Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-rpi.git] / drivers / clk / clk-stm32h7.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2017
4  * Author: Gabriel Fernandez <gabriel.fernandez@st.com> for STMicroelectronics.
5  */
6
7 #include <linux/clk.h>
8 #include <linux/clk-provider.h>
9 #include <linux/err.h>
10 #include <linux/io.h>
11 #include <linux/mfd/syscon.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/regmap.h>
17
18 #include <dt-bindings/clock/stm32h7-clks.h>
19
20 /* Reset Clock Control Registers */
21 #define RCC_CR          0x00
22 #define RCC_CFGR        0x10
23 #define RCC_D1CFGR      0x18
24 #define RCC_D2CFGR      0x1C
25 #define RCC_D3CFGR      0x20
26 #define RCC_PLLCKSELR   0x28
27 #define RCC_PLLCFGR     0x2C
28 #define RCC_PLL1DIVR    0x30
29 #define RCC_PLL1FRACR   0x34
30 #define RCC_PLL2DIVR    0x38
31 #define RCC_PLL2FRACR   0x3C
32 #define RCC_PLL3DIVR    0x40
33 #define RCC_PLL3FRACR   0x44
34 #define RCC_D1CCIPR     0x4C
35 #define RCC_D2CCIP1R    0x50
36 #define RCC_D2CCIP2R    0x54
37 #define RCC_D3CCIPR     0x58
38 #define RCC_BDCR        0x70
39 #define RCC_CSR         0x74
40 #define RCC_AHB3ENR     0xD4
41 #define RCC_AHB1ENR     0xD8
42 #define RCC_AHB2ENR     0xDC
43 #define RCC_AHB4ENR     0xE0
44 #define RCC_APB3ENR     0xE4
45 #define RCC_APB1LENR    0xE8
46 #define RCC_APB1HENR    0xEC
47 #define RCC_APB2ENR     0xF0
48 #define RCC_APB4ENR     0xF4
49
50 static DEFINE_SPINLOCK(stm32rcc_lock);
51
52 static void __iomem *base;
53 static struct clk_hw **hws;
54
55 /* System clock parent */
56 static const char * const sys_src[] = {
57         "hsi_ck", "csi_ck", "hse_ck", "pll1_p" };
58
59 static const char * const tracein_src[] = {
60         "hsi_ck", "csi_ck", "hse_ck", "pll1_r" };
61
62 static const char * const per_src[] = {
63         "hsi_ker", "csi_ker", "hse_ck", "disabled" };
64
65 static const char * const pll_src[] = {
66         "hsi_ck", "csi_ck", "hse_ck", "no clock" };
67
68 static const char * const sdmmc_src[] = { "pll1_q", "pll2_r" };
69
70 static const char * const dsi_src[] = { "ck_dsi_phy", "pll2_q" };
71
72 static const char * const qspi_src[] = {
73         "hclk", "pll1_q", "pll2_r", "per_ck" };
74
75 static const char * const fmc_src[] = {
76         "hclk", "pll1_q", "pll2_r", "per_ck" };
77
78 /* Kernel clock parent */
79 static const char * const swp_src[] = { "pclk1", "hsi_ker" };
80
81 static const char * const fdcan_src[] = { "hse_ck", "pll1_q", "pll2_q" };
82
83 static const char * const dfsdm1_src[] = { "pclk2", "sys_ck" };
84
85 static const char * const spdifrx_src[] = {
86         "pll1_q", "pll2_r", "pll3_r", "hsi_ker" };
87
88 static const char *spi_src1[5] = {
89         "pll1_q", "pll2_p", "pll3_p", NULL, "per_ck" };
90
91 static const char * const spi_src2[] = {
92         "pclk2", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "hse_ck" };
93
94 static const char * const spi_src3[] = {
95         "pclk4", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "hse_ck" };
96
97 static const char * const lptim_src1[] = {
98         "pclk1", "pll2_p", "pll3_r", "lse_ck", "lsi_ck", "per_ck" };
99
100 static const char * const lptim_src2[] = {
101         "pclk4", "pll2_p", "pll3_r", "lse_ck", "lsi_ck", "per_ck" };
102
103 static const char * const cec_src[] = {"lse_ck", "lsi_ck", "csi_ker_div122" };
104
105 static const char * const usbotg_src[] = {"pll1_q", "pll3_q", "rc48_ck" };
106
107 /* i2c 1,2,3 src */
108 static const char * const i2c_src1[] = {
109         "pclk1", "pll3_r", "hsi_ker", "csi_ker" };
110
111 static const char * const i2c_src2[] = {
112         "pclk4", "pll3_r", "hsi_ker", "csi_ker" };
113
114 static const char * const rng_src[] = {
115         "rc48_ck", "pll1_q", "lse_ck", "lsi_ck" };
116
117 /* usart 1,6 src */
118 static const char * const usart_src1[] = {
119         "pclk2", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "lse_ck" };
120
121 /* usart 2,3,4,5,7,8 src */
122 static const char * const usart_src2[] = {
123         "pclk1", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "lse_ck" };
