20b36470994a6173f66018c9654d54fb42057a5e
[platform/kernel/u-boot.git] / drivers / clk / clk_stm32h7.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
4  * Author(s): Patrice Chotard, <patrice.chotard@foss.st.com> for STMicroelectronics.
5  */
6
7 #define LOG_CATEGORY UCLASS_CLK
8
9 #include <common.h>
10 #include <clk-uclass.h>
11 #include <dm.h>
12 #include <log.h>
13 #include <regmap.h>
14 #include <syscon.h>
15 #include <asm/io.h>
16 #include <dm/device_compat.h>
17 #include <dm/root.h>
18 #include <linux/bitops.h>
19
20 #include <dt-bindings/clock/stm32h7-clks.h>
21
22 /* RCC CR specific definitions */
23 #define RCC_CR_HSION                    BIT(0)
24 #define RCC_CR_HSIRDY                   BIT(2)
25
26 #define RCC_CR_HSEON                    BIT(16)
27 #define RCC_CR_HSERDY                   BIT(17)
28 #define RCC_CR_HSEBYP                   BIT(18)
29 #define RCC_CR_PLL1ON                   BIT(24)
30 #define RCC_CR_PLL1RDY                  BIT(25)
31
32 #define RCC_CR_HSIDIV_MASK              GENMASK(4, 3)
33 #define RCC_CR_HSIDIV_SHIFT             3
34
35 #define RCC_CFGR_SW_MASK                GENMASK(2, 0)
36 #define RCC_CFGR_SW_HSI                 0
37 #define RCC_CFGR_SW_CSI                 1
38 #define RCC_CFGR_SW_HSE                 2
39 #define RCC_CFGR_SW_PLL1                3
40 #define RCC_CFGR_TIMPRE                 BIT(15)
41
42 #define RCC_PLLCKSELR_PLLSRC_HSI        0
43 #define RCC_PLLCKSELR_PLLSRC_CSI        1
44 #define RCC_PLLCKSELR_PLLSRC_HSE        2
45 #define RCC_PLLCKSELR_PLLSRC_NO_CLK     3
46
47 #define RCC_PLLCKSELR_PLLSRC_MASK       GENMASK(1, 0)
48
49 #define RCC_PLLCKSELR_DIVM1_SHIFT       4
50 #define RCC_PLLCKSELR_DIVM1_MASK        GENMASK(9, 4)
51
52 #define RCC_PLL1DIVR_DIVN1_MASK         GENMASK(8, 0)
53
54 #define RCC_PLL1DIVR_DIVP1_SHIFT        9
55 #define RCC_PLL1DIVR_DIVP1_MASK         GENMASK(15, 9)
56
57 #define RCC_PLL1DIVR_DIVQ1_SHIFT        16
58 #define RCC_PLL1DIVR_DIVQ1_MASK         GENMASK(22, 16)
59
60 #define RCC_PLL1DIVR_DIVR1_SHIFT        24
61 #define RCC_PLL1DIVR_DIVR1_MASK         GENMASK(30, 24)
62
63 #define RCC_PLL1FRACR_FRACN1_SHIFT      3
64 #define RCC_PLL1FRACR_FRACN1_MASK       GENMASK(15, 3)
65
66 #define RCC_PLLCFGR_PLL1RGE_SHIFT       2
67 #define         PLL1RGE_1_2_MHZ         0
68 #define         PLL1RGE_2_4_MHZ         1
69 #define         PLL1RGE_4_8_MHZ         2
70 #define         PLL1RGE_8_16_MHZ        3
71 #define RCC_PLLCFGR_DIVP1EN             BIT(16)
72 #define RCC_PLLCFGR_DIVQ1EN             BIT(17)
73 #define RCC_PLLCFGR_DIVR1EN             BIT(18)
74
75 #define RCC_D1CFGR_HPRE_MASK            GENMASK(3, 0)
76 #define RCC_D1CFGR_HPRE_DIVIDED         BIT(3)
77 #define RCC_D1CFGR_HPRE_DIVIDER         GENMASK(2, 0)
78
79 #define RCC_D1CFGR_HPRE_DIV2            8
80
81 #define RCC_D1CFGR_D1PPRE_SHIFT         4
82 #define RCC_D1CFGR_D1PPRE_DIVIDED       BIT(6)
83 #define RCC_D1CFGR_D1PPRE_DIVIDER       GENMASK(5, 4)
84
85 #define RCC_D1CFGR_D1CPRE_SHIFT         8
86 #define RCC_D1CFGR_D1CPRE_DIVIDER       GENMASK(10, 8)
87 #define RCC_D1CFGR_D1CPRE_DIVIDED       BIT(11)
88
89 #define RCC_D2CFGR_D2PPRE1_SHIFT        4
90 #define RCC_D2CFGR_D2PPRE1_DIVIDED      BIT(6)
91 #define RCC_D2CFGR_D2PPRE1_DIVIDER      GENMASK(5, 4)
92
93 #define RCC_D2CFGR_D2PPRE2_SHIFT        8
94 #define RCC_D2CFGR_D2PPRE2_DIVIDED      BIT(10)
95 #define RCC_D2CFGR_D2PPRE2_DIVIDER      GENMASK(9, 8)
96
97 #define RCC_D3CFGR_D3PPRE_SHIFT         4
98 #define RCC_D3CFGR_D3PPRE_DIVIDED       BIT(6)
99 #define RCC_D3CFGR_D3PPRE_DIVIDER       GENMASK(5, 4)
100
101 #define RCC_D1CCIPR_FMCSRC_MASK         GENMASK(1, 0)
102 #define         FMCSRC_HCLKD1           0
103 #define         FMCSRC_PLL1_Q_CK        1
104 #define         FMCSRC_PLL2_R_CK        2
105 #define         FMCSRC_PER_CK           3
106
107 #define RCC_D1CCIPR_QSPISRC_MASK        GENMASK(5, 4)
108 #define RCC_D1CCIPR_QSPISRC_SHIFT       4
109 #define         QSPISRC_HCLKD1          0
110 #define         QSPISRC_PLL1_Q_CK       1
111 #define         QSPISRC_PLL2_R_CK       2
112 #define         QSPISRC_PER_CK          3
113
114 #define PWR_CR3                         0x0c
