Merge tag 'v3.14.25' into backport/v3.14.24-ltsi-rc1+v3.14.25/snapshot-merge.wip
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/interrupt.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_address.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/sched_clock.h>
24
25 #include <asm/arch_timer.h>
26 #include <asm/virt.h>
27
28 #include <clocksource/arm_arch_timer.h>
29
30 #define CNTTIDR         0x08
31 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
32
33 #define CNTVCT_LO       0x08
34 #define CNTVCT_HI       0x0c
35 #define CNTFRQ          0x10
36 #define CNTP_TVAL       0x28
37 #define CNTP_CTL        0x2c
38 #define CNTV_TVAL       0x38
39 #define CNTV_CTL        0x3c
40
41 #define ARCH_CP15_TIMER BIT(0)
42 #define ARCH_MEM_TIMER  BIT(1)
43 static unsigned arch_timers_present __initdata;
44
45 static void __iomem *arch_counter_base;
46
47 struct arch_timer {
48         void __iomem *base;
49         struct clock_event_device evt;
50 };
51
52 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
53
54 static u32 arch_timer_rate;
55
56 enum ppi_nr {
57         PHYS_SECURE_PPI,
58         PHYS_NONSECURE_PPI,
59         VIRT_PPI,
60         HYP_PPI,
61         MAX_TIMER_PPI
62 };
63
64 static int arch_timer_ppi[MAX_TIMER_PPI];
65
66 static struct clock_event_device __percpu *arch_timer_evt;
67
68 static bool arch_timer_use_virtual = true;
69 static bool arch_timer_mem_use_virtual;
70
71 /*
72  * Architected system timer support.
73  */
74
75 static __always_inline
76 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
77                           struct clock_event_device *clk)
78 {
79         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
80                 struct arch_timer *timer = to_arch_timer(clk);
81                 switch (reg) {
82                 case ARCH_TIMER_REG_CTRL:
83                         writel_relaxed(val, timer->base + CNTP_CTL);
84                         break;
85                 case ARCH_TIMER_REG_TVAL:
86                         writel_relaxed(val, timer->base + CNTP_TVAL);
87                         break;
88                 }
89         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
90                 struct arch_timer *timer = to_arch_timer(clk);
91                 switch (reg) {
92                 case ARCH_TIMER_REG_CTRL:
93                         writel_relaxed(val, timer->base + CNTV_CTL);
94                         break;
95                 case ARCH_TIMER_REG_TVAL:
96                         writel_relaxed(val, timer->base + CNTV_TVAL);
97                         break;
98                 }
99         } else {
100                 arch_timer_reg_write_cp15(access, reg, val);
101         }
102 }
103
104 static __always_inline
105 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
106                         struct clock_event_device *clk)
107 {
108         u32 val;
109
110         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
111                 struct arch_timer *timer = to_arch_timer(clk);
112                 switch (reg) {
113                 case ARCH_TIMER_REG_CTRL:
114                         val = readl_relaxed(timer->base + CNTP_CTL);
115                         break;
116                 case ARCH_TIMER_REG_TVAL:
117                         val = readl_relaxed(timer->base + CNTP_TVAL);
118                         break;
119                 }
120         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
121                 struct arch_timer *timer = to_arch_timer(clk);
122                 switch (reg) {
123                 case ARCH_TIMER_REG_CTRL:
124                         val = readl_relaxed(timer->base + CNTV_CTL);
125                         break;
126                 case ARCH_TIMER_REG_TVAL:
127                         val = readl_relaxed(timer->base + CNTV_TVAL);
128                         break;
129                 }
130         } else {
131                 val = arch_timer_reg_read_cp15(access, reg);
132         }
133
134         return val;
135 }
136
137 static __always_inline irqreturn_t timer_handler(const int access,
138                                         struct clock_event_device *evt)
139 {
140         unsigned long ctrl;
141
142         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
143         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
144                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
145                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
146                 evt->event_handler(evt);
147                 return IRQ_HANDLED;
148         }
149
150         return IRQ_NONE;
151 }
152
153 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
154 {
155         struct clock_event_device *evt = dev_id;
156
157         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
158 }
159
160 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
161 {
162         struct clock_event_device *evt = dev_id;
163
164         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
165 }
166
167 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
168 {
169         struct clock_event_device *evt = dev_id;
170
171         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
172 }
173
174 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
175 {
176         struct clock_event_device *evt = dev_id;
177
178         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
179 }
180
181 static __always_inline void timer_set_mode(const int access, int mode,
