Merge tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
[platform/kernel/linux-rpi.git] / drivers / clk / mvebu / armada-37xx-periph.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Marvell Armada 37xx SoC Peripheral clocks
4  *
5  * Copyright (C) 2016 Marvell
6  *
7  * Gregory CLEMENT <gregory.clement@free-electrons.com>
8  *
9  * Most of the peripheral clocks can be modelled like this:
10  *             _____    _______    _______
11  * TBG-A-P  --|     |  |       |  |       |   ______
12  * TBG-B-P  --| Mux |--| /div1 |--| /div2 |--| Gate |--> perip_clk
13  * TBG-A-S  --|     |  |       |  |       |  |______|
14  * TBG-B-S  --|_____|  |_______|  |_______|
15  *
16  * However some clocks may use only one or two block or and use the
17  * xtal clock as parent.
18  */
19
20 #include <linux/clk-provider.h>
21 #include <linux/io.h>
22 #include <linux/mfd/syscon.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/platform_device.h>
26 #include <linux/regmap.h>
27 #include <linux/slab.h>
28 #include <linux/jiffies.h>
29
30 #define TBG_SEL         0x0
31 #define DIV_SEL0        0x4
32 #define DIV_SEL1        0x8
33 #define DIV_SEL2        0xC
34 #define CLK_SEL         0x10
35 #define CLK_DIS         0x14
36
37 #define  ARMADA_37XX_DVFS_LOAD_1 1
38 #define LOAD_LEVEL_NR   4
39
40 #define ARMADA_37XX_NB_L0L1     0x18
41 #define ARMADA_37XX_NB_L2L3     0x1C
42 #define         ARMADA_37XX_NB_TBG_DIV_OFF      13
43 #define         ARMADA_37XX_NB_TBG_DIV_MASK     0x7
44 #define         ARMADA_37XX_NB_CLK_SEL_OFF      11
45 #define         ARMADA_37XX_NB_CLK_SEL_MASK     0x1
46 #define         ARMADA_37XX_NB_TBG_SEL_OFF      9
47 #define         ARMADA_37XX_NB_TBG_SEL_MASK     0x3
48 #define         ARMADA_37XX_NB_CONFIG_SHIFT     16
49 #define ARMADA_37XX_NB_DYN_MOD  0x24
50 #define         ARMADA_37XX_NB_DFS_EN   31
51 #define ARMADA_37XX_NB_CPU_LOAD 0x30
52 #define         ARMADA_37XX_NB_CPU_LOAD_MASK    0x3
53 #define         ARMADA_37XX_DVFS_LOAD_0         0
54 #define         ARMADA_37XX_DVFS_LOAD_1         1
55 #define         ARMADA_37XX_DVFS_LOAD_2         2
56 #define         ARMADA_37XX_DVFS_LOAD_3         3
57
58 struct clk_periph_driver_data {
59         struct clk_hw_onecell_data *hw_data;
60         spinlock_t lock;
61         void __iomem *reg;
62
63         /* Storage registers for suspend/resume operations */
64         u32 tbg_sel;
65         u32 div_sel0;
66         u32 div_sel1;
67         u32 div_sel2;
68         u32 clk_sel;
69         u32 clk_dis;
70 };
71
72 struct clk_double_div {
73         struct clk_hw hw;
74         void __iomem *reg1;
75         u8 shift1;
76         void __iomem *reg2;
77         u8 shift2;
78 };
79
80 struct clk_pm_cpu {
81         struct clk_hw hw;
82         void __iomem *reg_mux;
83         u8 shift_mux;
84         u32 mask_mux;
85         void __iomem *reg_div;
86         u8 shift_div;
87         struct regmap *nb_pm_base;
88         unsigned long l1_expiration;
89 };
90
91 #define to_clk_double_div(_hw) container_of(_hw, struct clk_double_div, hw)
92 #define to_clk_pm_cpu(_hw) container_of(_hw, struct clk_pm_cpu, hw)
93
94 struct clk_periph_data {
95         const char *name;
96         const char * const *parent_names;
97         int num_parents;
98         struct clk_hw *mux_hw;
99         struct clk_hw *rate_hw;
100         struct clk_hw *gate_hw;
101         struct clk_hw *muxrate_hw;
102         bool is_double_div;
103 };
104
105 static const struct clk_div_table clk_table6[] = {
106         { .val = 1, .div = 1, },
107         { .val = 2, .div = 2, },
108         { .val = 3, .div = 3, },
109         { .val = 4, .div = 4, },
110         { .val = 5, .div = 5, },
111         { .val = 6, .div = 6, },
112         { .val = 0, .div = 0, }, /* last entry */
113 };
114
115 static const struct clk_div_table clk_table1[] = {
116         { .val = 0, .div = 1, },
117         { .val = 1, .div = 2, },
