Merge tag 'u-boot-rockchip-20200708' of https://gitlab.denx.de/u-boot/custodians...
[platform/kernel/u-boot.git] / drivers / clk / clk_stm32mp1.c
1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) 2018, STMicroelectronics - All Rights Reserved
4  */
5
6 #include <common.h>
7 #include <clk-uclass.h>
8 #include <div64.h>
9 #include <dm.h>
10 #include <init.h>
11 #include <log.h>
12 #include <regmap.h>
13 #include <spl.h>
14 #include <syscon.h>
15 #include <time.h>
16 #include <vsprintf.h>
17 #include <linux/bitops.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <asm/arch/sys_proto.h>
21 #include <dt-bindings/clock/stm32mp1-clks.h>
22 #include <dt-bindings/clock/stm32mp1-clksrc.h>
23
24 DECLARE_GLOBAL_DATA_PTR;
25
26 #ifndef CONFIG_TFABOOT
27 #if !defined(CONFIG_SPL) || defined(CONFIG_SPL_BUILD)
28 /* activate clock tree initialization in the driver */
29 #define STM32MP1_CLOCK_TREE_INIT
30 #endif
31 #endif
32
33 #define MAX_HSI_HZ              64000000
34
35 /* TIMEOUT */
36 #define TIMEOUT_200MS           200000
37 #define TIMEOUT_1S              1000000
38
39 /* STGEN registers */
40 #define STGENC_CNTCR            0x00
41 #define STGENC_CNTSR            0x04
42 #define STGENC_CNTCVL           0x08
43 #define STGENC_CNTCVU           0x0C
44 #define STGENC_CNTFID0          0x20
45
46 #define STGENC_CNTCR_EN         BIT(0)
47
48 /* RCC registers */
49 #define RCC_OCENSETR            0x0C
50 #define RCC_OCENCLRR            0x10
51 #define RCC_HSICFGR             0x18
52 #define RCC_MPCKSELR            0x20
53 #define RCC_ASSCKSELR           0x24
54 #define RCC_RCK12SELR           0x28
55 #define RCC_MPCKDIVR            0x2C
56 #define RCC_AXIDIVR             0x30
57 #define RCC_APB4DIVR            0x3C
58 #define RCC_APB5DIVR            0x40
59 #define RCC_RTCDIVR             0x44
60 #define RCC_MSSCKSELR           0x48
61 #define RCC_PLL1CR              0x80
62 #define RCC_PLL1CFGR1           0x84
63 #define RCC_PLL1CFGR2           0x88
64 #define RCC_PLL1FRACR           0x8C
65 #define RCC_PLL1CSGR            0x90
66 #define RCC_PLL2CR              0x94
67 #define RCC_PLL2CFGR1           0x98
68 #define RCC_PLL2CFGR2           0x9C
69 #define RCC_PLL2FRACR           0xA0
70 #define RCC_PLL2CSGR            0xA4
71 #define RCC_I2C46CKSELR         0xC0
72 #define RCC_CPERCKSELR          0xD0
73 #define RCC_STGENCKSELR         0xD4
74 #define RCC_DDRITFCR            0xD8
75 #define RCC_BDCR                0x140
76 #define RCC_RDLSICR             0x144
77 #define RCC_MP_APB4ENSETR       0x200
78 #define RCC_MP_APB5ENSETR       0x208
79 #define RCC_MP_AHB5ENSETR       0x210
80 #define RCC_MP_AHB6ENSETR       0x218
81 #define RCC_OCRDYR              0x808
82 #define RCC_DBGCFGR             0x80C
83 #define RCC_RCK3SELR            0x820
84 #define RCC_RCK4SELR            0x824
85 #define RCC_MCUDIVR             0x830
86 #define RCC_APB1DIVR            0x834
87 #define RCC_APB2DIVR            0x838
88 #define RCC_APB3DIVR            0x83C
89 #define RCC_PLL3CR              0x880
90 #define RCC_PLL3CFGR1           0x884
91 #define RCC_PLL3CFGR2           0x888
92 #define RCC_PLL3FRACR           0x88C
93 #define RCC_PLL3CSGR            0x890
94 #define RCC_PLL4CR              0x894
95 #define RCC_PLL4CFGR1           0x898
96 #define RCC_PLL4CFGR2           0x89C
97 #define RCC_PLL4FRACR           0x8A0
98 #define RCC_PLL4CSGR            0x8A4
99 #define RCC_I2C12CKSELR         0x8C0
100 #define RCC_I2C35CKSELR         0x8C4
101 #define RCC_SPI2S1CKSELR        0x8D8
102 #define RCC_SPI45CKSELR         0x8E0
103 #define RCC_UART6CKSELR         0x8E4
104 #define RCC_UART24CKSELR        0x8E8
105 #define RCC_UART35CKSELR        0x8EC
106 #define RCC_UART78CKSELR        0x8F0
107 #define RCC_SDMMC12CKSELR       0x8F4
108 #define RCC_SDMMC3CKSELR        0x8F8
109 #define RCC_ETHCKSELR           0x8FC
110 #define RCC_QSPICKSELR          0x900
111 #define RCC_FMCCKSELR           0x904
112 #define RCC_USBCKSELR           0x91C
113 #define RCC_DSICKSELR           0x924
114 #define RCC_ADCCKSELR           0x928
115 #define RCC_MP_APB1ENSETR       0xA00
116 #define RCC_MP_APB2ENSETR       0XA08
117 #define RCC_MP_APB3ENSETR       0xA10
118 #define RCC_MP_AHB2ENSETR       0xA18
119 #define RCC_MP_AHB3ENSETR       0xA20
120 #define RCC_MP_AHB4ENSETR       0xA28
121
122 /* used for most of SELR register */
123 #define RCC_SELR_SRC_MASK       GENMASK(2, 0)
124 #define RCC_SELR_SRCRDY         BIT(31)
125
126 /* Values of RCC_MPCKSELR register */
127 #define RCC_MPCKSELR_HSI        0
128 #define RCC_MPCKSELR_HSE        1
129 #define RCC_MPCKSELR_PLL        2
130 #define RCC_MPCKSELR_PLL_MPUDIV 3
131
132 /* Values of RCC_ASSCKSELR register */
133 #define RCC_ASSCKSELR_HSI       0
134 #define RCC_ASSCKSELR_HSE       1
135 #define RCC_ASSCKSELR_PLL       2
136
137 /* Values of RCC_MSSCKSELR register */
138 #define RCC_MSSCKSELR_HSI       0
139 #define RCC_MSSCKSELR_HSE       1
140 #define RCC_MSSCKSELR_CSI       2
141 #define RCC_MSSCKSELR_PLL       3
142
143 /* Values of RCC_CPERCKSELR register */
144 #define RCC_CPERCKSELR_HSI      0
145 #define RCC_CPERCKSELR_CSI      1
146 #define RCC_CPERCKSELR_HSE      2
147
148 /* used for most of DIVR register : max div for RTC */
149 #define RCC_DIVR_DIV_MASK       GENMASK(5, 0)
150 #define RCC_DIVR_DIVRDY         BIT(31)
151
152 /* Masks for specific DIVR registers */
153 #define RCC_APBXDIV_MASK        GENMASK(2, 0)
154 #define RCC_MPUDIV_MASK         GENMASK(2, 0)
155 #define RCC_AXIDIV_MASK         GENMASK(2, 0)
156 #define RCC_MCUDIV_MASK         GENMASK(3, 0)
157
158 /*  offset between RCC_MP_xxxENSETR and RCC_MP_xxxENCLRR registers */
159 #define RCC_MP_ENCLRR_OFFSET    4
160
161 /* Fields of RCC_BDCR register */
162 #define RCC_BDCR_LSEON          BIT(0)
163 #define RCC_BDCR_LSEBYP         BIT(1)
164 #define RCC_BDCR_LSERDY         BIT(2)
165 #define RCC_BDCR_DIGBYP         BIT(3)
166 #define RCC_BDCR_LSEDRV_MASK    GENMASK(5, 4)
167 #define RCC_BDCR_LSEDRV_SHIFT   4
168 #define RCC_BDCR_LSECSSON       BIT(8)
169 #define RCC_BDCR_RTCCKEN        BIT(20)
170 #define RCC_BDCR_RTCSRC_MASK    GENMASK(17, 16)
171 #define RCC_BDCR_RTCSRC_SHIFT   16
172
173 /* Fields of RCC_RDLSICR register */
174 #define RCC_RDLSICR_LSION       BIT(0)
175 #define RCC_RDLSICR_LSIRDY      BIT(1)
176
177 /* used for ALL PLLNCR registers */
178 #define RCC_PLLNCR_PLLON        BIT(0)
179 #define RCC_PLLNCR_PLLRDY       BIT(1)
180 #define RCC_PLLNCR_SSCG_CTRL    BIT(2)
181 #define RCC_PLLNCR_DIVPEN       BIT(4)
182 #define RCC_PLLNCR_DIVQEN       BIT(5)
183 #define RCC_PLLNCR_DIVREN       BIT(6)
184 #define RCC_PLLNCR_DIVEN_SHIFT  4
185
186 /* used for ALL PLLNCFGR1 registers */
187 #define RCC_PLLNCFGR1_DIVM_SHIFT        16
188 #define RCC_PLLNCFGR1_DIVM_MASK         GENMASK(21, 16)
189 #define RCC_PLLNCFGR1_DIVN_SHIFT        0
190 #define RCC_PLLNCFGR1_DIVN_MASK         GENMASK(8, 0)
191 /* only for PLL3 and PLL4 */
192 #define RCC_PLLNCFGR1_IFRGE_SHIFT       24
193 #define RCC_PLLNCFGR1_IFRGE_MASK        GENMASK(25, 24)
194
195 /* used for ALL PLLNCFGR2 registers , using stm32mp1_div_id */
196 #define RCC_PLLNCFGR2_SHIFT(div_id)     ((div_id) * 8)
197 #define RCC_PLLNCFGR2_DIVX_MASK         GENMASK(6, 0)
198 #define RCC_PLLNCFGR2_DIVP_SHIFT        RCC_PLLNCFGR2_SHIFT(_DIV_P)
199 #define RCC_PLLNCFGR2_DIVP_MASK         GENMASK(6, 0)
200 #define RCC_PLLNCFGR2_DIVQ_SHIFT        RCC_PLLNCFGR2_SHIFT(_DIV_Q)
201 #define RCC_PLLNCFGR2_DIVQ_MASK         GENMASK(14, 8)
202 #define RCC_PLLNCFGR2_DIVR_SHIFT        RCC_PLLNCFGR2_SHIFT(_DIV_R)
203 #define RCC_PLLNCFGR2_DIVR_MASK         GENMASK(22, 16)
204
205 /* used for ALL PLLNFRACR registers */
206 #define RCC_PLLNFRACR_FRACV_SHIFT       3
207 #define RCC_PLLNFRACR_FRACV_MASK        GENMASK(15, 3)
208 #define RCC_PLLNFRACR_FRACLE            BIT(16)
209
210 /* used for ALL PLLNCSGR registers */
211 #define RCC_PLLNCSGR_INC_STEP_SHIFT     16
212 #define RCC_PLLNCSGR_INC_STEP_MASK      GENMASK(30, 16)
213 #define RCC_PLLNCSGR_MOD_PER_SHIFT      0
214 #define RCC_PLLNCSGR_MOD_PER_MASK       GENMASK(12, 0)
215 #define RCC_PLLNCSGR_SSCG_MODE_SHIFT    15
216 #define RCC_PLLNCSGR_SSCG_MODE_MASK     BIT(15)
217
218 /* used for RCC_OCENSETR and RCC_OCENCLRR registers */
219 #define RCC_OCENR_HSION                 BIT(0)
220 #define RCC_OCENR_CSION                 BIT(4)
221 #define RCC_OCENR_DIGBYP                BIT(7)
222 #define RCC_OCENR_HSEON                 BIT(8)
223 #define RCC_OCENR_HSEBYP                BIT(10)
224 #define RCC_OCENR_HSECSSON              BIT(11)
225
226 /* Fields of RCC_OCRDYR register */
227 #define RCC_OCRDYR_HSIRDY               BIT(0)
228 #define RCC_OCRDYR_HSIDIVRDY            BIT(2)
229 #define RCC_OCRDYR_CSIRDY               BIT(4)
230 #define RCC_OCRDYR_HSERDY               BIT(8)
231
232 /* Fields of DDRITFCR register */
233 #define RCC_DDRITFCR_DDRCKMOD_MASK      GENMASK(22, 20)
234 #define RCC_DDRITFCR_DDRCKMOD_SHIFT     20
235 #define RCC_DDRITFCR_DDRCKMOD_SSR       0
236
237 /* Fields of RCC_HSICFGR register */
238 #define RCC_HSICFGR_HSIDIV_MASK         GENMASK(1, 0)
239
240 /* used for MCO related operations */
241 #define RCC_MCOCFG_MCOON                BIT(12)
242 #define RCC_MCOCFG_MCODIV_MASK          GENMASK(7, 4)
243 #define RCC_MCOCFG_MCODIV_SHIFT         4
244 #define RCC_MCOCFG_MCOSRC_MASK          GENMASK(2, 0)
245
246 enum stm32mp1_parent_id {
247 /*
248  * _HSI, _HSE, _CSI, _LSI, _LSE should not be moved
249  * they are used as index in osc[] as entry point
250  */
251         _HSI,
252         _HSE,
253         _CSI,
254         _LSI,
255         _LSE,
256         _I2S_CKIN,
257         NB_OSC,
258
259 /* other parent source */
260         _HSI_KER = NB_OSC,
261         _HSE_KER,
262         _HSE_KER_DIV2,
263         _CSI_KER,
264         _PLL1_P,
265         _PLL1_Q,
266         _PLL1_R,
267         _PLL2_P,
268         _PLL2_Q,
269         _PLL2_R,
270         _PLL3_P,
271         _PLL3_Q,
272         _PLL3_R,
273         _PLL4_P,
274         _PLL4_Q,
275         _PLL4_R,
276         _ACLK,
277         _PCLK1,
278         _PCLK2,
279         _PCLK3,
280         _PCLK4,
281         _PCLK5,
282         _HCLK6,
283         _HCLK2,
284         _CK_PER,
285         _CK_MPU,
286         _CK_MCU,
287         _DSI_PHY,
288         _USB_PHY_48,
289         _PARENT_NB,
290         _UNKNOWN_ID = 0xff,
291 };
292
293 enum stm32mp1_parent_sel {
294         _I2C12_SEL,
295         _I2C35_SEL,
296         _I2C46_SEL,
297         _UART6_SEL,
298         _UART24_SEL,
299         _UART35_SEL,
300         _UART78_SEL,
301         _SDMMC12_SEL,
302         _SDMMC3_SEL,
303         _ETH_SEL,
304         _QSPI_SEL,
305         _FMC_SEL,
306         _USBPHY_SEL,
307         _USBO_SEL,
308         _STGEN_SEL,
309         _DSI_SEL,
310         _ADC12_SEL,
311         _SPI1_SEL,
312         _SPI45_SEL,
313         _RTC_SEL,
314         _PARENT_SEL_NB,
315         _UNKNOWN_SEL = 0xff,
316 };
317
318 enum stm32mp1_pll_id {
319         _PLL1,
320         _PLL2,
321         _PLL3,
322         _PLL4,
323         _PLL_NB
324 };
325
326 enum stm32mp1_div_id {
327         _DIV_P,
328         _DIV_Q,
329         _DIV_R,
330         _DIV_NB,
331 };
332
333 enum stm32mp1_clksrc_id {
334         CLKSRC_MPU,
335         CLKSRC_AXI,
336         CLKSRC_MCU,
337         CLKSRC_PLL12,
338         CLKSRC_PLL3,
339         CLKSRC_PLL4,
340         CLKSRC_RTC,
341         CLKSRC_MCO1,
342         CLKSRC_MCO2,
343         CLKSRC_NB
344 };
345
346 enum stm32mp1_clkdiv_id {
347         CLKDIV_MPU,
348         CLKDIV_AXI,
349         CLKDIV_MCU,
350         CLKDIV_APB1,
351         CLKDIV_APB2,
352         CLKDIV_APB3,
353         CLKDIV_APB4,
354         CLKDIV_APB5,
355         CLKDIV_RTC,
356         CLKDIV_MCO1,
357         CLKDIV_MCO2,