124
125 static const char *sai_src[5] = {
126         "pll1_q", "pll2_p", "pll3_p", NULL, "per_ck" };
127
128 static const char * const adc_src[] = { "pll2_p", "pll3_r", "per_ck" };
129
130 /* lptim 2,3,4,5 src */
131 static const char * const lpuart1_src[] = {
132         "pclk3", "pll2_q", "pll3_q", "csi_ker", "lse_ck" };
133
134 static const char * const hrtim_src[] = { "tim2_ker", "d1cpre" };
135
136 /* RTC clock parent */
137 static const char * const rtc_src[] = { "off", "lse_ck", "lsi_ck", "hse_1M" };
138
139 /* Micro-controller output clock parent */
140 static const char * const mco_src1[] = {
141         "hsi_ck", "lse_ck", "hse_ck", "pll1_q", "rc48_ck" };
142
143 static const char * const mco_src2[] = {
144         "sys_ck", "pll2_p", "hse_ck", "pll1_p", "csi_ck", "lsi_ck" };
145
146 /* LCD clock */
147 static const char * const ltdc_src[] = {"pll3_r"};
148
149 /* Gate clock with ready bit and backup domain management */
150 struct stm32_ready_gate {
151         struct  clk_gate gate;
152         u8      bit_rdy;
153 };
154
155 #define to_ready_gate_clk(_rgate) container_of(_rgate, struct stm32_ready_gate,\
156                 gate)
157
158 #define RGATE_TIMEOUT 10000
159
160 static int ready_gate_clk_enable(struct clk_hw *hw)
161 {
162         struct clk_gate *gate = to_clk_gate(hw);
163         struct stm32_ready_gate *rgate = to_ready_gate_clk(gate);
164         int bit_status;
165         unsigned int timeout = RGATE_TIMEOUT;
166
167         if (clk_gate_ops.is_enabled(hw))
168                 return 0;
169
170         clk_gate_ops.enable(hw);
171
172         /* We can't use readl_poll_timeout() because we can blocked if
173          * someone enables this clock before clocksource changes.
174          * Only jiffies counter is available. Jiffies are incremented by
175          * interruptions and enable op does not allow to be interrupted.
176          */
177         do {
178                 bit_status = !(readl(gate->reg) & BIT(rgate->bit_rdy));
179
180                 if (bit_status)
181                         udelay(100);
182
183         } while (bit_status && --timeout);
184
185         return bit_status;
186 }
187
188 static void ready_gate_clk_disable(struct clk_hw *hw)
189 {
190         struct clk_gate *gate = to_clk_gate(hw);
191         struct stm32_ready_gate *rgate = to_ready_gate_clk(gate);
192         int bit_status;
193         unsigned int timeout = RGATE_TIMEOUT;
194
195         if (!clk_gate_ops.is_enabled(hw))
196                 return;
197
198         clk_gate_ops.disable(hw);
199
200         do {
201                 bit_status = !!(readl(gate->reg) & BIT(rgate->bit_rdy));
202
203                 if (bit_status)
204                         udelay(100);
205
206         } while (bit_status && --timeout);
207 }
208
209 static const struct clk_ops ready_gate_clk_ops = {
210         .enable         = ready_gate_clk_enable,
211         .disable        = ready_gate_clk_disable,
212         .is_enabled     = clk_gate_is_enabled,
213 };
214
215 static struct clk_hw *clk_register_ready_gate(struct device *dev,
216                 const char *name, const char *parent_name,
217                 void __iomem *reg, u8 bit_idx, u8 bit_rdy,
218                 unsigned long flags, spinlock_t *lock)
219 {
220         struct stm32_ready_gate *rgate;
221         struct clk_init_data init = { NULL };
222         struct clk_hw *hw;
223         int ret;
224
225         rgate = kzalloc(sizeof(*rgate), GFP_KERNEL);
226         if (!rgate)
227                 return ERR_PTR(-ENOMEM);
228
229         init.name = name;
230         init.ops = &ready_gate_clk_ops;
231         init.flags = flags;
232         init.parent_names = &parent_name;
233         init.num_parents = 1;
234
235         rgate->bit_rdy = bit_rdy;
236         rgate->gate.lock = lock;
237         rgate->gate.reg = reg;
238         rgate->gate.bit_idx = bit_idx;
239         rgate->gate.hw.init = &init;
240
241         hw = &rgate->gate.hw;
242         ret = clk_hw_register(dev, hw);
243         if (ret) {
244                 kfree(rgate);
245                 hw = ERR_PTR(ret);
