2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * Standard functionality for the common clock API. See Documentation/clk.txt
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/sched.h>
26 #include <linux/clkdev.h>
27 #include <linux/stringify.h>
31 static DEFINE_SPINLOCK(enable_lock);
32 static DEFINE_MUTEX(prepare_lock);
34 static struct task_struct *prepare_owner;
35 static struct task_struct *enable_owner;
37 static int prepare_refcnt;
38 static int enable_refcnt;
40 static HLIST_HEAD(clk_root_list);
41 static HLIST_HEAD(clk_orphan_list);
42 static LIST_HEAD(clk_notifier_list);
44 /*** private data structures ***/
48 const struct clk_ops *ops;
52 struct clk_core *parent;
53 const char **parent_names;
54 struct clk_core **parents;
58 unsigned long req_rate;
59 unsigned long new_rate;
60 struct clk_core *new_parent;
61 struct clk_core *new_child;
64 unsigned int enable_count;
65 unsigned int prepare_count;
66 unsigned int protect_count;
67 unsigned long min_rate;
68 unsigned long max_rate;
69 unsigned long accuracy;
71 struct hlist_head children;
72 struct hlist_node child_node;
73 struct hlist_head clks;
74 unsigned int notifier_count;
75 #ifdef CONFIG_DEBUG_FS
76 struct dentry *dentry;
77 struct hlist_node debug_node;
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/clk.h>
86 struct clk_core *core;
89 unsigned long min_rate;
90 unsigned long max_rate;
91 unsigned int exclusive_count;
92 struct hlist_node clks_node;
96 static int clk_pm_runtime_get(struct clk_core *core)
103 ret = pm_runtime_get_sync(core->dev);
104 return ret < 0 ? ret : 0;
107 static void clk_pm_runtime_put(struct clk_core *core)
112 pm_runtime_put_sync(core->dev);
116 static void clk_prepare_lock(void)
118 if (!mutex_trylock(&prepare_lock)) {
119 if (prepare_owner == current) {
123 mutex_lock(&prepare_lock);
125 WARN_ON_ONCE(prepare_owner != NULL);
126 WARN_ON_ONCE(prepare_refcnt != 0);
127 prepare_owner = current;
131 static void clk_prepare_unlock(void)
133 WARN_ON_ONCE(prepare_owner != current);
134 WARN_ON_ONCE(prepare_refcnt == 0);
136 if (--prepare_refcnt)
138 prepare_owner = NULL;
139 mutex_unlock(&prepare_lock);
142 static unsigned long clk_enable_lock(void)
143 __acquires(enable_lock)
148 * On UP systems, spin_trylock_irqsave() always returns true, even if
149 * we already hold the lock. So, in that case, we rely only on
150 * reference counting.
152 if (!IS_ENABLED(CONFIG_SMP) ||
153 !spin_trylock_irqsave(&enable_lock, flags)) {
154 if (enable_owner == current) {
156 __acquire(enable_lock);
157 if (!IS_ENABLED(CONFIG_SMP))
158 local_save_flags(flags);
161 spin_lock_irqsave(&enable_lock, flags);
163 WARN_ON_ONCE(enable_owner != NULL);
164 WARN_ON_ONCE(enable_refcnt != 0);
165 enable_owner = current;
170 static void clk_enable_unlock(unsigned long flags)
171 __releases(enable_lock)
173 WARN_ON_ONCE(enable_owner != current);
174 WARN_ON_ONCE(enable_refcnt == 0);
176 if (--enable_refcnt) {
177 __release(enable_lock);
181 spin_unlock_irqrestore(&enable_lock, flags);
184 static bool clk_core_rate_is_protected(struct clk_core *core)
186 return core->protect_count;
189 static bool clk_core_is_prepared(struct clk_core *core)
194 * .is_prepared is optional for clocks that can prepare
195 * fall back to software usage counter if it is missing
197 if (!core->ops->is_prepared)
198 return core->prepare_count;
200 if (!clk_pm_runtime_get(core)) {
201 ret = core->ops->is_prepared(core->hw);
202 clk_pm_runtime_put(core);
208 static bool clk_core_is_enabled(struct clk_core *core)
213 * .is_enabled is only mandatory for clocks that gate
214 * fall back to software usage counter if .is_enabled is missing
216 if (!core->ops->is_enabled)
217 return core->enable_count;
220 * Check if clock controller's device is runtime active before
221 * calling .is_enabled callback. If not, assume that clock is
222 * disabled, because we might be called from atomic context, from
223 * which pm_runtime_get() is not allowed.
224 * This function is called mainly from clk_disable_unused_subtree,
225 * which ensures proper runtime pm activation of controller before
226 * taking enable spinlock, but the below check is needed if one tries
227 * to call it from other places.
230 pm_runtime_get_noresume(core->dev);
231 if (!pm_runtime_active(core->dev)) {
237 ret = core->ops->is_enabled(core->hw);
240 pm_runtime_put(core->dev);
245 /*** helper functions ***/
247 const char *__clk_get_name(const struct clk *clk)
249 return !clk ? NULL : clk->core->name;
251 EXPORT_SYMBOL_GPL(__clk_get_name);
253 const char *clk_hw_get_name(const struct clk_hw *hw)
255 return hw->core->name;
257 EXPORT_SYMBOL_GPL(clk_hw_get_name);
259 struct clk_hw *__clk_get_hw(struct clk *clk)
261 return !clk ? NULL : clk->core->hw;
263 EXPORT_SYMBOL_GPL(__clk_get_hw);
265 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
267 return hw->core->num_parents;
269 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
271 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
273 return hw->core->parent ? hw->core->parent->hw : NULL;
275 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
277 static struct clk_core *__clk_lookup_subtree(const char *name,
278 struct clk_core *core)
280 struct clk_core *child;
281 struct clk_core *ret;
283 if (!strcmp(core->name, name))
286 hlist_for_each_entry(child, &core->children, child_node) {
287 ret = __clk_lookup_subtree(name, child);
295 static struct clk_core *clk_core_lookup(const char *name)
297 struct clk_core *root_clk;
298 struct clk_core *ret;
303 /* search the 'proper' clk tree first */
304 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
305 ret = __clk_lookup_subtree(name, root_clk);
310 /* if not found, then search the orphan tree */
311 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
312 ret = __clk_lookup_subtree(name, root_clk);
320 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
323 if (!core || index >= core->num_parents)
326 if (!core->parents[index])
327 core->parents[index] =
328 clk_core_lookup(core->parent_names[index]);
330 return core->parents[index];
334 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
336 struct clk_core *parent;
338 parent = clk_core_get_parent_by_index(hw->core, index);
340 return !parent ? NULL : parent->hw;
342 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
344 unsigned int __clk_get_enable_count(struct clk *clk)
346 return !clk ? 0 : clk->core->enable_count;
349 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
360 if (!core->num_parents)
370 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
372 return clk_core_get_rate_nolock(hw->core);
374 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
376 static unsigned long __clk_get_accuracy(struct clk_core *core)
381 return core->accuracy;
384 unsigned long __clk_get_flags(struct clk *clk)
386 return !clk ? 0 : clk->core->flags;
388 EXPORT_SYMBOL_GPL(__clk_get_flags);
390 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
392 return hw->core->flags;
394 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
396 bool clk_hw_is_prepared(const struct clk_hw *hw)
398 return clk_core_is_prepared(hw->core);
401 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
403 return clk_core_rate_is_protected(hw->core);
406 bool clk_hw_is_enabled(const struct clk_hw *hw)
408 return clk_core_is_enabled(hw->core);
411 bool __clk_is_enabled(struct clk *clk)
416 return clk_core_is_enabled(clk->core);
418 EXPORT_SYMBOL_GPL(__clk_is_enabled);
420 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
421 unsigned long best, unsigned long flags)
423 if (flags & CLK_MUX_ROUND_CLOSEST)
424 return abs(now - rate) < abs(best - rate);
426 return now <= rate && now > best;
430 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
433 struct clk_core *core = hw->core, *parent, *best_parent = NULL;
434 int i, num_parents, ret;
435 unsigned long best = 0;
436 struct clk_rate_request parent_req = *req;
438 /* if NO_REPARENT flag set, pass through to current parent */
439 if (core->flags & CLK_SET_RATE_NO_REPARENT) {
440 parent = core->parent;
441 if (core->flags & CLK_SET_RATE_PARENT) {
442 ret = __clk_determine_rate(parent ? parent->hw : NULL,
447 best = parent_req.rate;
449 best = clk_core_get_rate_nolock(parent);
451 best = clk_core_get_rate_nolock(core);
457 /* find the parent that can provide the fastest rate <= rate */
458 num_parents = core->num_parents;
459 for (i = 0; i < num_parents; i++) {
460 parent = clk_core_get_parent_by_index(core, i);
464 if (core->flags & CLK_SET_RATE_PARENT) {
466 ret = __clk_determine_rate(parent->hw, &parent_req);
470 parent_req.rate = clk_core_get_rate_nolock(parent);
473 if (mux_is_better_rate(req->rate, parent_req.rate,
475 best_parent = parent;
476 best = parent_req.rate;
485 req->best_parent_hw = best_parent->hw;
486 req->best_parent_rate = best;
492 struct clk *__clk_lookup(const char *name)
494 struct clk_core *core = clk_core_lookup(name);
496 return !core ? NULL : core->hw->clk;
499 static void clk_core_get_boundaries(struct clk_core *core,
500 unsigned long *min_rate,
501 unsigned long *max_rate)
503 struct clk *clk_user;
505 *min_rate = core->min_rate;
506 *max_rate = core->max_rate;
508 hlist_for_each_entry(clk_user, &core->clks, clks_node)
509 *min_rate = max(*min_rate, clk_user->min_rate);
511 hlist_for_each_entry(clk_user, &core->clks, clks_node)
512 *max_rate = min(*max_rate, clk_user->max_rate);
515 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
516 unsigned long max_rate)
518 hw->core->min_rate = min_rate;
519 hw->core->max_rate = max_rate;
521 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
524 * Helper for finding best parent to provide a given frequency. This can be used
525 * directly as a determine_rate callback (e.g. for a mux), or from a more
526 * complex clock that may combine a mux with other operations.
528 int __clk_mux_determine_rate(struct clk_hw *hw,
529 struct clk_rate_request *req)
531 return clk_mux_determine_rate_flags(hw, req, 0);
533 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
535 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
536 struct clk_rate_request *req)
538 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
540 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
544 static void clk_core_rate_unprotect(struct clk_core *core)
546 lockdep_assert_held(&prepare_lock);
551 if (WARN(core->protect_count == 0,
552 "%s already unprotected\n", core->name))
555 if (--core->protect_count > 0)
558 clk_core_rate_unprotect(core->parent);
561 static int clk_core_rate_nuke_protect(struct clk_core *core)
565 lockdep_assert_held(&prepare_lock);
570 if (core->protect_count == 0)
573 ret = core->protect_count;
574 core->protect_count = 1;
575 clk_core_rate_unprotect(core);
581 * clk_rate_exclusive_put - release exclusivity over clock rate control
582 * @clk: the clk over which the exclusivity is released
584 * clk_rate_exclusive_put() completes a critical section during which a clock
585 * consumer cannot tolerate any other consumer making any operation on the
586 * clock which could result in a rate change or rate glitch. Exclusive clocks
587 * cannot have their rate changed, either directly or indirectly due to changes
588 * further up the parent chain of clocks. As a result, clocks up parent chain
589 * also get under exclusive control of the calling consumer.
