Linux 3.14.25
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/interrupt.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_address.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/sched_clock.h>
24
25 #include <asm/arch_timer.h>
26 #include <asm/virt.h>
27
28 #include <clocksource/arm_arch_timer.h>
29
30 #define CNTTIDR         0x08
31 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
32
33 #define CNTVCT_LO       0x08
34 #define CNTVCT_HI       0x0c
35 #define CNTFRQ          0x10
36 #define CNTP_TVAL       0x28
37 #define CNTP_CTL        0x2c
38 #define CNTV_TVAL       0x38
39 #define CNTV_CTL        0x3c
40
41 #define ARCH_CP15_TIMER BIT(0)
42 #define ARCH_MEM_TIMER  BIT(1)
43 static unsigned arch_timers_present __initdata;
44
45 static void __iomem *arch_counter_base;
46
47 struct arch_timer {
48         void __iomem *base;
49         struct clock_event_device evt;
50 };
51
52 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
53
54 static u32 arch_timer_rate;
55
56 enum ppi_nr {
57         PHYS_SECURE_PPI,
58         PHYS_NONSECURE_PPI,
59         VIRT_PPI,
60         HYP_PPI,
61         MAX_TIMER_PPI
62 };
63
64 static int arch_timer_ppi[MAX_TIMER_PPI];
65
66 static struct clock_event_device __percpu *arch_timer_evt;
67
68 static bool arch_timer_use_virtual = true;
69 static bool arch_timer_mem_use_virtual;
70
71 /*
72  * Architected system timer support.
73  */
74
75 static __always_inline
76 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
77                           struct clock_event_device *clk)
78 {
79         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
80                 struct arch_timer *timer = to_arch_timer(clk);
81                 switch (reg) {
82                 case ARCH_TIMER_REG_CTRL:
83                         writel_relaxed(val, timer->base + CNTP_CTL);
84                         break;
85                 case ARCH_TIMER_REG_TVAL:
86                         writel_relaxed(val, timer->base + CNTP_TVAL);
87                         break;
88                 }
89         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
90                 struct arch_timer *timer = to_arch_timer(clk);
91                 switch (reg) {
92                 case ARCH_TIMER_REG_CTRL:
93                         writel_relaxed(val, timer->base + CNTV_CTL);
94                         break;
95                 case ARCH_TIMER_REG_TVAL:
96                         writel_relaxed(val, timer->base + CNTV_TVAL);
97                         break;
98                 }
99         } else {
100                 arch_timer_reg_write_cp15(access, reg, val);
101         }
102 }
103
104 static __always_inline
105 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
106                         struct clock_event_device *clk)
107 {
108         u32 val;
109
110         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
111                 struct arch_timer *timer = to_arch_timer(clk);
112                 switch (reg) {
113                 case ARCH_TIMER_REG_CTRL:
114                         val = readl_relaxed(timer->base + CNTP_CTL);
115                         break;
116                 case ARCH_TIMER_REG_TVAL:
117                         val = readl_relaxed(timer->base + CNTP_TVAL);
118                         break;
119                 }
120         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
121                 struct arch_timer *timer = to_arch_timer(clk);
122                 switch (reg) {
123                 case ARCH_TIMER_REG_CTRL:
124                         val = readl_relaxed(timer->base + CNTV_CTL);
125                         break;
126                 case ARCH_TIMER_REG_TVAL:
127                         val = readl_relaxed(timer->base + CNTV_TVAL);
128                         break;
129                 }
130         } else {
131                 val = arch_timer_reg_read_cp15(access, reg);
132         }
133
134         return val;
135 }
136
137 static __always_inline irqreturn_t timer_handler(const int access,
138                                         struct clock_event_device *evt)
139 {
140         unsigned long ctrl;
141
142         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
143         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
144                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
145                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
146                 evt->event_handler(evt);
147                 return IRQ_HANDLED;
148         }
149
150         return IRQ_NONE;
151 }
152
153 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
154 {
155         struct clock_event_device *evt = dev_id;
156
157         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
158 }
159
160 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
161 {
162         struct clock_event_device *evt = dev_id;
163
164         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
165 }
166
167 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
168 {
169         struct clock_event_device *evt = dev_id;
170
171         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
172 }
173
174 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
175 {
176         struct clock_event_device *evt = dev_id;