118         { .val = 0, .div = 0, }, /* last entry */
119 };
120
121 static const struct clk_div_table clk_table2[] = {
122         { .val = 0, .div = 2, },
123         { .val = 1, .div = 4, },
124         { .val = 0, .div = 0, }, /* last entry */
125 };
126
127 static const struct clk_ops clk_double_div_ops;
128 static const struct clk_ops clk_pm_cpu_ops;
129
130 #define PERIPH_GATE(_name, _bit)                \
131 struct clk_gate gate_##_name = {                \
132         .reg = (void *)CLK_DIS,                 \
133         .bit_idx = _bit,                        \
134         .hw.init = &(struct clk_init_data){     \
135                 .ops =  &clk_gate_ops,          \
136         }                                       \
137 };
138
139 #define PERIPH_MUX(_name, _shift)               \
140 struct clk_mux mux_##_name = {                  \
141         .reg = (void *)TBG_SEL,                 \
142         .shift = _shift,                        \
143         .mask = 3,                              \
144         .hw.init = &(struct clk_init_data){     \
145                 .ops =  &clk_mux_ro_ops,        \
146         }                                       \
147 };
148
149 #define PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2) \
150 struct clk_double_div rate_##_name = {          \
151         .reg1 = (void *)_reg1,                  \
152         .reg2 = (void *)_reg2,                  \
153         .shift1 = _shift1,                      \
154         .shift2 = _shift2,                      \
155         .hw.init = &(struct clk_init_data){     \
156                 .ops =  &clk_double_div_ops,    \
157         }                                       \
158 };
159
160 #define PERIPH_DIV(_name, _reg, _shift, _table) \
161 struct clk_divider rate_##_name = {             \
162         .reg = (void *)_reg,                    \
163         .table = _table,                        \
164         .shift = _shift,                        \
165         .hw.init = &(struct clk_init_data){     \
166                 .ops =  &clk_divider_ro_ops,    \
167         }                                       \
168 };
169
170 #define PERIPH_PM_CPU(_name, _shift1, _reg, _shift2)    \
171 struct clk_pm_cpu muxrate_##_name = {           \
172         .reg_mux = (void *)TBG_SEL,             \
173         .mask_mux = 3,                          \
174         .shift_mux = _shift1,                   \
175         .reg_div = (void *)_reg,                \
176         .shift_div = _shift2,                   \
177         .hw.init = &(struct clk_init_data){     \
178                 .ops =  &clk_pm_cpu_ops,        \
179         }                                       \
180 };
181
182 #define PERIPH_CLK_FULL_DD(_name, _bit, _shift, _reg1, _reg2, _shift1, _shift2)\
183 static PERIPH_GATE(_name, _bit);                            \
184 static PERIPH_MUX(_name, _shift);                           \
185 static PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2);
186
187 #define PERIPH_CLK_FULL(_name, _bit, _shift, _reg, _shift1, _table)     \
188 static PERIPH_GATE(_name, _bit);                            \
189 static PERIPH_MUX(_name, _shift);                           \
190 static PERIPH_DIV(_name, _reg, _shift1, _table);
191
192 #define PERIPH_CLK_GATE_DIV(_name, _bit,  _reg, _shift, _table) \
193 static PERIPH_GATE(_name, _bit);                        \
194 static PERIPH_DIV(_name, _reg, _shift, _table);
195
196 #define PERIPH_CLK_MUX_DD(_name, _shift, _reg1, _reg2, _shift1, _shift2)\
197 static PERIPH_MUX(_name, _shift);                           \
198 static PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2);
199
200 #define REF_CLK_FULL(_name)                             \
201         { .name = #_name,                               \
202           .parent_names = (const char *[]){ "TBG-A-P",  \
203               "TBG-B-P", "TBG-A-S", "TBG-B-S"},         \
204           .num_parents = 4,                             \