115 #define PWR_CR3_SCUEN                   BIT(2)
116 #define PWR_D3CR                        0x18
117 #define PWR_D3CR_VOS_MASK               GENMASK(15, 14)
118 #define PWR_D3CR_VOS_SHIFT              14
119 #define         VOS_SCALE_3             1
120 #define         VOS_SCALE_2             2
121 #define         VOS_SCALE_1             3
122 #define PWR_D3CR_VOSREADY               BIT(13)
123
124 struct stm32_rcc_regs {
125         u32 cr;         /* 0x00 Source Control Register */
126         u32 icscr;      /* 0x04 Internal Clock Source Calibration Register */
127         u32 crrcr;      /* 0x08 Clock Recovery RC Register */
128         u32 reserved1;  /* 0x0c reserved */
129         u32 cfgr;       /* 0x10 Clock Configuration Register */
130         u32 reserved2;  /* 0x14 reserved */
131         u32 d1cfgr;     /* 0x18 Domain 1 Clock Configuration Register */
132         u32 d2cfgr;     /* 0x1c Domain 2 Clock Configuration Register */
133         u32 d3cfgr;     /* 0x20 Domain 3 Clock Configuration Register */
134         u32 reserved3;  /* 0x24 reserved */
135         u32 pllckselr;  /* 0x28 PLLs Clock Source Selection Register */
136         u32 pllcfgr;    /* 0x2c PLLs Configuration Register */
137         u32 pll1divr;   /* 0x30 PLL1 Dividers Configuration Register */
138         u32 pll1fracr;  /* 0x34 PLL1 Fractional Divider Register */
139         u32 pll2divr;   /* 0x38 PLL2 Dividers Configuration Register */
140         u32 pll2fracr;  /* 0x3c PLL2 Fractional Divider Register */
141         u32 pll3divr;   /* 0x40 PLL3 Dividers Configuration Register */
142         u32 pll3fracr;  /* 0x44 PLL3 Fractional Divider Register */
143         u32 reserved4;  /* 0x48 reserved */
144         u32 d1ccipr;    /* 0x4c Domain 1 Kernel Clock Configuration Register */
145         u32 d2ccip1r;   /* 0x50 Domain 2 Kernel Clock Configuration Register */
146         u32 d2ccip2r;   /* 0x54 Domain 2 Kernel Clock Configuration Register */
147         u32 d3ccipr;    /* 0x58 Domain 3 Kernel Clock Configuration Register */
148         u32 reserved5;  /* 0x5c reserved */
149         u32 cier;       /* 0x60 Clock Source Interrupt Enable Register */
150         u32 cifr;       /* 0x64 Clock Source Interrupt Flag Register */
151         u32 cicr;       /* 0x68 Clock Source Interrupt Clear Register */
152         u32 reserved6;  /* 0x6c reserved */
153         u32 bdcr;       /* 0x70 Backup Domain Control Register */
154         u32 csr;        /* 0x74 Clock Control and Status Register */
155         u32 reserved7;  /* 0x78 reserved */
156
157         u32 ahb3rstr;   /* 0x7c AHB3 Peripheral Reset Register */
158         u32 ahb1rstr;   /* 0x80 AHB1 Peripheral Reset Register */
159         u32 ahb2rstr;   /* 0x84 AHB2 Peripheral Reset Register */
160         u32 ahb4rstr;   /* 0x88 AHB4 Peripheral Reset Register */
161
162         u32 apb3rstr;   /* 0x8c APB3 Peripheral Reset Register */
163         u32 apb1lrstr;  /* 0x90 APB1 low Peripheral Reset Register */
164         u32 apb1hrstr;  /* 0x94 APB1 high Peripheral Reset Register */
165         u32 apb2rstr;   /* 0x98 APB2 Clock Register */
166         u32 apb4rstr;   /* 0x9c APB4 Clock Register */
167
168         u32 gcr;        /* 0xa0 Global Control Register */
169         u32 reserved8;  /* 0xa4 reserved */
170         u32 d3amr;      /* 0xa8 D3 Autonomous mode Register */
171         u32 reserved9[9];/* 0xac to 0xcc reserved */
172         u32 rsr;        /* 0xd0 Reset Status Register */
173         u32 ahb3enr;    /* 0xd4 AHB3 Clock Register */
174         u32 ahb1enr;    /* 0xd8 AHB1 Clock Register */
175         u32 ahb2enr;    /* 0xdc AHB2 Clock Register */
176         u32 ahb4enr;    /* 0xe0 AHB4 Clock Register */
177
178         u32 apb3enr;    /* 0xe4 APB3 Clock Register */
179         u32 apb1lenr;   /* 0xe8 APB1 low Clock Register */
180         u32 apb1henr;   /* 0xec APB1 high Clock Register */
181         u32 apb2enr;    /* 0xf0 APB2 Clock Register */
182         u32 apb4enr;    /* 0xf4 APB4 Clock Register */
183 };
184
185 #define RCC_AHB3ENR     offsetof(struct stm32_rcc_regs, ahb3enr)
186 #define RCC_AHB1ENR     offsetof(struct stm32_rcc_regs, ahb1enr)