358         CLKDIV_NB
359 };
360
361 enum stm32mp1_pllcfg {
362         PLLCFG_M,
363         PLLCFG_N,
364         PLLCFG_P,
365         PLLCFG_Q,
366         PLLCFG_R,
367         PLLCFG_O,
368         PLLCFG_NB
369 };
370
371 enum stm32mp1_pllcsg {
372         PLLCSG_MOD_PER,
373         PLLCSG_INC_STEP,
374         PLLCSG_SSCG_MODE,
375         PLLCSG_NB
376 };
377
378 enum stm32mp1_plltype {
379         PLL_800,
380         PLL_1600,
381         PLL_TYPE_NB
382 };
383
384 struct stm32mp1_pll {
385         u8 refclk_min;
386         u8 refclk_max;
387         u8 divn_max;
388 };
389
390 struct stm32mp1_clk_gate {
391         u16 offset;
392         u8 bit;
393         u8 index;
394         u8 set_clr;
395         u8 sel;
396         u8 fixed;
397 };
398
399 struct stm32mp1_clk_sel {
400         u16 offset;
401         u8 src;
402         u8 msk;
403         u8 nb_parent;
404         const u8 *parent;
405 };
406
407 #define REFCLK_SIZE 4
408 struct stm32mp1_clk_pll {
409         enum stm32mp1_plltype plltype;
410         u16 rckxselr;
411         u16 pllxcfgr1;
412         u16 pllxcfgr2;
413         u16 pllxfracr;
414         u16 pllxcr;
415         u16 pllxcsgr;
416         u8 refclk[REFCLK_SIZE];
417 };
418
419 struct stm32mp1_clk_data {
420         const struct stm32mp1_clk_gate *gate;
421         const struct stm32mp1_clk_sel *sel;
422         const struct stm32mp1_clk_pll *pll;
423         const int nb_gate;
424 };
425
426 struct stm32mp1_clk_priv {
427         fdt_addr_t base;
428         const struct stm32mp1_clk_data *data;
429         ulong osc[NB_OSC];
430         struct udevice *osc_dev[NB_OSC];
431 };
432
433 #define STM32MP1_CLK(off, b, idx, s)            \
434         {                                       \
435                 .offset = (off),                \
436                 .bit = (b),                     \
437                 .index = (idx),                 \
438                 .set_clr = 0,                   \
439                 .sel = (s),                     \
440                 .fixed = _UNKNOWN_ID,           \
441         }
442
443 #define STM32MP1_CLK_F(off, b, idx, f)          \
444         {                                       \
445                 .offset = (off),                \
446                 .bit = (b),                     \
447                 .index = (idx),                 \
448                 .set_clr = 0,                   \
449                 .sel = _UNKNOWN_SEL,            \
450                 .fixed = (f),                   \
451         }
452
453 #define STM32MP1_CLK_SET_CLR(off, b, idx, s)    \
454         {                                       \
455                 .offset = (off),                \
456                 .bit = (b),                     \
457                 .index = (idx),                 \
458                 .set_clr = 1,                   \
459                 .sel = (s),                     \
460                 .fixed = _UNKNOWN_ID,           \
461         }
462
463 #define STM32MP1_CLK_SET_CLR_F(off, b, idx, f)  \
464         {                                       \
465                 .offset = (off),                \
466                 .bit = (b),                     \
467                 .index = (idx),                 \
468                 .set_clr = 1,                   \
469                 .sel = _UNKNOWN_SEL,            \
470                 .fixed = (f),                   \
471         }
472
473 #define STM32MP1_CLK_PARENT(idx, off, s, m, p)   \
474         [(idx)] = {                             \
475                 .offset = (off),                \
476                 .src = (s),                     \
477                 .msk = (m),                     \
478                 .parent = (p),                  \
479                 .nb_parent = ARRAY_SIZE((p))    \
480         }
481
482 #define STM32MP1_CLK_PLL(idx, type, off1, off2, off3, off4, off5, off6,\
483                         p1, p2, p3, p4) \
484         [(idx)] = {                             \
485                 .plltype = (type),                      \
486                 .rckxselr = (off1),             \
487                 .pllxcfgr1 = (off2),            \
488                 .pllxcfgr2 = (off3),            \
489                 .pllxfracr = (off4),            \
490                 .pllxcr = (off5),               \
491                 .pllxcsgr = (off6),             \
492                 .refclk[0] = (p1),              \
493                 .refclk[1] = (p2),              \
494                 .refclk[2] = (p3),              \
495                 .refclk[3] = (p4),              \
496         }
497
498 static const u8 stm32mp1_clks[][2] = {
499         {CK_PER, _CK_PER},
500         {CK_MPU, _CK_MPU},
501         {CK_AXI, _ACLK},
502         {CK_MCU, _CK_MCU},
503         {CK_HSE, _HSE},
504         {CK_CSI, _CSI},
505         {CK_LSI, _LSI},
506         {CK_LSE, _LSE},
507         {CK_HSI, _HSI},
508         {CK_HSE_DIV2, _HSE_KER_DIV2},
509 };
510
511 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
512         STM32MP1_CLK(RCC_DDRITFCR, 0, DDRC1, _UNKNOWN_SEL),
513         STM32MP1_CLK(RCC_DDRITFCR, 1, DDRC1LP, _UNKNOWN_SEL),
514         STM32MP1_CLK(RCC_DDRITFCR, 2, DDRC2, _UNKNOWN_SEL),
515         STM32MP1_CLK(RCC_DDRITFCR, 3, DDRC2LP, _UNKNOWN_SEL),
516         STM32MP1_CLK_F(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
517         STM32MP1_CLK(RCC_DDRITFCR, 5, DDRPHYCLP, _UNKNOWN_SEL),
518         STM32MP1_CLK(RCC_DDRITFCR, 6, DDRCAPB, _UNKNOWN_SEL),
519         STM32MP1_CLK(RCC_DDRITFCR, 7, DDRCAPBLP, _UNKNOWN_SEL),
520         STM32MP1_CLK(RCC_DDRITFCR, 8, AXIDCG, _UNKNOWN_SEL),
521         STM32MP1_CLK(RCC_DDRITFCR, 9, DDRPHYCAPB, _UNKNOWN_SEL),
522         STM32MP1_CLK(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _UNKNOWN_SEL),
523
524         STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
525         STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
526         STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
527         STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
528         STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
529         STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
530         STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
531         STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
532         STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
533         STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
534
535         STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 8, SPI1_K, _SPI1_SEL),
536         STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 10, SPI5_K, _SPI45_SEL),
537         STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
538
539         STM32MP1_CLK_SET_CLR_F(RCC_MP_APB3ENSETR, 13, VREF, _PCLK3),
540
541         STM32MP1_CLK_SET_CLR_F(RCC_MP_APB4ENSETR, 0, LTDC_PX, _PLL4_Q),
542         STM32MP1_CLK_SET_CLR_F(RCC_MP_APB4ENSETR, 4, DSI_PX, _PLL4_Q),
543         STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 4, DSI_K, _DSI_SEL),
544         STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
545         STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
546         STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
547
548         STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
549         STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
550         STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
551
552         STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB2ENSETR, 5, ADC12, _HCLK2),
553         STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 5, ADC12_K, _ADC12_SEL),
554         STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
555         STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
556
557         STM32MP1_CLK_SET_CLR(RCC_MP_AHB3ENSETR, 11, HSEM, _UNKNOWN_SEL),
558         STM32MP1_CLK_SET_CLR(RCC_MP_AHB3ENSETR, 12, IPCC, _UNKNOWN_SEL),
559
560         STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
561         STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
562         STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
563         STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
564         STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
565         STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
566         STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
567         STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
568         STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
569         STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
570         STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
571
572         STM32MP1_CLK_SET_CLR(RCC_MP_AHB5ENSETR, 0, GPIOZ, _UNKNOWN_SEL),
573         STM32MP1_CLK_SET_CLR(RCC_MP_AHB5ENSETR, 6, RNG1_K, _UNKNOWN_SEL),
574
575         STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 7, ETHCK_K, _ETH_SEL),
576         STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 8, ETHTX, _UNKNOWN_SEL),
577         STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 9, ETHRX, _UNKNOWN_SEL),
578         STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB6ENSETR, 10, ETHMAC, _ACLK),
579         STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
580         STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
581         STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
582         STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
583         STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
584
585         STM32MP1_CLK(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
586
587         STM32MP1_CLK(RCC_BDCR, 20, RTC, _RTC_SEL),
588 };
589
590 static const u8 i2c12_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
591 static const u8 i2c35_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
592 static const u8 i2c46_parents[] = {_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER};
593 static const u8 uart6_parents[] = {_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER,
594                                         _HSE_KER};
595 static const u8 uart24_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
596                                          _HSE_KER};
597 static const u8 uart35_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
598                                          _HSE_KER};
599 static const u8 uart78_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
600                                          _HSE_KER};
601 static const u8 sdmmc12_parents[] = {_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER};
602 static const u8 sdmmc3_parents[] = {_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER};
603 static const u8 eth_parents[] = {_PLL4_P, _PLL3_Q};
604 static const u8 qspi_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
605 static const u8 fmc_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
606 static const u8 usbphy_parents[] = {_HSE_KER, _PLL4_R, _HSE_KER_DIV2};
607 static const u8 usbo_parents[] = {_PLL4_R, _USB_PHY_48};
608 static const u8 stgen_parents[] = {_HSI_KER, _HSE_KER};
609 static const u8 dsi_parents[] = {_DSI_PHY, _PLL4_P};
610 static const u8 adc_parents[] = {_PLL4_R, _CK_PER, _PLL3_Q};
611 static const u8 spi_parents[] = {_PLL4_P, _PLL3_Q, _I2S_CKIN, _CK_PER,
612                                  _PLL3_R};
613 static const u8 spi45_parents[] = {_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER,
614                                    _HSE_KER};
615 static const u8 rtc_parents[] = {_UNKNOWN_ID, _LSE, _LSI, _HSE};
616
617 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
618         STM32MP1_CLK_PARENT(_I2C12_SEL, RCC_I2C12CKSELR, 0, 0x7, i2c12_parents),