205           .mux_hw = &mux_##_name.hw,                    \
206           .gate_hw = &gate_##_name.hw,                  \
207           .rate_hw = &rate_##_name.hw,                  \
208         }
209
210 #define REF_CLK_FULL_DD(_name)                          \
211         { .name = #_name,                               \
212           .parent_names = (const char *[]){ "TBG-A-P",  \
213               "TBG-B-P", "TBG-A-S", "TBG-B-S"},         \
214           .num_parents = 4,                             \
215           .mux_hw = &mux_##_name.hw,                    \
216           .gate_hw = &gate_##_name.hw,                  \
217           .rate_hw = &rate_##_name.hw,                  \
218           .is_double_div = true,                        \
219         }
220
221 #define REF_CLK_GATE(_name, _parent_name)                       \
222         { .name = #_name,                                       \
223           .parent_names = (const char *[]){ _parent_name},      \
224           .num_parents = 1,                                     \
225           .gate_hw = &gate_##_name.hw,                          \
226         }
227
228 #define REF_CLK_GATE_DIV(_name, _parent_name)                   \
229         { .name = #_name,                                       \
230           .parent_names = (const char *[]){ _parent_name},      \
231           .num_parents = 1,                                     \
232           .gate_hw = &gate_##_name.hw,                          \
233           .rate_hw = &rate_##_name.hw,                          \
234         }
235
236 #define REF_CLK_PM_CPU(_name)                           \
237         { .name = #_name,                               \
238           .parent_names = (const char *[]){ "TBG-A-P",  \
239               "TBG-B-P", "TBG-A-S", "TBG-B-S"},         \
240           .num_parents = 4,                             \
241           .muxrate_hw = &muxrate_##_name.hw,            \
242         }
243
244 #define REF_CLK_MUX_DD(_name)                           \
245         { .name = #_name,                               \
246           .parent_names = (const char *[]){ "TBG-A-P",  \
247               "TBG-B-P", "TBG-A-S", "TBG-B-S"},         \
248           .num_parents = 4,                             \
249           .mux_hw = &mux_##_name.hw,                    \
250           .rate_hw = &rate_##_name.hw,                  \
251           .is_double_div = true,                        \
252         }
253
254 /* NB periph clocks */
255 PERIPH_CLK_FULL_DD(mmc, 2, 0, DIV_SEL2, DIV_SEL2, 16, 13);
256 PERIPH_CLK_FULL_DD(sata_host, 3, 2, DIV_SEL2, DIV_SEL2, 10, 7);
257 PERIPH_CLK_FULL_DD(sec_at, 6, 4, DIV_SEL1, DIV_SEL1, 3, 0);
258 PERIPH_CLK_FULL_DD(sec_dap, 7, 6, DIV_SEL1, DIV_SEL1, 9, 6);
259 PERIPH_CLK_FULL_DD(tscem, 8, 8, DIV_SEL1, DIV_SEL1, 15, 12);
260 PERIPH_CLK_FULL(tscem_tmx, 10, 10, DIV_SEL1, 18, clk_table6);
261 static PERIPH_GATE(avs, 11);
262 PERIPH_CLK_FULL_DD(pwm, 13, 14, DIV_SEL0, DIV_SEL0, 3, 0);
263 PERIPH_CLK_FULL_DD(sqf, 12, 12, DIV_SEL1, DIV_SEL1, 27, 24);
264 static PERIPH_GATE(i2c_2, 16);
265 static PERIPH_GATE(i2c_1, 17);
266 PERIPH_CLK_GATE_DIV(ddr_phy, 19, DIV_SEL0, 18, clk_table2);
267 PERIPH_CLK_FULL_DD(ddr_fclk, 21, 16, DIV_SEL0, DIV_SEL0, 15, 12);
268 PERIPH_CLK_FULL(trace, 22, 18, DIV_SEL0, 20, clk_table6);
269 PERIPH_CLK_FULL(counter, 23, 20, DIV_SEL0, 23, clk_table6);
270 PERIPH_CLK_FULL_DD(eip97, 24, 24, DIV_SEL2, DIV_SEL2, 22, 19);
271 static PERIPH_PM_CPU(cpu, 22, DIV_SEL0, 28);
272
273 static struct clk_periph_data data_nb[] = {
274         REF_CLK_FULL_DD(mmc),
275         REF_CLK_FULL_DD(sata_host),
276         REF_CLK_FULL_DD(sec_at),
277         REF_CLK_FULL_DD(sec_dap),
278         REF_CLK_FULL_DD(tscem),
279         REF_CLK_FULL(tscem_tmx),
280         REF_CLK_GATE(avs, "xtal"),
281         REF_CLK_FULL_DD(sqf),
282         REF_CLK_FULL_DD(pwm),
283         REF_CLK_GATE(i2c_2, "xtal"),
