2 * linux/drivers/clocksource/arm_arch_timer.c
4 * Copyright (C) 2011 ARM Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
23 #include <linux/slab.h>
24 #include <linux/sched_clock.h>
25 #include <linux/acpi.h>
27 #include <asm/arch_timer.h>
30 #include <clocksource/arm_arch_timer.h>
33 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
35 #define CNTACR(n) (0x40 + ((n) * 4))
36 #define CNTACR_RPCT BIT(0)
37 #define CNTACR_RVCT BIT(1)
38 #define CNTACR_RFRQ BIT(2)
39 #define CNTACR_RVOFF BIT(3)
40 #define CNTACR_RWVT BIT(4)
41 #define CNTACR_RWPT BIT(5)
43 #define CNTVCT_LO 0x08
44 #define CNTVCT_HI 0x0c
46 #define CNTP_TVAL 0x28
48 #define CNTV_TVAL 0x38
51 #define ARCH_CP15_TIMER BIT(0)
52 #define ARCH_MEM_TIMER BIT(1)
53 static unsigned arch_timers_present __initdata;
55 static void __iomem *arch_counter_base;
59 struct clock_event_device evt;
62 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
64 static u32 arch_timer_rate;
74 static int arch_timer_ppi[MAX_TIMER_PPI];
76 static struct clock_event_device __percpu *arch_timer_evt;
78 static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
79 static bool arch_timer_c3stop;
80 static bool arch_timer_mem_use_virtual;
82 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
84 static int __init early_evtstrm_cfg(char *buf)
86 return strtobool(buf, &evtstrm_enable);
88 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
91 * Architected system timer support.
94 static __always_inline
95 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
96 struct clock_event_device *clk)
98 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
99 struct arch_timer *timer = to_arch_timer(clk);
101 case ARCH_TIMER_REG_CTRL:
102 writel_relaxed(val, timer->base + CNTP_CTL);
104 case ARCH_TIMER_REG_TVAL:
105 writel_relaxed(val, timer->base + CNTP_TVAL);
108 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
109 struct arch_timer *timer = to_arch_timer(clk);
111 case ARCH_TIMER_REG_CTRL:
112 writel_relaxed(val, timer->base + CNTV_CTL);
114 case ARCH_TIMER_REG_TVAL:
115 writel_relaxed(val, timer->base + CNTV_TVAL);
119 arch_timer_reg_write_cp15(access, reg, val);
123 static __always_inline
124 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
125 struct clock_event_device *clk)
129 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
130 struct arch_timer *timer = to_arch_timer(clk);
132 case ARCH_TIMER_REG_CTRL:
133 val = readl_relaxed(timer->base + CNTP_CTL);
135 case ARCH_TIMER_REG_TVAL:
136 val = readl_relaxed(timer->base + CNTP_TVAL);
139 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
140 struct arch_timer *timer = to_arch_timer(clk);
142 case ARCH_TIMER_REG_CTRL:
143 val = readl_relaxed(timer->base + CNTV_CTL);
145 case ARCH_TIMER_REG_TVAL:
146 val = readl_relaxed(timer->base + CNTV_TVAL);
150 val = arch_timer_reg_read_cp15(access, reg);
156 static __always_inline irqreturn_t timer_handler(const int access,
157 struct clock_event_device *evt)
161 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
162 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
163 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
164 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
165 evt->event_handler(evt);
172 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
174 struct clock_event_device *evt = dev_id;
176 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
179 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
181 struct clock_event_device *evt = dev_id;
183 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
186 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
188 struct clock_event_device *evt = dev_id;
190 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
193 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
195 struct clock_event_device *evt = dev_id;
197 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
200 static __always_inline int timer_shutdown(const int access,
201 struct clock_event_device *clk)
205 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
206 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
207 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
212 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
214 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
217 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
219 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
222 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
224 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
227 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
229 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
232 static __always_inline void set_next_event(const int access, unsigned long evt,
233 struct clock_event_device *clk)
236 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
237 ctrl |= ARCH_TIMER_CTRL_ENABLE;
238 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
239 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
240 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
243 static int arch_timer_set_next_event_virt(unsigned long evt,
244 struct clock_event_device *clk)
246 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
250 static int arch_timer_set_next_event_phys(unsigned long evt,
251 struct clock_event_device *clk)
253 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
257 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