246         }
247
248         return hw;
249 }
250
251 struct gate_cfg {
252         u32 offset;
253         u8  bit_idx;
254 };
255
256 struct muxdiv_cfg {
257         u32 offset;
258         u8 shift;
259         u8 width;
260 };
261
262 struct composite_clk_cfg {
263         struct gate_cfg *gate;
264         struct muxdiv_cfg *mux;
265         struct muxdiv_cfg *div;
266         const char *name;
267         const char * const *parent_name;
268         int num_parents;
269         u32 flags;
270 };
271
272 struct composite_clk_gcfg_t {
273         u8 flags;
274         const struct clk_ops *ops;
275 };
276
277 /*
278  * General config definition of a composite clock (only clock diviser for rate)
279  */
280 struct composite_clk_gcfg {
281         struct composite_clk_gcfg_t *mux;
282         struct composite_clk_gcfg_t *div;
283         struct composite_clk_gcfg_t *gate;
284 };
285
286 #define M_CFG_MUX(_mux_ops, _mux_flags)\
287         .mux = &(struct composite_clk_gcfg_t) { _mux_flags, _mux_ops}
288
289 #define M_CFG_DIV(_rate_ops, _rate_flags)\
290         .div = &(struct composite_clk_gcfg_t) {_rate_flags, _rate_ops}
291
292 #define M_CFG_GATE(_gate_ops, _gate_flags)\
293         .gate = &(struct composite_clk_gcfg_t) { _gate_flags, _gate_ops}
294
295 static struct clk_mux *_get_cmux(void __iomem *reg, u8 shift, u8 width,
296                 u32 flags, spinlock_t *lock)
297 {
298         struct clk_mux *mux;
299
300         mux = kzalloc(sizeof(*mux), GFP_KERNEL);
301         if (!mux)
302                 return ERR_PTR(-ENOMEM);
303
304         mux->reg        = reg;
305         mux->shift      = shift;
306         mux->mask       = (1 << width) - 1;
307         mux->flags      = flags;
308         mux->lock       = lock;
309
310         return mux;
311 }
312
313 static struct clk_divider *_get_cdiv(void __iomem *reg, u8 shift, u8 width,
314                 u32 flags, spinlock_t *lock)
315 {
316         struct clk_divider *div;
317
318         div = kzalloc(sizeof(*div), GFP_KERNEL);
319
320         if (!div)
321                 return ERR_PTR(-ENOMEM);
322
323         div->reg   = reg;
324         div->shift = shift;
325         div->width = width;
326         div->flags = flags;
327         div->lock  = lock;
328
329         return div;
330 }
331
332 static struct clk_gate *_get_cgate(void __iomem *reg, u8 bit_idx, u32 flags,
333                 spinlock_t *lock)
334 {
335         struct clk_gate *gate;
336
337         gate = kzalloc(sizeof(*gate), GFP_KERNEL);
338         if (!gate)
339                 return ERR_PTR(-ENOMEM);
340
341         gate->reg       = reg;
342         gate->bit_idx   = bit_idx;
343         gate->flags     = flags;
344         gate->lock      = lock;
345
346         return gate;
347 }
348
349 struct composite_cfg {
350         struct clk_hw *mux_hw;
351         struct clk_hw *div_hw;
352         struct clk_hw *gate_hw;
353
354         const struct clk_ops *mux_ops;
355         const struct clk_ops *div_ops;
356         const struct clk_ops *gate_ops;
357 };
358
359 static void get_cfg_composite_div(const struct composite_clk_gcfg *gcfg,
360                 const struct composite_clk_cfg *cfg,
361                 struct composite_cfg *composite, spinlock_t *lock)
362 {
363         struct clk_mux     *mux = NULL;
364         struct clk_divider *div = NULL;
365         struct clk_gate    *gate = NULL;
366         const struct clk_ops *mux_ops, *div_ops, *gate_ops;
367         struct clk_hw *mux_hw;
368         struct clk_hw *div_hw;
369         struct clk_hw *gate_hw;
370
371         mux_ops = div_ops = gate_ops = NULL;
372         mux_hw = div_hw = gate_hw = NULL;
373
374         if (gcfg->mux && cfg->mux) {
375                 mux = _get_cmux(base + cfg->mux->offset,
376                                 cfg->mux->shift,
377                                 cfg->mux->width,
378                                 gcfg->mux->flags, lock);
379
380                 if (!IS_ERR(mux)) {
381                         mux_hw = &mux->hw;
382                         mux_ops = gcfg->mux->ops ?