187 #define RCC_AHB2ENR     offsetof(struct stm32_rcc_regs, ahb2enr)
188 #define RCC_AHB4ENR     offsetof(struct stm32_rcc_regs, ahb4enr)
189 #define RCC_APB3ENR     offsetof(struct stm32_rcc_regs, apb3enr)
190 #define RCC_APB1LENR    offsetof(struct stm32_rcc_regs, apb1lenr)
191 #define RCC_APB1HENR    offsetof(struct stm32_rcc_regs, apb1henr)
192 #define RCC_APB2ENR     offsetof(struct stm32_rcc_regs, apb2enr)
193 #define RCC_APB4ENR     offsetof(struct stm32_rcc_regs, apb4enr)
194
195 struct clk_cfg {
196         u32 gate_offset;
197         u8  gate_bit_idx;
198         const char *name;
199 };
200
201 /*
202  * the way all these entries are sorted in this array could seem
203  * unlogical, but we are dependant of kernel DT_bindings,
204  * where clocks are separate in 2 banks, peripheral clocks and
205  * kernel clocks.
206  */
207
208 static const struct clk_cfg clk_map[] = {
209         {RCC_AHB3ENR,  31, "d1sram1"},  /* peripheral clocks */
210         {RCC_AHB3ENR,  30, "itcm"},
211         {RCC_AHB3ENR,  29, "dtcm2"},
212         {RCC_AHB3ENR,  28, "dtcm1"},
213         {RCC_AHB3ENR,   8, "flitf"},
214         {RCC_AHB3ENR,   5, "jpgdec"},
215         {RCC_AHB3ENR,   4, "dma2d"},
216         {RCC_AHB3ENR,   0, "mdma"},
217         {RCC_AHB1ENR,  28, "usb2ulpi"},
218         {RCC_AHB1ENR,  17, "eth1rx"},
219         {RCC_AHB1ENR,  16, "eth1tx"},
220         {RCC_AHB1ENR,  15, "eth1mac"},
221         {RCC_AHB1ENR,  14, "art"},
222         {RCC_AHB1ENR,  26, "usb1ulpi"},
223         {RCC_AHB1ENR,   1, "dma2"},
224         {RCC_AHB1ENR,   0, "dma1"},
225         {RCC_AHB2ENR,  31, "d2sram3"},
226         {RCC_AHB2ENR,  30, "d2sram2"},
227         {RCC_AHB2ENR,  29, "d2sram1"},
228         {RCC_AHB2ENR,   5, "hash"},
229         {RCC_AHB2ENR,   4, "crypt"},
230         {RCC_AHB2ENR,   0, "camitf"},
231         {RCC_AHB4ENR,  28, "bkpram"},
232         {RCC_AHB4ENR,  25, "hsem"},
233         {RCC_AHB4ENR,  21, "bdma"},
234         {RCC_AHB4ENR,  19, "crc"},
235         {RCC_AHB4ENR,  10, "gpiok"},
236         {RCC_AHB4ENR,   9, "gpioj"},
237         {RCC_AHB4ENR,   8, "gpioi"},
238         {RCC_AHB4ENR,   7, "gpioh"},
239         {RCC_AHB4ENR,   6, "gpiog"},
240         {RCC_AHB4ENR,   5, "gpiof"},
241         {RCC_AHB4ENR,   4, "gpioe"},
242         {RCC_AHB4ENR,   3, "gpiod"},
243         {RCC_AHB4ENR,   2, "gpioc"},
244         {RCC_AHB4ENR,   1, "gpiob"},
245         {RCC_AHB4ENR,   0, "gpioa"},
246         {RCC_APB3ENR,   6, "wwdg1"},
247         {RCC_APB1LENR, 29, "dac12"},
248         {RCC_APB1LENR, 11, "wwdg2"},
249         {RCC_APB1LENR,  8, "tim14"},
250         {RCC_APB1LENR,  7, "tim13"},
251         {RCC_APB1LENR,  6, "tim12"},
252         {RCC_APB1LENR,  5, "tim7"},
253         {RCC_APB1LENR,  4, "tim6"},
254         {RCC_APB1LENR,  3, "tim5"},
255         {RCC_APB1LENR,  2, "tim4"},
256         {RCC_APB1LENR,  1, "tim3"},
257         {RCC_APB1LENR,  0, "tim2"},
258         {RCC_APB1HENR,  5, "mdios"},
259         {RCC_APB1HENR,  4, "opamp"},
260         {RCC_APB1HENR,  1, "crs"},
261         {RCC_APB2ENR,  18, "tim17"},
262         {RCC_APB2ENR,  17, "tim16"},
263         {RCC_APB2ENR,  16, "tim15"},
264         {RCC_APB2ENR,   1, "tim8"},
265         {RCC_APB2ENR,   0, "tim1"},
266         {RCC_APB4ENR,  26, "tmpsens"},
267         {RCC_APB4ENR,  16, "rtcapb"},
268         {RCC_APB4ENR,  15, "vref"},
269         {RCC_APB4ENR,  14, "comp12"},
270         {RCC_APB4ENR,   1, "syscfg"},
271         {RCC_AHB3ENR,  16, "sdmmc1"},   /* kernel clocks */
272         {RCC_AHB3ENR,  14, "quadspi"},
273         {RCC_AHB3ENR,  12, "fmc"},
274         {RCC_AHB1ENR,  27, "usb2otg"},
275         {RCC_AHB1ENR,  25, "usb1otg"},
276         {RCC_AHB1ENR,   5, "adc12"},
277         {RCC_AHB2ENR,   9, "sdmmc2"},
278         {RCC_AHB2ENR,   6, "rng"},
279         {RCC_AHB4ENR,  24, "adc3"},
280         {RCC_APB3ENR,   4, "dsi"},
281         {RCC_APB3ENR,   3, "ltdc"},
282         {RCC_APB1LENR, 31, "usart8"},
283         {RCC_APB1LENR, 30, "usart7"},
284         {RCC_APB1LENR, 27, "hdmicec"},
285         {RCC_APB1LENR, 23, "i2c3"},
286         {RCC_APB1LENR, 22, "i2c2"},
287         {RCC_APB1LENR, 21, "i2c1"},
288         {RCC_APB1LENR, 20, "uart5"},