258 struct clock_event_device *clk)
260 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
264 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
265 struct clock_event_device *clk)
267 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
271 static void __arch_timer_setup(unsigned type,
272 struct clock_event_device *clk)
274 clk->features = CLOCK_EVT_FEAT_ONESHOT;
276 if (type == ARCH_CP15_TIMER) {
277 if (arch_timer_c3stop)
278 clk->features |= CLOCK_EVT_FEAT_C3STOP;
279 clk->name = "arch_sys_timer";
281 clk->cpumask = cpumask_of(smp_processor_id());
282 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
283 switch (arch_timer_uses_ppi) {
285 clk->set_state_shutdown = arch_timer_shutdown_virt;
286 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
287 clk->set_next_event = arch_timer_set_next_event_virt;
289 case PHYS_SECURE_PPI:
290 case PHYS_NONSECURE_PPI:
292 clk->set_state_shutdown = arch_timer_shutdown_phys;
293 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
294 clk->set_next_event = arch_timer_set_next_event_phys;
300 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
301 clk->name = "arch_mem_timer";
303 clk->cpumask = cpu_all_mask;
304 if (arch_timer_mem_use_virtual) {
305 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
306 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
307 clk->set_next_event =
308 arch_timer_set_next_event_virt_mem;
310 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
311 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
312 clk->set_next_event =
313 arch_timer_set_next_event_phys_mem;
317 clk->set_state_shutdown(clk);
319 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
322 static void arch_timer_evtstrm_enable(int divider)
324 u32 cntkctl = arch_timer_get_cntkctl();
326 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
327 /* Set the divider and enable virtual event stream */
328 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
329 | ARCH_TIMER_VIRT_EVT_EN;
330 arch_timer_set_cntkctl(cntkctl);
331 elf_hwcap |= HWCAP_EVTSTRM;
333 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
337 static void arch_timer_configure_evtstream(void)
339 int evt_stream_div, pos;
341 /* Find the closest power of two to the divisor */
342 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
343 pos = fls(evt_stream_div);
344 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
346 /* enable event stream */
347 arch_timer_evtstrm_enable(min(pos, 15));
350 static void arch_counter_set_user_access(void)
352 u32 cntkctl = arch_timer_get_cntkctl();
354 /* Disable user access to the timers and the physical counter */
355 /* Also disable virtual event stream */
356 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
357 | ARCH_TIMER_USR_VT_ACCESS_EN
358 | ARCH_TIMER_VIRT_EVT_EN
359 | ARCH_TIMER_USR_PCT_ACCESS_EN);
361 /* Enable user access to the virtual counter */
362 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
364 arch_timer_set_cntkctl(cntkctl);
367 static bool arch_timer_has_nonsecure_ppi(void)
369 return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
370 arch_timer_ppi[PHYS_NONSECURE_PPI]);
373 static int arch_timer_starting_cpu(unsigned int cpu)
375 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
377 __arch_timer_setup(ARCH_CP15_TIMER, clk);
379 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], 0);
381 if (arch_timer_has_nonsecure_ppi())
382 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
384 arch_counter_set_user_access();
386 arch_timer_configure_evtstream();
392 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
394 /* Who has more than one independent system counter? */
399 * Try to determine the frequency from the device tree or CNTFRQ,
400 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
402 if (!acpi_disabled ||
403 of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
405 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
407 arch_timer_rate = arch_timer_get_cntfrq();
410 /* Check the timer frequency. */
411 if (arch_timer_rate == 0)
412 pr_warn("Architected timer frequency not available\n");
415 static void arch_timer_banner(unsigned type)
417 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
418 type & ARCH_CP15_TIMER ? "cp15" : "",
419 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
420 type & ARCH_MEM_TIMER ? "mmio" : "",
421 (unsigned long)arch_timer_rate / 1000000,
422 (unsigned long)(arch_timer_rate / 10000) % 100,
423 type & ARCH_CP15_TIMER ?
424 (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
426 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
427 type & ARCH_MEM_TIMER ?
428 arch_timer_mem_use_virtual ? "virt" : "phys" :
432 u32 arch_timer_get_rate(void)
434 return arch_timer_rate;
437 static u64 arch_counter_get_cntvct_mem(void)
439 u32 vct_lo, vct_hi, tmp_hi;
442 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
443 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
444 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
445 } while (vct_hi != tmp_hi);
447 return ((u64) vct_hi << 32) | vct_lo;
451 * Default to cp15 based access because arm64 uses this function for
452 * sched_clock() before DT is probed and the cp15 method is guaranteed
453 * to exist on arm64. arm doesn't use this before DT is probed so even
454 * if we don't have the cp15 accessors we won't have a problem.