383                                   gcfg->mux->ops : &clk_mux_ops;
384                 }
385         }
386
387         if (gcfg->div && cfg->div) {
388                 div = _get_cdiv(base + cfg->div->offset,
389                                 cfg->div->shift,
390                                 cfg->div->width,
391                                 gcfg->div->flags, lock);
392
393                 if (!IS_ERR(div)) {
394                         div_hw = &div->hw;
395                         div_ops = gcfg->div->ops ?
396                                   gcfg->div->ops : &clk_divider_ops;
397                 }
398         }
399
400         if (gcfg->gate && cfg->gate) {
401                 gate = _get_cgate(base + cfg->gate->offset,
402                                 cfg->gate->bit_idx,
403                                 gcfg->gate->flags, lock);
404
405                 if (!IS_ERR(gate)) {
406                         gate_hw = &gate->hw;
407                         gate_ops = gcfg->gate->ops ?
408                                    gcfg->gate->ops : &clk_gate_ops;
409                 }
410         }
411
412         composite->mux_hw = mux_hw;
413         composite->mux_ops = mux_ops;
414
415         composite->div_hw = div_hw;
416         composite->div_ops = div_ops;
417
418         composite->gate_hw = gate_hw;
419         composite->gate_ops = gate_ops;
420 }
421
422 /* Kernel Timer */
423 struct timer_ker {
424         u8 dppre_shift;
425         struct clk_hw hw;
426         spinlock_t *lock;
427 };
428
429 #define to_timer_ker(_hw) container_of(_hw, struct timer_ker, hw)
430
431 static unsigned long timer_ker_recalc_rate(struct clk_hw *hw,
432                 unsigned long parent_rate)
433 {
434         struct timer_ker *clk_elem = to_timer_ker(hw);
435         u32 timpre;
436         u32 dppre_shift = clk_elem->dppre_shift;
437         u32 prescaler;
438         u32 mul;
439
440         timpre = (readl(base + RCC_CFGR) >> 15) & 0x01;
441
442         prescaler = (readl(base + RCC_D2CFGR) >> dppre_shift) & 0x03;
443
444         mul = 2;
445
446         if (prescaler < 4)
447                 mul = 1;
448
449         else if (timpre && prescaler > 4)
450                 mul = 4;
451
452         return parent_rate * mul;
453 }
454
455 static const struct clk_ops timer_ker_ops = {
456         .recalc_rate = timer_ker_recalc_rate,
457 };
458
459 static struct clk_hw *clk_register_stm32_timer_ker(struct device *dev,
460                 const char *name, const char *parent_name,
461                 unsigned long flags,
462                 u8 dppre_shift,
463                 spinlock_t *lock)
464 {
465         struct timer_ker *element;
466         struct clk_init_data init;
467         struct clk_hw *hw;
468         int err;
469
470         element = kzalloc(sizeof(*element), GFP_KERNEL);
471         if (!element)
472                 return ERR_PTR(-ENOMEM);
473
474         init.name = name;
475         init.ops = &timer_ker_ops;
476         init.flags = flags;
477         init.parent_names = &parent_name;
478         init.num_parents = 1;
479
480         element->hw.init = &init;
481         element->lock = lock;
482         element->dppre_shift = dppre_shift;
483
484         hw = &element->hw;
485         err = clk_hw_register(dev, hw);
486
487         if (err) {
488                 kfree(element);
489                 return ERR_PTR(err);
490         }
491
492         return hw;
493 }
494
495 static const struct clk_div_table d1cpre_div_table[] = {
496         { 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1},
497         { 4, 1 }, { 5, 1 }, { 6, 1 }, { 7, 1},
498         { 8, 2 }, { 9, 4 }, { 10, 8 }, { 11, 16 },
499         { 12, 64 }, { 13, 128 }, { 14, 256 },
500         { 15, 512 },
501         { 0 },
502 };
503