591 * If exlusivity is claimed more than once on clock, even by the same consumer,
592 * the rate effectively gets locked as exclusivity can't be preempted.
594 * Calls to clk_rate_exclusive_put() must be balanced with calls to
595 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
598 void clk_rate_exclusive_put(struct clk *clk)
606 * if there is something wrong with this consumer protect count, stop
607 * here before messing with the provider
609 if (WARN_ON(clk->exclusive_count <= 0))
612 clk_core_rate_unprotect(clk->core);
613 clk->exclusive_count--;
615 clk_prepare_unlock();
617 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
619 static void clk_core_rate_protect(struct clk_core *core)
621 lockdep_assert_held(&prepare_lock);
626 if (core->protect_count == 0)
627 clk_core_rate_protect(core->parent);
629 core->protect_count++;
632 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
634 lockdep_assert_held(&prepare_lock);
642 clk_core_rate_protect(core);
643 core->protect_count = count;
647 * clk_rate_exclusive_get - get exclusivity over the clk rate control
648 * @clk: the clk over which the exclusity of rate control is requested
650 * clk_rate_exlusive_get() begins a critical section during which a clock
651 * consumer cannot tolerate any other consumer making any operation on the
652 * clock which could result in a rate change or rate glitch. Exclusive clocks
653 * cannot have their rate changed, either directly or indirectly due to changes
654 * further up the parent chain of clocks. As a result, clocks up parent chain
655 * also get under exclusive control of the calling consumer.
657 * If exlusivity is claimed more than once on clock, even by the same consumer,
658 * the rate effectively gets locked as exclusivity can't be preempted.
660 * Calls to clk_rate_exclusive_get() should be balanced with calls to
661 * clk_rate_exclusive_put(). Calls to this function may sleep.
662 * Returns 0 on success, -EERROR otherwise
664 int clk_rate_exclusive_get(struct clk *clk)
670 clk_core_rate_protect(clk->core);
671 clk->exclusive_count++;
672 clk_prepare_unlock();
676 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
678 static void clk_core_unprepare(struct clk_core *core)
680 lockdep_assert_held(&prepare_lock);
685 if (WARN(core->prepare_count == 0,
686 "%s already unprepared\n", core->name))
689 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
690 "Unpreparing critical %s\n", core->name))
693 if (--core->prepare_count > 0)
696 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
698 trace_clk_unprepare(core);
700 if (core->ops->unprepare)
701 core->ops->unprepare(core->hw);
703 clk_pm_runtime_put(core);
705 trace_clk_unprepare_complete(core);
706 clk_core_unprepare(core->parent);
709 static void clk_core_unprepare_lock(struct clk_core *core)
712 clk_core_unprepare(core);
713 clk_prepare_unlock();
717 * clk_unprepare - undo preparation of a clock source
718 * @clk: the clk being unprepared
720 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
721 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
722 * if the operation may sleep. One example is a clk which is accessed over
723 * I2c. In the complex case a clk gate operation may require a fast and a slow
724 * part. It is this reason that clk_unprepare and clk_disable are not mutually
725 * exclusive. In fact clk_disable must be called before clk_unprepare.
727 void clk_unprepare(struct clk *clk)
729 if (IS_ERR_OR_NULL(clk))
732 clk_core_unprepare_lock(clk->core);
734 EXPORT_SYMBOL_GPL(clk_unprepare);
736 static int clk_core_prepare(struct clk_core *core)
740 lockdep_assert_held(&prepare_lock);
745 if (core->prepare_count == 0) {
746 ret = clk_pm_runtime_get(core);
750 ret = clk_core_prepare(core->parent);
754 trace_clk_prepare(core);
756 if (core->ops->prepare)
757 ret = core->ops->prepare(core->hw);
759 trace_clk_prepare_complete(core);
765 core->prepare_count++;
769 clk_core_unprepare(core->parent);
771 clk_pm_runtime_put(core);
775 static int clk_core_prepare_lock(struct clk_core *core)
780 ret = clk_core_prepare(core);
781 clk_prepare_unlock();
787 * clk_prepare - prepare a clock source
788 * @clk: the clk being prepared
790 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
791 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
792 * operation may sleep. One example is a clk which is accessed over I2c. In
793 * the complex case a clk ungate operation may require a fast and a slow part.
794 * It is this reason that clk_prepare and clk_enable are not mutually
795 * exclusive. In fact clk_prepare must be called before clk_enable.
796 * Returns 0 on success, -EERROR otherwise.
798 int clk_prepare(struct clk *clk)
803 return clk_core_prepare_lock(clk->core);
805 EXPORT_SYMBOL_GPL(clk_prepare);
807 static void clk_core_disable(struct clk_core *core)
809 lockdep_assert_held(&enable_lock);
814 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
817 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
818 "Disabling critical %s\n", core->name))
821 if (--core->enable_count > 0)
824 trace_clk_disable_rcuidle(core);
826 if (core->ops->disable)
827 core->ops->disable(core->hw);
829 trace_clk_disable_complete_rcuidle(core);
831 clk_core_disable(core->parent);
834 static void clk_core_disable_lock(struct clk_core *core)
838 flags = clk_enable_lock();
839 clk_core_disable(core);
840 clk_enable_unlock(flags);
844 * clk_disable - gate a clock
845 * @clk: the clk being gated
847 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
848 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
849 * clk if the operation is fast and will never sleep. One example is a
850 * SoC-internal clk which is controlled via simple register writes. In the
851 * complex case a clk gate operation may require a fast and a slow part. It is
852 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
853 * In fact clk_disable must be called before clk_unprepare.
855 void clk_disable(struct clk *clk)
857 if (IS_ERR_OR_NULL(clk))
860 clk_core_disable_lock(clk->core);
862 EXPORT_SYMBOL_GPL(clk_disable);
864 static int clk_core_enable(struct clk_core *core)
868 lockdep_assert_held(&enable_lock);
873 if (WARN(core->prepare_count == 0,
874 "Enabling unprepared %s\n", core->name))
877 if (core->enable_count == 0) {
878 ret = clk_core_enable(core->parent);
883 trace_clk_enable_rcuidle(core);
885 if (core->ops->enable)
886 ret = core->ops->enable(core->hw);
888 trace_clk_enable_complete_rcuidle(core);
891 clk_core_disable(core->parent);
896 core->enable_count++;
900 static int clk_core_enable_lock(struct clk_core *core)
905 flags = clk_enable_lock();
906 ret = clk_core_enable(core);
907 clk_enable_unlock(flags);
913 * clk_enable - ungate a clock
914 * @clk: the clk being ungated
916 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
917 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
918 * if the operation will never sleep. One example is a SoC-internal clk which
919 * is controlled via simple register writes. In the complex case a clk ungate
920 * operation may require a fast and a slow part. It is this reason that
921 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
922 * must be called before clk_enable. Returns 0 on success, -EERROR
925 int clk_enable(struct clk *clk)
930 return clk_core_enable_lock(clk->core);
932 EXPORT_SYMBOL_GPL(clk_enable);
934 static int clk_core_prepare_enable(struct clk_core *core)
938 ret = clk_core_prepare_lock(core);
942 ret = clk_core_enable_lock(core);
944 clk_core_unprepare_lock(core);
949 static void clk_core_disable_unprepare(struct clk_core *core)
951 clk_core_disable_lock(core);
952 clk_core_unprepare_lock(core);
955 static void clk_unprepare_unused_subtree(struct clk_core *core)
957 struct clk_core *child;
959 lockdep_assert_held(&prepare_lock);
961 hlist_for_each_entry(child, &core->children, child_node)
962 clk_unprepare_unused_subtree(child);
964 if (core->prepare_count)
967 if (core->flags & CLK_IGNORE_UNUSED)
970 if (clk_pm_runtime_get(core))
973 if (clk_core_is_prepared(core)) {
974 trace_clk_unprepare(core);
975 if (core->ops->unprepare_unused)
976 core->ops->unprepare_unused(core->hw);
977 else if (core->ops->unprepare)
978 core->ops->unprepare(core->hw);
979 trace_clk_unprepare_complete(core);
982 clk_pm_runtime_put(core);
985 static void clk_disable_unused_subtree(struct clk_core *core)
987 struct clk_core *child;
990 lockdep_assert_held(&prepare_lock);
992 hlist_for_each_entry(child, &core->children, child_node)
993 clk_disable_unused_subtree(child);
995 if (core->flags & CLK_OPS_PARENT_ENABLE)
996 clk_core_prepare_enable(core->parent);
998 if (clk_pm_runtime_get(core))
1001 flags = clk_enable_lock();
1003 if (core->enable_count)
1006 if (core->flags & CLK_IGNORE_UNUSED)
1010 * some gate clocks have special needs during the disable-unused
1011 * sequence. call .disable_unused if available, otherwise fall
1014 if (clk_core_is_enabled(core)) {
1015 trace_clk_disable(core);
1016 if (core->ops->disable_unused)
1017 core->ops->disable_unused(core->hw);
1018 else if (core->ops->disable)
1019 core->ops->disable(core->hw);
1020 trace_clk_disable_complete(core);
1024 clk_enable_unlock(flags);
1025 clk_pm_runtime_put(core);
1027 if (core->flags & CLK_OPS_PARENT_ENABLE)
1028 clk_core_disable_unprepare(core->parent);
1031 static bool clk_ignore_unused;
1032 static int __init clk_ignore_unused_setup(char *__unused)
1034 clk_ignore_unused = true;
1037 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1039 static int clk_disable_unused(void)
1041 struct clk_core *core;
1043 if (clk_ignore_unused) {
1044 pr_warn("clk: Not disabling unused clocks\n");
1050 hlist_for_each_entry(core, &clk_root_list, child_node)
1051 clk_disable_unused_subtree(core);
1053 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1054 clk_disable_unused_subtree(core);
1056 hlist_for_each_entry(core, &clk_root_list, child_node)
1057 clk_unprepare_unused_subtree(core);
1059 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1060 clk_unprepare_unused_subtree(core);
1062 clk_prepare_unlock();
1066 late_initcall_sync(clk_disable_unused);
1068 static int clk_core_determine_round_nolock(struct clk_core *core,
1069 struct clk_rate_request *req)
1073 lockdep_assert_held(&prepare_lock);
1079 * At this point, core protection will be disabled if
1080 * - if the provider is not protected at all
1081 * - if the calling consumer is the only one which has exclusivity
1084 if (clk_core_rate_is_protected(core)) {
1085 req->rate = core->rate;
1086 } else if (core->ops->determine_rate) {
1087 return core->ops->determine_rate(core->hw, req);
1088 } else if (core->ops->round_rate) {
1089 rate = core->ops->round_rate(core->hw, req->rate,
1090 &req->best_parent_rate);
1102 static void clk_core_init_rate_req(struct clk_core * const core,
1103 struct clk_rate_request *req)
1105 struct clk_core *parent;
1107 if (WARN_ON(!core || !req))
1110 parent = core->parent;
1112 req->best_parent_hw = parent->hw;
1113 req->best_parent_rate = parent->rate;
1115 req->best_parent_hw = NULL;
1116 req->best_parent_rate = 0;
1120 static bool clk_core_can_round(struct clk_core * const core)
1122 if (core->ops->determine_rate || core->ops->round_rate)
1128 static int clk_core_round_rate_nolock(struct clk_core *core,
1129 struct clk_rate_request *req)
1131 lockdep_assert_held(&prepare_lock);
1138 clk_core_init_rate_req(core, req);
1140 if (clk_core_can_round(core))
1141 return clk_core_determine_round_nolock(core, req);
1142 else if (core->flags & CLK_SET_RATE_PARENT)
1143 return clk_core_round_rate_nolock(core->parent, req);
1145 req->rate = core->rate;
1150 * __clk_determine_rate - get the closest rate actually supported by a clock
1151 * @hw: determine the rate of this clock
1152 * @req: target rate request
1154 * Useful for clk_ops such as .set_rate and .determine_rate.