619         STM32MP1_CLK_PARENT(_I2C35_SEL, RCC_I2C35CKSELR, 0, 0x7, i2c35_parents),
620         STM32MP1_CLK_PARENT(_I2C46_SEL, RCC_I2C46CKSELR, 0, 0x7, i2c46_parents),
621         STM32MP1_CLK_PARENT(_UART6_SEL, RCC_UART6CKSELR, 0, 0x7, uart6_parents),
622         STM32MP1_CLK_PARENT(_UART24_SEL, RCC_UART24CKSELR, 0, 0x7,
623                             uart24_parents),
624         STM32MP1_CLK_PARENT(_UART35_SEL, RCC_UART35CKSELR, 0, 0x7,
625                             uart35_parents),
626         STM32MP1_CLK_PARENT(_UART78_SEL, RCC_UART78CKSELR, 0, 0x7,
627                             uart78_parents),
628         STM32MP1_CLK_PARENT(_SDMMC12_SEL, RCC_SDMMC12CKSELR, 0, 0x7,
629                             sdmmc12_parents),
630         STM32MP1_CLK_PARENT(_SDMMC3_SEL, RCC_SDMMC3CKSELR, 0, 0x7,
631                             sdmmc3_parents),
632         STM32MP1_CLK_PARENT(_ETH_SEL, RCC_ETHCKSELR, 0, 0x3, eth_parents),
633         STM32MP1_CLK_PARENT(_QSPI_SEL, RCC_QSPICKSELR, 0, 0x3, qspi_parents),
634         STM32MP1_CLK_PARENT(_FMC_SEL, RCC_FMCCKSELR, 0, 0x3, fmc_parents),
635         STM32MP1_CLK_PARENT(_USBPHY_SEL, RCC_USBCKSELR, 0, 0x3, usbphy_parents),
636         STM32MP1_CLK_PARENT(_USBO_SEL, RCC_USBCKSELR, 4, 0x1, usbo_parents),
637         STM32MP1_CLK_PARENT(_STGEN_SEL, RCC_STGENCKSELR, 0, 0x3, stgen_parents),
638         STM32MP1_CLK_PARENT(_DSI_SEL, RCC_DSICKSELR, 0, 0x1, dsi_parents),
639         STM32MP1_CLK_PARENT(_ADC12_SEL, RCC_ADCCKSELR, 0, 0x3, adc_parents),
640         STM32MP1_CLK_PARENT(_SPI1_SEL, RCC_SPI2S1CKSELR, 0, 0x7, spi_parents),
641         STM32MP1_CLK_PARENT(_SPI45_SEL, RCC_SPI45CKSELR, 0, 0x7, spi45_parents),
642         STM32MP1_CLK_PARENT(_RTC_SEL, RCC_BDCR, RCC_BDCR_RTCSRC_SHIFT,
643                             (RCC_BDCR_RTCSRC_MASK >> RCC_BDCR_RTCSRC_SHIFT),
644                             rtc_parents),
645 };
646
647 #ifdef STM32MP1_CLOCK_TREE_INIT
648
649 /* define characteristic of PLL according type */
650 #define DIVM_MIN        0
651 #define DIVM_MAX        63
652 #define DIVN_MIN        24
653 #define DIVP_MIN        0
654 #define DIVP_MAX        127
655 #define FRAC_MAX        8192
656
657 #define PLL1600_VCO_MIN 800000000
658 #define PLL1600_VCO_MAX 1600000000
659
660 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
661         [PLL_800] = {
662                 .refclk_min = 4,
663                 .refclk_max = 16,
664                 .divn_max = 99,
665                 },
666         [PLL_1600] = {
667                 .refclk_min = 8,
668                 .refclk_max = 16,
669                 .divn_max = 199,
670                 },
671 };
672 #endif /* STM32MP1_CLOCK_TREE_INIT */
673
674 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
675         STM32MP1_CLK_PLL(_PLL1, PLL_1600,
676                          RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
677                          RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
678                          _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
679         STM32MP1_CLK_PLL(_PLL2, PLL_1600,
680                          RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
681                          RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
682                          _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
683         STM32MP1_CLK_PLL(_PLL3, PLL_800,
684                          RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
685                          RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
686                          _HSI, _HSE, _CSI, _UNKNOWN_ID),
687         STM32MP1_CLK_PLL(_PLL4, PLL_800,
688                          RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
689                          RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
690                          _HSI, _HSE, _CSI, _I2S_CKIN),
691 };
692
693 /* Prescaler table lookups for clock computation */
694 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
695 static const u8 stm32mp1_mcu_div[16] = {
696         0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
697 };
698
699 /* div = /1 /2 /4 /8 /16 : same divider for pmu and apbx*/
700 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
701 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
702 static const u8 stm32mp1_mpu_apbx_div[8] = {
703         0, 1, 2, 3, 4, 4, 4, 4
704 };
705
706 /* div = /1 /2 /3 /4 */
707 static const u8 stm32mp1_axi_div[8] = {
708         1, 2, 3, 4, 4, 4, 4, 4
709 };
710
711 static const __maybe_unused
712 char * const stm32mp1_clk_parent_name[_PARENT_NB] = {
713         [_HSI] = "HSI",
714         [_HSE] = "HSE",
715         [_CSI] = "CSI",
716         [_LSI] = "LSI",
717         [_LSE] = "LSE",
718         [_I2S_CKIN] = "I2S_CKIN",
719         [_HSI_KER] = "HSI_KER",
720         [_HSE_KER] = "HSE_KER",
721         [_HSE_KER_DIV2] = "HSE_KER_DIV2",
722         [_CSI_KER] = "CSI_KER",
723         [_PLL1_P] = "PLL1_P",
724         [_PLL1_Q] = "PLL1_Q",
725         [_PLL1_R] = "PLL1_R",
726         [_PLL2_P] = "PLL2_P",
727         [_PLL2_Q] = "PLL2_Q",
728         [_PLL2_R] = "PLL2_R",
729         [_PLL3_P] = "PLL3_P",
730         [_PLL3_Q] = "PLL3_Q",
731         [_PLL3_R] = "PLL3_R",
732         [_PLL4_P] = "PLL4_P",
733         [_PLL4_Q] = "PLL4_Q",
734         [_PLL4_R] = "PLL4_R",
735         [_ACLK] = "ACLK",
736         [_PCLK1] = "PCLK1",
737         [_PCLK2] = "PCLK2",
738         [_PCLK3] = "PCLK3",
739         [_PCLK4] = "PCLK4",
740         [_PCLK5] = "PCLK5",
741         [_HCLK6] = "KCLK6",
742         [_HCLK2] = "HCLK2",
743         [_CK_PER] = "CK_PER",
744         [_CK_MPU] = "CK_MPU",
745         [_CK_MCU] = "CK_MCU",
746         [_USB_PHY_48] = "USB_PHY_48",
747         [_DSI_PHY] = "DSI_PHY_PLL",
748 };
749
750 static const __maybe_unused
751 char * const stm32mp1_clk_parent_sel_name[_PARENT_SEL_NB] = {
752         [_I2C12_SEL] = "I2C12",
753         [_I2C35_SEL] = "I2C35",
754         [_I2C46_SEL] = "I2C46",
755         [_UART6_SEL] = "UART6",
756         [_UART24_SEL] = "UART24",
757         [_UART35_SEL] = "UART35",
758         [_UART78_SEL] = "UART78",
759         [_SDMMC12_SEL] = "SDMMC12",
760         [_SDMMC3_SEL] = "SDMMC3",
761         [_ETH_SEL] = "ETH",
762         [_QSPI_SEL] = "QSPI",
763         [_FMC_SEL] = "FMC",
764         [_USBPHY_SEL] = "USBPHY",
765         [_USBO_SEL] = "USBO",
766         [_STGEN_SEL] = "STGEN",
767         [_DSI_SEL] = "DSI",
768         [_ADC12_SEL] = "ADC12",
769         [_SPI1_SEL] = "SPI1",
770         [_SPI45_SEL] = "SPI45",
771         [_RTC_SEL] = "RTC",
772 };
773
774 static const struct stm32mp1_clk_data stm32mp1_data = {
775         .gate = stm32mp1_clk_gate,
776         .sel = stm32mp1_clk_sel,
777         .pll = stm32mp1_clk_pll,
778         .nb_gate = ARRAY_SIZE(stm32mp1_clk_gate),
779 };
780
781 static ulong stm32mp1_clk_get_fixed(struct stm32mp1_clk_priv *priv, int idx)
782 {
783         if (idx >= NB_OSC) {
784                 debug("%s: clk id %d not found\n", __func__, idx);
785                 return 0;
786         }
787
788         return priv->osc[idx];
789 }
790
791 static int stm32mp1_clk_get_id(struct stm32mp1_clk_priv *priv, unsigned long id)
792 {
793         const struct stm32mp1_clk_gate *gate = priv->data->gate;
794         int i, nb_clks = priv->data->nb_gate;
795
796         for (i = 0; i < nb_clks; i++) {
797                 if (gate[i].index == id)
798                         break;
799         }
800
801         if (i == nb_clks) {
802                 printf("%s: clk id %d not found\n", __func__, (u32)id);
803                 return -EINVAL;
804         }
805
806         return i;
807 }
808
809 static int stm32mp1_clk_get_sel(struct stm32mp1_clk_priv *priv,
810                                 int i)
811 {
812         const struct stm32mp1_clk_gate *gate = priv->data->gate;
813
814         if (gate[i].sel > _PARENT_SEL_NB) {
815                 printf("%s: parents for clk id %d not found\n",
816                        __func__, i);
817                 return -EINVAL;
818         }
819
820         return gate[i].sel;
821 }
822
823 static int stm32mp1_clk_get_fixed_parent(struct stm32mp1_clk_priv *priv,
824                                          int i)
825 {
826         const struct stm32mp1_clk_gate *gate = priv->data->gate;
827
828         if (gate[i].fixed == _UNKNOWN_ID)
829                 return -ENOENT;
830
831         return gate[i].fixed;
832 }
833
834 static int stm32mp1_clk_get_parent(struct stm32mp1_clk_priv *priv,
835                                    unsigned long id)
836 {
837         const struct stm32mp1_clk_sel *sel = priv->data->sel;
838         int i;
839         int s, p;
840         unsigned int idx;
841
842         for (idx = 0; idx < ARRAY_SIZE(stm32mp1_clks); idx++)
843                 if (stm32mp1_clks[idx][0] == id)
844                         return stm32mp1_clks[idx][1];
845
846         i = stm32mp1_clk_get_id(priv, id);
847         if (i < 0)
848                 return i;
849
850         p = stm32mp1_clk_get_fixed_parent(priv, i);
851         if (p >= 0 && p < _PARENT_NB)
852                 return p;
853
854         s = stm32mp1_clk_get_sel(priv, i);
855         if (s < 0)
856                 return s;
857
858         p = (readl(priv->base + sel[s].offset) >> sel[s].src) & sel[s].msk;
859
860         if (p < sel[s].nb_parent) {
861 #ifdef DEBUG
862                 debug("%s: %s clock is the parent %s of clk id %d\n", __func__,
863                       stm32mp1_clk_parent_name[sel[s].parent[p]],
864                       stm32mp1_clk_parent_sel_name[s],
865                       (u32)id);
866 #endif
867                 return sel[s].parent[p];
868         }
869
870         pr_err("%s: no parents defined for clk id %d\n",
871                __func__, (u32)id);
872
873         return -EINVAL;
874 }
875
876 static ulong  pll_get_fref_ck(struct stm32mp1_clk_priv *priv,
877                               int pll_id)
878 {
879         const struct stm32mp1_clk_pll *pll = priv->data->pll;
880         u32 selr;
881         int src;
882         ulong refclk;
883
884         /* Get current refclk */
885         selr = readl(priv->base + pll[pll_id].rckxselr);
886         src = selr & RCC_SELR_SRC_MASK;
887
888         refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]);
889
890         return refclk;
891 }
892
893 /*
894  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
895  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
896  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
897  * => in all the case Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
898  */
899 static ulong pll_get_fvco(struct stm32mp1_clk_priv *priv,
900                           int pll_id)
901 {
902         const struct stm32mp1_clk_pll *pll = priv->data->pll;
903         int divm, divn;
904         ulong refclk, fvco;
905         u32 cfgr1, fracr;
906
907         cfgr1 = readl(priv->base + pll[pll_id].pllxcfgr1);
908         fracr = readl(priv->base + pll[pll_id].pllxfracr);
909
910         divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
911         divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
912
913         refclk = pll_get_fref_ck(priv, pll_id);
914
915         /* with FRACV :
916          *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
917          * without FRACV
918          *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
919          */
920         if (fracr & RCC_PLLNFRACR_FRACLE) {
921                 u32 fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK)
922                             >> RCC_PLLNFRACR_FRACV_SHIFT;
923                 fvco = (ulong)lldiv((unsigned long long)refclk *
924                                      (((divn + 1) << 13) + fracv),