504 static const struct clk_div_table ppre_div_table[] = {
505         { 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1},
506         { 4, 2 }, { 5, 4 }, { 6, 8 }, { 7, 16 },
507         { 0 },
508 };
509
510 static void register_core_and_bus_clocks(void)
511 {
512         /* CORE AND BUS */
513         hws[SYS_D1CPRE] = clk_hw_register_divider_table(NULL, "d1cpre",
514                         "sys_ck", CLK_IGNORE_UNUSED, base + RCC_D1CFGR, 8, 4, 0,
515                         d1cpre_div_table, &stm32rcc_lock);
516
517         hws[HCLK] = clk_hw_register_divider_table(NULL, "hclk", "d1cpre",
518                         CLK_IGNORE_UNUSED, base + RCC_D1CFGR, 0, 4, 0,
519                         d1cpre_div_table, &stm32rcc_lock);
520
521         /* D1 DOMAIN */
522         /* * CPU Systick */
523         hws[CPU_SYSTICK] = clk_hw_register_fixed_factor(NULL, "systick",
524                         "d1cpre", 0, 1, 8);
525
526         /* * APB3 peripheral */
527         hws[PCLK3] = clk_hw_register_divider_table(NULL, "pclk3", "hclk", 0,
528                         base + RCC_D1CFGR, 4, 3, 0,
529                         ppre_div_table, &stm32rcc_lock);
530
531         /* D2 DOMAIN */
532         /* * APB1 peripheral */
533         hws[PCLK1] = clk_hw_register_divider_table(NULL, "pclk1", "hclk", 0,
534                         base + RCC_D2CFGR, 4, 3, 0,
535                         ppre_div_table, &stm32rcc_lock);
536
537         /* Timers prescaler clocks */
538         clk_register_stm32_timer_ker(NULL, "tim1_ker", "pclk1", 0,
539                         4, &stm32rcc_lock);
540
541         /* * APB2 peripheral */
542         hws[PCLK2] = clk_hw_register_divider_table(NULL, "pclk2", "hclk", 0,
543                         base + RCC_D2CFGR, 8, 3, 0, ppre_div_table,
544                         &stm32rcc_lock);
545
546         clk_register_stm32_timer_ker(NULL, "tim2_ker", "pclk2", 0, 8,
547                         &stm32rcc_lock);
548
549         /* D3 DOMAIN */
550         /* * APB4 peripheral */
551         hws[PCLK4] = clk_hw_register_divider_table(NULL, "pclk4", "hclk", 0,
552                         base + RCC_D3CFGR, 4, 3, 0,
553                         ppre_div_table, &stm32rcc_lock);
554 }
555
556 /* MUX clock configuration */
557 struct stm32_mux_clk {
558         const char *name;
559         const char * const *parents;
560         u8 num_parents;
561         u32 offset;
562         u8 shift;
563         u8 width;
564         u32 flags;
565 };
566
567 #define M_MCLOCF(_name, _parents, _mux_offset, _mux_shift, _mux_width, _flags)\
568 {\
569         .name           = _name,\
570         .parents        = _parents,\
571         .num_parents    = ARRAY_SIZE(_parents),\
572         .offset         = _mux_offset,\
573         .shift          = _mux_shift,\
574         .width          = _mux_width,\
575         .flags          = _flags,\
576 }
577
578 #define M_MCLOC(_name, _parents, _mux_offset, _mux_shift, _mux_width)\
579         M_MCLOCF(_name, _parents, _mux_offset, _mux_shift, _mux_width, 0)\
580
581 static const struct stm32_mux_clk stm32_mclk[] __initconst = {
582         M_MCLOC("per_ck",       per_src,        RCC_D1CCIPR,    28, 3),
583         M_MCLOC("pllsrc",       pll_src,        RCC_PLLCKSELR,   0, 3),
584         M_MCLOC("sys_ck",       sys_src,        RCC_CFGR,        0, 3),
585         M_MCLOC("tracein_ck",   tracein_src,    RCC_CFGR,        0, 3),
586 };
587
588 /* Oscillary clock configuration */
589 struct stm32_osc_clk {
590         const char *name;
591         const char *parent;
592         u32 gate_offset;
593         u8 bit_idx;
594         u8 bit_rdy;
595         u32 flags;
596 };
597
598 #define OSC_CLKF(_name, _parent, _gate_offset, _bit_idx, _bit_rdy, _flags)\
599 {\
600         .name           = _name,\
601         .parent         = _parent,\