1156 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1163 return clk_core_round_rate_nolock(hw->core, req);
1165 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1167 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1170 struct clk_rate_request req;
1172 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1175 ret = clk_core_round_rate_nolock(hw->core, &req);
1181 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1184 * clk_round_rate - round the given rate for a clk
1185 * @clk: the clk for which we are rounding a rate
1186 * @rate: the rate which is to be rounded
1188 * Takes in a rate as input and rounds it to a rate that the clk can actually
1189 * use which is then returned. If clk doesn't support round_rate operation
1190 * then the parent rate is returned.
1192 long clk_round_rate(struct clk *clk, unsigned long rate)
1194 struct clk_rate_request req;
1202 if (clk->exclusive_count)
1203 clk_core_rate_unprotect(clk->core);
1205 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1208 ret = clk_core_round_rate_nolock(clk->core, &req);
1210 if (clk->exclusive_count)
1211 clk_core_rate_protect(clk->core);
1213 clk_prepare_unlock();
1220 EXPORT_SYMBOL_GPL(clk_round_rate);
1223 * __clk_notify - call clk notifier chain
1224 * @core: clk that is changing rate
1225 * @msg: clk notifier type (see include/linux/clk.h)
1226 * @old_rate: old clk rate
1227 * @new_rate: new clk rate
1229 * Triggers a notifier call chain on the clk rate-change notification
1230 * for 'clk'. Passes a pointer to the struct clk and the previous
1231 * and current rates to the notifier callback. Intended to be called by
1232 * internal clock code only. Returns NOTIFY_DONE from the last driver
1233 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1234 * a driver returns that.
1236 static int __clk_notify(struct clk_core *core, unsigned long msg,
1237 unsigned long old_rate, unsigned long new_rate)
1239 struct clk_notifier *cn;
1240 struct clk_notifier_data cnd;
1241 int ret = NOTIFY_DONE;
1243 cnd.old_rate = old_rate;
1244 cnd.new_rate = new_rate;
1246 list_for_each_entry(cn, &clk_notifier_list, node) {
1247 if (cn->clk->core == core) {
1249 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1251 if (ret & NOTIFY_STOP_MASK)
1260 * __clk_recalc_accuracies
1261 * @core: first clk in the subtree
1263 * Walks the subtree of clks starting with clk and recalculates accuracies as
1264 * it goes. Note that if a clk does not implement the .recalc_accuracy
1265 * callback then it is assumed that the clock will take on the accuracy of its
1268 static void __clk_recalc_accuracies(struct clk_core *core)
1270 unsigned long parent_accuracy = 0;
1271 struct clk_core *child;
1273 lockdep_assert_held(&prepare_lock);
1276 parent_accuracy = core->parent->accuracy;
1278 if (core->ops->recalc_accuracy)
1279 core->accuracy = core->ops->recalc_accuracy(core->hw,
1282 core->accuracy = parent_accuracy;
1284 hlist_for_each_entry(child, &core->children, child_node)
1285 __clk_recalc_accuracies(child);
1288 static long clk_core_get_accuracy(struct clk_core *core)
1290 unsigned long accuracy;
1293 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1294 __clk_recalc_accuracies(core);
1296 accuracy = __clk_get_accuracy(core);
1297 clk_prepare_unlock();
1303 * clk_get_accuracy - return the accuracy of clk
1304 * @clk: the clk whose accuracy is being returned
1306 * Simply returns the cached accuracy of the clk, unless
1307 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1309 * If clk is NULL then returns 0.
1311 long clk_get_accuracy(struct clk *clk)
1316 return clk_core_get_accuracy(clk->core);
1318 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1320 static unsigned long clk_recalc(struct clk_core *core,
1321 unsigned long parent_rate)
1323 unsigned long rate = parent_rate;
1325 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1326 rate = core->ops->recalc_rate(core->hw, parent_rate);
1327 clk_pm_runtime_put(core);
1333 * __clk_recalc_rates
1334 * @core: first clk in the subtree
1335 * @msg: notification type (see include/linux/clk.h)
1337 * Walks the subtree of clks starting with clk and recalculates rates as it
1338 * goes. Note that if a clk does not implement the .recalc_rate callback then
1339 * it is assumed that the clock will take on the rate of its parent.
1341 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1344 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1346 unsigned long old_rate;
1347 unsigned long parent_rate = 0;
1348 struct clk_core *child;
1350 lockdep_assert_held(&prepare_lock);
1352 old_rate = core->rate;
1355 parent_rate = core->parent->rate;
1357 core->rate = clk_recalc(core, parent_rate);
1360 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1361 * & ABORT_RATE_CHANGE notifiers
1363 if (core->notifier_count && msg)
1364 __clk_notify(core, msg, old_rate, core->rate);
1366 hlist_for_each_entry(child, &core->children, child_node)
1367 __clk_recalc_rates(child, msg);
1370 static unsigned long clk_core_get_rate(struct clk_core *core)
1376 if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1377 __clk_recalc_rates(core, 0);
1379 rate = clk_core_get_rate_nolock(core);
1380 clk_prepare_unlock();
1386 * clk_get_rate - return the rate of clk
1387 * @clk: the clk whose rate is being returned
1389 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1390 * is set, which means a recalc_rate will be issued.
1391 * If clk is NULL then returns 0.
1393 unsigned long clk_get_rate(struct clk *clk)
1398 return clk_core_get_rate(clk->core);
1400 EXPORT_SYMBOL_GPL(clk_get_rate);
1402 static int clk_fetch_parent_index(struct clk_core *core,
1403 struct clk_core *parent)
1410 for (i = 0; i < core->num_parents; i++)
1411 if (clk_core_get_parent_by_index(core, i) == parent)
1418 * Update the orphan status of @core and all its children.
1420 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1422 struct clk_core *child;
1424 core->orphan = is_orphan;
1426 hlist_for_each_entry(child, &core->children, child_node)
1427 clk_core_update_orphan_status(child, is_orphan);
1430 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1432 bool was_orphan = core->orphan;
1434 hlist_del(&core->child_node);
1437 bool becomes_orphan = new_parent->orphan;
1439 /* avoid duplicate POST_RATE_CHANGE notifications */
1440 if (new_parent->new_child == core)
1441 new_parent->new_child = NULL;
1443 hlist_add_head(&core->child_node, &new_parent->children);
1445 if (was_orphan != becomes_orphan)
1446 clk_core_update_orphan_status(core, becomes_orphan);
1448 hlist_add_head(&core->child_node, &clk_orphan_list);
1450 clk_core_update_orphan_status(core, true);
1453 core->parent = new_parent;
1456 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1457 struct clk_core *parent)
1459 unsigned long flags;
1460 struct clk_core *old_parent = core->parent;
1463 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1465 * 2. Migrate prepare state between parents and prevent race with
1468 * If the clock is not prepared, then a race with
1469 * clk_enable/disable() is impossible since we already have the
1470 * prepare lock (future calls to clk_enable() need to be preceded by
1473 * If the clock is prepared, migrate the prepared state to the new
1474 * parent and also protect against a race with clk_enable() by
1475 * forcing the clock and the new parent on. This ensures that all
1476 * future calls to clk_enable() are practically NOPs with respect to
1477 * hardware and software states.
1479 * See also: Comment for clk_set_parent() below.
1482 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1483 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1484 clk_core_prepare_enable(old_parent);
1485 clk_core_prepare_enable(parent);
1488 /* migrate prepare count if > 0 */
1489 if (core->prepare_count) {
1490 clk_core_prepare_enable(parent);
1491 clk_core_enable_lock(core);
1494 /* update the clk tree topology */
1495 flags = clk_enable_lock();
1496 clk_reparent(core, parent);
1497 clk_enable_unlock(flags);
1502 static void __clk_set_parent_after(struct clk_core *core,
1503 struct clk_core *parent,
1504 struct clk_core *old_parent)
1507 * Finish the migration of prepare state and undo the changes done
1508 * for preventing a race with clk_enable().
1510 if (core->prepare_count) {
1511 clk_core_disable_lock(core);
1512 clk_core_disable_unprepare(old_parent);
1515 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1516 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1517 clk_core_disable_unprepare(parent);
1518 clk_core_disable_unprepare(old_parent);
1522 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1525 unsigned long flags;
1527 struct clk_core *old_parent;
1529 old_parent = __clk_set_parent_before(core, parent);
1531 trace_clk_set_parent(core, parent);
1533 /* change clock input source */
1534 if (parent && core->ops->set_parent)
1535 ret = core->ops->set_parent(core->hw, p_index);
1537 trace_clk_set_parent_complete(core, parent);
1540 flags = clk_enable_lock();
1541 clk_reparent(core, old_parent);
1542 clk_enable_unlock(flags);
1543 __clk_set_parent_after(core, old_parent, parent);
1548 __clk_set_parent_after(core, parent, old_parent);
1554 * __clk_speculate_rates
1555 * @core: first clk in the subtree
1556 * @parent_rate: the "future" rate of clk's parent
1558 * Walks the subtree of clks starting with clk, speculating rates as it
1559 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1561 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1562 * pre-rate change notifications and returns early if no clks in the
1563 * subtree have subscribed to the notifications. Note that if a clk does not
1564 * implement the .recalc_rate callback then it is assumed that the clock will
1565 * take on the rate of its parent.