284         REF_CLK_GATE(i2c_1, "xtal"),
285         REF_CLK_GATE_DIV(ddr_phy, "TBG-A-S"),
286         REF_CLK_FULL_DD(ddr_fclk),
287         REF_CLK_FULL(trace),
288         REF_CLK_FULL(counter),
289         REF_CLK_FULL_DD(eip97),
290         REF_CLK_PM_CPU(cpu),
291         { },
292 };
293
294 /* SB periph clocks */
295 PERIPH_CLK_MUX_DD(gbe_50, 6, DIV_SEL2, DIV_SEL2, 6, 9);
296 PERIPH_CLK_MUX_DD(gbe_core, 8, DIV_SEL1, DIV_SEL1, 18, 21);
297 PERIPH_CLK_MUX_DD(gbe_125, 10, DIV_SEL1, DIV_SEL1, 6, 9);
298 static PERIPH_GATE(gbe1_50, 0);
299 static PERIPH_GATE(gbe0_50, 1);
300 static PERIPH_GATE(gbe1_125, 2);
301 static PERIPH_GATE(gbe0_125, 3);
302 PERIPH_CLK_GATE_DIV(gbe1_core, 4, DIV_SEL1, 13, clk_table1);
303 PERIPH_CLK_GATE_DIV(gbe0_core, 5, DIV_SEL1, 14, clk_table1);
304 PERIPH_CLK_GATE_DIV(gbe_bm, 12, DIV_SEL1, 0, clk_table1);
305 PERIPH_CLK_FULL_DD(sdio, 11, 14, DIV_SEL0, DIV_SEL0, 3, 6);
306 PERIPH_CLK_FULL_DD(usb32_usb2_sys, 16, 16, DIV_SEL0, DIV_SEL0, 9, 12);
307 PERIPH_CLK_FULL_DD(usb32_ss_sys, 17, 18, DIV_SEL0, DIV_SEL0, 15, 18);
308 static PERIPH_GATE(pcie, 14);
309
310 static struct clk_periph_data data_sb[] = {
311         REF_CLK_MUX_DD(gbe_50),
312         REF_CLK_MUX_DD(gbe_core),
313         REF_CLK_MUX_DD(gbe_125),
314         REF_CLK_GATE(gbe1_50, "gbe_50"),
315         REF_CLK_GATE(gbe0_50, "gbe_50"),
316         REF_CLK_GATE(gbe1_125, "gbe_125"),
317         REF_CLK_GATE(gbe0_125, "gbe_125"),
318         REF_CLK_GATE_DIV(gbe1_core, "gbe_core"),
319         REF_CLK_GATE_DIV(gbe0_core, "gbe_core"),
320         REF_CLK_GATE_DIV(gbe_bm, "gbe_core"),
321         REF_CLK_FULL_DD(sdio),
322         REF_CLK_FULL_DD(usb32_usb2_sys),
323         REF_CLK_FULL_DD(usb32_ss_sys),
324         REF_CLK_GATE(pcie, "gbe_core"),
325         { },
326 };
327
328 static unsigned int get_div(void __iomem *reg, int shift)
329 {
330         u32 val;
331
332         val = (readl(reg) >> shift) & 0x7;
333         if (val > 6)
334                 return 0;
335         return val;
336 }
337
338 static unsigned long clk_double_div_recalc_rate(struct clk_hw *hw,
339                                                 unsigned long parent_rate)
340 {
341         struct clk_double_div *double_div = to_clk_double_div(hw);
342         unsigned int div;
343
344         div = get_div(double_div->reg1, double_div->shift1);
345         div *= get_div(double_div->reg2, double_div->shift2);
346
347         return DIV_ROUND_UP_ULL((u64)parent_rate, div);
348 }
349
350 static const struct clk_ops clk_double_div_ops = {
351         .recalc_rate = clk_double_div_recalc_rate,
352 };
353
354 static void armada_3700_pm_dvfs_update_regs(unsigned int load_level,
355                                             unsigned int *reg,
356                                             unsigned int *offset)
357 {
358         if (load_level <= ARMADA_37XX_DVFS_LOAD_1)
359                 *reg = ARMADA_37XX_NB_L0L1;
360         else
361                 *reg = ARMADA_37XX_NB_L2L3;
362
363         if (load_level == ARMADA_37XX_DVFS_LOAD_0 ||
364             load_level ==  ARMADA_37XX_DVFS_LOAD_2)
365                 *offset += ARMADA_37XX_NB_CONFIG_SHIFT;
366 }
367
368 static bool armada_3700_pm_dvfs_is_enabled(struct regmap *base)
369 {
370         unsigned int val, reg = ARMADA_37XX_NB_DYN_MOD;
371
372         if (IS_ERR(base))
373                 return false;
374
375         regmap_read(base, reg, &val);
376
377         return !!(val & BIT(ARMADA_37XX_NB_DFS_EN));
378 }
379
380 static unsigned int armada_3700_pm_dvfs_get_cpu_div(struct regmap *base)
381 {
382         unsigned int reg = ARMADA_37XX_NB_CPU_LOAD;
383         unsigned int offset = ARMADA_37XX_NB_TBG_DIV_OFF;
384         unsigned int load_level, div;
385
386         /*
387          * This function is always called after the function
388          * armada_3700_pm_dvfs_is_enabled, so no need to check again
389          * if the base is valid.