602         .gate_offset    = _gate_offset,\
603         .bit_idx        = _bit_idx,\
604         .bit_rdy        = _bit_rdy,\
605         .flags          = _flags,\
606 }
607
608 #define OSC_CLK(_name, _parent, _gate_offset, _bit_idx, _bit_rdy)\
609         OSC_CLKF(_name, _parent, _gate_offset, _bit_idx, _bit_rdy, 0)
610
611 static const struct stm32_osc_clk stm32_oclk[] __initconst = {
612         OSC_CLKF("hsi_ck",  "hsidiv",   RCC_CR,   0,  2, CLK_IGNORE_UNUSED),
613         OSC_CLKF("hsi_ker", "hsidiv",   RCC_CR,   1,  2, CLK_IGNORE_UNUSED),
614         OSC_CLKF("csi_ck",  "clk-csi",  RCC_CR,   7,  8, CLK_IGNORE_UNUSED),
615         OSC_CLKF("csi_ker", "clk-csi",  RCC_CR,   9,  8, CLK_IGNORE_UNUSED),
616         OSC_CLKF("rc48_ck", "clk-rc48", RCC_CR,  12, 13, CLK_IGNORE_UNUSED),
617         OSC_CLKF("lsi_ck",  "clk-lsi",  RCC_CSR,  0,  1, CLK_IGNORE_UNUSED),
618 };
619
620 /* PLL configuration */
621 struct st32h7_pll_cfg {
622         u8 bit_idx;
623         u32 offset_divr;
624         u8 bit_frac_en;
625         u32 offset_frac;
626         u8 divm;
627 };
628
629 struct stm32_pll_data {
630         const char *name;
631         const char *parent_name;
632         unsigned long flags;
633         const struct st32h7_pll_cfg *cfg;
634 };
635
636 static const struct st32h7_pll_cfg stm32h7_pll1 = {
637         .bit_idx = 24,
638         .offset_divr = RCC_PLL1DIVR,
639         .bit_frac_en = 0,
640         .offset_frac = RCC_PLL1FRACR,
641         .divm = 4,
642 };
643
644 static const struct st32h7_pll_cfg stm32h7_pll2 = {
645         .bit_idx = 26,
646         .offset_divr = RCC_PLL2DIVR,
647         .bit_frac_en = 4,
648         .offset_frac = RCC_PLL2FRACR,
649         .divm = 12,
650 };
651
652 static const struct st32h7_pll_cfg stm32h7_pll3 = {
653         .bit_idx = 28,
654         .offset_divr = RCC_PLL3DIVR,
655         .bit_frac_en = 8,
656         .offset_frac = RCC_PLL3FRACR,
657         .divm = 20,
658 };
659
660 static const struct stm32_pll_data stm32_pll[] = {
661         { "vco1", "pllsrc", CLK_IGNORE_UNUSED, &stm32h7_pll1 },
662         { "vco2", "pllsrc", 0, &stm32h7_pll2 },
663         { "vco3", "pllsrc", 0, &stm32h7_pll3 },
664 };
665
666 struct stm32_fractional_divider {
667         void __iomem    *mreg;
668         u8              mshift;
669         u8              mwidth;
670
671         void __iomem    *nreg;
672         u8              nshift;
673         u8              nwidth;
674
675         void __iomem    *freg_status;
676         u8              freg_bit;
677         void __iomem    *freg_value;
678         u8              fshift;
679         u8              fwidth;
680
681         u8              flags;
682         struct clk_hw   hw;
683         spinlock_t      *lock;
684 };
685
686 struct stm32_pll_obj {
687         spinlock_t *lock;
688         struct stm32_fractional_divider div;
689         struct stm32_ready_gate rgate;
690         struct clk_hw hw;
691 };
692
693 #define to_pll(_hw) container_of(_hw, struct stm32_pll_obj, hw)
694
695 static int pll_is_enabled(struct clk_hw *hw)
696 {
697         struct stm32_pll_obj *clk_elem = to_pll(hw);
698         struct clk_hw *_hw = &clk_elem->rgate.gate.hw;
699
700         __clk_hw_set_clk(_hw, hw);
701
702         return ready_gate_clk_ops.is_enabled(_hw);
703 }
704
705 static int pll_enable(struct clk_hw *hw)
706 {
707         struct stm32_pll_obj *clk_elem = to_pll(hw);
708         struct clk_hw *_hw = &clk_elem->rgate.gate.hw;
709
710         __clk_hw_set_clk(_hw, hw);
711
712         return ready_gate_clk_ops.enable(_hw);
713 }
714
715 static void pll_disable(struct clk_hw *hw)
716 {
717         struct stm32_pll_obj *clk_elem = to_pll(hw);
718         struct clk_hw *_hw = &clk_elem->rgate.gate.hw;
719
720         __clk_hw_set_clk(_hw, hw);