925                                      ((unsigned long long)(divm + 1)) << 13);
926         } else {
927                 fvco = (ulong)(refclk * (divn + 1) / (divm + 1));
928         }
929
930         return fvco;
931 }
932
933 static ulong stm32mp1_read_pll_freq(struct stm32mp1_clk_priv *priv,
934                                     int pll_id, int div_id)
935 {
936         const struct stm32mp1_clk_pll *pll = priv->data->pll;
937         int divy;
938         ulong dfout;
939         u32 cfgr2;
940
941         if (div_id >= _DIV_NB)
942                 return 0;
943
944         cfgr2 = readl(priv->base + pll[pll_id].pllxcfgr2);
945         divy = (cfgr2 >> RCC_PLLNCFGR2_SHIFT(div_id)) & RCC_PLLNCFGR2_DIVX_MASK;
946
947         dfout = pll_get_fvco(priv, pll_id) / (divy + 1);
948
949         return dfout;
950 }
951
952 static ulong stm32mp1_clk_get(struct stm32mp1_clk_priv *priv, int p)
953 {
954         u32 reg;
955         ulong clock = 0;
956
957         switch (p) {
958         case _CK_MPU:
959         /* MPU sub system */
960                 reg = readl(priv->base + RCC_MPCKSELR);
961                 switch (reg & RCC_SELR_SRC_MASK) {
962                 case RCC_MPCKSELR_HSI:
963                         clock = stm32mp1_clk_get_fixed(priv, _HSI);
964                         break;
965                 case RCC_MPCKSELR_HSE:
966                         clock = stm32mp1_clk_get_fixed(priv, _HSE);
967                         break;
968                 case RCC_MPCKSELR_PLL:
969                 case RCC_MPCKSELR_PLL_MPUDIV:
970                         clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_P);
971                         if ((reg & RCC_SELR_SRC_MASK) ==
972                             RCC_MPCKSELR_PLL_MPUDIV) {
973                                 reg = readl(priv->base + RCC_MPCKDIVR);
974                                 clock >>= stm32mp1_mpu_div[reg &
975                                         RCC_MPUDIV_MASK];
976                         }
977                         break;
978                 }
979                 break;
980         /* AXI sub system */
981         case _ACLK:
982         case _HCLK2:
983         case _HCLK6:
984         case _PCLK4:
985         case _PCLK5:
986                 reg = readl(priv->base + RCC_ASSCKSELR);
987                 switch (reg & RCC_SELR_SRC_MASK) {
988                 case RCC_ASSCKSELR_HSI:
989                         clock = stm32mp1_clk_get_fixed(priv, _HSI);
990                         break;
991                 case RCC_ASSCKSELR_HSE:
992                         clock = stm32mp1_clk_get_fixed(priv, _HSE);
993                         break;
994                 case RCC_ASSCKSELR_PLL:
995                         clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_P);
996                         break;
997                 }
998
999                 /* System clock divider */
1000                 reg = readl(priv->base + RCC_AXIDIVR);
1001                 clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
1002
1003                 switch (p) {
1004                 case _PCLK4:
1005                         reg = readl(priv->base + RCC_APB4DIVR);
1006                         clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1007                         break;
1008                 case _PCLK5:
1009                         reg = readl(priv->base + RCC_APB5DIVR);
1010                         clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1011                         break;
1012                 default:
1013                         break;
1014                 }
1015                 break;
1016         /* MCU sub system */
1017         case _CK_MCU:
1018         case _PCLK1:
1019         case _PCLK2:
1020         case _PCLK3:
1021                 reg = readl(priv->base + RCC_MSSCKSELR);
1022                 switch (reg & RCC_SELR_SRC_MASK) {
1023                 case RCC_MSSCKSELR_HSI:
1024                         clock = stm32mp1_clk_get_fixed(priv, _HSI);
1025                         break;
1026                 case RCC_MSSCKSELR_HSE:
1027                         clock = stm32mp1_clk_get_fixed(priv, _HSE);
1028                         break;
1029                 case RCC_MSSCKSELR_CSI:
1030                         clock = stm32mp1_clk_get_fixed(priv, _CSI);
1031                         break;
1032                 case RCC_MSSCKSELR_PLL:
1033                         clock = stm32mp1_read_pll_freq(priv, _PLL3, _DIV_P);
1034                         break;
1035                 }
1036
1037                 /* MCU clock divider */
1038                 reg = readl(priv->base + RCC_MCUDIVR);
1039                 clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
1040
1041                 switch (p) {
1042                 case _PCLK1:
1043                         reg = readl(priv->base + RCC_APB1DIVR);
1044                         clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1045                         break;
1046                 case _PCLK2:
1047                         reg = readl(priv->base + RCC_APB2DIVR);
1048                         clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1049                         break;
1050                 case _PCLK3:
1051                         reg = readl(priv->base + RCC_APB3DIVR);
1052                         clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1053                         break;
1054                 case _CK_MCU:
1055                 default:
1056                         break;
1057                 }
1058                 break;
1059         case _CK_PER:
1060                 reg = readl(priv->base + RCC_CPERCKSELR);
1061                 switch (reg & RCC_SELR_SRC_MASK) {
1062                 case RCC_CPERCKSELR_HSI:
1063                         clock = stm32mp1_clk_get_fixed(priv, _HSI);
1064                         break;
1065                 case RCC_CPERCKSELR_HSE:
1066                         clock = stm32mp1_clk_get_fixed(priv, _HSE);
1067                         break;
1068                 case RCC_CPERCKSELR_CSI:
1069                         clock = stm32mp1_clk_get_fixed(priv, _CSI);
1070                         break;
1071                 }
1072                 break;
1073         case _HSI:
1074         case _HSI_KER:
1075                 clock = stm32mp1_clk_get_fixed(priv, _HSI);
1076                 break;
1077         case _CSI:
1078         case _CSI_KER:
1079                 clock = stm32mp1_clk_get_fixed(priv, _CSI);
1080                 break;
1081         case _HSE:
1082         case _HSE_KER:
1083         case _HSE_KER_DIV2:
1084                 clock = stm32mp1_clk_get_fixed(priv, _HSE);
1085                 if (p == _HSE_KER_DIV2)
1086                         clock >>= 1;
1087                 break;
1088         case _LSI:
1089                 clock = stm32mp1_clk_get_fixed(priv, _LSI);
1090                 break;
1091         case _LSE:
1092                 clock = stm32mp1_clk_get_fixed(priv, _LSE);
1093                 break;
1094         /* PLL */
1095         case _PLL1_P:
1096         case _PLL1_Q:
1097         case _PLL1_R:
1098                 clock = stm32mp1_read_pll_freq(priv, _PLL1, p - _PLL1_P);
1099                 break;
1100         case _PLL2_P:
1101         case _PLL2_Q:
1102         case _PLL2_R:
1103                 clock = stm32mp1_read_pll_freq(priv, _PLL2, p - _PLL2_P);
1104                 break;
1105         case _PLL3_P:
1106         case _PLL3_Q:
1107         case _PLL3_R:
1108                 clock = stm32mp1_read_pll_freq(priv, _PLL3, p - _PLL3_P);
1109                 break;
1110         case _PLL4_P:
1111         case _PLL4_Q:
1112         case _PLL4_R:
1113                 clock = stm32mp1_read_pll_freq(priv, _PLL4, p - _PLL4_P);
1114                 break;
1115         /* other */
1116         case _USB_PHY_48:
1117                 clock = 48000000;
1118                 break;
1119         case _DSI_PHY:
1120         {
1121                 struct clk clk;
1122                 struct udevice *dev = NULL;
1123
1124                 if (!uclass_get_device_by_name(UCLASS_CLK, "ck_dsi_phy",
1125                                                &dev)) {
1126                         if (clk_request(dev, &clk)) {
1127                                 pr_err("ck_dsi_phy request");
1128                         } else {
1129                                 clk.id = 0;
1130                                 clock = clk_get_rate(&clk);
1131                         }
1132                 }
1133                 break;
1134         }
1135         default:
1136                 break;
1137         }
1138
1139         debug("%s(%d) clock = %lx : %ld kHz\n",
1140               __func__, p, clock, clock / 1000);
1141
1142         return clock;
1143 }
1144
1145 static int stm32mp1_clk_enable(struct clk *clk)
1146 {
1147         struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1148         const struct stm32mp1_clk_gate *gate = priv->data->gate;
1149         int i = stm32mp1_clk_get_id(priv, clk->id);
1150
1151         if (i < 0)
1152                 return i;
1153
1154         if (gate[i].set_clr)
1155                 writel(BIT(gate[i].bit), priv->base + gate[i].offset);
1156         else
1157                 setbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
1158
1159         debug("%s: id clock %d has been enabled\n", __func__, (u32)clk->id);
1160
1161         return 0;
1162 }
1163
1164 static int stm32mp1_clk_disable(struct clk *clk)
1165 {
1166         struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1167         const struct stm32mp1_clk_gate *gate = priv->data->gate;
1168         int i = stm32mp1_clk_get_id(priv, clk->id);
1169
1170         if (i < 0)
1171                 return i;
1172
1173         if (gate[i].set_clr)
1174                 writel(BIT(gate[i].bit),
1175                        priv->base + gate[i].offset
1176                        + RCC_MP_ENCLRR_OFFSET);
1177         else
1178                 clrbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
1179
1180         debug("%s: id clock %d has been disabled\n", __func__, (u32)clk->id);
1181
1182         return 0;
1183 }
1184
1185 static ulong stm32mp1_clk_get_rate(struct clk *clk)
1186 {
1187         struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1188         int p = stm32mp1_clk_get_parent(priv, clk->id);
1189         ulong rate;
1190
1191         if (p < 0)
1192                 return 0;
1193
1194         rate = stm32mp1_clk_get(priv, p);
1195
1196 #ifdef DEBUG
1197         debug("%s: computed rate for id clock %d is %d (parent is %s)\n",
1198               __func__, (u32)clk->id, (u32)rate, stm32mp1_clk_parent_name[p]);
1199 #endif
1200         return rate;
1201 }
1202
1203 #ifdef STM32MP1_CLOCK_TREE_INIT
1204
1205 bool stm32mp1_supports_opp(u32 opp_id, u32 cpu_type)
1206 {
1207         unsigned int id;
1208
1209         switch (opp_id) {
1210         case 1:
1211         case 2:
1212                 id = opp_id;
1213                 break;
1214         default:
1215                 id = 1; /* default value */
1216                 break;
1217         }
1218
1219         switch (cpu_type) {
1220         case CPU_STM32MP157Fxx:
1221         case CPU_STM32MP157Dxx:
1222         case CPU_STM32MP153Fxx:
1223         case CPU_STM32MP153Dxx:
1224         case CPU_STM32MP151Fxx:
1225         case CPU_STM32MP151Dxx:
1226                 return true;
1227         default:
1228                 return id == 1;
1229         }
1230 }
1231
1232 __weak void board_vddcore_init(u32 voltage_mv)
1233 {
1234 }
1235
1236 /*
1237  * gets OPP parameters (frequency in KHz and voltage in mV) from
1238  * an OPP table subnode. Platform HW support capabilities are also checked.
