 }
1153
1154 static struct notifier_block arch_timer_cpu_pm_notifier = {
1155         .notifier_call = arch_timer_cpu_pm_notify,
1156 };
1157
1158 static int __init arch_timer_cpu_pm_init(void)
1159 {
1160         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1161 }
1162
1163 static void __init arch_timer_cpu_pm_deinit(void)
1164 {
1165         WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1166 }
1167
1168 #else
1169 static int __init arch_timer_cpu_pm_init(void)
1170 {
1171         return 0;
1172 }
1173
1174 static void __init arch_timer_cpu_pm_deinit(void)
1175 {
1176 }
1177 #endif
1178
1179 static int __init arch_timer_register(void)
1180 {
1181         int err;
1182         int ppi;
1183
1184         arch_timer_evt = alloc_percpu(struct clock_event_device);
1185         if (!arch_timer_evt) {
1186                 err = -ENOMEM;
1187                 goto out;
1188         }
1189
1190         ppi = arch_timer_ppi[arch_timer_uses_ppi];
1191         switch (arch_timer_uses_ppi) {
1192         case ARCH_TIMER_VIRT_PPI:
1193                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1194                                          "arch_timer", arch_timer_evt);
1195                 break;
1196         case ARCH_TIMER_PHYS_SECURE_PPI:
1197         case ARCH_TIMER_PHYS_NONSECURE_PPI:
1198                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1199                                          "arch_timer", arch_timer_evt);
1200                 if (!err && arch_timer_has_nonsecure_ppi()) {
1201                         ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1202                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
1203                                                  "arch_timer", arch_timer_evt);
1204                         if (err)
1205                                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1206                                                 arch_timer_evt);
1207                 }
1208                 break;
1209         case ARCH_TIMER_HYP_PPI:
1210                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1211                                          "arch_timer", arch_timer_evt);
1212                 break;
1213         default:
1214                 BUG();
1215         }
1216
1217         if (err) {
1218                 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1219                 goto out_free;
1220         }
1221
1222         err = arch_timer_cpu_pm_init();
1223         if (err)
1224                 goto out_unreg_notify;
1225
1226         /* Register and immediately configure the timer on the boot CPU */
1227         err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1228                                 "clockevents/arm/arch_timer:starting",
1229                                 arch_timer_starting_cpu, arch_timer_dying_cpu);
1230         if (err)
1231                 goto out_unreg_cpupm;
1232         return 0;
1233
1234 out_unreg_cpupm:
1235         arch_timer_cpu_pm_deinit();
1236
1237 out_unreg_notify:
1238         free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1239         if (arch_timer_has_nonsecure_ppi())
1240                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1241                                 arch_timer_evt);
1242
1243 out_free:
1244         free_percpu(arch_timer_evt);
1245 out:
1246         return err;
1247 }
1248
1249 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1250 {
1251         int ret;
1252         irq_handler_t func;
1253
1254         arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL);
1255         if (!arch_timer_mem)
1256                 return -ENOMEM;
1257
1258         arch_timer_mem->base = base;
1259         arch_timer_mem->evt.irq = irq;
1260         __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt);
1261
1262         if (arch_timer_mem_use_virtual)
1263                 func = arch_timer_handler_virt_mem;
1264         else
1265                 func = arch_timer_handler_phys_mem;
1266
1267         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt);
1268         if (ret) {
1269                 pr_err("Failed to request mem timer irq\n");
1270                 kfree(arch_timer_mem);
1271                 arch_timer_mem = NULL;
1272         }
1273
1274         return ret;
1275 }
1276
1277 static const struct of_device_id arch_timer_of_match[] __initconst = {
1278         { .compatible   = "arm,armv7-timer",    },
1279         { .compatible   = "arm,armv8-timer",    },
1280         {},
1281 };
1282
1283 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1284         { .compatible   = "arm,armv7-timer-mem", },
1285         {},
1286 };
1287
1288 static bool __init arch_timer_needs_of_probing(void)
1289 {
1290         struct device_node *dn;
1291         bool needs_probing = false;
1292         unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1293
1294         /* We have two timers, and both device-tree nodes are probed. */
1295         if ((arch_timers_present & mask) == mask)
1296                 return false;
1297
1298         /*
1299          * Only one type of timer is probed,
1300          * check if we have another type of timer node in device-tree.