721
722         ready_gate_clk_ops.disable(_hw);
723 }
724
725 static int pll_frac_is_enabled(struct clk_hw *hw)
726 {
727         struct stm32_pll_obj *clk_elem = to_pll(hw);
728         struct stm32_fractional_divider *fd = &clk_elem->div;
729
730         return (readl(fd->freg_status) >> fd->freg_bit) & 0x01;
731 }
732
733 static unsigned long pll_read_frac(struct clk_hw *hw)
734 {
735         struct stm32_pll_obj *clk_elem = to_pll(hw);
736         struct stm32_fractional_divider *fd = &clk_elem->div;
737
738         return (readl(fd->freg_value) >> fd->fshift) &
739                 GENMASK(fd->fwidth - 1, 0);
740 }
741
742 static unsigned long pll_fd_recalc_rate(struct clk_hw *hw,
743                 unsigned long parent_rate)
744 {
745         struct stm32_pll_obj *clk_elem = to_pll(hw);
746         struct stm32_fractional_divider *fd = &clk_elem->div;
747         unsigned long m, n;
748         u32 val, mask;
749         u64 rate, rate1 = 0;
750
751         val = readl(fd->mreg);
752         mask = GENMASK(fd->mwidth - 1, 0) << fd->mshift;
753         m = (val & mask) >> fd->mshift;
754
755         val = readl(fd->nreg);
756         mask = GENMASK(fd->nwidth - 1, 0) << fd->nshift;
757         n = ((val & mask) >> fd->nshift) + 1;
758
759         if (!n || !m)
760                 return parent_rate;
761
762         rate = (u64)parent_rate * n;
763         do_div(rate, m);
764
765         if (pll_frac_is_enabled(hw)) {
766                 val = pll_read_frac(hw);
767                 rate1 = (u64)parent_rate * (u64)val;
768                 do_div(rate1, (m * 8191));
769         }
770
771         return rate + rate1;
772 }
773
774 static const struct clk_ops pll_ops = {
775         .enable         = pll_enable,
776         .disable        = pll_disable,
777         .is_enabled     = pll_is_enabled,
778         .recalc_rate    = pll_fd_recalc_rate,
779 };
780
781 static struct clk_hw *clk_register_stm32_pll(struct device *dev,
782                 const char *name,
783                 const char *parent,
784                 unsigned long flags,
785                 const struct st32h7_pll_cfg *cfg,
786                 spinlock_t *lock)
787 {
788         struct stm32_pll_obj *pll;
789         struct clk_init_data init = { NULL };
790         struct clk_hw *hw;
791         int ret;
792         struct stm32_fractional_divider *div = NULL;
793         struct stm32_ready_gate *rgate;
794
795         pll = kzalloc(sizeof(*pll), GFP_KERNEL);
796         if (!pll)
797                 return ERR_PTR(-ENOMEM);
798
799         init.name = name;
800         init.ops = &pll_ops;
801         init.flags = flags;
802         init.parent_names = &parent;
803         init.num_parents = 1;
804         pll->hw.init = &init;
805
806         hw = &pll->hw;
807         rgate = &pll->rgate;
808
809         rgate->bit_rdy = cfg->bit_idx + 1;
810         rgate->gate.lock = lock;
811         rgate->gate.reg = base + RCC_CR;
812         rgate->gate.bit_idx = cfg->bit_idx;
813
814         div = &pll->div;
815         div->flags = 0;
816         div->mreg = base + RCC_PLLCKSELR;
817         div->mshift = cfg->divm;
818         div->mwidth = 6;
819         div->nreg = base +  cfg->offset_divr;
820         div->nshift = 0;
821         div->nwidth = 9;
822
823         div->freg_status = base + RCC_PLLCFGR;
824         div->freg_bit = cfg->bit_frac_en;
825         div->freg_value = base +  cfg->offset_frac;
826         div->fshift = 3;
827         div->fwidth = 13;
828
829         div->lock = lock;
830
831         ret = clk_hw_register(dev, hw);
832         if (ret) {
833                 kfree(pll);
834                 hw = ERR_PTR(ret);
835         }
836
837         return hw;
838 }
839
840 /* ODF CLOCKS */
841 static unsigned long odf_divider_recalc_rate(struct clk_hw *hw,