289         {RCC_APB1LENR, 19, "uart4"},
290         {RCC_APB1LENR, 18, "usart3"},
291         {RCC_APB1LENR, 17, "usart2"},
292         {RCC_APB1LENR, 16, "spdifrx"},
293         {RCC_APB1LENR, 15, "spi3"},
294         {RCC_APB1LENR, 14, "spi2"},
295         {RCC_APB1LENR,  9, "lptim1"},
296         {RCC_APB1HENR,  8, "fdcan"},
297         {RCC_APB1HENR,  2, "swp"},
298         {RCC_APB2ENR,  29, "hrtim"},
299         {RCC_APB2ENR,  28, "dfsdm1"},
300         {RCC_APB2ENR,  24, "sai3"},
301         {RCC_APB2ENR,  23, "sai2"},
302         {RCC_APB2ENR,  22, "sai1"},
303         {RCC_APB2ENR,  20, "spi5"},
304         {RCC_APB2ENR,  13, "spi4"},
305         {RCC_APB2ENR,  12, "spi1"},
306         {RCC_APB2ENR,   5, "usart6"},
307         {RCC_APB2ENR,   4, "usart1"},
308         {RCC_APB4ENR,  21, "sai4a"},
309         {RCC_APB4ENR,  21, "sai4b"},
310         {RCC_APB4ENR,  12, "lptim5"},
311         {RCC_APB4ENR,  11, "lptim4"},
312         {RCC_APB4ENR,  10, "lptim3"},
313         {RCC_APB4ENR,   9, "lptim2"},
314         {RCC_APB4ENR,   7, "i2c4"},
315         {RCC_APB4ENR,   5,  "spi6"},
316         {RCC_APB4ENR,   3, "lpuart1"},
317 };
318
319 struct stm32_clk {
320         struct stm32_rcc_regs *rcc_base;
321         struct regmap *pwr_regmap;
322 };
323
324 struct pll_psc {
325         u8      divm;
326         u16     divn;
327         u8      divp;
328         u8      divq;
329         u8      divr;
330 };
331
332 /*
333  * OSC_HSE = 25 MHz
334  * VCO = 500MHz
335  * pll1_p = 250MHz / pll1_q = 250MHz pll1_r = 250Mhz
336  */
337 struct pll_psc sys_pll_psc = {
338         .divm = 4,
339         .divn = 80,
340         .divp = 2,
341         .divq = 2,
342         .divr = 2,
343 };
344
345 enum apb {
346         APB1,
347         APB2,
348 };
349
350 int configure_clocks(struct udevice *dev)
351 {
352         struct stm32_clk *priv = dev_get_priv(dev);
353         struct stm32_rcc_regs *regs = priv->rcc_base;
354         uint8_t *pwr_base = (uint8_t *)regmap_get_range(priv->pwr_regmap, 0);
355         uint32_t pllckselr = 0;
356         uint32_t pll1divr = 0;
357         uint32_t pllcfgr = 0;
358
359         /* Switch on HSI */
360         setbits_le32(&regs->cr, RCC_CR_HSION);
361         while (!(readl(&regs->cr) & RCC_CR_HSIRDY))
362                 ;
363
364         /* Reset CFGR, now HSI is the default system clock */
365         writel(0, &regs->cfgr);
366
367         /* Set all kernel domain clock registers to reset value*/
368         writel(0x0, &regs->d1ccipr);
369         writel(0x0, &regs->d2ccip1r);
370         writel(0x0, &regs->d2ccip2r);
371
372         /* Set voltage scaling at scale 1 (1,15 - 1,26 Volts) */
373         clrsetbits_le32(pwr_base + PWR_D3CR, PWR_D3CR_VOS_MASK,
374                         VOS_SCALE_1 << PWR_D3CR_VOS_SHIFT);
375         /* Lock supply configuration update */
376         clrbits_le32(pwr_base + PWR_CR3, PWR_CR3_SCUEN);
377         while (!(readl(pwr_base + PWR_D3CR) & PWR_D3CR_VOSREADY))
378                 ;
379
380         /* disable HSE to configure it  */
381         clrbits_le32(&regs->cr, RCC_CR_HSEON);
382         while ((readl(&regs->cr) & RCC_CR_HSERDY))
383                 ;
384
385         /* clear HSE bypass and set it ON */
386         clrbits_le32(&regs->cr, RCC_CR_HSEBYP);
387         /* Switch on HSE */
388         setbits_le32(&regs->cr, RCC_CR_HSEON);
389         while (!(readl(&regs->cr) & RCC_CR_HSERDY))
390                 ;
391
392         /* pll setup, disable it */
393         clrbits_le32(&regs->cr, RCC_CR_PLL1ON);
394         while ((readl(&regs->cr) & RCC_CR_PLL1RDY))
395                 ;
396
397         /* Select HSE as PLL clock source */
398         pllckselr |= RCC_PLLCKSELR_PLLSRC_HSE;
399         pllckselr |= sys_pll_psc.divm << RCC_PLLCKSELR_DIVM1_SHIFT;
400         writel(pllckselr, &regs->pllckselr);
401
402         pll1divr |= (sys_pll_psc.divr - 1) << RCC_PLL1DIVR_DIVR1_SHIFT;
403         pll1divr |= (sys_pll_psc.divq - 1) << RCC_PLL1DIVR_DIVQ1_SHIFT;
404         pll1divr |= (sys_pll_psc.divp - 1) << RCC_PLL1DIVR_DIVP1_SHIFT;
405         pll1divr |= (sys_pll_psc.divn - 1);
406         writel(pll1divr, &regs->pll1divr);
407