182                                   struct clock_event_device *clk)
183 {
184         unsigned long ctrl;
185         switch (mode) {
186         case CLOCK_EVT_MODE_UNUSED:
187         case CLOCK_EVT_MODE_SHUTDOWN:
188                 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
189                 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
190                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
191                 break;
192         default:
193                 break;
194         }
195 }
196
197 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
198                                      struct clock_event_device *clk)
199 {
200         timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
201 }
202
203 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
204                                      struct clock_event_device *clk)
205 {
206         timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
207 }
208
209 static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
210                                          struct clock_event_device *clk)
211 {
212         timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
213 }
214
215 static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
216                                          struct clock_event_device *clk)
217 {
218         timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
219 }
220
221 static __always_inline void set_next_event(const int access, unsigned long evt,
222                                            struct clock_event_device *clk)
223 {
224         unsigned long ctrl;
225         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
226         ctrl |= ARCH_TIMER_CTRL_ENABLE;
227         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
228         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
229         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
230 }
231
232 static int arch_timer_set_next_event_virt(unsigned long evt,
233                                           struct clock_event_device *clk)
234 {
235         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
236         return 0;
237 }
238
239 static int arch_timer_set_next_event_phys(unsigned long evt,
240                                           struct clock_event_device *clk)
241 {
242         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
243         return 0;
244 }
245
246 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
247                                               struct clock_event_device *clk)
248 {
249         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
250         return 0;
251 }
252
253 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
254                                               struct clock_event_device *clk)
255 {
256         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
257         return 0;
258 }
259
260 static void __arch_timer_setup(unsigned type,
261                                struct clock_event_device *clk)
262 {
263         clk->features = CLOCK_EVT_FEAT_ONESHOT;
264
265         if (type == ARCH_CP15_TIMER) {
266                 clk->features |= CLOCK_EVT_FEAT_C3STOP;
267                 clk->name = "arch_sys_timer";
268                 clk->rating = 450;
269                 clk->cpumask = cpumask_of(smp_processor_id());
270                 if (arch_timer_use_virtual) {
271                         clk->irq = arch_timer_ppi[VIRT_PPI];
272                         clk->set_mode = arch_timer_set_mode_virt;
273                         clk->set_next_event = arch_timer_set_next_event_virt;
274                 } else {
275                         clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
276                         clk->set_mode = arch_timer_set_mode_phys;
277                         clk->set_next_event = arch_timer_set_next_event_phys;
278                 }
279         } else {
280                 clk->name = "arch_mem_timer";
281                 clk->rating = 400;
282                 clk->cpumask = cpu_all_mask;
283                 if (arch_timer_mem_use_virtual) {
284                         clk->set_mode = arch_timer_set_mode_virt_mem;
285                         clk->set_next_event =
286                                 arch_timer_set_next_event_virt_mem;
287                 } else {
288                         clk->set_mode = arch_timer_set_mode_phys_mem;
289                         clk->set_next_event =
290                                 arch_timer_set_next_event_phys_mem;
291                 }
292         }
293
294         clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
295
296         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
297 }
298
299 static void arch_timer_evtstrm_enable(int divider)
300 {
301         u32 cntkctl = arch_timer_get_cntkctl();
302
303         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
304         /* Set the divider and enable virtual event stream */
305         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
306                         | ARCH_TIMER_VIRT_EVT_EN;
307         arch_timer_set_cntkctl(cntkctl);
308         elf_hwcap |= HWCAP_EVTSTRM;
309 #ifdef CONFIG_COMPAT
310         compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
311 #endif
312 }
313
314 static void arch_timer_configure_evtstream(void)
315 {
316         int evt_stream_div, pos;
317
318         /* Find the closest power of two to the divisor */
319         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
320         pos = fls(evt_stream_div);