177
178         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
179 }
180
181 static __always_inline void timer_set_mode(const int access, int mode,
182                                   struct clock_event_device *clk)
183 {
184         unsigned long ctrl;
185         switch (mode) {
186         case CLOCK_EVT_MODE_UNUSED:
187         case CLOCK_EVT_MODE_SHUTDOWN:
188                 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
189                 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
190                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
191                 break;
192         default:
193                 break;
194         }
195 }
196
197 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
198                                      struct clock_event_device *clk)
199 {
200         timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
201 }
202
203 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
204                                      struct clock_event_device *clk)
205 {
206         timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
207 }
208
209 static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
210                                          struct clock_event_device *clk)
211 {
212         timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
213 }
214
215 static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
216                                          struct clock_event_device *clk)
217 {
218         timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
219 }
220
221 static __always_inline void set_next_event(const int access, unsigned long evt,
222                                            struct clock_event_device *clk)
223 {
224         unsigned long ctrl;
225         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
226         ctrl |= ARCH_TIMER_CTRL_ENABLE;
227         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
228         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
229         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
230 }
231
232 static int arch_timer_set_next_event_virt(unsigned long evt,
233                                           struct clock_event_device *clk)
234 {
235         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
236         return 0;
237 }
238
239 static int arch_timer_set_next_event_phys(unsigned long evt,
240                                           struct clock_event_device *clk)
241 {
242         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
243         return 0;
244 }
245
246 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
247                                               struct clock_event_device *clk)
248 {
249         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
250         return 0;
251 }
252
253 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
254                                               struct clock_event_device *clk)
255 {
256         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
257         return 0;
258 }
259
260 static void __arch_timer_setup(unsigned type,
261                                struct clock_event_device *clk)
262 {
263         clk->features = CLOCK_EVT_FEAT_ONESHOT;
264
265         if (type == ARCH_CP15_TIMER) {
266                 clk->features |= CLOCK_EVT_FEAT_C3STOP;
267                 clk->name = "arch_sys_timer";
268                 clk->rating = 450;
269                 clk->cpumask = cpumask_of(smp_processor_id());
270                 if (arch_timer_use_virtual) {
271                         clk->irq = arch_timer_ppi[VIRT_PPI];
272                         clk->set_mode = arch_timer_set_mode_virt;
273                         clk->set_next_event = arch_timer_set_next_event_virt;
274                 } else {
275                         clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
276                         clk->set_mode = arch_timer_set_mode_phys;
277                         clk->set_next_event = arch_timer_set_next_event_phys;
278                 }
279         } else {
280                 clk->name = "arch_mem_timer";
281                 clk->rating = 400;
282                 clk->cpumask = cpu_all_mask;
283                 if (arch_timer_mem_use_virtual) {
284                         clk->set_mode = arch_timer_set_mode_virt_mem;
285                         clk->set_next_event =
286                                 arch_timer_set_next_event_virt_mem;
287                 } else {
288                         clk->set_mode = arch_timer_set_mode_phys_mem;
289                         clk->set_next_event =
290                                 arch_timer_set_next_event_phys_mem;
291                 }
292         }
293
294         clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
295
296         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
297 }
298
299 static void arch_timer_configure_evtstream(void)
300 {
301         int evt_stream_div, pos;
302
303         /* Find the closest power of two to the divisor */
304         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
305         pos = fls(evt_stream_div);
306         if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
307                 pos--;