1239  * Returns 0 on success and a negative FDT error code on failure.
1240  */
1241 static int stm32mp1_get_opp(u32 cpu_type, ofnode subnode,
1242                             u32 *freq_khz, u32 *voltage_mv)
1243 {
1244         u32 opp_hw;
1245         u64 read_freq_64;
1246         u32 read_voltage_32;
1247
1248         *freq_khz = 0;
1249         *voltage_mv = 0;
1250
1251         opp_hw = ofnode_read_u32_default(subnode, "opp-supported-hw", 0);
1252         if (opp_hw)
1253                 if (!stm32mp1_supports_opp(opp_hw, cpu_type))
1254                         return -FDT_ERR_BADVALUE;
1255
1256         read_freq_64 = ofnode_read_u64_default(subnode, "opp-hz", 0) /
1257                        1000ULL;
1258         read_voltage_32 = ofnode_read_u32_default(subnode, "opp-microvolt", 0) /
1259                           1000U;
1260
1261         if (!read_voltage_32 || !read_freq_64)
1262                 return -FDT_ERR_NOTFOUND;
1263
1264         /* Frequency value expressed in KHz must fit on 32 bits */
1265         if (read_freq_64 > U32_MAX)
1266                 return -FDT_ERR_BADVALUE;
1267
1268         /* Millivolt value must fit on 16 bits */
1269         if (read_voltage_32 > U16_MAX)
1270                 return -FDT_ERR_BADVALUE;
1271
1272         *freq_khz = (u32)read_freq_64;
1273         *voltage_mv = read_voltage_32;
1274
1275         return 0;
1276 }
1277
1278 /*
1279  * parses OPP table in DT and finds the parameters for the
1280  * highest frequency supported by the HW platform.
1281  * Returns 0 on success and a negative FDT error code on failure.
1282  */
1283 int stm32mp1_get_max_opp_freq(struct stm32mp1_clk_priv *priv, u64 *freq_hz)
1284 {
1285         ofnode node, subnode;
1286         int ret;
1287         u32 freq = 0U, voltage = 0U;
1288         u32 cpu_type = get_cpu_type();
1289
1290         node = ofnode_by_compatible(ofnode_null(), "operating-points-v2");
1291         if (!ofnode_valid(node))
1292                 return -FDT_ERR_NOTFOUND;
1293
1294         ofnode_for_each_subnode(subnode, node) {
1295                 unsigned int read_freq;
1296                 unsigned int read_voltage;
1297
1298                 ret = stm32mp1_get_opp(cpu_type, subnode,
1299                                        &read_freq, &read_voltage);
1300                 if (ret)
1301                         continue;
1302
1303                 if (read_freq > freq) {
1304                         freq = read_freq;
1305                         voltage = read_voltage;
1306                 }
1307         }
1308
1309         if (!freq || !voltage)
1310                 return -FDT_ERR_NOTFOUND;
1311
1312         *freq_hz = (u64)1000U * freq;
1313         board_vddcore_init(voltage);
1314
1315         return 0;
1316 }
1317
1318 static int stm32mp1_pll1_opp(struct stm32mp1_clk_priv *priv, int clksrc,
1319                              u32 *pllcfg, u32 *fracv)
1320 {
1321         u32 post_divm;
1322         u32 input_freq;
1323         u64 output_freq;
1324         u64 freq;
1325         u64 vco;
1326         u32 divm, divn, divp, frac;
1327         int i, ret;
1328         u32 diff;
1329         u32 best_diff = U32_MAX;
1330
1331         /* PLL1 is 1600 */
1332         const u32 DIVN_MAX = stm32mp1_pll[PLL_1600].divn_max;
1333         const u32 POST_DIVM_MIN = stm32mp1_pll[PLL_1600].refclk_min * 1000000U;
1334         const u32 POST_DIVM_MAX = stm32mp1_pll[PLL_1600].refclk_max * 1000000U;
1335
1336         ret = stm32mp1_get_max_opp_freq(priv, &output_freq);
1337         if (ret) {
1338                 debug("PLL1 OPP configuration not found (%d).\n", ret);
1339                 return ret;
1340         }
1341
1342         switch (clksrc) {
1343         case CLK_PLL12_HSI:
1344                 input_freq = stm32mp1_clk_get_fixed(priv, _HSI);
1345                 break;
1346         case CLK_PLL12_HSE:
1347                 input_freq = stm32mp1_clk_get_fixed(priv, _HSE);
1348                 break;
1349         default:
1350                 return -EINTR;
1351         }
1352
1353         /* Following parameters have always the same value */
1354         pllcfg[PLLCFG_Q] = 0;
1355         pllcfg[PLLCFG_R] = 0;
1356         pllcfg[PLLCFG_O] = PQR(1, 0, 0);
1357
1358         for (divm = DIVM_MAX; divm >= DIVM_MIN; divm--) {
1359                 post_divm = (u32)(input_freq / (divm + 1));
1360                 if (post_divm < POST_DIVM_MIN || post_divm > POST_DIVM_MAX)
1361                         continue;
1362
1363                 for (divp = DIVP_MIN; divp <= DIVP_MAX; divp++) {
1364                         freq = output_freq * (divm + 1) * (divp + 1);
1365                         divn = (u32)((freq / input_freq) - 1);
1366                         if (divn < DIVN_MIN || divn > DIVN_MAX)
1367                                 continue;
1368
1369                         frac = (u32)(((freq * FRAC_MAX) / input_freq) -
1370                                      ((divn + 1) * FRAC_MAX));
1371                         /* 2 loops to refine the fractional part */
1372                         for (i = 2; i != 0; i--) {
1373                                 if (frac > FRAC_MAX)
1374                                         break;
1375
1376                                 vco = (post_divm * (divn + 1)) +
1377                                       ((post_divm * (u64)frac) /
1378                                        FRAC_MAX);
1379                                 if (vco < (PLL1600_VCO_MIN / 2) ||
1380                                     vco > (PLL1600_VCO_MAX / 2)) {
1381                                         frac++;
1382                                         continue;
1383                                 }
1384                                 freq = vco / (divp + 1);
1385                                 if (output_freq < freq)
1386                                         diff = (u32)(freq - output_freq);
1387                                 else
1388                                         diff = (u32)(output_freq - freq);
1389                                 if (diff < best_diff)  {
1390                                         pllcfg[PLLCFG_M] = divm;
1391                                         pllcfg[PLLCFG_N] = divn;
1392                                         pllcfg[PLLCFG_P] = divp;
1393                                         *fracv = frac;
1394
1395                                         if (diff == 0)
1396                                                 return 0;
1397
1398                                         best_diff = diff;
1399                                 }
1400                                 frac++;
1401                         }
1402                 }
1403         }
1404
1405         if (best_diff == U32_MAX)
1406                 return -1;
1407
1408         return 0;
1409 }
1410
1411 static void stm32mp1_ls_osc_set(int enable, fdt_addr_t rcc, u32 offset,
1412                                 u32 mask_on)
1413 {
1414         u32 address = rcc + offset;
1415
1416         if (enable)
1417                 setbits_le32(address, mask_on);
1418         else
1419                 clrbits_le32(address, mask_on);
1420 }
1421
1422 static void stm32mp1_hs_ocs_set(int enable, fdt_addr_t rcc, u32 mask_on)
1423 {
1424         writel(mask_on, rcc + (enable ? RCC_OCENSETR : RCC_OCENCLRR));
1425 }
1426
1427 static int stm32mp1_osc_wait(int enable, fdt_addr_t rcc, u32 offset,
1428                              u32 mask_rdy)
1429 {
1430         u32 mask_test = 0;
1431         u32 address = rcc + offset;
1432         u32 val;
1433         int ret;
1434
1435         if (enable)
1436                 mask_test = mask_rdy;
1437
1438         ret = readl_poll_timeout(address, val,
1439                                  (val & mask_rdy) == mask_test,
1440                                  TIMEOUT_1S);
1441
1442         if (ret)
1443                 pr_err("OSC %x @ %x timeout for enable=%d : 0x%x\n",
1444                        mask_rdy, address, enable, readl(address));
1445
1446         return ret;
1447 }
1448
1449 static void stm32mp1_lse_enable(fdt_addr_t rcc, int bypass, int digbyp,
1450                                 u32 lsedrv)
1451 {
1452         u32 value;
1453
1454         if (digbyp)
1455                 setbits_le32(rcc + RCC_BDCR, RCC_BDCR_DIGBYP);
1456
1457         if (bypass || digbyp)
1458                 setbits_le32(rcc + RCC_BDCR, RCC_BDCR_LSEBYP);
1459
1460         /*
1461          * warning: not recommended to switch directly from "high drive"
1462          * to "medium low drive", and vice-versa.