321         if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
322                 pos--;
323         /* enable event stream */
324         arch_timer_evtstrm_enable(min(pos, 15));
325 }
326
327 static void arch_counter_set_user_access(void)
328 {
329         u32 cntkctl = arch_timer_get_cntkctl();
330
331         /* Disable user access to the timers and the physical counter */
332         /* Also disable virtual event stream */
333         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
334                         | ARCH_TIMER_USR_VT_ACCESS_EN
335                         | ARCH_TIMER_VIRT_EVT_EN
336                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
337
338         /* Enable user access to the virtual counter */
339         cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
340
341         arch_timer_set_cntkctl(cntkctl);
342 }
343
344 static int arch_timer_setup(struct clock_event_device *clk)
345 {
346         __arch_timer_setup(ARCH_CP15_TIMER, clk);
347
348         if (arch_timer_use_virtual)
349                 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
350         else {
351                 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
352                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
353                         enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
354         }
355
356         arch_counter_set_user_access();
357         if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
358                 arch_timer_configure_evtstream();
359
360         return 0;
361 }
362
363 static void
364 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
365 {
366         /* Who has more than one independent system counter? */
367         if (arch_timer_rate)
368                 return;
369
370         /* Try to determine the frequency from the device tree or CNTFRQ */
371         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
372                 if (cntbase)
373                         arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
374                 else
375                         arch_timer_rate = arch_timer_get_cntfrq();
376         }
377
378         /* Check the timer frequency. */
379         if (arch_timer_rate == 0)
380                 pr_warn("Architected timer frequency not available\n");
381 }
382
383 static void arch_timer_banner(unsigned type)
384 {
385         pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
386                      type & ARCH_CP15_TIMER ? "cp15" : "",
387                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
388                      type & ARCH_MEM_TIMER ? "mmio" : "",
389                      (unsigned long)arch_timer_rate / 1000000,
390                      (unsigned long)(arch_timer_rate / 10000) % 100,
391                      type & ARCH_CP15_TIMER ?
392                         arch_timer_use_virtual ? "virt" : "phys" :
393                         "",
394                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
395                      type & ARCH_MEM_TIMER ?
396                         arch_timer_mem_use_virtual ? "virt" : "phys" :
397                         "");
398 }
399
400 u32 arch_timer_get_rate(void)
401 {
402         return arch_timer_rate;
403 }
404
405 static u64 arch_counter_get_cntvct_mem(void)
406 {
407         u32 vct_lo, vct_hi, tmp_hi;
408
409         do {
410                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
411                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
412                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
413         } while (vct_hi != tmp_hi);
414
415         return ((u64) vct_hi << 32) | vct_lo;
416 }
417
418 /*
419  * Default to cp15 based access because arm64 uses this function for
420  * sched_clock() before DT is probed and the cp15 method is guaranteed
421  * to exist on arm64. arm doesn't use this before DT is probed so even
422  * if we don't have the cp15 accessors we won't have a problem.
423  */
424 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
425
426 static cycle_t arch_counter_read(struct clocksource *cs)
427 {
428         return arch_timer_read_counter();
429 }
430
431 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
432 {
433         return arch_timer_read_counter();
434 }
435
436 static struct clocksource clocksource_counter = {
437         .name   = "arch_sys_counter",
438         .rating = 400,
439         .read   = arch_counter_read,
440         .mask   = CLOCKSOURCE_MASK(56),
441         .flags  = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
442 };
443
444 static struct cyclecounter cyclecounter = {
445         .read   = arch_counter_read_cc,
446         .mask   = CLOCKSOURCE_MASK(56),
447 };
448
449 static struct timecounter timecounter;
450
451 struct timecounter *arch_timer_get_timecounter(void)
452 {
453         return &timecounter;
454 }
455
456 static void __init arch_counter_register(unsigned type)
457 {
458         u64 start_count;
459
460         /* Register the CP15 based counter if we have one */
461         if (type & ARCH_CP15_TIMER)
462                 arch_timer_read_counter = arch_counter_get_cntvct;
463         else
464                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
465
466         start_count = arch_timer_read_counter();
467         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
468         cyclecounter.mult = clocksource_counter.mult;
469         cyclecounter.shift = clocksource_counter.shift;