390          */
391         regmap_read(base, reg, &load_level);
392
393         /*
394          * The register and the offset inside this register accessed to
395          * read the current divider depend on the load level
396          */
397         load_level &= ARMADA_37XX_NB_CPU_LOAD_MASK;
398         armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
399
400         regmap_read(base, reg, &div);
401
402         return (div >> offset) & ARMADA_37XX_NB_TBG_DIV_MASK;
403 }
404
405 static unsigned int armada_3700_pm_dvfs_get_cpu_parent(struct regmap *base)
406 {
407         unsigned int reg = ARMADA_37XX_NB_CPU_LOAD;
408         unsigned int offset = ARMADA_37XX_NB_TBG_SEL_OFF;
409         unsigned int load_level, sel;
410
411         /*
412          * This function is always called after the function
413          * armada_3700_pm_dvfs_is_enabled, so no need to check again
414          * if the base is valid
415          */
416         regmap_read(base, reg, &load_level);
417
418         /*
419          * The register and the offset inside this register accessed to
420          * read the current divider depend on the load level
421          */
422         load_level &= ARMADA_37XX_NB_CPU_LOAD_MASK;
423         armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
424
425         regmap_read(base, reg, &sel);
426
427         return (sel >> offset) & ARMADA_37XX_NB_TBG_SEL_MASK;
428 }
429
430 static u8 clk_pm_cpu_get_parent(struct clk_hw *hw)
431 {
432         struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
433         u32 val;
434
435         if (armada_3700_pm_dvfs_is_enabled(pm_cpu->nb_pm_base)) {
436                 val = armada_3700_pm_dvfs_get_cpu_parent(pm_cpu->nb_pm_base);
437         } else {
438                 val = readl(pm_cpu->reg_mux) >> pm_cpu->shift_mux;
439                 val &= pm_cpu->mask_mux;
440         }
441
442         return val;
443 }
444
445 static unsigned long clk_pm_cpu_recalc_rate(struct clk_hw *hw,
446                                             unsigned long parent_rate)
447 {
448         struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
449         unsigned int div;
450
451         if (armada_3700_pm_dvfs_is_enabled(pm_cpu->nb_pm_base))
452                 div = armada_3700_pm_dvfs_get_cpu_div(pm_cpu->nb_pm_base);
453         else
454                 div = get_div(pm_cpu->reg_div, pm_cpu->shift_div);
455         return DIV_ROUND_UP_ULL((u64)parent_rate, div);
456 }
457
458 static long clk_pm_cpu_round_rate(struct clk_hw *hw, unsigned long rate,
459                                   unsigned long *parent_rate)
460 {
461         struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
462         struct regmap *base = pm_cpu->nb_pm_base;
463         unsigned int div = *parent_rate / rate;
464         unsigned int load_level;
465         /* only available when DVFS is enabled */
466         if (!armada_3700_pm_dvfs_is_enabled(base))
467                 return -EINVAL;
468
469         for (load_level = 0; load_level < LOAD_LEVEL_NR; load_level++) {
470                 unsigned int reg, val, offset = ARMADA_37XX_NB_TBG_DIV_OFF;
471
472                 armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
473
474                 regmap_read(base, reg, &val);
475
476                 val >>= offset;
477                 val &= ARMADA_37XX_NB_TBG_DIV_MASK;
478                 if (val == div)
479                         /*
480                          * We found a load level matching the target
481                          * divider, switch to this load level and
482                          * return.