408         pllcfgr |= PLL1RGE_4_8_MHZ << RCC_PLLCFGR_PLL1RGE_SHIFT;
409         pllcfgr |= RCC_PLLCFGR_DIVP1EN;
410         pllcfgr |= RCC_PLLCFGR_DIVQ1EN;
411         pllcfgr |= RCC_PLLCFGR_DIVR1EN;
412         writel(pllcfgr, &regs->pllcfgr);
413
414         /* pll setup, enable it */
415         setbits_le32(&regs->cr, RCC_CR_PLL1ON);
416
417         /* set HPRE (/2) DI clk --> 125MHz */
418         clrsetbits_le32(&regs->d1cfgr, RCC_D1CFGR_HPRE_MASK,
419                         RCC_D1CFGR_HPRE_DIV2);
420
421         /*  select PLL1 as system clock source (sys_ck)*/
422         clrsetbits_le32(&regs->cfgr, RCC_CFGR_SW_MASK, RCC_CFGR_SW_PLL1);
423         while ((readl(&regs->cfgr) & RCC_CFGR_SW_MASK) != RCC_CFGR_SW_PLL1)
424                 ;
425
426         /* sdram: use pll1_q as fmc_k clk */
427         clrsetbits_le32(&regs->d1ccipr, RCC_D1CCIPR_FMCSRC_MASK,
428                         FMCSRC_PLL1_Q_CK);
429
430         return 0;
431 }
432
433 static u32 stm32_get_HSI_divider(struct stm32_rcc_regs *regs)
434 {
435         u32 divider;
436
437         /* get HSI divider value */
438         divider = readl(&regs->cr) & RCC_CR_HSIDIV_MASK;
439         divider = divider >> RCC_CR_HSIDIV_SHIFT;
440
441         return divider;
442 };
443
444 enum pllsrc {
445         HSE,
446         LSE,
447         HSI,
448         CSI,
449         I2S,
450         TIMER,
451         PLLSRC_NB,
452 };
453
454 static const char * const pllsrc_name[PLLSRC_NB] = {
455         [HSE] = "clk-hse",
456         [LSE] = "clk-lse",
457         [HSI] = "clk-hsi",
458         [CSI] = "clk-csi",
459         [I2S] = "clk-i2s",
460         [TIMER] = "timer-clk"
461 };
462
463 static ulong stm32_get_rate(struct stm32_rcc_regs *regs, enum pllsrc pllsrc)
464 {
465         struct clk clk;
466         struct udevice *fixed_clock_dev = NULL;
467         u32 divider;
468         int ret;
469         const char *name = pllsrc_name[pllsrc];
470
471         log_debug("pllsrc name %s\n", name);
472
473         clk.id = 0;
474         ret = uclass_get_device_by_name(UCLASS_CLK, name, &fixed_clock_dev);
475         if (ret) {
476                 log_err("Can't find clk %s (%d)", name, ret);
477                 return 0;
478         }
479
480         ret = clk_request(fixed_clock_dev, &clk);
481         if (ret) {
482                 log_err("Can't request %s clk (%d)", name, ret);
483                 return 0;
484         }
485
486         divider = 0;
487         if (pllsrc == HSI)
488                 divider = stm32_get_HSI_divider(regs);
489
490         log_debug("divider %d rate %ld\n", divider, clk_get_rate(&clk));
491
492         return clk_get_rate(&clk) >> divider;
493 };
494
495 enum pll1_output {
496         PLL1_P_CK,
497         PLL1_Q_CK,
498         PLL1_R_CK,
499 };
500
501 static u32 stm32_get_PLL1_rate(struct stm32_rcc_regs *regs,
502                                enum pll1_output output)
503 {
504         ulong pllsrc = 0;
505         u32 divm1, divn1, divp1, divq1, divr1, fracn1;
506         ulong vco, rate;
507
508         /* get the PLLSRC */
509         switch (readl(&regs->pllckselr) & RCC_PLLCKSELR_PLLSRC_MASK) {
510         case RCC_PLLCKSELR_PLLSRC_HSI:
511                 pllsrc = stm32_get_rate(regs, HSI);
512                 break;
513         case RCC_PLLCKSELR_PLLSRC_CSI:
514                 pllsrc = stm32_get_rate(regs, CSI);
515                 break;
516         case RCC_PLLCKSELR_PLLSRC_HSE:
517                 pllsrc = stm32_get_rate(regs, HSE);
518                 break;
519         case RCC_PLLCKSELR_PLLSRC_NO_CLK:
520                 /* shouldn't happen */
521                 log_err("wrong value for RCC_PLLCKSELR register\n");
522                 pllsrc = 0;
523                 break;
524         }
525
526         /* pllsrc = 0 ? no need to go ahead */
527         if (!pllsrc)
528                 return pllsrc;
529
530         /* get divm1, divp1, divn1 and divr1 */
531         divm1 = readl(&regs->pllckselr) & RCC_PLLCKSELR_DIVM1_MASK;
532         divm1 = divm1 >> RCC_PLLCKSELR_DIVM1_SHIFT;
533
534         divn1 = (readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVN1_MASK) + 1;
535