1567 static int __clk_speculate_rates(struct clk_core *core,
1568 unsigned long parent_rate)
1570 struct clk_core *child;
1571 unsigned long new_rate;
1572 int ret = NOTIFY_DONE;
1574 lockdep_assert_held(&prepare_lock);
1576 new_rate = clk_recalc(core, parent_rate);
1578 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1579 if (core->notifier_count)
1580 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1582 if (ret & NOTIFY_STOP_MASK) {
1583 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1584 __func__, core->name, ret);
1588 hlist_for_each_entry(child, &core->children, child_node) {
1589 ret = __clk_speculate_rates(child, new_rate);
1590 if (ret & NOTIFY_STOP_MASK)
1598 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1599 struct clk_core *new_parent, u8 p_index)
1601 struct clk_core *child;
1603 core->new_rate = new_rate;
1604 core->new_parent = new_parent;
1605 core->new_parent_index = p_index;
1606 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1607 core->new_child = NULL;
1608 if (new_parent && new_parent != core->parent)
1609 new_parent->new_child = core;
1611 hlist_for_each_entry(child, &core->children, child_node) {
1612 child->new_rate = clk_recalc(child, new_rate);
1613 clk_calc_subtree(child, child->new_rate, NULL, 0);
1618 * calculate the new rates returning the topmost clock that has to be
1621 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1624 struct clk_core *top = core;
1625 struct clk_core *old_parent, *parent;
1626 unsigned long best_parent_rate = 0;
1627 unsigned long new_rate;
1628 unsigned long min_rate;
1629 unsigned long max_rate;
1634 if (IS_ERR_OR_NULL(core))
1637 /* save parent rate, if it exists */
1638 parent = old_parent = core->parent;
1640 best_parent_rate = parent->rate;
1642 clk_core_get_boundaries(core, &min_rate, &max_rate);
1644 /* find the closest rate and parent clk/rate */
1645 if (clk_core_can_round(core)) {
1646 struct clk_rate_request req;
1649 req.min_rate = min_rate;
1650 req.max_rate = max_rate;
1652 clk_core_init_rate_req(core, &req);
1654 ret = clk_core_determine_round_nolock(core, &req);
1658 best_parent_rate = req.best_parent_rate;
1659 new_rate = req.rate;
1660 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1662 if (new_rate < min_rate || new_rate > max_rate)
1664 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1665 /* pass-through clock without adjustable parent */
1666 core->new_rate = core->rate;
1669 /* pass-through clock with adjustable parent */
1670 top = clk_calc_new_rates(parent, rate);
1671 new_rate = parent->new_rate;
1675 /* some clocks must be gated to change parent */
1676 if (parent != old_parent &&
1677 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1678 pr_debug("%s: %s not gated but wants to reparent\n",
1679 __func__, core->name);
1683 /* try finding the new parent index */
1684 if (parent && core->num_parents > 1) {
1685 p_index = clk_fetch_parent_index(core, parent);
1687 pr_debug("%s: clk %s can not be parent of clk %s\n",
1688 __func__, parent->name, core->name);
1693 if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1694 best_parent_rate != parent->rate)
1695 top = clk_calc_new_rates(parent, best_parent_rate);
1698 clk_calc_subtree(core, new_rate, parent, p_index);
1704 * Notify about rate changes in a subtree. Always walk down the whole tree
1705 * so that in case of an error we can walk down the whole tree again and
1708 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1709 unsigned long event)
1711 struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1712 int ret = NOTIFY_DONE;
1714 if (core->rate == core->new_rate)
1717 if (core->notifier_count) {
1718 ret = __clk_notify(core, event, core->rate, core->new_rate);
1719 if (ret & NOTIFY_STOP_MASK)
1723 hlist_for_each_entry(child, &core->children, child_node) {
1724 /* Skip children who will be reparented to another clock */
1725 if (child->new_parent && child->new_parent != core)
1727 tmp_clk = clk_propagate_rate_change(child, event);
1732 /* handle the new child who might not be in core->children yet */
1733 if (core->new_child) {
1734 tmp_clk = clk_propagate_rate_change(core->new_child, event);
1743 * walk down a subtree and set the new rates notifying the rate
1746 static void clk_change_rate(struct clk_core *core)
1748 struct clk_core *child;
1749 struct hlist_node *tmp;
1750 unsigned long old_rate;
1751 unsigned long best_parent_rate = 0;
1752 bool skip_set_rate = false;
1753 struct clk_core *old_parent;
1754 struct clk_core *parent = NULL;
1756 old_rate = core->rate;
1758 if (core->new_parent) {
1759 parent = core->new_parent;
1760 best_parent_rate = core->new_parent->rate;
1761 } else if (core->parent) {
1762 parent = core->parent;
1763 best_parent_rate = core->parent->rate;
1766 if (clk_pm_runtime_get(core))
1769 if (core->flags & CLK_SET_RATE_UNGATE) {
1770 unsigned long flags;
1772 clk_core_prepare(core);
1773 flags = clk_enable_lock();
1774 clk_core_enable(core);
1775 clk_enable_unlock(flags);
1778 if (core->new_parent && core->new_parent != core->parent) {
1779 old_parent = __clk_set_parent_before(core, core->new_parent);
1780 trace_clk_set_parent(core, core->new_parent);
1782 if (core->ops->set_rate_and_parent) {
1783 skip_set_rate = true;
1784 core->ops->set_rate_and_parent(core->hw, core->new_rate,
1786 core->new_parent_index);
1787 } else if (core->ops->set_parent) {
1788 core->ops->set_parent(core->hw, core->new_parent_index);
1791 trace_clk_set_parent_complete(core, core->new_parent);
1792 __clk_set_parent_after(core, core->new_parent, old_parent);
1795 if (core->flags & CLK_OPS_PARENT_ENABLE)
1796 clk_core_prepare_enable(parent);
1798 trace_clk_set_rate(core, core->new_rate);
1800 if (!skip_set_rate && core->ops->set_rate)
1801 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1803 trace_clk_set_rate_complete(core, core->new_rate);
1805 core->rate = clk_recalc(core, best_parent_rate);
1807 if (core->flags & CLK_SET_RATE_UNGATE) {
1808 unsigned long flags;
1810 flags = clk_enable_lock();
1811 clk_core_disable(core);
1812 clk_enable_unlock(flags);
1813 clk_core_unprepare(core);
1816 if (core->flags & CLK_OPS_PARENT_ENABLE)
1817 clk_core_disable_unprepare(parent);
1819 if (core->notifier_count && old_rate != core->rate)
1820 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1822 if (core->flags & CLK_RECALC_NEW_RATES)
1823 (void)clk_calc_new_rates(core, core->new_rate);
1826 * Use safe iteration, as change_rate can actually swap parents
1827 * for certain clock types.
1829 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1830 /* Skip children who will be reparented to another clock */
1831 if (child->new_parent && child->new_parent != core)
1833 clk_change_rate(child);
1836 /* handle the new child who might not be in core->children yet */
1837 if (core->new_child)
1838 clk_change_rate(core->new_child);
1840 clk_pm_runtime_put(core);
1843 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
1844 unsigned long req_rate)
1847 struct clk_rate_request req;
1849 lockdep_assert_held(&prepare_lock);
1854 /* simulate what the rate would be if it could be freely set */
1855 cnt = clk_core_rate_nuke_protect(core);
1859 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
1860 req.rate = req_rate;
1862 ret = clk_core_round_rate_nolock(core, &req);
1864 /* restore the protection */
1865 clk_core_rate_restore_protect(core, cnt);
1867 return ret ? 0 : req.rate;
1870 static int clk_core_set_rate_nolock(struct clk_core *core,
1871 unsigned long req_rate)
1873 struct clk_core *top, *fail_clk;
1880 rate = clk_core_req_round_rate_nolock(core, req_rate);
1882 /* bail early if nothing to do */
1883 if (rate == clk_core_get_rate_nolock(core))
1886 /* fail on a direct rate set of a protected provider */
1887 if (clk_core_rate_is_protected(core))
1890 if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1893 /* calculate new rates and get the topmost changed clock */
1894 top = clk_calc_new_rates(core, req_rate);
1898 ret = clk_pm_runtime_get(core);
1902 /* notify that we are about to change rates */
1903 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1905 pr_debug("%s: failed to set %s rate\n", __func__,
1907 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1912 /* change the rates */
1913 clk_change_rate(top);
1915 core->req_rate = req_rate;
1917 clk_pm_runtime_put(core);
1923 * clk_set_rate - specify a new rate for clk
1924 * @clk: the clk whose rate is being changed
1925 * @rate: the new rate for clk
1927 * In the simplest case clk_set_rate will only adjust the rate of clk.
1929 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1930 * propagate up to clk's parent; whether or not this happens depends on the
1931 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1932 * after calling .round_rate then upstream parent propagation is ignored. If
1933 * *parent_rate comes back with a new rate for clk's parent then we propagate
1934 * up to clk's parent and set its rate. Upward propagation will continue
1935 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1936 * .round_rate stops requesting changes to clk's parent_rate.
1938 * Rate changes are accomplished via tree traversal that also recalculates the
1939 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1941 * Returns 0 on success, -EERROR otherwise.
1943 int clk_set_rate(struct clk *clk, unsigned long rate)
1950 /* prevent racing with updates to the clock topology */
1953 if (clk->exclusive_count)
1954 clk_core_rate_unprotect(clk->core);
1956 ret = clk_core_set_rate_nolock(clk->core, rate);
1958 if (clk->exclusive_count)
1959 clk_core_rate_protect(clk->core);
1961 clk_prepare_unlock();
1965 EXPORT_SYMBOL_GPL(clk_set_rate);
1968 * clk_set_rate_exclusive - specify a new rate get exclusive control
1969 * @clk: the clk whose rate is being changed
1970 * @rate: the new rate for clk
1972 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
1973 * within a critical section
1975 * This can be used initially to ensure that at least 1 consumer is
1976 * statisfied when several consumers are competing for exclusivity over the
1977 * same clock provider.
1979 * The exclusivity is not applied if setting the rate failed.
1981 * Calls to clk_rate_exclusive_get() should be balanced with calls to
1982 * clk_rate_exclusive_put().
1984 * Returns 0 on success, -EERROR otherwise.
1986 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
1993 /* prevent racing with updates to the clock topology */
1997 * The temporary protection removal is not here, on purpose
1998 * This function is meant to be used instead of clk_rate_protect,
1999 * so before the consumer code path protect the clock provider
2002 ret = clk_core_set_rate_nolock(clk->core, rate);
2004 clk_core_rate_protect(clk->core);
2005 clk->exclusive_count++;
2008 clk_prepare_unlock();
2012 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2015 * clk_set_rate_range - set a rate range for a clock source
2016 * @clk: clock source
2017 * @min: desired minimum clock rate in Hz, inclusive
2018 * @max: desired maximum clock rate in Hz, inclusive
2020 * Returns success (0) or negative errno.