470         timecounter_init(&timecounter, &cyclecounter, start_count);
471
472         /* 56 bits minimum, so we assume worst case rollover */
473         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
474 }
475
476 static void arch_timer_stop(struct clock_event_device *clk)
477 {
478         pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
479                  clk->irq, smp_processor_id());
480
481         if (arch_timer_use_virtual)
482                 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
483         else {
484                 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
485                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
486                         disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
487         }
488
489         clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
490 }
491
492 static int arch_timer_cpu_notify(struct notifier_block *self,
493                                            unsigned long action, void *hcpu)
494 {
495         /*
496          * Grab cpu pointer in each case to avoid spurious
497          * preemptible warnings
498          */
499         switch (action & ~CPU_TASKS_FROZEN) {
500         case CPU_STARTING:
501                 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
502                 break;
503         case CPU_DYING:
504                 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
505                 break;
506         }
507
508         return NOTIFY_OK;
509 }
510
511 static struct notifier_block arch_timer_cpu_nb = {
512         .notifier_call = arch_timer_cpu_notify,
513 };
514
515 #ifdef CONFIG_CPU_PM
516 static unsigned int saved_cntkctl;
517 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
518                                     unsigned long action, void *hcpu)
519 {
520         if (action == CPU_PM_ENTER)
521                 saved_cntkctl = arch_timer_get_cntkctl();
522         else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
523                 arch_timer_set_cntkctl(saved_cntkctl);
524         return NOTIFY_OK;
525 }
526
527 static struct notifier_block arch_timer_cpu_pm_notifier = {
528         .notifier_call = arch_timer_cpu_pm_notify,
529 };
530
531 static int __init arch_timer_cpu_pm_init(void)
532 {
533         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
534 }
535 #else
536 static int __init arch_timer_cpu_pm_init(void)
537 {
538         return 0;
539 }
540 #endif
541
542 static int __init arch_timer_register(void)
543 {
544         int err;
545         int ppi;
546
547         arch_timer_evt = alloc_percpu(struct clock_event_device);
548         if (!arch_timer_evt) {
549                 err = -ENOMEM;
550                 goto out;
551         }
552
553         if (arch_timer_use_virtual) {
554                 ppi = arch_timer_ppi[VIRT_PPI];
555                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
556                                          "arch_timer", arch_timer_evt);
557         } else {
558                 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
559                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
560                                          "arch_timer", arch_timer_evt);
561                 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
562                         ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
563                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
564                                                  "arch_timer", arch_timer_evt);
565                         if (err)
566                                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
567                                                 arch_timer_evt);
568                 }
569         }
570
571         if (err) {
572                 pr_err("arch_timer: can't register interrupt %d (%d)\n",
573                        ppi, err);
574                 goto out_free;
575         }
576
577         err = register_cpu_notifier(&arch_timer_cpu_nb);
578         if (err)
579                 goto out_free_irq;
580
581         err = arch_timer_cpu_pm_init();
582         if (err)
583                 goto out_unreg_notify;
584
585         /* Immediately configure the timer on the boot CPU */
586         arch_timer_setup(this_cpu_ptr(arch_timer_evt));
587
588         return 0;
589
590 out_unreg_notify:
591         unregister_cpu_notifier(&arch_timer_cpu_nb);
592 out_free_irq:
593         if (arch_timer_use_virtual)
594                 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
595         else {
596                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
597                                 arch_timer_evt);
598                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
599                         free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
600                                         arch_timer_evt);
601         }
602
603 out_free:
604         free_percpu(arch_timer_evt);
605 out:
606         return err;
607 }
608
609 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
610 {
611         int ret;
612         irq_handler_t func;
613         struct arch_timer *t;
614
615         t = kzalloc(sizeof(*t), GFP_KERNEL);
616         if (!t)
617                 return -ENOMEM;
618
619         t->base = base;
620         t->evt.irq = irq;
621         __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
622
623         if (arch_timer_mem_use_virtual)