536         divp1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVP1_MASK;
537         divp1 = (divp1 >> RCC_PLL1DIVR_DIVP1_SHIFT) + 1;
538
539         divq1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVQ1_MASK;
540         divq1 = (divq1 >> RCC_PLL1DIVR_DIVQ1_SHIFT) + 1;
541
542         divr1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVR1_MASK;
543         divr1 = (divr1 >> RCC_PLL1DIVR_DIVR1_SHIFT) + 1;
544
545         fracn1 = readl(&regs->pll1fracr) & RCC_PLL1DIVR_DIVR1_MASK;
546         fracn1 = fracn1 & RCC_PLL1DIVR_DIVR1_SHIFT;
547
548         vco = (pllsrc / divm1) * divn1;
549         rate = (pllsrc * fracn1) / (divm1 * 8192);
550
551         log_debug("divm1 = %d divn1 = %d divp1 = %d divq1 = %d divr1 = %d\n",
552                   divm1, divn1, divp1, divq1, divr1);
553         log_debug("fracn1 = %d vco = %ld rate = %ld\n",
554                   fracn1, vco, rate);
555
556         switch (output) {
557         case PLL1_P_CK:
558                 return (vco + rate) / divp1;
559                 break;
560         case PLL1_Q_CK:
561                 return (vco + rate) / divq1;
562                 break;
563
564         case PLL1_R_CK:
565                 return (vco + rate) / divr1;
566                 break;
567         }
568
569         return -EINVAL;
570 }
571
572 static u32 stm32_get_apb_psc(struct stm32_rcc_regs *regs, enum apb apb)
573 {
574         u16 prescaler_table[8] = {2, 4, 8, 16, 64, 128, 256, 512};
575         u32 d2cfgr = readl(&regs->d2cfgr);
576
577         if (apb == APB1) {
578                 if (d2cfgr & RCC_D2CFGR_D2PPRE1_DIVIDED)
579                         /* get D2 domain APB1 prescaler */
580                         return prescaler_table[
581                                 ((d2cfgr & RCC_D2CFGR_D2PPRE1_DIVIDER)
582                                 >> RCC_D2CFGR_D2PPRE1_SHIFT)];
583         } else  { /* APB2 */
584                 if (d2cfgr & RCC_D2CFGR_D2PPRE2_DIVIDED)
585                         /* get D2 domain APB2 prescaler */
586                         return prescaler_table[
587                                 ((d2cfgr & RCC_D2CFGR_D2PPRE2_DIVIDER)
588                                 >> RCC_D2CFGR_D2PPRE2_SHIFT)];
589         }
590
591         return 1;
592 };
593
594 static u32 stm32_get_timer_rate(struct stm32_clk *priv, u32 sysclk,
595                                 enum apb apb)
596 {
597         struct stm32_rcc_regs *regs = priv->rcc_base;
598 u32 psc = stm32_get_apb_psc(regs, apb);
599
600         if (readl(&regs->cfgr) & RCC_CFGR_TIMPRE)
601                 /*
602                  * if APB prescaler is configured to a
603                  * division factor of 1, 2 or 4
604                  */
605                 switch (psc) {
606                 case 1:
607                 case 2:
608                 case 4:
609                         return sysclk;
610                 case 8:
611                         return sysclk / 2;
612                 case 16:
613                         return sysclk / 4;
614                 default:
615                         log_err("unexpected prescaler value (%d)\n", psc);
616                         return 0;
617                 }
618         else
619                 switch (psc) {
620                 case 1:
621                         return sysclk;
622                 case 2:
623                 case 4:
624                 case 8:
625                 case 16:
626                         return sysclk / psc;
627                 default:
628                         log_err("unexpected prescaler value (%d)\n", psc);
629                         return 0;
630                 }
631 };
632
633 static ulong stm32_clk_get_rate(struct clk *clk)
634 {
635         struct stm32_clk *priv = dev_get_priv(clk->dev);
636         struct stm32_rcc_regs *regs = priv->rcc_base;
637         ulong sysclk = 0;
638         u32 gate_offset;
639         u32 d1cfgr, d3cfgr;
640         /* prescaler table lookups for clock computation */
641         u16 prescaler_table[8] = {2, 4, 8, 16, 64, 128, 256, 512};
642         u8 source, idx;
643
644         /*
645          * get system clock (sys_ck) source
646          * can be HSI_CK, CSI_CK, HSE_CK or pll1_p_ck
647          */