483                          */
484                         return *parent_rate / div;
485         }
486
487         /* We didn't find any valid divider */
488         return -EINVAL;
489 }
490
491 /*
492  * Workaround when base CPU frequnecy is 1000 or 1200 MHz
493  *
494  * Switching the CPU from the L2 or L3 frequencies (250/300 or 200 MHz
495  * respectively) to L0 frequency (1/1.2 GHz) requires a significant
496  * amount of time to let VDD stabilize to the appropriate
497  * voltage. This amount of time is large enough that it cannot be
498  * covered by the hardware countdown register. Due to this, the CPU
499  * might start operating at L0 before the voltage is stabilized,
500  * leading to CPU stalls.
501  *
502  * To work around this problem, we prevent switching directly from the
503  * L2/L3 frequencies to the L0 frequency, and instead switch to the L1
504  * frequency in-between. The sequence therefore becomes:
505  * 1. First switch from L2/L3 (200/250/300 MHz) to L1 (500/600 MHz)
506  * 2. Sleep 20ms for stabling VDD voltage
507  * 3. Then switch from L1 (500/600 MHz) to L0 (1000/1200 MHz).
508  */
509 static void clk_pm_cpu_set_rate_wa(struct clk_pm_cpu *pm_cpu,
510                                    unsigned int new_level, unsigned long rate,
511                                    struct regmap *base)
512 {
513         unsigned int cur_level;
514
515         regmap_read(base, ARMADA_37XX_NB_CPU_LOAD, &cur_level);
516         cur_level &= ARMADA_37XX_NB_CPU_LOAD_MASK;
517
518         if (cur_level == new_level)
519                 return;
520
521         /*
522          * System wants to go to L1 on its own. If we are going from L2/L3,
523          * remember when 20ms will expire. If from L0, set the value so that
524          * next switch to L0 won't have to wait.
525          */
526         if (new_level == ARMADA_37XX_DVFS_LOAD_1) {
527                 if (cur_level == ARMADA_37XX_DVFS_LOAD_0)
528                         pm_cpu->l1_expiration = jiffies;
529                 else
530                         pm_cpu->l1_expiration = jiffies + msecs_to_jiffies(20);
531                 return;
532         }
533
534         /*
535          * If we are setting to L2/L3, just invalidate L1 expiration time,
536          * sleeping is not needed.
537          */
538         if (rate < 1000*1000*1000)
539                 goto invalidate_l1_exp;
540
541         /*
542          * We are going to L0 with rate >= 1GHz. Check whether we have been at
543          * L1 for long enough time. If not, go to L1 for 20ms.
544          */
545         if (pm_cpu->l1_expiration && time_is_before_eq_jiffies(pm_cpu->l1_expiration))
546                 goto invalidate_l1_exp;
547
548         regmap_update_bits(base, ARMADA_37XX_NB_CPU_LOAD,
549                            ARMADA_37XX_NB_CPU_LOAD_MASK,
550                            ARMADA_37XX_DVFS_LOAD_1);
551         msleep(20);
552
553 invalidate_l1_exp:
554         pm_cpu->l1_expiration = 0;
555 }
556
557 static int clk_pm_cpu_set_rate(struct clk_hw *hw, unsigned long rate,
558                                unsigned long parent_rate)
559 {
560         struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
561         struct regmap *base = pm_cpu->nb_pm_base;
562         unsigned int div = parent_rate / rate;
563         unsigned int load_level;
564
565         /* only available when DVFS is enabled */
566         if (!armada_3700_pm_dvfs_is_enabled(base))
567                 return -EINVAL;
568
569         for (load_level = 0; load_level < LOAD_LEVEL_NR; load_level++) {
570                 unsigned int reg, mask, val,
571                         offset = ARMADA_37XX_NB_TBG_DIV_OFF;
572
573                 armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
574
575                 regmap_read(base, reg, &val);
576                 val >>= offset;
577                 val &= ARMADA_37XX_NB_TBG_DIV_MASK;
578
579                 if (val == div) {
580                         /*
581                          * We found a load level matching the target
582                          * divider, switch to this load level and
583                          * return.