1463          */
1464         value = (readl(rcc + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK)
1465                 >> RCC_BDCR_LSEDRV_SHIFT;
1466
1467         while (value != lsedrv) {
1468                 if (value > lsedrv)
1469                         value--;
1470                 else
1471                         value++;
1472
1473                 clrsetbits_le32(rcc + RCC_BDCR,
1474                                 RCC_BDCR_LSEDRV_MASK,
1475                                 value << RCC_BDCR_LSEDRV_SHIFT);
1476         }
1477
1478         stm32mp1_ls_osc_set(1, rcc, RCC_BDCR, RCC_BDCR_LSEON);
1479 }
1480
1481 static void stm32mp1_lse_wait(fdt_addr_t rcc)
1482 {
1483         stm32mp1_osc_wait(1, rcc, RCC_BDCR, RCC_BDCR_LSERDY);
1484 }
1485
1486 static void stm32mp1_lsi_set(fdt_addr_t rcc, int enable)
1487 {
1488         stm32mp1_ls_osc_set(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSION);
1489         stm32mp1_osc_wait(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSIRDY);
1490 }
1491
1492 static void stm32mp1_hse_enable(fdt_addr_t rcc, int bypass, int digbyp, int css)
1493 {
1494         if (digbyp)
1495                 writel(RCC_OCENR_DIGBYP, rcc + RCC_OCENSETR);
1496         if (bypass || digbyp)
1497                 writel(RCC_OCENR_HSEBYP, rcc + RCC_OCENSETR);
1498
1499         stm32mp1_hs_ocs_set(1, rcc, RCC_OCENR_HSEON);
1500         stm32mp1_osc_wait(1, rcc, RCC_OCRDYR, RCC_OCRDYR_HSERDY);
1501
1502         if (css)
1503                 writel(RCC_OCENR_HSECSSON, rcc + RCC_OCENSETR);
1504 }
1505
1506 static void stm32mp1_csi_set(fdt_addr_t rcc, int enable)
1507 {
1508         stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_CSION);
1509         stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_CSIRDY);
1510 }
1511
1512 static void stm32mp1_hsi_set(fdt_addr_t rcc, int enable)
1513 {
1514         stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_HSION);
1515         stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_HSIRDY);
1516 }
1517
1518 static int stm32mp1_set_hsidiv(fdt_addr_t rcc, u8 hsidiv)
1519 {
1520         u32 address = rcc + RCC_OCRDYR;
1521         u32 val;
1522         int ret;
1523
1524         clrsetbits_le32(rcc + RCC_HSICFGR,
1525                         RCC_HSICFGR_HSIDIV_MASK,
1526                         RCC_HSICFGR_HSIDIV_MASK & hsidiv);
1527
1528         ret = readl_poll_timeout(address, val,
1529                                  val & RCC_OCRDYR_HSIDIVRDY,
1530                                  TIMEOUT_200MS);
1531         if (ret)
1532                 pr_err("HSIDIV failed @ 0x%x: 0x%x\n",
1533                        address, readl(address));
1534
1535         return ret;
1536 }
1537
1538 static int stm32mp1_hsidiv(fdt_addr_t rcc, ulong hsifreq)
1539 {
1540         u8 hsidiv;
1541         u32 hsidivfreq = MAX_HSI_HZ;
1542
1543         for (hsidiv = 0; hsidiv < 4; hsidiv++,
1544              hsidivfreq = hsidivfreq / 2)
1545                 if (hsidivfreq == hsifreq)
1546                         break;
1547
1548         if (hsidiv == 4) {
1549                 pr_err("clk-hsi frequency invalid");
1550                 return -1;
1551         }
1552
1553         if (hsidiv > 0)
1554                 return stm32mp1_set_hsidiv(rcc, hsidiv);
1555
1556         return 0;
1557 }
1558
1559 static void pll_start(struct stm32mp1_clk_priv *priv, int pll_id)
1560 {
1561         const struct stm32mp1_clk_pll *pll = priv->data->pll;
1562
1563         clrsetbits_le32(priv->base + pll[pll_id].pllxcr,
1564                         RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1565                         RCC_PLLNCR_DIVREN,
1566                         RCC_PLLNCR_PLLON);
1567 }
1568
1569 static int pll_output(struct stm32mp1_clk_priv *priv, int pll_id, int output)
1570 {
1571         const struct stm32mp1_clk_pll *pll = priv->data->pll;
1572         u32 pllxcr = priv->base + pll[pll_id].pllxcr;
1573         u32 val;
1574         int ret;
1575
1576         ret = readl_poll_timeout(pllxcr, val, val & RCC_PLLNCR_PLLRDY,
1577                                  TIMEOUT_200MS);
1578
1579         if (ret) {
1580                 pr_err("PLL%d start failed @ 0x%x: 0x%x\n",
1581                        pll_id, pllxcr, readl(pllxcr));
1582                 return ret;
1583         }
1584
1585         /* start the requested output */
1586         setbits_le32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1587
1588         return 0;
1589 }
1590
1591 static int pll_stop(struct stm32mp1_clk_priv *priv, int pll_id)
1592 {
1593         const struct stm32mp1_clk_pll *pll = priv->data->pll;
1594         u32 pllxcr = priv->base + pll[pll_id].pllxcr;
1595         u32 val;
1596
1597         /* stop all output */
1598         clrbits_le32(pllxcr,
1599                      RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN);
1600
1601         /* stop PLL */
1602         clrbits_le32(pllxcr, RCC_PLLNCR_PLLON);
1603
1604         /* wait PLL stopped */
1605         return readl_poll_timeout(pllxcr, val, (val & RCC_PLLNCR_PLLRDY) == 0,
1606                                   TIMEOUT_200MS);
1607 }
1608
1609 static void pll_config_output(struct stm32mp1_clk_priv *priv,
1610                               int pll_id, u32 *pllcfg)
1611 {
1612         const struct stm32mp1_clk_pll *pll = priv->data->pll;
1613         fdt_addr_t rcc = priv->base;
1614         u32 value;
1615
1616         value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT)
1617                 & RCC_PLLNCFGR2_DIVP_MASK;
1618         value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT)
1619                  & RCC_PLLNCFGR2_DIVQ_MASK;
1620         value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT)
1621                  & RCC_PLLNCFGR2_DIVR_MASK;
1622         writel(value, rcc + pll[pll_id].pllxcfgr2);
1623 }
1624
1625 static int pll_config(struct stm32mp1_clk_priv *priv, int pll_id,
1626                       u32 *pllcfg, u32 fracv)
1627 {
1628         const struct stm32mp1_clk_pll *pll = priv->data->pll;
1629         fdt_addr_t rcc = priv->base;
1630         enum stm32mp1_plltype type = pll[pll_id].plltype;
1631         int src;
1632         ulong refclk;
1633         u8 ifrge = 0;
1634         u32 value;
1635
1636         src = readl(priv->base + pll[pll_id].rckxselr) & RCC_SELR_SRC_MASK;
1637
1638         refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]) /
1639                  (pllcfg[PLLCFG_M] + 1);
1640
1641         if (refclk < (stm32mp1_pll[type].refclk_min * 1000000) ||
1642             refclk > (stm32mp1_pll[type].refclk_max * 1000000)) {
1643                 debug("invalid refclk = %x\n", (u32)refclk);
1644                 return -EINVAL;
1645         }
1646         if (type == PLL_800 && refclk >= 8000000)
1647                 ifrge = 1;
1648
1649         value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT)
1650                  & RCC_PLLNCFGR1_DIVN_MASK;
1651         value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT)
1652                  & RCC_PLLNCFGR1_DIVM_MASK;
1653         value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT)
1654                  & RCC_PLLNCFGR1_IFRGE_MASK;
1655         writel(value, rcc + pll[pll_id].pllxcfgr1);
1656
1657         /* fractional configuration: load sigma-delta modulator (SDM) */
1658
1659         /* Write into FRACV the new fractional value , and FRACLE to 0 */
1660         writel(fracv << RCC_PLLNFRACR_FRACV_SHIFT,
1661                rcc + pll[pll_id].pllxfracr);
1662
1663         /* Write FRACLE to 1 : FRACV value is loaded into the SDM */
1664         setbits_le32(rcc + pll[pll_id].pllxfracr,
1665                      RCC_PLLNFRACR_FRACLE);
1666
1667         pll_config_output(priv, pll_id, pllcfg);
1668
1669         return 0;
1670 }
1671
1672 static void pll_csg(struct stm32mp1_clk_priv *priv, int pll_id, u32 *csg)
1673 {
1674         const struct stm32mp1_clk_pll *pll = priv->data->pll;
1675         u32 pllxcsg;
1676
1677         pllxcsg = ((csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1678                     RCC_PLLNCSGR_MOD_PER_MASK) |
1679                   ((csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1680                     RCC_PLLNCSGR_INC_STEP_MASK) |
1681                   ((csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1682                     RCC_PLLNCSGR_SSCG_MODE_MASK);
1683
1684         writel(pllxcsg, priv->base + pll[pll_id].pllxcsgr);
1685
1686         setbits_le32(priv->base + pll[pll_id].pllxcr, RCC_PLLNCR_SSCG_CTRL);
1687 }
1688
1689 static  __maybe_unused int pll_set_rate(struct udevice *dev,
1690                                         int pll_id,
1691                                         int div_id,
1692                                         unsigned long clk_rate)
1693 {
1694         struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1695         unsigned int pllcfg[PLLCFG_NB];
1696         ofnode plloff;
1697         char name[12];
1698         const struct stm32mp1_clk_pll *pll = priv->data->pll;
1699         enum stm32mp1_plltype type = pll[pll_id].plltype;
1700         int divm, divn, divy;
1701         int ret;
1702         ulong fck_ref;
1703         u32 fracv;
1704         u64 value;
1705
1706         if (div_id > _DIV_NB)
1707                 return -EINVAL;
1708
1709         sprintf(name, "st,pll@%d", pll_id);
1710         plloff = dev_read_subnode(dev, name);
1711         if (!ofnode_valid(plloff))
1712                 return -FDT_ERR_NOTFOUND;
1713
1714         ret = ofnode_read_u32_array(plloff, "cfg",
1715                                     pllcfg, PLLCFG_NB);
1716         if (ret < 0)
1717                 return -FDT_ERR_NOTFOUND;
1718
1719         fck_ref = pll_get_fref_ck(priv, pll_id);
1720
1721         divm = pllcfg[PLLCFG_M];
1722         /* select output divider = 0: for _DIV_P, 1:_DIV_Q 2:_DIV_R */
1723         divy = pllcfg[PLLCFG_P + div_id];
1724
1725         /* For: PLL1 & PLL2 => VCO is * 2 but ck_pll_y is also / 2
1726          * So same final result than PLL2 et 4
1727          * with FRACV
1728          * Fck_pll_y = Fck_ref * ((DIVN + 1) + FRACV / 2^13)
1729          *             / (DIVy + 1) * (DIVM + 1)
1730          * value = (DIVN + 1) * 2^13 + FRACV / 2^13
1731          *       = Fck_pll_y (DIVy + 1) * (DIVM + 1) * 2^13 / Fck_ref
1732          */
1733         value = ((u64)clk_rate * (divy + 1) * (divm + 1)) << 13;
1734         value = lldiv(value, fck_ref);
1735
1736         divn = (value >> 13) - 1;
1737         if (divn < DIVN_MIN ||
1738             divn > stm32mp1_pll[type].divn_max) {
1739                 pr_err("divn invalid = %d", divn);
1740                 return -EINVAL;
1741         }
1742         fracv = value - ((divn + 1) << 13);
1743         pllcfg[PLLCFG_N] = divn;
1744
1745         /* reconfigure PLL */
1746         pll_stop(priv, pll_id);
1747         pll_config(priv, pll_id, pllcfg, fracv);
1748         pll_start(priv, pll_id);
1749         pll_output(priv, pll_id, pllcfg[PLLCFG_O]);
1750
1751         return 0;
1752 }
1753
1754 static int set_clksrc(struct stm32mp1_clk_priv *priv, unsigned int clksrc)
1755 {
1756         u32 address = priv->base + (clksrc >> 4);
1757         u32 val;
1758         int ret;
1759
1760         clrsetbits_le32(address, RCC_SELR_SRC_MASK, clksrc & RCC_SELR_SRC_MASK);