2022 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2025 unsigned long old_min, old_max, rate;
2031 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2032 __func__, clk->core->name, clk->dev_id, clk->con_id,
2039 if (clk->exclusive_count)
2040 clk_core_rate_unprotect(clk->core);
2042 /* Save the current values in case we need to rollback the change */
2043 old_min = clk->min_rate;
2044 old_max = clk->max_rate;
2045 clk->min_rate = min;
2046 clk->max_rate = max;
2048 rate = clk_core_get_rate_nolock(clk->core);
2049 if (rate < min || rate > max) {
2052 * We are in bit of trouble here, current rate is outside the
2053 * the requested range. We are going try to request appropriate
2054 * range boundary but there is a catch. It may fail for the
2055 * usual reason (clock broken, clock protected, etc) but also
2057 * - round_rate() was not favorable and fell on the wrong
2058 * side of the boundary
2059 * - the determine_rate() callback does not really check for
2060 * this corner case when determining the rate
2068 ret = clk_core_set_rate_nolock(clk->core, rate);
2070 /* rollback the changes */
2071 clk->min_rate = old_min;
2072 clk->max_rate = old_max;
2076 if (clk->exclusive_count)
2077 clk_core_rate_protect(clk->core);
2079 clk_prepare_unlock();
2083 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2086 * clk_set_min_rate - set a minimum clock rate for a clock source
2087 * @clk: clock source
2088 * @rate: desired minimum clock rate in Hz, inclusive
2090 * Returns success (0) or negative errno.
2092 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2097 return clk_set_rate_range(clk, rate, clk->max_rate);
2099 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2102 * clk_set_max_rate - set a maximum clock rate for a clock source
2103 * @clk: clock source
2104 * @rate: desired maximum clock rate in Hz, inclusive
2106 * Returns success (0) or negative errno.
2108 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2113 return clk_set_rate_range(clk, clk->min_rate, rate);
2115 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2118 * clk_get_parent - return the parent of a clk
2119 * @clk: the clk whose parent gets returned
2121 * Simply returns clk->parent. Returns NULL if clk is NULL.
2123 struct clk *clk_get_parent(struct clk *clk)
2131 /* TODO: Create a per-user clk and change callers to call clk_put */
2132 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2133 clk_prepare_unlock();
2137 EXPORT_SYMBOL_GPL(clk_get_parent);
2139 static struct clk_core *__clk_init_parent(struct clk_core *core)
2143 if (core->num_parents > 1 && core->ops->get_parent)
2144 index = core->ops->get_parent(core->hw);
2146 return clk_core_get_parent_by_index(core, index);
2149 static void clk_core_reparent(struct clk_core *core,
2150 struct clk_core *new_parent)
2152 clk_reparent(core, new_parent);
2153 __clk_recalc_accuracies(core);
2154 __clk_recalc_rates(core, POST_RATE_CHANGE);
2157 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2162 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2166 * clk_has_parent - check if a clock is a possible parent for another
2167 * @clk: clock source
2168 * @parent: parent clock source
2170 * This function can be used in drivers that need to check that a clock can be
2171 * the parent of another without actually changing the parent.
2173 * Returns true if @parent is a possible parent for @clk, false otherwise.
2175 bool clk_has_parent(struct clk *clk, struct clk *parent)
2177 struct clk_core *core, *parent_core;
2180 /* NULL clocks should be nops, so return success if either is NULL. */
2181 if (!clk || !parent)
2185 parent_core = parent->core;
2187 /* Optimize for the case where the parent is already the parent. */
2188 if (core->parent == parent_core)
2191 for (i = 0; i < core->num_parents; i++)
2192 if (strcmp(core->parent_names[i], parent_core->name) == 0)
2197 EXPORT_SYMBOL_GPL(clk_has_parent);
2199 static int clk_core_set_parent_nolock(struct clk_core *core,
2200 struct clk_core *parent)
2204 unsigned long p_rate = 0;
2206 lockdep_assert_held(&prepare_lock);
2211 if (core->parent == parent)
2214 /* verify ops for for multi-parent clks */
2215 if (core->num_parents > 1 && !core->ops->set_parent)
2218 /* check that we are allowed to re-parent if the clock is in use */
2219 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2222 if (clk_core_rate_is_protected(core))
2225 /* try finding the new parent index */
2227 p_index = clk_fetch_parent_index(core, parent);
2229 pr_debug("%s: clk %s can not be parent of clk %s\n",
2230 __func__, parent->name, core->name);
2233 p_rate = parent->rate;
2236 ret = clk_pm_runtime_get(core);
2240 /* propagate PRE_RATE_CHANGE notifications */
2241 ret = __clk_speculate_rates(core, p_rate);
2243 /* abort if a driver objects */
2244 if (ret & NOTIFY_STOP_MASK)
2247 /* do the re-parent */
2248 ret = __clk_set_parent(core, parent, p_index);
2250 /* propagate rate an accuracy recalculation accordingly */
2252 __clk_recalc_rates(core, ABORT_RATE_CHANGE);
2254 __clk_recalc_rates(core, POST_RATE_CHANGE);
2255 __clk_recalc_accuracies(core);
2259 clk_pm_runtime_put(core);
2265 * clk_set_parent - switch the parent of a mux clk
2266 * @clk: the mux clk whose input we are switching
2267 * @parent: the new input to clk
2269 * Re-parent clk to use parent as its new input source. If clk is in
2270 * prepared state, the clk will get enabled for the duration of this call. If
2271 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2272 * that, the reparenting is glitchy in hardware, etc), use the
2273 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2275 * After successfully changing clk's parent clk_set_parent will update the
2276 * clk topology, sysfs topology and propagate rate recalculation via
2277 * __clk_recalc_rates.
2279 * Returns 0 on success, -EERROR otherwise.
2281 int clk_set_parent(struct clk *clk, struct clk *parent)
2290 if (clk->exclusive_count)
2291 clk_core_rate_unprotect(clk->core);
2293 ret = clk_core_set_parent_nolock(clk->core,
2294 parent ? parent->core : NULL);
2296 if (clk->exclusive_count)
2297 clk_core_rate_protect(clk->core);
2299 clk_prepare_unlock();
2303 EXPORT_SYMBOL_GPL(clk_set_parent);
2305 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2309 lockdep_assert_held(&prepare_lock);
2314 if (clk_core_rate_is_protected(core))
2317 trace_clk_set_phase(core, degrees);
2319 if (core->ops->set_phase) {
2320 ret = core->ops->set_phase(core->hw, degrees);
2322 core->phase = degrees;
2325 trace_clk_set_phase_complete(core, degrees);
2331 * clk_set_phase - adjust the phase shift of a clock signal
2332 * @clk: clock signal source
2333 * @degrees: number of degrees the signal is shifted
2335 * Shifts the phase of a clock signal by the specified
2336 * degrees. Returns 0 on success, -EERROR otherwise.
2338 * This function makes no distinction about the input or reference
2339 * signal that we adjust the clock signal phase against. For example
2340 * phase locked-loop clock signal generators we may shift phase with
2341 * respect to feedback clock signal input, but for other cases the
2342 * clock phase may be shifted with respect to some other, unspecified
2345 * Additionally the concept of phase shift does not propagate through
2346 * the clock tree hierarchy, which sets it apart from clock rates and
2347 * clock accuracy. A parent clock phase attribute does not have an
2348 * impact on the phase attribute of a child clock.
2350 int clk_set_phase(struct clk *clk, int degrees)
2357 /* sanity check degrees */
2364 if (clk->exclusive_count)
2365 clk_core_rate_unprotect(clk->core);
2367 ret = clk_core_set_phase_nolock(clk->core, degrees);
2369 if (clk->exclusive_count)
2370 clk_core_rate_protect(clk->core);
2372 clk_prepare_unlock();
2376 EXPORT_SYMBOL_GPL(clk_set_phase);
2378 static int clk_core_get_phase(struct clk_core *core)
2383 /* Always try to update cached phase if possible */
2384 if (core->ops->get_phase)
2385 core->phase = core->ops->get_phase(core->hw);
2387 clk_prepare_unlock();
2393 * clk_get_phase - return the phase shift of a clock signal
2394 * @clk: clock signal source
2396 * Returns the phase shift of a clock node in degrees, otherwise returns
2399 int clk_get_phase(struct clk *clk)
2404 return clk_core_get_phase(clk->core);
2406 EXPORT_SYMBOL_GPL(clk_get_phase);
2409 * clk_is_match - check if two clk's point to the same hardware clock
2410 * @p: clk compared against q
2411 * @q: clk compared against p
2413 * Returns true if the two struct clk pointers both point to the same hardware
2414 * clock node. Put differently, returns true if struct clk *p and struct clk *q
2415 * share the same struct clk_core object.
2417 * Returns false otherwise. Note that two NULL clks are treated as matching.
2419 bool clk_is_match(const struct clk *p, const struct clk *q)
2421 /* trivial case: identical struct clk's or both NULL */
2425 /* true if clk->core pointers match. Avoid dereferencing garbage */
2426 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2427 if (p->core == q->core)
2432 EXPORT_SYMBOL_GPL(clk_is_match);
2434 /*** debugfs support ***/
2436 #ifdef CONFIG_DEBUG_FS
2437 #include <linux/debugfs.h>
2439 static struct dentry *rootdir;
2440 static int inited = 0;
2441 static DEFINE_MUTEX(clk_debug_lock);
2442 static HLIST_HEAD(clk_debug_list);
2444 static struct hlist_head *all_lists[] = {
2450 static struct hlist_head *orphan_list[] = {
2455 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2461 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %-3d\n",
2463 30 - level * 3, c->name,
2464 c->enable_count, c->prepare_count, c->protect_count,
2465 clk_core_get_rate(c), clk_core_get_accuracy(c),
2466 clk_core_get_phase(c));
2469 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2472 struct clk_core *child;
2477 clk_summary_show_one(s, c, level);
2479 hlist_for_each_entry(child, &c->children, child_node)
2480 clk_summary_show_subtree(s, child, level + 1);
2483 static int clk_summary_show(struct seq_file *s, void *data)
2486 struct hlist_head **lists = (struct hlist_head **)s->private;
2488 seq_puts(s, " enable prepare protect \n");
2489 seq_puts(s, " clock count count count rate accuracy phase\n");
2490 seq_puts(s, "----------------------------------------------------------------------------------------\n");
2494 for (; *lists; lists++)
2495 hlist_for_each_entry(c, *lists, child_node)
2496 clk_summary_show_subtree(s, c, 0);
2498 clk_prepare_unlock();
2502 DEFINE_SHOW_ATTRIBUTE(clk_summary);
2504 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2509 /* This should be JSON format, i.e. elements separated with a comma */
2510 seq_printf(s, "\"%s\": { ", c->name);
2511 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2512 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2513 seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2514 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2515 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2516 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2519 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2521 struct clk_core *child;
2526 clk_dump_one(s, c, level);
2528 hlist_for_each_entry(child, &c->children, child_node) {
2530 clk_dump_subtree(s, child, level + 1);
2536 static int clk_dump_show(struct seq_file *s, void *data)
2539 bool first_node = true;
2540 struct hlist_head **lists = (struct hlist_head **)s->private;
2545 for (; *lists; lists++) {
2546 hlist_for_each_entry(c, *lists, child_node) {
2550 clk_dump_subtree(s, c, 0);
2554 clk_prepare_unlock();
2559 DEFINE_SHOW_ATTRIBUTE(clk_dump);
2561 static const struct {
2565 #define ENTRY(f) { f, __stringify(f) }
2566 ENTRY(CLK_SET_RATE_GATE),
2567 ENTRY(CLK_SET_PARENT_GATE),
2568 ENTRY(CLK_SET_RATE_PARENT),
2569 ENTRY(CLK_IGNORE_UNUSED),
2570 ENTRY(CLK_IS_BASIC),
2571 ENTRY(CLK_GET_RATE_NOCACHE),
2572 ENTRY(CLK_SET_RATE_NO_REPARENT),
2573 ENTRY(CLK_GET_ACCURACY_NOCACHE),
2574 ENTRY(CLK_RECALC_NEW_RATES),
2575 ENTRY(CLK_SET_RATE_UNGATE),
2576 ENTRY(CLK_IS_CRITICAL),
2577 ENTRY(CLK_OPS_PARENT_ENABLE),
2581 static int clk_flags_show(struct seq_file *s, void *data)
2583 struct clk_core *core = s->private;
2584 unsigned long flags = core->flags;
2587 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
2588 if (flags & clk_flags[i].flag) {
2589 seq_printf(s, "%s\n", clk_flags[i].name);
2590 flags &= ~clk_flags[i].flag;
2595 seq_printf(s, "0x%lx\n", flags);
2600 DEFINE_SHOW_ATTRIBUTE(clk_flags);
2602 static int possible_parents_show(struct seq_file *s, void *data)
2604 struct clk_core *core = s->private;
2607 for (i = 0; i < core->num_parents - 1; i++)
2608 seq_printf(s, "%s ", core->parent_names[i]);
2610 seq_printf(s, "%s\n", core->parent_names[i]);
2614 DEFINE_SHOW_ATTRIBUTE(possible_parents);
2616 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2621 if (!core || !pdentry) {
2626 d = debugfs_create_dir(core->name, pdentry);
2632 d = debugfs_create_ulong("clk_rate", 0444, core->dentry, &core->rate);
2636 d = debugfs_create_ulong("clk_accuracy", 0444, core->dentry,
2641 d = debugfs_create_u32("clk_phase", 0444, core->dentry, &core->phase);
2645 d = debugfs_create_file("clk_flags", 0444, core->dentry, core,
2650 d = debugfs_create_u32("clk_prepare_count", 0444, core->dentry,
2651 &core->prepare_count);
2655 d = debugfs_create_u32("clk_enable_count", 0444, core->dentry,
2656 &core->enable_count);
2660 d = debugfs_create_u32("clk_protect_count", 0444, core->dentry,
2661 &core->protect_count);
2665 d = debugfs_create_u32("clk_notifier_count", 0444, core->dentry,
2666 &core->notifier_count);
2670 if (core->num_parents > 1) {
2671 d = debugfs_create_file("clk_possible_parents", 0444,
2672 core->dentry, core, &possible_parents_fops);
2677 if (core->ops->debug_init) {
2678 ret = core->ops->debug_init(core->hw, core->dentry);
2687 debugfs_remove_recursive(core->dentry);
2688 core->dentry = NULL;
2694 * clk_debug_register - add a clk node to the debugfs clk directory
2695 * @core: the clk being added to the debugfs clk directory
2697 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2698 * initialized. Otherwise it bails out early since the debugfs clk directory
2699 * will be created lazily by clk_debug_init as part of a late_initcall.