624                 func = arch_timer_handler_virt_mem;
625         else
626                 func = arch_timer_handler_phys_mem;
627
628         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
629         if (ret) {
630                 pr_err("arch_timer: Failed to request mem timer irq\n");
631                 kfree(t);
632         }
633
634         return ret;
635 }
636
637 static const struct of_device_id arch_timer_of_match[] __initconst = {
638         { .compatible   = "arm,armv7-timer",    },
639         { .compatible   = "arm,armv8-timer",    },
640         {},
641 };
642
643 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
644         { .compatible   = "arm,armv7-timer-mem", },
645         {},
646 };
647
648 static void __init arch_timer_common_init(void)
649 {
650         unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
651
652         /* Wait until both nodes are probed if we have two timers */
653         if ((arch_timers_present & mask) != mask) {
654                 if (of_find_matching_node(NULL, arch_timer_mem_of_match) &&
655                                 !(arch_timers_present & ARCH_MEM_TIMER))
656                         return;
657                 if (of_find_matching_node(NULL, arch_timer_of_match) &&
658                                 !(arch_timers_present & ARCH_CP15_TIMER))
659                         return;
660         }
661
662         arch_timer_banner(arch_timers_present);
663         arch_counter_register(arch_timers_present);
664         arch_timer_arch_init();
665 }
666
667 static void __init arch_timer_init(struct device_node *np)
668 {
669         int i;
670
671         if (arch_timers_present & ARCH_CP15_TIMER) {
672                 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
673                 return;
674         }
675
676         arch_timers_present |= ARCH_CP15_TIMER;
677         for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
678                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
679         arch_timer_detect_rate(NULL, np);
680
681         /*
682          * If HYP mode is available, we know that the physical timer
683          * has been configured to be accessible from PL1. Use it, so
684          * that a guest can use the virtual timer instead.
685          *
686          * If no interrupt provided for virtual timer, we'll have to
687          * stick to the physical timer. It'd better be accessible...
688          */
689         if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
690                 arch_timer_use_virtual = false;
691
692                 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
693                     !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
694                         pr_warn("arch_timer: No interrupt available, giving up\n");
695                         return;
696                 }
697         }
698
699         arch_timer_register();
700         arch_timer_common_init();
701 }
702 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
703 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);
704
705 static void __init arch_timer_mem_init(struct device_node *np)
706 {
707         struct device_node *frame, *best_frame = NULL;
708         void __iomem *cntctlbase, *base;
709         unsigned int irq;
710         u32 cnttidr;
711
712         arch_timers_present |= ARCH_MEM_TIMER;
713         cntctlbase = of_iomap(np, 0);
714         if (!cntctlbase) {
715                 pr_err("arch_timer: Can't find CNTCTLBase\n");
716                 return;
717         }
718
719         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
720         iounmap(cntctlbase);
721
722         /*
723          * Try to find a virtual capable frame. Otherwise fall back to a
724          * physical capable frame.
725          */
726         for_each_available_child_of_node(np, frame) {
727                 int n;
728
729                 if (of_property_read_u32(frame, "frame-number", &n)) {
730                         pr_err("arch_timer: Missing frame-number\n");
731                         of_node_put(best_frame);
732                         of_node_put(frame);
733                         return;
734                 }
735
736                 if (cnttidr & CNTTIDR_VIRT(n)) {
737                         of_node_put(best_frame);
738                         best_frame = frame;
739                         arch_timer_mem_use_virtual = true;
740                         break;
741                 }
742                 of_node_put(best_frame);
743                 best_frame = of_node_get(frame);
744         }
745
746         base = arch_counter_base = of_iomap(best_frame, 0);
747         if (!base) {
748                 pr_err("arch_timer: Can't map frame's registers\n");
749                 of_node_put(best_frame);
750                 return;
751         }
752
753         if (arch_timer_mem_use_virtual)
754                 irq = irq_of_parse_and_map(best_frame, 1);
755         else
756                 irq = irq_of_parse_and_map(best_frame, 0);
757         of_node_put(best_frame);
758         if (!irq) {
759                 pr_err("arch_timer: Frame missing %s irq",
760                        arch_timer_mem_use_virtual ? "virt" : "phys");
761                 return;
762         }
763
764         arch_timer_detect_rate(base, np);
765         arch_timer_mem_register(base, irq);
766         arch_timer_common_init();
767 }
768 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
769                        arch_timer_mem_init);