1761         ret = readl_poll_timeout(address, val, val & RCC_SELR_SRCRDY,
1762                                  TIMEOUT_200MS);
1763         if (ret)
1764                 pr_err("CLKSRC %x start failed @ 0x%x: 0x%x\n",
1765                        clksrc, address, readl(address));
1766
1767         return ret;
1768 }
1769
1770 static void stgen_config(struct stm32mp1_clk_priv *priv)
1771 {
1772         int p;
1773         u32 stgenc, cntfid0;
1774         ulong rate;
1775
1776         stgenc = STM32_STGEN_BASE;
1777         cntfid0 = readl(stgenc + STGENC_CNTFID0);
1778         p = stm32mp1_clk_get_parent(priv, STGEN_K);
1779         rate = stm32mp1_clk_get(priv, p);
1780
1781         if (cntfid0 != rate) {
1782                 u64 counter;
1783
1784                 pr_debug("System Generic Counter (STGEN) update\n");
1785                 clrbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
1786                 counter = (u64)readl(stgenc + STGENC_CNTCVL);
1787                 counter |= ((u64)(readl(stgenc + STGENC_CNTCVU))) << 32;
1788                 counter = lldiv(counter * (u64)rate, cntfid0);
1789                 writel((u32)counter, stgenc + STGENC_CNTCVL);
1790                 writel((u32)(counter >> 32), stgenc + STGENC_CNTCVU);
1791                 writel(rate, stgenc + STGENC_CNTFID0);
1792                 setbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
1793
1794                 __asm__ volatile("mcr p15, 0, %0, c14, c0, 0" : : "r" (rate));
1795
1796                 /* need to update gd->arch.timer_rate_hz with new frequency */
1797                 timer_init();
1798         }
1799 }
1800
1801 static int set_clkdiv(unsigned int clkdiv, u32 address)
1802 {
1803         u32 val;
1804         int ret;
1805
1806         clrsetbits_le32(address, RCC_DIVR_DIV_MASK, clkdiv & RCC_DIVR_DIV_MASK);
1807         ret = readl_poll_timeout(address, val, val & RCC_DIVR_DIVRDY,
1808                                  TIMEOUT_200MS);
1809         if (ret)
1810                 pr_err("CLKDIV %x start failed @ 0x%x: 0x%x\n",
1811                        clkdiv, address, readl(address));
1812
1813         return ret;
1814 }
1815
1816 static void stm32mp1_mco_csg(struct stm32mp1_clk_priv *priv,
1817                              u32 clksrc, u32 clkdiv)
1818 {
1819         u32 address = priv->base + (clksrc >> 4);
1820
1821         /*
1822          * binding clksrc : bit15-4 offset
1823          *                  bit3:   disable
1824          *                  bit2-0: MCOSEL[2:0]
1825          */
1826         if (clksrc & 0x8) {
1827                 clrbits_le32(address, RCC_MCOCFG_MCOON);
1828         } else {
1829                 clrsetbits_le32(address,
1830                                 RCC_MCOCFG_MCOSRC_MASK,
1831                                 clksrc & RCC_MCOCFG_MCOSRC_MASK);
1832                 clrsetbits_le32(address,
1833                                 RCC_MCOCFG_MCODIV_MASK,
1834                                 clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1835                 setbits_le32(address, RCC_MCOCFG_MCOON);
1836         }
1837 }
1838
1839 static void set_rtcsrc(struct stm32mp1_clk_priv *priv,
1840                        unsigned int clksrc,
1841                        int lse_css)
1842 {
1843         u32 address = priv->base + RCC_BDCR;
1844
1845         if (readl(address) & RCC_BDCR_RTCCKEN)
1846                 goto skip_rtc;
1847
1848         if (clksrc == CLK_RTC_DISABLED)
1849                 goto skip_rtc;
1850
1851         clrsetbits_le32(address,
1852                         RCC_BDCR_RTCSRC_MASK,
1853                         clksrc << RCC_BDCR_RTCSRC_SHIFT);
1854
1855         setbits_le32(address, RCC_BDCR_RTCCKEN);
1856
1857 skip_rtc:
1858         if (lse_css)
1859                 setbits_le32(address, RCC_BDCR_LSECSSON);
1860 }
1861
1862 static void pkcs_config(struct stm32mp1_clk_priv *priv, u32 pkcs)
1863 {
1864         u32 address = priv->base + ((pkcs >> 4) & 0xFFF);
1865         u32 value = pkcs & 0xF;
1866         u32 mask = 0xF;
1867
1868         if (pkcs & BIT(31)) {
1869                 mask <<= 4;
1870                 value <<= 4;
1871         }
1872         clrsetbits_le32(address, mask, value);
1873 }
1874
1875 static int stm32mp1_clktree(struct udevice *dev)
1876 {
1877         struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1878         fdt_addr_t rcc = priv->base;
1879         unsigned int clksrc[CLKSRC_NB];
1880         unsigned int clkdiv[CLKDIV_NB];
1881         unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1882         unsigned int pllfracv[_PLL_NB];
1883         unsigned int pllcsg[_PLL_NB][PLLCSG_NB];
1884         bool pllcfg_valid[_PLL_NB];
1885         bool pllcsg_set[_PLL_NB];
1886         int ret;
1887         int i, len;
1888         int lse_css = 0;
1889         const u32 *pkcs_cell;
1890
1891         /* check mandatory field */
1892         ret = dev_read_u32_array(dev, "st,clksrc", clksrc, CLKSRC_NB);
1893         if (ret < 0) {
1894                 debug("field st,clksrc invalid: error %d\n", ret);
1895                 return -FDT_ERR_NOTFOUND;
1896         }
1897
1898         ret = dev_read_u32_array(dev, "st,clkdiv", clkdiv, CLKDIV_NB);
1899         if (ret < 0) {
1900                 debug("field st,clkdiv invalid: error %d\n", ret);
1901                 return -FDT_ERR_NOTFOUND;
1902         }
1903
1904         /* check mandatory field in each pll */
1905         for (i = 0; i < _PLL_NB; i++) {
1906                 char name[12];
1907                 ofnode node;
1908
1909                 sprintf(name, "st,pll@%d", i);
1910                 node = dev_read_subnode(dev, name);
1911                 pllcfg_valid[i] = ofnode_valid(node);
1912                 pllcsg_set[i] = false;
1913                 if (pllcfg_valid[i]) {
1914                         debug("DT for PLL %d @ %s\n", i, name);
1915                         ret = ofnode_read_u32_array(node, "cfg",
1916                                                     pllcfg[i], PLLCFG_NB);
1917                         if (ret < 0) {
1918                                 debug("field cfg invalid: error %d\n", ret);
1919                                 return -FDT_ERR_NOTFOUND;
1920                         }
1921                         pllfracv[i] = ofnode_read_u32_default(node, "frac", 0);
1922
1923                         ret = ofnode_read_u32_array(node, "csg", pllcsg[i],
1924                                                     PLLCSG_NB);
1925                         if (!ret) {
1926                                 pllcsg_set[i] = true;
1927                         } else if (ret != -FDT_ERR_NOTFOUND) {
1928                                 debug("invalid csg node for pll@%d res=%d\n",
1929                                       i, ret);
1930                                 return ret;
1931                         }
1932                 } else if (i == _PLL1)  {
1933                         /* use OPP for PLL1 for A7 CPU */
1934                         debug("DT for PLL %d with OPP\n", i);
1935                         ret = stm32mp1_pll1_opp(priv,
1936                                                 clksrc[CLKSRC_PLL12],
1937                                                 pllcfg[i],
1938                                                 &pllfracv[i]);
1939                         if (ret) {
1940                                 debug("PLL %d with OPP error = %d\n", i, ret);
1941                                 return ret;
1942                         }
1943                         pllcfg_valid[i] = true;
1944                 }
1945         }
1946
1947         debug("configuration MCO\n");
1948         stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1949         stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1950
1951         debug("switch ON osillator\n");
1952         /*
1953          * switch ON oscillator found in device-tree,
1954          * HSI already ON after bootrom
1955          */
1956         if (priv->osc[_LSI])
1957                 stm32mp1_lsi_set(rcc, 1);
1958
1959         if (priv->osc[_LSE]) {
1960                 int bypass, digbyp;
1961                 u32 lsedrv;
1962                 struct udevice *dev = priv->osc_dev[_LSE];
1963
1964                 bypass = dev_read_bool(dev, "st,bypass");
1965                 digbyp = dev_read_bool(dev, "st,digbypass");
1966                 lse_css = dev_read_bool(dev, "st,css");
1967                 lsedrv = dev_read_u32_default(dev, "st,drive",
1968                                               LSEDRV_MEDIUM_HIGH);
1969
1970                 stm32mp1_lse_enable(rcc, bypass, digbyp, lsedrv);
1971         }
1972
1973         if (priv->osc[_HSE]) {
1974                 int bypass, digbyp, css;
1975                 struct udevice *dev = priv->osc_dev[_HSE];
1976
1977                 bypass = dev_read_bool(dev, "st,bypass");
1978                 digbyp = dev_read_bool(dev, "st,digbypass");
1979                 css = dev_read_bool(dev, "st,css");
1980
1981                 stm32mp1_hse_enable(rcc, bypass, digbyp, css);
1982         }
1983         /* CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
1984          * => switch on CSI even if node is not present in device tree
1985          */
1986         stm32mp1_csi_set(rcc, 1);
1987
1988         /* come back to HSI */
1989         debug("come back to HSI\n");
1990         set_clksrc(priv, CLK_MPU_HSI);
1991         set_clksrc(priv, CLK_AXI_HSI);
1992         set_clksrc(priv, CLK_MCU_HSI);
1993
1994         debug("pll stop\n");
1995         for (i = 0; i < _PLL_NB; i++)
1996                 pll_stop(priv, i);
1997
1998         /* configure HSIDIV */
1999         debug("configure HSIDIV\n");
2000         if (priv->osc[_HSI]) {
2001                 stm32mp1_hsidiv(rcc, priv->osc[_HSI]);
2002                 stgen_config(priv);
2003         }
2004
2005         /* select DIV */
2006         debug("select DIV\n");
2007         /* no ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
2008         writel(clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK, rcc + RCC_MPCKDIVR);
2009         set_clkdiv(clkdiv[CLKDIV_AXI], rcc + RCC_AXIDIVR);
2010         set_clkdiv(clkdiv[CLKDIV_APB4], rcc + RCC_APB4DIVR);
2011         set_clkdiv(clkdiv[CLKDIV_APB5], rcc + RCC_APB5DIVR);
2012         set_clkdiv(clkdiv[CLKDIV_MCU], rcc + RCC_MCUDIVR);
2013         set_clkdiv(clkdiv[CLKDIV_APB1], rcc + RCC_APB1DIVR);
2014         set_clkdiv(clkdiv[CLKDIV_APB2], rcc + RCC_APB2DIVR);
2015         set_clkdiv(clkdiv[CLKDIV_APB3], rcc + RCC_APB3DIVR);
2016
2017         /* no ready bit for RTC */
2018         writel(clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK, rcc + RCC_RTCDIVR);
2019
2020         /* configure PLLs source */
2021         debug("configure PLLs source\n");
2022         set_clksrc(priv, clksrc[CLKSRC_PLL12]);
2023         set_clksrc(priv, clksrc[CLKSRC_PLL3]);
2024         set_clksrc(priv, clksrc[CLKSRC_PLL4]);
2025
2026         /* configure and start PLLs */
2027         debug("configure PLLs\n");
2028         for (i = 0; i < _PLL_NB; i++) {
2029                 if (!pllcfg_valid[i])
2030                         continue;
2031                 debug("configure PLL %d\n", i);
2032                 pll_config(priv, i, pllcfg[i], pllfracv[i]);