1301          */
1302         if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1303                 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1304         else
1305                 dn = of_find_matching_node(NULL, arch_timer_of_match);
1306
1307         if (dn && of_device_is_available(dn))
1308                 needs_probing = true;
1309
1310         of_node_put(dn);
1311
1312         return needs_probing;
1313 }
1314
1315 static int __init arch_timer_common_init(void)
1316 {
1317         arch_timer_banner(arch_timers_present);
1318         arch_counter_register(arch_timers_present);
1319         return arch_timer_arch_init();
1320 }
1321
1322 /**
1323  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1324  *
1325  * If HYP mode is available, we know that the physical timer
1326  * has been configured to be accessible from PL1. Use it, so
1327  * that a guest can use the virtual timer instead.
1328  *
1329  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1330  * accesses to CNTP_*_EL1 registers are silently redirected to
1331  * their CNTHP_*_EL2 counterparts, and use a different PPI
1332  * number.
1333  *
1334  * If no interrupt provided for virtual timer, we'll have to
1335  * stick to the physical timer. It'd better be accessible...
1336  * For arm64 we never use the secure interrupt.
1337  *
1338  * Return: a suitable PPI type for the current system.
1339  */
1340 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1341 {
1342         if (is_kernel_in_hyp_mode())
1343                 return ARCH_TIMER_HYP_PPI;
1344
1345         if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1346                 return ARCH_TIMER_VIRT_PPI;
1347
1348         if (IS_ENABLED(CONFIG_ARM64))
1349                 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1350
1351         return ARCH_TIMER_PHYS_SECURE_PPI;
1352 }
1353
1354 static void __init arch_timer_populate_kvm_info(void)
1355 {
1356         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1357         if (is_kernel_in_hyp_mode())
1358                 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1359 }
1360
1361 static int __init arch_timer_of_init(struct device_node *np)
1362 {
1363         int i, irq, ret;
1364         u32 rate;
1365         bool has_names;
1366
1367         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1368                 pr_warn("multiple nodes in dt, skipping\n");
1369                 return 0;
1370         }
1371
1372         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1373
1374         has_names = of_property_read_bool(np, "interrupt-names");
1375
1376         for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1377                 if (has_names)
1378                         irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1379                 else
1380                         irq = of_irq_get(np, i);
1381                 if (irq > 0)
1382                         arch_timer_ppi[i] = irq;
1383         }
1384
1385         arch_timer_populate_kvm_info();
1386
1387         rate = arch_timer_get_cntfrq();
1388         arch_timer_of_configure_rate(rate, np);
1389
1390         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1391
1392         /* Check for globally applicable workarounds */
1393         arch_timer_check_ool_workaround(ate_match_dt, np);
1394
1395         /*
1396          * If we cannot rely on firmware initializing the timer registers then
1397          * we should use the physical timers instead.
1398          */
1399         if (IS_ENABLED(CONFIG_ARM) &&
1400             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1401                 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1402         else
1403                 arch_timer_uses_ppi = arch_timer_select_ppi();
1404
1405         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1406                 pr_err("No interrupt available, giving up\n");
1407                 return -EINVAL;
1408         }
1409
1410         /* On some systems, the counter stops ticking when in suspend. */
1411         arch_counter_suspend_stop = of_property_read_bool(np,
1412                                                          "arm,no-tick-in-suspend");
1413
1414         ret = arch_timer_register();
1415         if (ret)
1416                 return ret;
1417
1418         if (arch_timer_needs_of_probing())
1419                 return 0;
1420
1421         return arch_timer_common_init();
1422 }
1423 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1424 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1425
1426 static u32 __init
1427 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1428 {
1429         void __iomem *base;
1430         u32 rate;
1431
1432         base = ioremap(frame->cntbase, frame->size);
1433         if (!base) {
1434                 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1435                 return 0;
1436         }
1437
1438         rate = readl_relaxed(base + CNTFRQ);
1439
1440         iounmap(base);
1441
1442         return rate;
1443 }
1444
1445 static struct arch_timer_mem_frame * __init
1446 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1447 {
1448         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1449         void __iomem *cntctlbase;
1450         u32 cnttidr;
1451         int i;
1452
1453         cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1454         if (!cntctlbase) {
1455                 pr_err("Can't map CNTCTLBase @ %pa\n",
1456                         &timer_mem->cntctlbase);
1457                 return NULL;
1458         }
1459
1460         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1461
1462         /*
1463          * Try to find a virtual capable frame. Otherwise fall back to a
1464          * physical capable frame.