584                          */
585                         reg = ARMADA_37XX_NB_CPU_LOAD;
586                         mask = ARMADA_37XX_NB_CPU_LOAD_MASK;
587
588                         /* Apply workaround when base CPU frequency is 1000 or 1200 MHz */
589                         if (parent_rate >= 1000*1000*1000)
590                                 clk_pm_cpu_set_rate_wa(pm_cpu, load_level, rate, base);
591
592                         regmap_update_bits(base, reg, mask, load_level);
593
594                         return rate;
595                 }
596         }
597
598         /* We didn't find any valid divider */
599         return -EINVAL;
600 }
601
602 static const struct clk_ops clk_pm_cpu_ops = {
603         .get_parent = clk_pm_cpu_get_parent,
604         .round_rate = clk_pm_cpu_round_rate,
605         .set_rate = clk_pm_cpu_set_rate,
606         .recalc_rate = clk_pm_cpu_recalc_rate,
607 };
608
609 static const struct of_device_id armada_3700_periph_clock_of_match[] = {
610         { .compatible = "marvell,armada-3700-periph-clock-nb",
611           .data = data_nb, },
612         { .compatible = "marvell,armada-3700-periph-clock-sb",
613         .data = data_sb, },
614         { }
615 };
616
617 static int armada_3700_add_composite_clk(const struct clk_periph_data *data,
618                                          void __iomem *reg, spinlock_t *lock,
619                                          struct device *dev, struct clk_hw **hw)
620 {
621         const struct clk_ops *mux_ops = NULL, *gate_ops = NULL,
622                 *rate_ops = NULL;
623         struct clk_hw *mux_hw = NULL, *gate_hw = NULL, *rate_hw = NULL;
624
625         if (data->mux_hw) {
626                 struct clk_mux *mux;
627
628                 mux_hw = data->mux_hw;
629                 mux = to_clk_mux(mux_hw);
630                 mux->lock = lock;
631                 mux_ops = mux_hw->init->ops;
632                 mux->reg = reg + (u64)mux->reg;
633         }
634
635         if (data->gate_hw) {
636                 struct clk_gate *gate;
637
638                 gate_hw = data->gate_hw;
639                 gate = to_clk_gate(gate_hw);
640                 gate->lock = lock;
641                 gate_ops = gate_hw->init->ops;
642                 gate->reg = reg + (u64)gate->reg;
643                 gate->flags = CLK_GATE_SET_TO_DISABLE;
644         }
645
646         if (data->rate_hw) {
647                 rate_hw = data->rate_hw;
648                 rate_ops = rate_hw->init->ops;
649                 if (data->is_double_div) {
650                         struct clk_double_div *rate;
651
652                         rate =  to_clk_double_div(rate_hw);
653                         rate->reg1 = reg + (u64)rate->reg1;
654                         rate->reg2 = reg + (u64)rate->reg2;
655                 } else {
656                         struct clk_divider *rate = to_clk_divider(rate_hw);
657                         const struct clk_div_table *clkt;
658                         int table_size = 0;
659
660                         rate->reg = reg + (u64)rate->reg;
661                         for (clkt = rate->table; clkt->div; clkt++)
662                                 table_size++;
663                         rate->width = order_base_2(table_size);
664                         rate->lock = lock;
665                 }
666         }
667
668         if (data->muxrate_hw) {
669                 struct clk_pm_cpu *pmcpu_clk;
670                 struct clk_hw *muxrate_hw = data->muxrate_hw;
671                 struct regmap *map;
672
673                 pmcpu_clk =  to_clk_pm_cpu(muxrate_hw);
674                 pmcpu_clk->reg_mux = reg + (u64)pmcpu_clk->reg_mux;
675                 pmcpu_clk->reg_div = reg + (u64)pmcpu_clk->reg_div;
676
677                 mux_hw = muxrate_hw;
678                 rate_hw = muxrate_hw;
679                 mux_ops = muxrate_hw->init->ops;
680                 rate_ops = muxrate_hw->init->ops;
681
682                 map = syscon_regmap_lookup_by_compatible(
683                                 "marvell,armada-3700-nb-pm");
684                 pmcpu_clk->nb_pm_base = map;
685         }
686
687         *hw = clk_hw_register_composite(dev, data->name, data->parent_names,
688                                         data->num_parents, mux_hw,
689                                         mux_ops, rate_hw, rate_ops,
690                                         gate_hw, gate_ops, CLK_IGNORE_UNUSED);
691
692         return PTR_ERR_OR_ZERO(*hw);
693 }
694
695 static int __maybe_unused armada_3700_periph_clock_suspend(struct device *dev)