456 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
458 static cycle_t arch_counter_read(struct clocksource *cs)
460 return arch_timer_read_counter();
463 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
465 return arch_timer_read_counter();
468 static struct clocksource clocksource_counter = {
469 .name = "arch_sys_counter",
471 .read = arch_counter_read,
472 .mask = CLOCKSOURCE_MASK(56),
473 .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
476 static struct cyclecounter cyclecounter = {
477 .read = arch_counter_read_cc,
478 .mask = CLOCKSOURCE_MASK(56),
481 static struct arch_timer_kvm_info arch_timer_kvm_info;
483 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
485 return &arch_timer_kvm_info;
488 static void __init arch_counter_register(unsigned type)
492 /* Register the CP15 based counter if we have one */
493 if (type & ARCH_CP15_TIMER) {
494 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
495 arch_timer_read_counter = arch_counter_get_cntvct;
497 arch_timer_read_counter = arch_counter_get_cntpct;
499 arch_timer_read_counter = arch_counter_get_cntvct_mem;
501 /* If the clocksource name is "arch_sys_counter" the
502 * VDSO will attempt to read the CP15-based counter.
503 * Ensure this does not happen when CP15-based
504 * counter is not available.
506 clocksource_counter.name = "arch_mem_counter";
509 start_count = arch_timer_read_counter();
510 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
511 cyclecounter.mult = clocksource_counter.mult;
512 cyclecounter.shift = clocksource_counter.shift;
513 timecounter_init(&arch_timer_kvm_info.timecounter,
514 &cyclecounter, start_count);
516 /* 56 bits minimum, so we assume worst case rollover */
517 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
520 static void arch_timer_stop(struct clock_event_device *clk)
522 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
523 clk->irq, smp_processor_id());
525 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
526 if (arch_timer_has_nonsecure_ppi())
527 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
529 clk->set_state_shutdown(clk);
532 static int arch_timer_dying_cpu(unsigned int cpu)
534 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
536 arch_timer_stop(clk);
541 static unsigned int saved_cntkctl;
542 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
543 unsigned long action, void *hcpu)
545 if (action == CPU_PM_ENTER)
546 saved_cntkctl = arch_timer_get_cntkctl();
547 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
548 arch_timer_set_cntkctl(saved_cntkctl);
552 static struct notifier_block arch_timer_cpu_pm_notifier = {
553 .notifier_call = arch_timer_cpu_pm_notify,
556 static int __init arch_timer_cpu_pm_init(void)
558 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
561 static void __init arch_timer_cpu_pm_deinit(void)
563 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
567 static int __init arch_timer_cpu_pm_init(void)
572 static void __init arch_timer_cpu_pm_deinit(void)
577 static int __init arch_timer_register(void)
582 arch_timer_evt = alloc_percpu(struct clock_event_device);
583 if (!arch_timer_evt) {
588 ppi = arch_timer_ppi[arch_timer_uses_ppi];
589 switch (arch_timer_uses_ppi) {
591 err = request_percpu_irq(ppi, arch_timer_handler_virt,
592 "arch_timer", arch_timer_evt);
594 case PHYS_SECURE_PPI:
595 case PHYS_NONSECURE_PPI:
596 err = request_percpu_irq(ppi, arch_timer_handler_phys,
597 "arch_timer", arch_timer_evt);
598 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
599 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
600 err = request_percpu_irq(ppi, arch_timer_handler_phys,
601 "arch_timer", arch_timer_evt);
603 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
608 err = request_percpu_irq(ppi, arch_timer_handler_phys,
609 "arch_timer", arch_timer_evt);
616 pr_err("arch_timer: can't register interrupt %d (%d)\n",
621 err = arch_timer_cpu_pm_init();
623 goto out_unreg_notify;
626 /* Register and immediately configure the timer on the boot CPU */
627 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
628 "AP_ARM_ARCH_TIMER_STARTING",
629 arch_timer_starting_cpu, arch_timer_dying_cpu);
631 goto out_unreg_cpupm;
635 arch_timer_cpu_pm_deinit();
638 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
639 if (arch_timer_has_nonsecure_ppi())
640 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
644 free_percpu(arch_timer_evt);
649 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
653 struct arch_timer *t;
655 t = kzalloc(sizeof(*t), GFP_KERNEL);
661 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
663 if (arch_timer_mem_use_virtual)
664 func = arch_timer_handler_virt_mem;
666 func = arch_timer_handler_phys_mem;
668 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
670 pr_err("arch_timer: Failed to request mem timer irq\n");
677 static const struct of_device_id arch_timer_of_match[] __initconst = {
678 { .compatible = "arm,armv7-timer", },
679 { .compatible = "arm,armv8-timer", },
683 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
684 { .compatible = "arm,armv7-timer-mem", },
689 arch_timer_needs_probing(int type, const struct of_device_id *matches)
691 struct device_node *dn;
692 bool needs_probing = false;
694 dn = of_find_matching_node(NULL, matches);
695 if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
696 needs_probing = true;
699 return needs_probing;
702 static int __init arch_timer_common_init(void)
704 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
706 /* Wait until both nodes are probed if we have two timers */
707 if ((arch_timers_present & mask) != mask) {
708 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
710 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
714 arch_timer_banner(arch_timers_present);
715 arch_counter_register(arch_timers_present);
716 return arch_timer_arch_init();
719 static int __init arch_timer_init(void)
723 * If HYP mode is available, we know that the physical timer
724 * has been configured to be accessible from PL1. Use it, so
725 * that a guest can use the virtual timer instead.