308         /* enable event stream */
309         arch_timer_evtstrm_enable(min(pos, 15));
310 }
311
312 static int arch_timer_setup(struct clock_event_device *clk)
313 {
314         __arch_timer_setup(ARCH_CP15_TIMER, clk);
315
316         if (arch_timer_use_virtual)
317                 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
318         else {
319                 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
320                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
321                         enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
322         }
323
324         arch_counter_set_user_access();
325         if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
326                 arch_timer_configure_evtstream();
327
328         return 0;
329 }
330
331 static void
332 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
333 {
334         /* Who has more than one independent system counter? */
335         if (arch_timer_rate)
336                 return;
337
338         /* Try to determine the frequency from the device tree or CNTFRQ */
339         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
340                 if (cntbase)
341                         arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
342                 else
343                         arch_timer_rate = arch_timer_get_cntfrq();
344         }
345
346         /* Check the timer frequency. */
347         if (arch_timer_rate == 0)
348                 pr_warn("Architected timer frequency not available\n");
349 }
350
351 static void arch_timer_banner(unsigned type)
352 {
353         pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
354                      type & ARCH_CP15_TIMER ? "cp15" : "",
355                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
356                      type & ARCH_MEM_TIMER ? "mmio" : "",
357                      (unsigned long)arch_timer_rate / 1000000,
358                      (unsigned long)(arch_timer_rate / 10000) % 100,
359                      type & ARCH_CP15_TIMER ?
360                         arch_timer_use_virtual ? "virt" : "phys" :
361                         "",
362                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
363                      type & ARCH_MEM_TIMER ?
364                         arch_timer_mem_use_virtual ? "virt" : "phys" :
365                         "");
366 }
367
368 u32 arch_timer_get_rate(void)
369 {
370         return arch_timer_rate;
371 }
372
373 static u64 arch_counter_get_cntvct_mem(void)
374 {
375         u32 vct_lo, vct_hi, tmp_hi;
376
377         do {
378                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
379                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
380                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
381         } while (vct_hi != tmp_hi);
382
383         return ((u64) vct_hi << 32) | vct_lo;
384 }
385
386 /*
387  * Default to cp15 based access because arm64 uses this function for
388  * sched_clock() before DT is probed and the cp15 method is guaranteed
389  * to exist on arm64. arm doesn't use this before DT is probed so even
390  * if we don't have the cp15 accessors we won't have a problem.
391  */
392 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
393
394 static cycle_t arch_counter_read(struct clocksource *cs)
395 {
396         return arch_timer_read_counter();
397 }
398
399 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
400 {
401         return arch_timer_read_counter();
402 }
403
404 static struct clocksource clocksource_counter = {
405         .name   = "arch_sys_counter",
406         .rating = 400,
407         .read   = arch_counter_read,
408         .mask   = CLOCKSOURCE_MASK(56),
409         .flags  = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
410 };
411
412 static struct cyclecounter cyclecounter = {
413         .read   = arch_counter_read_cc,
414         .mask   = CLOCKSOURCE_MASK(56),
415 };
416
417 static struct timecounter timecounter;
418
419 struct timecounter *arch_timer_get_timecounter(void)
420 {
421         return &timecounter;
422 }
423
424 static void __init arch_counter_register(unsigned type)
425 {
426         u64 start_count;
427
428         /* Register the CP15 based counter if we have one */
429         if (type & ARCH_CP15_TIMER)
430                 arch_timer_read_counter = arch_counter_get_cntvct;
431         else
432                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
433
434         start_count = arch_timer_read_counter();
435         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
436         cyclecounter.mult = clocksource_counter.mult;
437         cyclecounter.shift = clocksource_counter.shift;
438         timecounter_init(&timecounter, &cyclecounter, start_count);
439
440         /* 56 bits minimum, so we assume worst case rollover */
441         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
442 }
443
444 static void arch_timer_stop(struct clock_event_device *clk)
445 {
446         pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
447                  clk->irq, smp_processor_id());
448
449         if (arch_timer_use_virtual)
450                 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