2701 static int clk_debug_register(struct clk_core *core)
2705 mutex_lock(&clk_debug_lock);
2706 hlist_add_head(&core->debug_node, &clk_debug_list);
2708 ret = clk_debug_create_one(core, rootdir);
2709 mutex_unlock(&clk_debug_lock);
2715 * clk_debug_unregister - remove a clk node from the debugfs clk directory
2716 * @core: the clk being removed from the debugfs clk directory
2718 * Dynamically removes a clk and all its child nodes from the
2719 * debugfs clk directory if clk->dentry points to debugfs created by
2720 * clk_debug_register in __clk_core_init.
2722 static void clk_debug_unregister(struct clk_core *core)
2724 mutex_lock(&clk_debug_lock);
2725 hlist_del_init(&core->debug_node);
2726 debugfs_remove_recursive(core->dentry);
2727 core->dentry = NULL;
2728 mutex_unlock(&clk_debug_lock);
2731 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2732 void *data, const struct file_operations *fops)
2734 struct dentry *d = NULL;
2736 if (hw->core->dentry)
2737 d = debugfs_create_file(name, mode, hw->core->dentry, data,
2742 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2745 * clk_debug_init - lazily populate the debugfs clk directory
2747 * clks are often initialized very early during boot before memory can be
2748 * dynamically allocated and well before debugfs is setup. This function
2749 * populates the debugfs clk directory once at boot-time when we know that
2750 * debugfs is setup. It should only be called once at boot-time, all other clks
2751 * added dynamically will be done so with clk_debug_register.
2753 static int __init clk_debug_init(void)
2755 struct clk_core *core;
2758 rootdir = debugfs_create_dir("clk", NULL);
2763 d = debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
2768 d = debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
2773 d = debugfs_create_file("clk_orphan_summary", 0444, rootdir,
2774 &orphan_list, &clk_summary_fops);
2778 d = debugfs_create_file("clk_orphan_dump", 0444, rootdir,
2779 &orphan_list, &clk_dump_fops);
2783 mutex_lock(&clk_debug_lock);
2784 hlist_for_each_entry(core, &clk_debug_list, debug_node)
2785 clk_debug_create_one(core, rootdir);
2788 mutex_unlock(&clk_debug_lock);
2792 late_initcall(clk_debug_init);
2794 static inline int clk_debug_register(struct clk_core *core) { return 0; }
2795 static inline void clk_debug_reparent(struct clk_core *core,
2796 struct clk_core *new_parent)
2799 static inline void clk_debug_unregister(struct clk_core *core)
2805 * __clk_core_init - initialize the data structures in a struct clk_core
2806 * @core: clk_core being initialized
2808 * Initializes the lists in struct clk_core, queries the hardware for the
2809 * parent and rate and sets them both.
2811 static int __clk_core_init(struct clk_core *core)
2814 struct clk_core *orphan;
2815 struct hlist_node *tmp2;
2823 ret = clk_pm_runtime_get(core);
2827 /* check to see if a clock with this name is already registered */
2828 if (clk_core_lookup(core->name)) {
2829 pr_debug("%s: clk %s already initialized\n",
2830 __func__, core->name);
2835 /* check that clk_ops are sane. See Documentation/clk.txt */
2836 if (core->ops->set_rate &&
2837 !((core->ops->round_rate || core->ops->determine_rate) &&
2838 core->ops->recalc_rate)) {
2839 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2840 __func__, core->name);
2845 if (core->ops->set_parent && !core->ops->get_parent) {
2846 pr_err("%s: %s must implement .get_parent & .set_parent\n",
2847 __func__, core->name);
2852 if (core->num_parents > 1 && !core->ops->get_parent) {
2853 pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2854 __func__, core->name);
2859 if (core->ops->set_rate_and_parent &&
2860 !(core->ops->set_parent && core->ops->set_rate)) {
2861 pr_err("%s: %s must implement .set_parent & .set_rate\n",
2862 __func__, core->name);
2867 /* throw a WARN if any entries in parent_names are NULL */
2868 for (i = 0; i < core->num_parents; i++)
2869 WARN(!core->parent_names[i],
2870 "%s: invalid NULL in %s's .parent_names\n",
2871 __func__, core->name);
2873 core->parent = __clk_init_parent(core);
2876 * Populate core->parent if parent has already been clk_core_init'd. If
2877 * parent has not yet been clk_core_init'd then place clk in the orphan
2878 * list. If clk doesn't have any parents then place it in the root
2881 * Every time a new clk is clk_init'd then we walk the list of orphan
2882 * clocks and re-parent any that are children of the clock currently
2886 hlist_add_head(&core->child_node,
2887 &core->parent->children);
2888 core->orphan = core->parent->orphan;
2889 } else if (!core->num_parents) {
2890 hlist_add_head(&core->child_node, &clk_root_list);
2891 core->orphan = false;
2893 hlist_add_head(&core->child_node, &clk_orphan_list);
2894 core->orphan = true;
2898 * optional platform-specific magic
2900 * The .init callback is not used by any of the basic clock types, but
2901 * exists for weird hardware that must perform initialization magic.
2902 * Please consider other ways of solving initialization problems before
2903 * using this callback, as its use is discouraged.
2905 if (core->ops->init)
2906 core->ops->init(core->hw);
2909 * Set clk's accuracy. The preferred method is to use
2910 * .recalc_accuracy. For simple clocks and lazy developers the default
2911 * fallback is to use the parent's accuracy. If a clock doesn't have a
2912 * parent (or is orphaned) then accuracy is set to zero (perfect
2915 if (core->ops->recalc_accuracy)
2916 core->accuracy = core->ops->recalc_accuracy(core->hw,
2917 __clk_get_accuracy(core->parent));
2918 else if (core->parent)
2919 core->accuracy = core->parent->accuracy;
2925 * Since a phase is by definition relative to its parent, just
2926 * query the current clock phase, or just assume it's in phase.
2928 if (core->ops->get_phase)
2929 core->phase = core->ops->get_phase(core->hw);
2934 * Set clk's rate. The preferred method is to use .recalc_rate. For
2935 * simple clocks and lazy developers the default fallback is to use the
2936 * parent's rate. If a clock doesn't have a parent (or is orphaned)
2937 * then rate is set to zero.
2939 if (core->ops->recalc_rate)
2940 rate = core->ops->recalc_rate(core->hw,
2941 clk_core_get_rate_nolock(core->parent));
2942 else if (core->parent)
2943 rate = core->parent->rate;
2946 core->rate = core->req_rate = rate;
2949 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
2950 * don't get accidentally disabled when walking the orphan tree and
2951 * reparenting clocks
2953 if (core->flags & CLK_IS_CRITICAL) {
2954 unsigned long flags;
2956 clk_core_prepare(core);
2958 flags = clk_enable_lock();
2959 clk_core_enable(core);
2960 clk_enable_unlock(flags);
2964 * walk the list of orphan clocks and reparent any that newly finds a
2967 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2968 struct clk_core *parent = __clk_init_parent(orphan);
2971 * We need to use __clk_set_parent_before() and _after() to
2972 * to properly migrate any prepare/enable count of the orphan
2973 * clock. This is important for CLK_IS_CRITICAL clocks, which
2974 * are enabled during init but might not have a parent yet.
2977 /* update the clk tree topology */
2978 __clk_set_parent_before(orphan, parent);
2979 __clk_set_parent_after(orphan, parent, NULL);
2980 __clk_recalc_accuracies(orphan);
2981 __clk_recalc_rates(orphan, 0);
2985 kref_init(&core->ref);
2987 clk_pm_runtime_put(core);
2989 clk_prepare_unlock();
2992 clk_debug_register(core);
2997 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
3002 /* This is to allow this function to be chained to others */
3003 if (IS_ERR_OR_NULL(hw))
3004 return ERR_CAST(hw);
3006 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3008 return ERR_PTR(-ENOMEM);
3010 clk->core = hw->core;
3011 clk->dev_id = dev_id;
3012 clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3013 clk->max_rate = ULONG_MAX;
3016 hlist_add_head(&clk->clks_node, &hw->core->clks);
3017 clk_prepare_unlock();
3022 void __clk_free_clk(struct clk *clk)
3025 hlist_del(&clk->clks_node);
3026 clk_prepare_unlock();
3028 kfree_const(clk->con_id);
3033 * clk_register - allocate a new clock, register it and return an opaque cookie
3034 * @dev: device that is registering this clock
3035 * @hw: link to hardware-specific clock data
3037 * clk_register is the primary interface for populating the clock tree with new
3038 * clock nodes. It returns a pointer to the newly allocated struct clk which
3039 * cannot be dereferenced by driver code but may be used in conjunction with the
3040 * rest of the clock API. In the event of an error clk_register will return an
3041 * error code; drivers must test for an error code after calling clk_register.