727 * If no interrupt provided for virtual timer, we'll have to
728 * stick to the physical timer. It'd better be accessible...
730 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
731 * accesses to CNTP_*_EL1 registers are silently redirected to
732 * their CNTHP_*_EL2 counterparts, and use a different PPI
735 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
738 if (is_kernel_in_hyp_mode()) {
739 arch_timer_uses_ppi = HYP_PPI;
740 has_ppi = !!arch_timer_ppi[HYP_PPI];
742 arch_timer_uses_ppi = PHYS_SECURE_PPI;
743 has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
744 !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
748 pr_warn("arch_timer: No interrupt available, giving up\n");
753 ret = arch_timer_register();
757 ret = arch_timer_common_init();
761 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
766 static int __init arch_timer_of_init(struct device_node *np)
770 if (arch_timers_present & ARCH_CP15_TIMER) {
771 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
775 arch_timers_present |= ARCH_CP15_TIMER;
776 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
777 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
779 arch_timer_detect_rate(NULL, np);
781 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
784 * If we cannot rely on firmware initializing the timer registers then
785 * we should use the physical timers instead.
787 if (IS_ENABLED(CONFIG_ARM) &&
788 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
789 arch_timer_uses_ppi = PHYS_SECURE_PPI;
791 return arch_timer_init();
793 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
794 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
796 static int __init arch_timer_mem_init(struct device_node *np)
798 struct device_node *frame, *best_frame = NULL;
799 void __iomem *cntctlbase, *base;
800 unsigned int irq, ret = -EINVAL;
803 arch_timers_present |= ARCH_MEM_TIMER;
804 cntctlbase = of_iomap(np, 0);
806 pr_err("arch_timer: Can't find CNTCTLBase\n");
810 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
813 * Try to find a virtual capable frame. Otherwise fall back to a
814 * physical capable frame.
816 for_each_available_child_of_node(np, frame) {
820 if (of_property_read_u32(frame, "frame-number", &n)) {
821 pr_err("arch_timer: Missing frame-number\n");
826 /* Try enabling everything, and see what sticks */
827 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
828 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
829 writel_relaxed(cntacr, cntctlbase + CNTACR(n));
830 cntacr = readl_relaxed(cntctlbase + CNTACR(n));
832 if ((cnttidr & CNTTIDR_VIRT(n)) &&
833 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
834 of_node_put(best_frame);
836 arch_timer_mem_use_virtual = true;
840 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
843 of_node_put(best_frame);
844 best_frame = of_node_get(frame);
848 base = arch_counter_base = of_iomap(best_frame, 0);
850 pr_err("arch_timer: Can't map frame's registers\n");
854 if (arch_timer_mem_use_virtual)
855 irq = irq_of_parse_and_map(best_frame, 1);
857 irq = irq_of_parse_and_map(best_frame, 0);
861 pr_err("arch_timer: Frame missing %s irq",
862 arch_timer_mem_use_virtual ? "virt" : "phys");
866 arch_timer_detect_rate(base, np);
867 ret = arch_timer_mem_register(base, irq);
871 return arch_timer_common_init();
874 of_node_put(best_frame);
877 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
878 arch_timer_mem_init);
881 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
883 int trigger, polarity;
888 trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
889 : ACPI_LEVEL_SENSITIVE;
891 polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
894 return acpi_register_gsi(NULL, interrupt, trigger, polarity);
897 /* Initialize per-processor generic timer */
898 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
900 struct acpi_table_gtdt *gtdt;
902 if (arch_timers_present & ARCH_CP15_TIMER) {
903 pr_warn("arch_timer: already initialized, skipping\n");
907 gtdt = container_of(table, struct acpi_table_gtdt, header);
909 arch_timers_present |= ARCH_CP15_TIMER;
911 arch_timer_ppi[PHYS_SECURE_PPI] =
912 map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
913 gtdt->secure_el1_flags);
915 arch_timer_ppi[PHYS_NONSECURE_PPI] =
916 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
917 gtdt->non_secure_el1_flags);
919 arch_timer_ppi[VIRT_PPI] =
920 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
921 gtdt->virtual_timer_flags);
923 arch_timer_ppi[HYP_PPI] =
924 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
925 gtdt->non_secure_el2_flags);
927 /* Get the frequency from CNTFRQ */
928 arch_timer_detect_rate(NULL, NULL);
930 /* Always-on capability */
931 arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
936 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);