2033                 if (pllcsg_set[i])
2034                         pll_csg(priv, i, pllcsg[i]);
2035                 pll_start(priv, i);
2036         }
2037
2038         /* wait and start PLLs ouptut when ready */
2039         for (i = 0; i < _PLL_NB; i++) {
2040                 if (!pllcfg_valid[i])
2041                         continue;
2042                 debug("output PLL %d\n", i);
2043                 pll_output(priv, i, pllcfg[i][PLLCFG_O]);
2044         }
2045
2046         /* wait LSE ready before to use it */
2047         if (priv->osc[_LSE])
2048                 stm32mp1_lse_wait(rcc);
2049
2050         /* configure with expected clock source */
2051         debug("CLKSRC\n");
2052         set_clksrc(priv, clksrc[CLKSRC_MPU]);
2053         set_clksrc(priv, clksrc[CLKSRC_AXI]);
2054         set_clksrc(priv, clksrc[CLKSRC_MCU]);
2055         set_rtcsrc(priv, clksrc[CLKSRC_RTC], lse_css);
2056
2057         /* configure PKCK */
2058         debug("PKCK\n");
2059         pkcs_cell = dev_read_prop(dev, "st,pkcs", &len);
2060         if (pkcs_cell) {
2061                 bool ckper_disabled = false;
2062
2063                 for (i = 0; i < len / sizeof(u32); i++) {
2064                         u32 pkcs = (u32)fdt32_to_cpu(pkcs_cell[i]);
2065
2066                         if (pkcs == CLK_CKPER_DISABLED) {
2067                                 ckper_disabled = true;
2068                                 continue;
2069                         }
2070                         pkcs_config(priv, pkcs);
2071                 }
2072                 /* CKPER is source for some peripheral clock
2073                  * (FMC-NAND / QPSI-NOR) and switching source is allowed
2074                  * only if previous clock is still ON
2075                  * => deactivated CKPER only after switching clock
2076                  */
2077                 if (ckper_disabled)
2078                         pkcs_config(priv, CLK_CKPER_DISABLED);
2079         }
2080
2081         /* STGEN clock source can change with CLK_STGEN_XXX */
2082         stgen_config(priv);
2083
2084         debug("oscillator off\n");
2085         /* switch OFF HSI if not found in device-tree */
2086         if (!priv->osc[_HSI])
2087                 stm32mp1_hsi_set(rcc, 0);
2088
2089         /* Software Self-Refresh mode (SSR) during DDR initilialization */
2090         clrsetbits_le32(priv->base + RCC_DDRITFCR,
2091                         RCC_DDRITFCR_DDRCKMOD_MASK,
2092                         RCC_DDRITFCR_DDRCKMOD_SSR <<
2093                         RCC_DDRITFCR_DDRCKMOD_SHIFT);
2094
2095         return 0;
2096 }
2097 #endif /* STM32MP1_CLOCK_TREE_INIT */
2098
2099 static int pll_set_output_rate(struct udevice *dev,
2100                                int pll_id,
2101                                int div_id,
2102                                unsigned long clk_rate)
2103 {
2104         struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
2105         const struct stm32mp1_clk_pll *pll = priv->data->pll;
2106         u32 pllxcr = priv->base + pll[pll_id].pllxcr;
2107         int div;
2108         ulong fvco;
2109
2110         if (div_id > _DIV_NB)
2111                 return -EINVAL;
2112
2113         fvco = pll_get_fvco(priv, pll_id);
2114
2115         if (fvco <= clk_rate)
2116                 div = 1;
2117         else
2118                 div = DIV_ROUND_UP(fvco, clk_rate);
2119
2120         if (div > 128)
2121                 div = 128;
2122
2123         /* stop the requested output */
2124         clrbits_le32(pllxcr, 0x1 << div_id << RCC_PLLNCR_DIVEN_SHIFT);
2125         /* change divider */
2126         clrsetbits_le32(priv->base + pll[pll_id].pllxcfgr2,
2127                         RCC_PLLNCFGR2_DIVX_MASK << RCC_PLLNCFGR2_SHIFT(div_id),
2128                         (div - 1) << RCC_PLLNCFGR2_SHIFT(div_id));
2129         /* start the requested output */
2130         setbits_le32(pllxcr, 0x1 << div_id << RCC_PLLNCR_DIVEN_SHIFT);
2131
2132         return 0;
2133 }
2134
2135 static ulong stm32mp1_clk_set_rate(struct clk *clk, unsigned long clk_rate)
2136 {
2137         struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
2138         int p;
2139
2140         switch (clk->id) {
2141 #if defined(STM32MP1_CLOCK_TREE_INIT) && \
2142         defined(CONFIG_STM32MP1_DDR_INTERACTIVE)
2143         case DDRPHYC:
2144                 break;
2145 #endif
2146         case LTDC_PX:
2147         case DSI_PX:
2148                 break;
2149         default:
2150                 pr_err("not supported");
2151                 return -EINVAL;
2152         }
2153
2154         p = stm32mp1_clk_get_parent(priv, clk->id);
2155 #ifdef DEBUG
2156         debug("%s: parent = %d:%s\n", __func__, p, stm32mp1_clk_parent_name[p]);
2157 #endif
2158         if (p < 0)
2159                 return -EINVAL;
2160
2161         switch (p) {
2162 #if defined(STM32MP1_CLOCK_TREE_INIT) && \
2163         defined(CONFIG_STM32MP1_DDR_INTERACTIVE)
2164         case _PLL2_R: /* DDRPHYC */
2165         {
2166                 /* only for change DDR clock in interactive mode */
2167                 ulong result;
2168
2169                 set_clksrc(priv, CLK_AXI_HSI);
2170                 result = pll_set_rate(clk->dev,  _PLL2, _DIV_R, clk_rate);
2171                 set_clksrc(priv, CLK_AXI_PLL2P);
2172                 return result;
2173         }
2174 #endif
2175
2176         case _PLL4_Q:
2177                 /* for LTDC_PX and DSI_PX case */
2178                 return pll_set_output_rate(clk->dev, _PLL4, _DIV_Q, clk_rate);
2179         }
2180
2181         return -EINVAL;
2182 }
2183
2184 static void stm32mp1_osc_clk_init(const char *name,
2185                                   struct stm32mp1_clk_priv *priv,
2186                                   int index)
2187 {
2188         struct clk clk;
2189         struct udevice *dev = NULL;
2190
2191         priv->osc[index] = 0;
2192         clk.id = 0;
2193         if (!uclass_get_device_by_name(UCLASS_CLK, name, &dev)) {
2194                 if (clk_request(dev, &clk))
2195                         pr_err("%s request", name);
2196                 else
2197                         priv->osc[index] = clk_get_rate(&clk);
2198         }
2199         priv->osc_dev[index] = dev;
2200 }
2201
2202 static void stm32mp1_osc_init(struct udevice *dev)
2203 {
2204         struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
2205         int i;
2206         const char *name[NB_OSC] = {
2207                 [_LSI] = "clk-lsi",
2208                 [_LSE] = "clk-lse",
2209                 [_HSI] = "clk-hsi",
2210                 [_HSE] = "clk-hse",
2211                 [_CSI] = "clk-csi",
2212                 [_I2S_CKIN] = "i2s_ckin",
2213         };
2214
2215         for (i = 0; i < NB_OSC; i++) {
2216                 stm32mp1_osc_clk_init(name[i], priv, i);
2217                 debug("%d: %s => %x\n", i, name[i], (u32)priv->osc[i]);
2218         }
2219 }
2220
2221 static void  __maybe_unused stm32mp1_clk_dump(struct stm32mp1_clk_priv *priv)
2222 {
2223         char buf[32];
2224         int i, s, p;
2225
2226         printf("Clocks:\n");
2227         for (i = 0; i < _PARENT_NB; i++) {
2228                 printf("- %s : %s MHz\n",
2229                        stm32mp1_clk_parent_name[i],
2230                        strmhz(buf, stm32mp1_clk_get(priv, i)));
2231         }
2232         printf("Source Clocks:\n");
2233         for (i = 0; i < _PARENT_SEL_NB; i++) {
2234                 p = (readl(priv->base + priv->data->sel[i].offset) >>
2235                      priv->data->sel[i].src) & priv->data->sel[i].msk;
2236                 if (p < priv->data->sel[i].nb_parent) {
2237                         s = priv->data->sel[i].parent[p];
2238                         printf("- %s(%d) => parent %s(%d)\n",
2239                                stm32mp1_clk_parent_sel_name[i], i,
2240                                stm32mp1_clk_parent_name[s], s);
2241                 } else {
2242                         printf("- %s(%d) => parent index %d is invalid\n",
2243                                stm32mp1_clk_parent_sel_name[i], i, p);
2244                 }
2245         }
2246 }
2247
2248 #ifdef CONFIG_CMD_CLK
2249 int soc_clk_dump(void)
2250 {
2251         struct udevice *dev;
2252         struct stm32mp1_clk_priv *priv;
2253         int ret;
2254
2255         ret = uclass_get_device_by_driver(UCLASS_CLK,
2256                                           DM_GET_DRIVER(stm32mp1_clock),
2257                                           &dev);
2258         if (ret)
2259                 return ret;
2260
2261         priv = dev_get_priv(dev);
2262
2263         stm32mp1_clk_dump(priv);
2264
2265         return 0;
2266 }
2267 #endif
2268
2269 static int stm32mp1_clk_probe(struct udevice *dev)
2270 {
2271         int result = 0;
2272         struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
2273
2274         priv->base = dev_read_addr(dev->parent);
2275         if (priv->base == FDT_ADDR_T_NONE)
2276                 return -EINVAL;
2277
2278         priv->data = (void *)&stm32mp1_data;
2279
2280         if (!priv->data->gate || !priv->data->sel ||
2281             !priv->data->pll)
2282                 return -EINVAL;
2283
2284         stm32mp1_osc_init(dev);
2285
2286 #ifdef STM32MP1_CLOCK_TREE_INIT
2287         /* clock tree init is done only one time, before relocation */
2288         if (!(gd->flags & GD_FLG_RELOC))
2289                 result = stm32mp1_clktree(dev);
2290         if (result)
2291                 printf("clock tree initialization failed (%d)\n", result);
2292 #endif
2293
2294 #ifndef CONFIG_SPL_BUILD
2295 #if defined(DEBUG)
2296         /* display debug information for probe after relocation */
2297         if (gd->flags & GD_FLG_RELOC)
2298                 stm32mp1_clk_dump(priv);
2299 #endif
2300
2301         gd->cpu_clk = stm32mp1_clk_get(priv, _CK_MPU);
2302         gd->bus_clk = stm32mp1_clk_get(priv, _ACLK);
2303         /* DDRPHYC father */
2304         gd->mem_clk = stm32mp1_clk_get(priv, _PLL2_R);
2305 #if defined(CONFIG_DISPLAY_CPUINFO)
2306         if (gd->flags & GD_FLG_RELOC) {
2307                 char buf[32];
2308
2309                 printf("Clocks:\n");
2310                 printf("- MPU : %s MHz\n", strmhz(buf, gd->cpu_clk));
2311                 printf("- MCU : %s MHz\n",
2312                        strmhz(buf, stm32mp1_clk_get(priv, _CK_MCU)));
2313                 printf("- AXI : %s MHz\n", strmhz(buf, gd->bus_clk));
2314                 printf("- PER : %s MHz\n",
2315                        strmhz(buf, stm32mp1_clk_get(priv, _CK_PER)));
2316                 printf("- DDR : %s MHz\n", strmhz(buf, gd->mem_clk));
2317         }
2318 #endif /* CONFIG_DISPLAY_CPUINFO */
2319 #endif
2320
2321         return result;
2322 }
2323
2324 static const struct clk_ops stm32mp1_clk_ops = {
2325         .enable = stm32mp1_clk_enable,
2326         .disable = stm32mp1_clk_disable,
2327         .get_rate = stm32mp1_clk_get_rate,
2328         .set_rate = stm32mp1_clk_set_rate,
2329 };
2330
2331 U_BOOT_DRIVER(stm32mp1_clock) = {
2332         .name = "stm32mp1_clk",
2333         .id = UCLASS_CLK,
2334         .ops = &stm32mp1_clk_ops,
2335         .priv_auto_alloc_size = sizeof(struct stm32mp1_clk_priv),
2336         .probe = stm32mp1_clk_probe,
2337 };