451         else {
452                 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
453                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
454                         disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
455         }
456
457         clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
458 }
459
460 static int arch_timer_cpu_notify(struct notifier_block *self,
461                                            unsigned long action, void *hcpu)
462 {
463         /*
464          * Grab cpu pointer in each case to avoid spurious
465          * preemptible warnings
466          */
467         switch (action & ~CPU_TASKS_FROZEN) {
468         case CPU_STARTING:
469                 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
470                 break;
471         case CPU_DYING:
472                 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
473                 break;
474         }
475
476         return NOTIFY_OK;
477 }
478
479 static struct notifier_block arch_timer_cpu_nb = {
480         .notifier_call = arch_timer_cpu_notify,
481 };
482
483 #ifdef CONFIG_CPU_PM
484 static unsigned int saved_cntkctl;
485 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
486                                     unsigned long action, void *hcpu)
487 {
488         if (action == CPU_PM_ENTER)
489                 saved_cntkctl = arch_timer_get_cntkctl();
490         else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
491                 arch_timer_set_cntkctl(saved_cntkctl);
492         return NOTIFY_OK;
493 }
494
495 static struct notifier_block arch_timer_cpu_pm_notifier = {
496         .notifier_call = arch_timer_cpu_pm_notify,
497 };
498
499 static int __init arch_timer_cpu_pm_init(void)
500 {
501         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
502 }
503 #else
504 static int __init arch_timer_cpu_pm_init(void)
505 {
506         return 0;
507 }
508 #endif
509
510 static int __init arch_timer_register(void)
511 {
512         int err;
513         int ppi;
514
515         arch_timer_evt = alloc_percpu(struct clock_event_device);
516         if (!arch_timer_evt) {
517                 err = -ENOMEM;
518                 goto out;
519         }
520
521         if (arch_timer_use_virtual) {
522                 ppi = arch_timer_ppi[VIRT_PPI];
523                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
524                                          "arch_timer", arch_timer_evt);
525         } else {
526                 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
527                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
528                                          "arch_timer", arch_timer_evt);
529                 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
530                         ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
531                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
532                                                  "arch_timer", arch_timer_evt);
533                         if (err)
534                                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
535                                                 arch_timer_evt);
536                 }
537         }
538
539         if (err) {
540                 pr_err("arch_timer: can't register interrupt %d (%d)\n",
541                        ppi, err);
542                 goto out_free;
543         }
544
545         err = register_cpu_notifier(&arch_timer_cpu_nb);
546         if (err)
547                 goto out_free_irq;
548
549         err = arch_timer_cpu_pm_init();
550         if (err)
551                 goto out_unreg_notify;
552
553         /* Immediately configure the timer on the boot CPU */
554         arch_timer_setup(this_cpu_ptr(arch_timer_evt));
555
556         return 0;
557
558 out_unreg_notify:
559         unregister_cpu_notifier(&arch_timer_cpu_nb);
560 out_free_irq:
561         if (arch_timer_use_virtual)
562                 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
563         else {
564                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
565                                 arch_timer_evt);
566                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
567                         free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
568                                         arch_timer_evt);
569         }
570
571 out_free:
572         free_percpu(arch_timer_evt);
573 out:
574         return err;
575 }
576
577 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
578 {
579         int ret;
580         irq_handler_t func;
581         struct arch_timer *t;
582
583         t = kzalloc(sizeof(*t), GFP_KERNEL);
584         if (!t)
585                 return -ENOMEM;
586
587         t->base = base;
588         t->evt.irq = irq;
589         __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
590
591         if (arch_timer_mem_use_virtual)
592                 func = arch_timer_handler_virt_mem;
593         else
594                 func = arch_timer_handler_phys_mem;
595
596         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
597         if (ret) {
598                 pr_err("arch_timer: Failed to request mem timer irq\n");