3043 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3046 struct clk_core *core;
3048 core = kzalloc(sizeof(*core), GFP_KERNEL);
3054 core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
3060 if (WARN_ON(!hw->init->ops)) {
3064 core->ops = hw->init->ops;
3066 if (dev && pm_runtime_enabled(dev))
3068 if (dev && dev->driver)
3069 core->owner = dev->driver->owner;
3071 core->flags = hw->init->flags;
3072 core->num_parents = hw->init->num_parents;
3074 core->max_rate = ULONG_MAX;
3077 /* allocate local copy in case parent_names is __initdata */
3078 core->parent_names = kcalloc(core->num_parents, sizeof(char *),
3081 if (!core->parent_names) {
3083 goto fail_parent_names;
3087 /* copy each string name in case parent_names is __initdata */
3088 for (i = 0; i < core->num_parents; i++) {
3089 core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
3091 if (!core->parent_names[i]) {
3093 goto fail_parent_names_copy;
3097 /* avoid unnecessary string look-ups of clk_core's possible parents. */
3098 core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
3100 if (!core->parents) {
3105 INIT_HLIST_HEAD(&core->clks);
3107 hw->clk = __clk_create_clk(hw, NULL, NULL);
3108 if (IS_ERR(hw->clk)) {
3109 ret = PTR_ERR(hw->clk);
3113 ret = __clk_core_init(core);
3117 __clk_free_clk(hw->clk);
3121 kfree(core->parents);
3122 fail_parent_names_copy:
3124 kfree_const(core->parent_names[i]);
3125 kfree(core->parent_names);
3128 kfree_const(core->name);
3132 return ERR_PTR(ret);
3134 EXPORT_SYMBOL_GPL(clk_register);
3137 * clk_hw_register - register a clk_hw and return an error code
3138 * @dev: device that is registering this clock
3139 * @hw: link to hardware-specific clock data
3141 * clk_hw_register is the primary interface for populating the clock tree with
3142 * new clock nodes. It returns an integer equal to zero indicating success or
3143 * less than zero indicating failure. Drivers must test for an error code after
3144 * calling clk_hw_register().
3146 int clk_hw_register(struct device *dev, struct clk_hw *hw)
3148 return PTR_ERR_OR_ZERO(clk_register(dev, hw));
3150 EXPORT_SYMBOL_GPL(clk_hw_register);
3152 /* Free memory allocated for a clock. */
3153 static void __clk_release(struct kref *ref)
3155 struct clk_core *core = container_of(ref, struct clk_core, ref);
3156 int i = core->num_parents;
3158 lockdep_assert_held(&prepare_lock);
3160 kfree(core->parents);
3162 kfree_const(core->parent_names[i]);
3164 kfree(core->parent_names);
3165 kfree_const(core->name);
3170 * Empty clk_ops for unregistered clocks. These are used temporarily
3171 * after clk_unregister() was called on a clock and until last clock
3172 * consumer calls clk_put() and the struct clk object is freed.
3174 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3179 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3184 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3185 unsigned long parent_rate)
3190 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3195 static const struct clk_ops clk_nodrv_ops = {
3196 .enable = clk_nodrv_prepare_enable,
3197 .disable = clk_nodrv_disable_unprepare,
3198 .prepare = clk_nodrv_prepare_enable,
3199 .unprepare = clk_nodrv_disable_unprepare,
3200 .set_rate = clk_nodrv_set_rate,
3201 .set_parent = clk_nodrv_set_parent,
3205 * clk_unregister - unregister a currently registered clock
3206 * @clk: clock to unregister
3208 void clk_unregister(struct clk *clk)
3210 unsigned long flags;
3212 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3215 clk_debug_unregister(clk->core);
3219 if (clk->core->ops == &clk_nodrv_ops) {
3220 pr_err("%s: unregistered clock: %s\n", __func__,
3225 * Assign empty clock ops for consumers that might still hold
3226 * a reference to this clock.
3228 flags = clk_enable_lock();
3229 clk->core->ops = &clk_nodrv_ops;
3230 clk_enable_unlock(flags);
3232 if (!hlist_empty(&clk->core->children)) {
3233 struct clk_core *child;
3234 struct hlist_node *t;
3236 /* Reparent all children to the orphan list. */
3237 hlist_for_each_entry_safe(child, t, &clk->core->children,
3239 clk_core_set_parent_nolock(child, NULL);
3242 hlist_del_init(&clk->core->child_node);
3244 if (clk->core->prepare_count)
3245 pr_warn("%s: unregistering prepared clock: %s\n",
3246 __func__, clk->core->name);
3248 if (clk->core->protect_count)
3249 pr_warn("%s: unregistering protected clock: %s\n",
3250 __func__, clk->core->name);
3252 kref_put(&clk->core->ref, __clk_release);
3254 clk_prepare_unlock();
3256 EXPORT_SYMBOL_GPL(clk_unregister);
3259 * clk_hw_unregister - unregister a currently registered clk_hw
3260 * @hw: hardware-specific clock data to unregister
3262 void clk_hw_unregister(struct clk_hw *hw)
3264 clk_unregister(hw->clk);
3266 EXPORT_SYMBOL_GPL(clk_hw_unregister);
3268 static void devm_clk_release(struct device *dev, void *res)
3270 clk_unregister(*(struct clk **)res);
3273 static void devm_clk_hw_release(struct device *dev, void *res)
3275 clk_hw_unregister(*(struct clk_hw **)res);
3279 * devm_clk_register - resource managed clk_register()
3280 * @dev: device that is registering this clock
3281 * @hw: link to hardware-specific clock data
3283 * Managed clk_register(). Clocks returned from this function are
3284 * automatically clk_unregister()ed on driver detach. See clk_register() for
3287 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
3292 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
3294 return ERR_PTR(-ENOMEM);
3296 clk = clk_register(dev, hw);
3299 devres_add(dev, clkp);
3306 EXPORT_SYMBOL_GPL(devm_clk_register);
3309 * devm_clk_hw_register - resource managed clk_hw_register()
3310 * @dev: device that is registering this clock
3311 * @hw: link to hardware-specific clock data
3313 * Managed clk_hw_register(). Clocks registered by this function are
3314 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
3315 * for more information.
3317 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
3319 struct clk_hw **hwp;
3322 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
3326 ret = clk_hw_register(dev, hw);
3329 devres_add(dev, hwp);
3336 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
3338 static int devm_clk_match(struct device *dev, void *res, void *data)
3340 struct clk *c = res;
3346 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
3348 struct clk_hw *hw = res;
3356 * devm_clk_unregister - resource managed clk_unregister()
3357 * @clk: clock to unregister
3359 * Deallocate a clock allocated with devm_clk_register(). Normally
3360 * this function will not need to be called and the resource management
3361 * code will ensure that the resource is freed.
3363 void devm_clk_unregister(struct device *dev, struct clk *clk)
3365 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
3367 EXPORT_SYMBOL_GPL(devm_clk_unregister);
3370 * devm_clk_hw_unregister - resource managed clk_hw_unregister()
3371 * @dev: device that is unregistering the hardware-specific clock data
3372 * @hw: link to hardware-specific clock data
3374 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
3375 * this function will not need to be called and the resource management
3376 * code will ensure that the resource is freed.
3378 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
3380 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
3383 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
3388 int __clk_get(struct clk *clk)
3390 struct clk_core *core = !clk ? NULL : clk->core;
3393 if (!try_module_get(core->owner))
3396 kref_get(&core->ref);
3401 void __clk_put(struct clk *clk)
3403 struct module *owner;
3405 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3411 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
3412 * given user should be balanced with calls to clk_rate_exclusive_put()
3413 * and by that same consumer
3415 if (WARN_ON(clk->exclusive_count)) {
3416 /* We voiced our concern, let's sanitize the situation */
3417 clk->core->protect_count -= (clk->exclusive_count - 1);
3418 clk_core_rate_unprotect(clk->core);
3419 clk->exclusive_count = 0;
3422 hlist_del(&clk->clks_node);
3423 if (clk->min_rate > clk->core->req_rate ||
3424 clk->max_rate < clk->core->req_rate)
3425 clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
3427 owner = clk->core->owner;
3428 kref_put(&clk->core->ref, __clk_release);
3430 clk_prepare_unlock();
3437 /*** clk rate change notifiers ***/
3440 * clk_notifier_register - add a clk rate change notifier
3441 * @clk: struct clk * to watch
3442 * @nb: struct notifier_block * with callback info
3444 * Request notification when clk's rate changes. This uses an SRCU
3445 * notifier because we want it to block and notifier unregistrations are
3446 * uncommon. The callbacks associated with the notifier must not
3447 * re-enter into the clk framework by calling any top-level clk APIs;
3448 * this will cause a nested prepare_lock mutex.
3450 * In all notification cases (pre, post and abort rate change) the original
3451 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
3452 * and the new frequency is passed via struct clk_notifier_data.new_rate.
3454 * clk_notifier_register() must be called from non-atomic context.
3455 * Returns -EINVAL if called with null arguments, -ENOMEM upon
3456 * allocation failure; otherwise, passes along the return value of
3457 * srcu_notifier_chain_register().
3459 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
3461 struct clk_notifier *cn;
3469 /* search the list of notifiers for this clk */
3470 list_for_each_entry(cn, &clk_notifier_list, node)
3474 /* if clk wasn't in the notifier list, allocate new clk_notifier */
3475 if (cn->clk != clk) {
3476 cn = kzalloc(sizeof(*cn), GFP_KERNEL);
3481 srcu_init_notifier_head(&cn->notifier_head);
3483 list_add(&cn->node, &clk_notifier_list);
3486 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
3488 clk->core->notifier_count++;
3491 clk_prepare_unlock();
3495 EXPORT_SYMBOL_GPL(clk_notifier_register);
3498 * clk_notifier_unregister - remove a clk rate change notifier
3499 * @clk: struct clk *
3500 * @nb: struct notifier_block * with callback info
3502 * Request no further notification for changes to 'clk' and frees memory
3503 * allocated in clk_notifier_register.
3505 * Returns -EINVAL if called with null arguments; otherwise, passes
3506 * along the return value of srcu_notifier_chain_unregister().