648         source = readl(&regs->cfgr) & RCC_CFGR_SW_MASK;
649         switch (source) {
650         case RCC_CFGR_SW_PLL1:
651                 sysclk = stm32_get_PLL1_rate(regs, PLL1_P_CK);
652                 break;
653         case RCC_CFGR_SW_HSE:
654                 sysclk = stm32_get_rate(regs, HSE);
655                 break;
656
657         case RCC_CFGR_SW_CSI:
658                 sysclk = stm32_get_rate(regs, CSI);
659                 break;
660
661         case RCC_CFGR_SW_HSI:
662                 sysclk = stm32_get_rate(regs, HSI);
663                 break;
664         }
665
666         /* sysclk = 0 ? no need to go ahead */
667         if (!sysclk)
668                 return sysclk;
669
670         dev_dbg(clk->dev, "system clock: source = %d freq = %ld\n",
671                 source, sysclk);
672
673         d1cfgr = readl(&regs->d1cfgr);
674
675         if (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDED) {
676                 /* get D1 domain Core prescaler */
677                 idx = (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDER) >>
678                       RCC_D1CFGR_D1CPRE_SHIFT;
679                 sysclk = sysclk / prescaler_table[idx];
680         }
681
682         if (d1cfgr & RCC_D1CFGR_HPRE_DIVIDED) {
683                 /* get D1 domain AHB prescaler */
684                 idx = d1cfgr & RCC_D1CFGR_HPRE_DIVIDER;
685                 sysclk = sysclk / prescaler_table[idx];
686         }
687
688         gate_offset = clk_map[clk->id].gate_offset;
689
690         dev_dbg(clk->dev, "clk->id=%ld gate_offset=0x%x sysclk=%ld\n",
691                 clk->id, gate_offset, sysclk);
692
693         switch (gate_offset) {
694         case RCC_AHB3ENR:
695         case RCC_AHB1ENR:
696         case RCC_AHB2ENR:
697         case RCC_AHB4ENR:
698                 return sysclk;
699                 break;
700
701         case RCC_APB3ENR:
702                 if (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDED) {
703                         /* get D1 domain APB3 prescaler */
704                         idx = (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDER) >>
705                               RCC_D1CFGR_D1PPRE_SHIFT;
706                         sysclk = sysclk / prescaler_table[idx];
707                 }
708
709                 dev_dbg(clk->dev, "system clock: freq after APB3 prescaler = %ld\n",
710                         sysclk);
711
712                 return sysclk;
713                 break;
714
715         case RCC_APB4ENR:
716                 d3cfgr = readl(&regs->d3cfgr);
717                 if (d3cfgr & RCC_D3CFGR_D3PPRE_DIVIDED) {
718                         /* get D3 domain APB4 prescaler */
719                         idx = (d3cfgr & RCC_D3CFGR_D3PPRE_DIVIDER) >>
720                               RCC_D3CFGR_D3PPRE_SHIFT;
721                         sysclk = sysclk / prescaler_table[idx];
722                 }
723
724                 dev_dbg(clk->dev,
725                         "system clock: freq after APB4 prescaler = %ld\n",
726                         sysclk);
727
728                 return sysclk;
729                 break;
730
731         case RCC_APB1LENR:
732         case RCC_APB1HENR:
733                 /* special case for GPT timers */
734                 switch (clk->id) {
735                 case TIM14_CK:
736                 case TIM13_CK:
737                 case TIM12_CK:
738                 case TIM7_CK:
739                 case TIM6_CK:
740                 case TIM5_CK:
741                 case TIM4_CK:
742                 case TIM3_CK:
743                 case TIM2_CK:
744                         return stm32_get_timer_rate(priv, sysclk, APB1);
745                 }
746
747                 dev_dbg(clk->dev,
748                         "system clock: freq after APB1 prescaler = %ld\n",
749                         sysclk);
750
751                 return (sysclk / stm32_get_apb_psc(regs, APB1));
752                 break;
753
754         case RCC_APB2ENR:
755                 /* special case for timers */
756                 switch (clk->id) {
757                 case TIM17_CK:
758                 case TIM16_CK:
759                 case TIM15_CK:
760                 case TIM8_CK:
761                 case TIM1_CK:
762                         return stm32_get_timer_rate(priv, sysclk, APB2);
763                 }
764
765                 dev_dbg(clk->dev,
766                         "system clock: freq after APB2 prescaler = %ld\n",
767                         sysclk);
768
769                 return (sysclk / stm32_get_apb_psc(regs, APB2));
770
771                 break;
772
773         default:
774                 dev_err(clk->dev, "unexpected gate_offset value (0x%x)\n",
775                         gate_offset);
776                 return -EINVAL;
777                 break;
778         }
779 }
780
781 static int stm32_clk_enable(struct clk *clk)
782 {
783         struct stm32_clk *priv = dev_get_priv(clk->dev);
784         struct stm32_rcc_regs *regs = priv->rcc_base;
785         u32 gate_offset;
786         u32 gate_bit_index;
787         unsigned long clk_id = clk->id;
788
789         gate_offset = clk_map[clk_id].gate_offset;
790         gate_bit_index = clk_map[clk_id].gate_bit_idx;
791
792         dev_dbg(clk->dev, "clkid=%ld gate offset=0x%x bit_index=%d name=%s\n",
793                 clk->id, gate_offset, gate_bit_index,
794                 clk_map[clk_id].name);
795
796         setbits_le32(&regs->cr + (gate_offset / 4), BIT(gate_bit_index));
797
798         return 0;
799 }
800
801 static int stm32_clk_probe(struct udevice *dev)
802 {
803         struct stm32_clk *priv = dev_get_priv(dev);
804         struct udevice *syscon;
805         fdt_addr_t addr;
806         int err;
807
808         addr = dev_read_addr(dev);
809         if (addr == FDT_ADDR_T_NONE)
810                 return -EINVAL;
811
812         priv->rcc_base = (struct stm32_rcc_regs *)addr;
813
814         /* get corresponding syscon phandle */
815         err = uclass_get_device_by_phandle(UCLASS_SYSCON, dev,
816                                            "st,syscfg", &syscon);
817
818         if (err) {
819                 dev_err(dev, "unable to find syscon device\n");
820                 return err;
821         }
822
823         priv->pwr_regmap = syscon_get_regmap(syscon);
824         if (!priv->pwr_regmap) {
825                 dev_err(dev, "unable to find regmap\n");
826                 return -ENODEV;
827         }
828
829         configure_clocks(dev);
830
831         return 0;
832 }
833
834 static int stm32_clk_of_xlate(struct clk *clk,
835                         struct ofnode_phandle_args *args)
836 {
837         if (args->args_count != 1) {
838                 dev_dbg(clk->dev, "Invaild args_count: %d\n", args->args_count);
839                 return -EINVAL;
840         }
841
842         if (args->args_count) {
843                 clk->id = args->args[0];
844                 /*
845                  * this computation convert DT clock index which is used to
846                  * point into 2 separate clock arrays (peripheral and kernel
847                  * clocks bank) (see include/dt-bindings/clock/stm32h7-clks.h)
848                  * into index to point into only one array where peripheral
849                  * and kernel clocks are consecutive
850                  */
851                 if (clk->id >= KERN_BANK) {
852                         clk->id -= KERN_BANK;
853                         clk->id += LAST_PERIF_BANK - PERIF_BANK + 1;
854                 } else {
855                         clk->id -= PERIF_BANK;
856                 }
857         } else {
858                 clk->id = 0;
859         }
860
861         dev_dbg(clk->dev, "clk->id %ld\n", clk->id);
862
863         return 0;
864 }
865
866 static struct clk_ops stm32_clk_ops = {
867         .of_xlate       = stm32_clk_of_xlate,
868         .enable         = stm32_clk_enable,
869         .get_rate       = stm32_clk_get_rate,
870 };
871
872 U_BOOT_DRIVER(stm32h7_clk) = {
873         .name                   = "stm32h7_rcc_clock",
874         .id                     = UCLASS_CLK,
875         .ops                    = &stm32_clk_ops,
876         .probe                  = stm32_clk_probe,
877         .priv_auto      = sizeof(struct stm32_clk),
878         .flags                  = DM_FLAG_PRE_RELOC,
879 };