599                 kfree(t);
600         }
601
602         return ret;
603 }
604
605 static const struct of_device_id arch_timer_of_match[] __initconst = {
606         { .compatible   = "arm,armv7-timer",    },
607         { .compatible   = "arm,armv8-timer",    },
608         {},
609 };
610
611 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
612         { .compatible   = "arm,armv7-timer-mem", },
613         {},
614 };
615
616 static void __init arch_timer_common_init(void)
617 {
618         unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
619
620         /* Wait until both nodes are probed if we have two timers */
621         if ((arch_timers_present & mask) != mask) {
622                 if (of_find_matching_node(NULL, arch_timer_mem_of_match) &&
623                                 !(arch_timers_present & ARCH_MEM_TIMER))
624                         return;
625                 if (of_find_matching_node(NULL, arch_timer_of_match) &&
626                                 !(arch_timers_present & ARCH_CP15_TIMER))
627                         return;
628         }
629
630         arch_timer_banner(arch_timers_present);
631         arch_counter_register(arch_timers_present);
632         arch_timer_arch_init();
633 }
634
635 static void __init arch_timer_init(struct device_node *np)
636 {
637         int i;
638
639         if (arch_timers_present & ARCH_CP15_TIMER) {
640                 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
641                 return;
642         }
643
644         arch_timers_present |= ARCH_CP15_TIMER;
645         for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
646                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
647         arch_timer_detect_rate(NULL, np);
648
649         /*
650          * If HYP mode is available, we know that the physical timer
651          * has been configured to be accessible from PL1. Use it, so
652          * that a guest can use the virtual timer instead.
653          *
654          * If no interrupt provided for virtual timer, we'll have to
655          * stick to the physical timer. It'd better be accessible...
656          */
657         if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
658                 arch_timer_use_virtual = false;
659
660                 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
661                     !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
662                         pr_warn("arch_timer: No interrupt available, giving up\n");
663                         return;
664                 }
665         }
666
667         arch_timer_register();
668         arch_timer_common_init();
669 }
670 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
671 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);
672
673 static void __init arch_timer_mem_init(struct device_node *np)
674 {
675         struct device_node *frame, *best_frame = NULL;
676         void __iomem *cntctlbase, *base;
677         unsigned int irq;
678         u32 cnttidr;
679
680         arch_timers_present |= ARCH_MEM_TIMER;
681         cntctlbase = of_iomap(np, 0);
682         if (!cntctlbase) {
683                 pr_err("arch_timer: Can't find CNTCTLBase\n");
684                 return;
685         }
686
687         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
688         iounmap(cntctlbase);
689
690         /*
691          * Try to find a virtual capable frame. Otherwise fall back to a
692          * physical capable frame.
693          */
694         for_each_available_child_of_node(np, frame) {
695                 int n;
696
697                 if (of_property_read_u32(frame, "frame-number", &n)) {
698                         pr_err("arch_timer: Missing frame-number\n");
699                         of_node_put(best_frame);
700                         of_node_put(frame);
701                         return;
702                 }
703
704                 if (cnttidr & CNTTIDR_VIRT(n)) {
705                         of_node_put(best_frame);
706                         best_frame = frame;
707                         arch_timer_mem_use_virtual = true;
708                         break;
709                 }
710                 of_node_put(best_frame);
711                 best_frame = of_node_get(frame);
712         }
713
714         base = arch_counter_base = of_iomap(best_frame, 0);
715         if (!base) {
716                 pr_err("arch_timer: Can't map frame's registers\n");
717                 of_node_put(best_frame);
718                 return;
719         }
720
721         if (arch_timer_mem_use_virtual)
722                 irq = irq_of_parse_and_map(best_frame, 1);
723         else
724                 irq = irq_of_parse_and_map(best_frame, 0);
725         of_node_put(best_frame);
726         if (!irq) {
727                 pr_err("arch_timer: Frame missing %s irq",
728                        arch_timer_mem_use_virtual ? "virt" : "phys");
729                 return;
730         }
731
732         arch_timer_detect_rate(base, np);
733         arch_timer_mem_register(base, irq);
734         arch_timer_common_init();
735 }
736 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
737                        arch_timer_mem_init);