3508 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
3510 struct clk_notifier *cn = NULL;
3518 list_for_each_entry(cn, &clk_notifier_list, node)
3522 if (cn->clk == clk) {
3523 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
3525 clk->core->notifier_count--;
3527 /* XXX the notifier code should handle this better */
3528 if (!cn->notifier_head.head) {
3529 srcu_cleanup_notifier_head(&cn->notifier_head);
3530 list_del(&cn->node);
3538 clk_prepare_unlock();
3542 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
3546 * struct of_clk_provider - Clock provider registration structure
3547 * @link: Entry in global list of clock providers
3548 * @node: Pointer to device tree node of clock provider
3549 * @get: Get clock callback. Returns NULL or a struct clk for the
3550 * given clock specifier
3551 * @data: context pointer to be passed into @get callback
3553 struct of_clk_provider {
3554 struct list_head link;
3556 struct device_node *node;
3557 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
3558 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
3562 static const struct of_device_id __clk_of_table_sentinel
3563 __used __section(__clk_of_table_end);
3565 static LIST_HEAD(of_clk_providers);
3566 static DEFINE_MUTEX(of_clk_mutex);
3568 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
3573 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
3575 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
3579 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
3581 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
3583 struct clk_onecell_data *clk_data = data;
3584 unsigned int idx = clkspec->args[0];
3586 if (idx >= clk_data->clk_num) {
3587 pr_err("%s: invalid clock index %u\n", __func__, idx);
3588 return ERR_PTR(-EINVAL);
3591 return clk_data->clks[idx];
3593 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
3596 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
3598 struct clk_hw_onecell_data *hw_data = data;
3599 unsigned int idx = clkspec->args[0];
3601 if (idx >= hw_data->num) {
3602 pr_err("%s: invalid index %u\n", __func__, idx);
3603 return ERR_PTR(-EINVAL);
3606 return hw_data->hws[idx];
3608 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
3611 * of_clk_add_provider() - Register a clock provider for a node
3612 * @np: Device node pointer associated with clock provider
3613 * @clk_src_get: callback for decoding clock
3614 * @data: context pointer for @clk_src_get callback.
3616 int of_clk_add_provider(struct device_node *np,
3617 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
3621 struct of_clk_provider *cp;
3624 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3628 cp->node = of_node_get(np);
3630 cp->get = clk_src_get;
3632 mutex_lock(&of_clk_mutex);
3633 list_add(&cp->link, &of_clk_providers);
3634 mutex_unlock(&of_clk_mutex);
3635 pr_debug("Added clock from %pOF\n", np);
3637 ret = of_clk_set_defaults(np, true);
3639 of_clk_del_provider(np);
3643 EXPORT_SYMBOL_GPL(of_clk_add_provider);
3646 * of_clk_add_hw_provider() - Register a clock provider for a node
3647 * @np: Device node pointer associated with clock provider
3648 * @get: callback for decoding clk_hw
3649 * @data: context pointer for @get callback.
3651 int of_clk_add_hw_provider(struct device_node *np,
3652 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3656 struct of_clk_provider *cp;
3659 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3663 cp->node = of_node_get(np);
3667 mutex_lock(&of_clk_mutex);
3668 list_add(&cp->link, &of_clk_providers);
3669 mutex_unlock(&of_clk_mutex);
3670 pr_debug("Added clk_hw provider from %pOF\n", np);
3672 ret = of_clk_set_defaults(np, true);
3674 of_clk_del_provider(np);
3678 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
3680 static void devm_of_clk_release_provider(struct device *dev, void *res)
3682 of_clk_del_provider(*(struct device_node **)res);
3685 int devm_of_clk_add_hw_provider(struct device *dev,
3686 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3690 struct device_node **ptr, *np;
3693 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
3699 ret = of_clk_add_hw_provider(np, get, data);
3702 devres_add(dev, ptr);
3709 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
3712 * of_clk_del_provider() - Remove a previously registered clock provider
3713 * @np: Device node pointer associated with clock provider
3715 void of_clk_del_provider(struct device_node *np)
3717 struct of_clk_provider *cp;
3719 mutex_lock(&of_clk_mutex);
3720 list_for_each_entry(cp, &of_clk_providers, link) {
3721 if (cp->node == np) {
3722 list_del(&cp->link);
3723 of_node_put(cp->node);
3728 mutex_unlock(&of_clk_mutex);
3730 EXPORT_SYMBOL_GPL(of_clk_del_provider);
3732 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
3734 struct device_node **np = res;
3736 if (WARN_ON(!np || !*np))
3742 void devm_of_clk_del_provider(struct device *dev)
3746 ret = devres_release(dev, devm_of_clk_release_provider,
3747 devm_clk_provider_match, dev->of_node);
3751 EXPORT_SYMBOL(devm_of_clk_del_provider);
3753 static struct clk_hw *
3754 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
3755 struct of_phandle_args *clkspec)
3759 if (provider->get_hw)
3760 return provider->get_hw(clkspec, provider->data);
3762 clk = provider->get(clkspec, provider->data);
3764 return ERR_CAST(clk);
3765 return __clk_get_hw(clk);
3768 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3769 const char *dev_id, const char *con_id)
3771 struct of_clk_provider *provider;
3772 struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3776 return ERR_PTR(-EINVAL);
3778 /* Check if we have such a provider in our array */
3779 mutex_lock(&of_clk_mutex);
3780 list_for_each_entry(provider, &of_clk_providers, link) {
3781 if (provider->node == clkspec->np) {
3782 hw = __of_clk_get_hw_from_provider(provider, clkspec);
3783 clk = __clk_create_clk(hw, dev_id, con_id);
3787 if (!__clk_get(clk)) {
3788 __clk_free_clk(clk);
3789 clk = ERR_PTR(-ENOENT);
3795 mutex_unlock(&of_clk_mutex);
3801 * of_clk_get_from_provider() - Lookup a clock from a clock provider
3802 * @clkspec: pointer to a clock specifier data structure
3804 * This function looks up a struct clk from the registered list of clock
3805 * providers, an input is a clock specifier data structure as returned
3806 * from the of_parse_phandle_with_args() function call.
3808 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3810 return __of_clk_get_from_provider(clkspec, NULL, __func__);
3812 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
3815 * of_clk_get_parent_count() - Count the number of clocks a device node has
3816 * @np: device node to count
3818 * Returns: The number of clocks that are possible parents of this node
3820 unsigned int of_clk_get_parent_count(struct device_node *np)
3824 count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3830 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3832 const char *of_clk_get_parent_name(struct device_node *np, int index)
3834 struct of_phandle_args clkspec;
3835 struct property *prop;
3836 const char *clk_name;
3843 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3848 index = clkspec.args_count ? clkspec.args[0] : 0;
3851 /* if there is an indices property, use it to transfer the index
3852 * specified into an array offset for the clock-output-names property.
3854 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3861 /* We went off the end of 'clock-indices' without finding it */
3865 if (of_property_read_string_index(clkspec.np, "clock-output-names",
3869 * Best effort to get the name if the clock has been
3870 * registered with the framework. If the clock isn't
3871 * registered, we return the node name as the name of
3872 * the clock as long as #clock-cells = 0.
3874 clk = of_clk_get_from_provider(&clkspec);
3876 if (clkspec.args_count == 0)
3877 clk_name = clkspec.np->name;
3881 clk_name = __clk_get_name(clk);
3887 of_node_put(clkspec.np);
3890 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3893 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3895 * @np: Device node pointer associated with clock provider
3896 * @parents: pointer to char array that hold the parents' names
3897 * @size: size of the @parents array
3899 * Return: number of parents for the clock node.
3901 int of_clk_parent_fill(struct device_node *np, const char **parents,
3906 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3911 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3913 struct clock_provider {
3914 void (*clk_init_cb)(struct device_node *);
3915 struct device_node *np;
3916 struct list_head node;
3920 * This function looks for a parent clock. If there is one, then it
3921 * checks that the provider for this parent clock was initialized, in
3922 * this case the parent clock will be ready.
3924 static int parent_ready(struct device_node *np)
3929 struct clk *clk = of_clk_get(np, i);
3931 /* this parent is ready we can check the next one */
3938 /* at least one parent is not ready, we exit now */
3939 if (PTR_ERR(clk) == -EPROBE_DEFER)
3943 * Here we make assumption that the device tree is
3944 * written correctly. So an error means that there is
3945 * no more parent. As we didn't exit yet, then the
3946 * previous parent are ready. If there is no clock
3947 * parent, no need to wait for them, then we can
3948 * consider their absence as being ready
3955 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
3956 * @np: Device node pointer associated with clock provider
3957 * @index: clock index
3958 * @flags: pointer to top-level framework flags
3960 * Detects if the clock-critical property exists and, if so, sets the
3961 * corresponding CLK_IS_CRITICAL flag.
3963 * Do not use this function. It exists only for legacy Device Tree
3964 * bindings, such as the one-clock-per-node style that are outdated.
3965 * Those bindings typically put all clock data into .dts and the Linux
3966 * driver has no clock data, thus making it impossible to set this flag
3967 * correctly from the driver. Only those drivers may call
3968 * of_clk_detect_critical from their setup functions.
3970 * Return: error code or zero on success
3972 int of_clk_detect_critical(struct device_node *np,
3973 int index, unsigned long *flags)
3975 struct property *prop;
3982 of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
3984 *flags |= CLK_IS_CRITICAL;
3990 * of_clk_init() - Scan and init clock providers from the DT
3991 * @matches: array of compatible values and init functions for providers.
3993 * This function scans the device tree for matching clock providers
3994 * and calls their initialization functions. It also does it by trying
3995 * to follow the dependencies.
3997 void __init of_clk_init(const struct of_device_id *matches)
3999 const struct of_device_id *match;
4000 struct device_node *np;
4001 struct clock_provider *clk_provider, *next;
4004 LIST_HEAD(clk_provider_list);
4007 matches = &__clk_of_table;
4009 /* First prepare the list of the clocks providers */
4010 for_each_matching_node_and_match(np, matches, &match) {
4011 struct clock_provider *parent;
4013 if (!of_device_is_available(np))
4016 parent = kzalloc(sizeof(*parent), GFP_KERNEL);
4018 list_for_each_entry_safe(clk_provider, next,
4019 &clk_provider_list, node) {
4020 list_del(&clk_provider->node);
4021 of_node_put(clk_provider->np);
4022 kfree(clk_provider);
4028 parent->clk_init_cb = match->data;
4029 parent->np = of_node_get(np);
4030 list_add_tail(&parent->node, &clk_provider_list);
4033 while (!list_empty(&clk_provider_list)) {
4034 is_init_done = false;
4035 list_for_each_entry_safe(clk_provider, next,
4036 &clk_provider_list, node) {
4037 if (force || parent_ready(clk_provider->np)) {
4039 /* Don't populate platform devices */
4040 of_node_set_flag(clk_provider->np,
4043 clk_provider->clk_init_cb(clk_provider->np);
4044 of_clk_set_defaults(clk_provider->np, true);
4046 list_del(&clk_provider->node);
4047 of_node_put(clk_provider->np);
4048 kfree(clk_provider);
4049 is_init_done = true;
4054 * We didn't manage to initialize any of the
4055 * remaining providers during the last loop, so now we
4056 * initialize all the remaining ones unconditionally
4057 * in case the clock parent was not mandatory