1465          */
1466         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1467                 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1468                              CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1469
1470                 frame = &timer_mem->frame[i];
1471                 if (!frame->valid)
1472                         continue;
1473
1474                 /* Try enabling everything, and see what sticks */
1475                 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1476                 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1477
1478                 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1479                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1480                         best_frame = frame;
1481                         arch_timer_mem_use_virtual = true;
1482                         break;
1483                 }
1484
1485                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1486                         continue;
1487
1488                 best_frame = frame;
1489         }
1490
1491         iounmap(cntctlbase);
1492
1493         return best_frame;
1494 }
1495
1496 static int __init
1497 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1498 {
1499         void __iomem *base;
1500         int ret, irq = 0;
1501
1502         if (arch_timer_mem_use_virtual)
1503                 irq = frame->virt_irq;
1504         else
1505                 irq = frame->phys_irq;
1506
1507         if (!irq) {
1508                 pr_err("Frame missing %s irq.\n",
1509                        arch_timer_mem_use_virtual ? "virt" : "phys");
1510                 return -EINVAL;
1511         }
1512
1513         if (!request_mem_region(frame->cntbase, frame->size,
1514                                 "arch_mem_timer"))
1515                 return -EBUSY;
1516
1517         base = ioremap(frame->cntbase, frame->size);
1518         if (!base) {
1519                 pr_err("Can't map frame's registers\n");
1520                 return -ENXIO;
1521         }
1522
1523         ret = arch_timer_mem_register(base, irq);
1524         if (ret) {
1525                 iounmap(base);
1526                 return ret;
1527         }
1528
1529         arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1530
1531         return 0;
1532 }
1533
1534 static int __init arch_timer_mem_of_init(struct device_node *np)
1535 {
1536         struct arch_timer_mem *timer_mem;
1537         struct arch_timer_mem_frame *frame;
1538         struct device_node *frame_node;
1539         struct resource res;
1540         int ret = -EINVAL;
1541         u32 rate;
1542
1543         timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1544         if (!timer_mem)
1545                 return -ENOMEM;
1546
1547         if (of_address_to_resource(np, 0, &res))
1548                 goto out;
1549         timer_mem->cntctlbase = res.start;
1550         timer_mem->size = resource_size(&res);
1551
1552         for_each_available_child_of_node(np, frame_node) {
1553                 u32 n;
1554                 struct arch_timer_mem_frame *frame;
1555
1556                 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1557                         pr_err(FW_BUG "Missing frame-number.\n");
1558                         of_node_put(frame_node);
1559                         goto out;
1560                 }
1561                 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1562                         pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1563                                ARCH_TIMER_MEM_MAX_FRAMES - 1);
1564                         of_node_put(frame_node);
1565                         goto out;
1566                 }
1567                 frame = &timer_mem->frame[n];
1568
1569                 if (frame->valid) {
1570                         pr_err(FW_BUG "Duplicated frame-number.\n");
1571                         of_node_put(frame_node);
1572                         goto out;
1573                 }
1574
1575                 if (of_address_to_resource(frame_node, 0, &res)) {
1576                         of_node_put(frame_node);
1577                         goto out;
1578                 }
1579                 frame->cntbase = res.start;
1580                 frame->size = resource_size(&res);
1581
1582                 frame->virt_irq = irq_of_parse_and_map(frame_node,
1583                                                        ARCH_TIMER_VIRT_SPI);
1584                 frame->phys_irq = irq_of_parse_and_map(frame_node,
1585                                                        ARCH_TIMER_PHYS_SPI);
1586
1587                 frame->valid = true;
1588         }
1589
1590         frame = arch_timer_mem_find_best_frame(timer_mem);
1591         if (!frame) {
1592                 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1593                         &timer_mem->cntctlbase);
1594                 ret = -EINVAL;
1595                 goto out;
1596         }
1597
1598         rate = arch_timer_mem_frame_get_cntfrq(frame);
1599         arch_timer_of_configure_rate(rate, np);
1600
1601         ret = arch_timer_mem_frame_register(frame);
1602         if (!ret && !arch_timer_needs_of_probing())
1603                 ret = arch_timer_common_init();
1604 out:
1605         kfree(timer_mem);
1606         return ret;
1607 }
1608 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1609                        arch_timer_mem_of_init);
1610
1611 #ifdef CONFIG_ACPI_GTDT
1612 static int __init
1613 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1614 {
1615         struct arch_timer_mem_frame *frame;
1616         u32 rate;
1617         int i;
1618
1619         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1620                 frame = &timer_mem->frame[i];
1621
1622                 if (!frame->valid)
1623                         continue;
1624
1625                 rate = arch_timer_mem_frame_get_cntfrq(frame);
1626                 if (rate == arch_timer_rate)
1627                         continue;
1628
1629                 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1630                         &frame->cntbase,
1631                         (unsigned long)rate, (unsigned long)arch_timer_rate);
1632
1633                 return -EINVAL;
1634         }
1635
1636         return 0;
1637 }
1638
1639 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1640 {
1641         struct arch_timer_mem *timers, *timer;
1642         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1643         int timer_count, i, ret = 0;
1644
1645         timers = kcalloc(platform_timer_count, sizeof(*timers),
1646                             GFP_KERNEL);
1647         if (!timers)
1648                 return -ENOMEM;
1649
1650         ret = acpi_arch_timer_mem_init(timers, &timer_count);
1651         if (ret || !timer_count)
1652                 goto out;
1653
1654         /*
1655          * While unlikely, it's theoretically possible that none of the frames
1656          * in a timer expose the combination of feature we want.