696 {
697         struct clk_periph_driver_data *data = dev_get_drvdata(dev);
698
699         data->tbg_sel = readl(data->reg + TBG_SEL);
700         data->div_sel0 = readl(data->reg + DIV_SEL0);
701         data->div_sel1 = readl(data->reg + DIV_SEL1);
702         data->div_sel2 = readl(data->reg + DIV_SEL2);
703         data->clk_sel = readl(data->reg + CLK_SEL);
704         data->clk_dis = readl(data->reg + CLK_DIS);
705
706         return 0;
707 }
708
709 static int __maybe_unused armada_3700_periph_clock_resume(struct device *dev)
710 {
711         struct clk_periph_driver_data *data = dev_get_drvdata(dev);
712
713         /* Follow the same order than what the Cortex-M3 does (ATF code) */
714         writel(data->clk_dis, data->reg + CLK_DIS);
715         writel(data->div_sel0, data->reg + DIV_SEL0);
716         writel(data->div_sel1, data->reg + DIV_SEL1);
717         writel(data->div_sel2, data->reg + DIV_SEL2);
718         writel(data->tbg_sel, data->reg + TBG_SEL);
719         writel(data->clk_sel, data->reg + CLK_SEL);
720
721         return 0;
722 }
723
724 static const struct dev_pm_ops armada_3700_periph_clock_pm_ops = {
725         SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(armada_3700_periph_clock_suspend,
726                                       armada_3700_periph_clock_resume)
727 };
728
729 static int armada_3700_periph_clock_probe(struct platform_device *pdev)
730 {
731         struct clk_periph_driver_data *driver_data;
732         struct device_node *np = pdev->dev.of_node;
733         const struct clk_periph_data *data;
734         struct device *dev = &pdev->dev;
735         int num_periph = 0, i, ret;
736         struct resource *res;
737
738         data = of_device_get_match_data(dev);
739         if (!data)
740                 return -ENODEV;
741
742         while (data[num_periph].name)
743                 num_periph++;
744
745         driver_data = devm_kzalloc(dev, sizeof(*driver_data), GFP_KERNEL);
746         if (!driver_data)
747                 return -ENOMEM;
748
749         driver_data->hw_data = devm_kzalloc(dev,
750                                             struct_size(driver_data->hw_data,
751                                                         hws, num_periph),
752                                             GFP_KERNEL);
753         if (!driver_data->hw_data)
754                 return -ENOMEM;
755         driver_data->hw_data->num = num_periph;
756
757         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
758         driver_data->reg = devm_ioremap_resource(dev, res);
759         if (IS_ERR(driver_data->reg))
760                 return PTR_ERR(driver_data->reg);
761
762         spin_lock_init(&driver_data->lock);
763
764         for (i = 0; i < num_periph; i++) {
765                 struct clk_hw **hw = &driver_data->hw_data->hws[i];
766                 if (armada_3700_add_composite_clk(&data[i], driver_data->reg,
767                                                   &driver_data->lock, dev, hw))
768                         dev_err(dev, "Can't register periph clock %s\n",
769                                 data[i].name);
770         }
771
772         ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get,
773                                      driver_data->hw_data);
774         if (ret) {
775                 for (i = 0; i < num_periph; i++)
776                         clk_hw_unregister(driver_data->hw_data->hws[i]);
777                 return ret;
778         }
779
780         platform_set_drvdata(pdev, driver_data);
781         return 0;
782 }
783
784 static int armada_3700_periph_clock_remove(struct platform_device *pdev)
785 {
786         struct clk_periph_driver_data *data = platform_get_drvdata(pdev);
787         struct clk_hw_onecell_data *hw_data = data->hw_data;
788         int i;
789
790         of_clk_del_provider(pdev->dev.of_node);
791
792         for (i = 0; i < hw_data->num; i++)
793                 clk_hw_unregister(hw_data->hws[i]);
794
795         return 0;
796 }
797
798 static struct platform_driver armada_3700_periph_clock_driver = {
799         .probe = armada_3700_periph_clock_probe,
800         .remove = armada_3700_periph_clock_remove,
801         .driver         = {
802                 .name   = "marvell-armada-3700-periph-clock",
803                 .of_match_table = armada_3700_periph_clock_of_match,
804                 .pm     = &armada_3700_periph_clock_pm_ops,
805         },
806 };
807
808 builtin_platform_driver(armada_3700_periph_clock_driver);