1657          */
1658         for (i = 0; i < timer_count; i++) {
1659                 timer = &timers[i];
1660
1661                 frame = arch_timer_mem_find_best_frame(timer);
1662                 if (!best_frame)
1663                         best_frame = frame;
1664
1665                 ret = arch_timer_mem_verify_cntfrq(timer);
1666                 if (ret) {
1667                         pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1668                         goto out;
1669                 }
1670
1671                 if (!best_frame) /* implies !frame */
1672                         /*
1673                          * Only complain about missing suitable frames if we
1674                          * haven't already found one in a previous iteration.
1675                          */
1676                         pr_err("Unable to find a suitable frame in timer @ %pa\n",
1677                                 &timer->cntctlbase);
1678         }
1679
1680         if (best_frame)
1681                 ret = arch_timer_mem_frame_register(best_frame);
1682 out:
1683         kfree(timers);
1684         return ret;
1685 }
1686
1687 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1688 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1689 {
1690         int ret, platform_timer_count;
1691
1692         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1693                 pr_warn("already initialized, skipping\n");
1694                 return -EINVAL;
1695         }
1696
1697         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1698
1699         ret = acpi_gtdt_init(table, &platform_timer_count);
1700         if (ret)
1701                 return ret;
1702
1703         arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1704                 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1705
1706         arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1707                 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1708
1709         arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1710                 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1711
1712         arch_timer_populate_kvm_info();
1713
1714         /*
1715          * When probing via ACPI, we have no mechanism to override the sysreg
1716          * CNTFRQ value. This *must* be correct.
1717          */
1718         arch_timer_rate = arch_timer_get_cntfrq();
1719         ret = validate_timer_rate();
1720         if (ret) {
1721                 pr_err(FW_BUG "frequency not available.\n");
1722                 return ret;
1723         }
1724
1725         arch_timer_uses_ppi = arch_timer_select_ppi();
1726         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1727                 pr_err("No interrupt available, giving up\n");
1728                 return -EINVAL;
1729         }
1730
1731         /* Always-on capability */
1732         arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1733
1734         /* Check for globally applicable workarounds */
1735         arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1736
1737         ret = arch_timer_register();
1738         if (ret)
1739                 return ret;
1740
1741         if (platform_timer_count &&
1742             arch_timer_mem_acpi_init(platform_timer_count))
1743                 pr_err("Failed to initialize memory-mapped timer.\n");
1744
1745         return arch_timer_common_init();
1746 }
1747 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1748 #endif
1749
1750 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1751                                  struct clocksource **cs)
1752 {
1753         struct arm_smccc_res hvc_res;
1754         u32 ptp_counter;
1755         ktime_t ktime;
1756
1757         if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1758                 return -EOPNOTSUPP;
1759
1760         if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1761                 ptp_counter = KVM_PTP_VIRT_COUNTER;
1762         else
1763                 ptp_counter = KVM_PTP_PHYS_COUNTER;
1764
1765         arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1766                              ptp_counter, &hvc_res);
1767
1768         if ((int)(hvc_res.a0) < 0)
1769                 return -EOPNOTSUPP;
1770
1771         ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1772         *ts = ktime_to_timespec64(ktime);
1773         if (cycle)
1774                 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1775         if (cs)
1776                 *cs = &clocksource_counter;
1777
1778         return 0;
1779 }
1780 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);