842                 unsigned long parent_rate)
843 {
844         return clk_divider_ops.recalc_rate(hw, parent_rate);
845 }
846
847 static int odf_divider_determine_rate(struct clk_hw *hw,
848                                       struct clk_rate_request *req)
849 {
850         return clk_divider_ops.determine_rate(hw, req);
851 }
852
853 static int odf_divider_set_rate(struct clk_hw *hw, unsigned long rate,
854                 unsigned long parent_rate)
855 {
856         struct clk_hw *hwp;
857         int pll_status;
858         int ret;
859
860         hwp = clk_hw_get_parent(hw);
861
862         pll_status = pll_is_enabled(hwp);
863
864         if (pll_status)
865                 pll_disable(hwp);
866
867         ret = clk_divider_ops.set_rate(hw, rate, parent_rate);
868
869         if (pll_status)
870                 pll_enable(hwp);
871
872         return ret;
873 }
874
875 static const struct clk_ops odf_divider_ops = {
876         .recalc_rate    = odf_divider_recalc_rate,
877         .determine_rate = odf_divider_determine_rate,
878         .set_rate       = odf_divider_set_rate,
879 };
880
881 static int odf_gate_enable(struct clk_hw *hw)
882 {
883         struct clk_hw *hwp;
884         int pll_status;
885         int ret;
886
887         if (clk_gate_ops.is_enabled(hw))
888                 return 0;
889
890         hwp = clk_hw_get_parent(hw);
891
892         pll_status = pll_is_enabled(hwp);
893
894         if (pll_status)
895                 pll_disable(hwp);
896
897         ret = clk_gate_ops.enable(hw);
898
899         if (pll_status)
900                 pll_enable(hwp);
901
902         return ret;
903 }
904
905 static void odf_gate_disable(struct clk_hw *hw)
906 {
907         struct clk_hw *hwp;
908         int pll_status;
909
910         if (!clk_gate_ops.is_enabled(hw))
911                 return;
912
913         hwp = clk_hw_get_parent(hw);
914
915         pll_status = pll_is_enabled(hwp);
916
917         if (pll_status)
918                 pll_disable(hwp);
919
920         clk_gate_ops.disable(hw);
921
922         if (pll_status)
923                 pll_enable(hwp);
924 }
925
926 static const struct clk_ops odf_gate_ops = {
927         .enable         = odf_gate_enable,
928         .disable        = odf_gate_disable,
929         .is_enabled     = clk_gate_is_enabled,
930 };
931
932 static struct composite_clk_gcfg odf_clk_gcfg = {
933         M_CFG_DIV(&odf_divider_ops, 0),
934         M_CFG_GATE(&odf_gate_ops, 0),
935 };
936
937 #define M_ODF_F(_name, _parent, _gate_offset,  _bit_idx, _rate_offset,\
938                 _rate_shift, _rate_width, _flags)\
939 {\
940         .mux = NULL,\
941         .div = &(struct muxdiv_cfg) {_rate_offset, _rate_shift, _rate_width},\
942         .gate = &(struct gate_cfg) {_gate_offset, _bit_idx },\
943         .name = _name,\
944         .parent_name = &(const char *) {_parent},\
945         .num_parents = 1,\
946         .flags = _flags,\
947 }
948
949 #define M_ODF(_name, _parent, _gate_offset,  _bit_idx, _rate_offset,\
950                 _rate_shift, _rate_width)\
951 M_ODF_F(_name, _parent, _gate_offset,  _bit_idx, _rate_offset,\
952                 _rate_shift, _rate_width, 0)\
953
954 static const struct composite_clk_cfg stm32_odf[3][3] = {
955         {
956                 M_ODF_F("pll1_p", "vco1", RCC_PLLCFGR, 16, RCC_PLL1DIVR,  9, 7,
957                                 CLK_IGNORE_UNUSED),
958                 M_ODF_F("pll1_q", "vco1", RCC_PLLCFGR, 17, RCC_PLL1DIVR, 16, 7,
959                                 CLK_IGNORE_UNUSED),
960                 M_ODF_F("pll1_r", "vco1", RCC_PLLCFGR, 18, RCC_PLL1DIVR, 24, 7,
961                                 CLK_IGNORE_UNUSED),
962         },
963
964         {
965                 M_ODF("pll2_p", "vco2", RCC_PLLCFGR, 19, RCC_PLL2DIVR,  9, 7),
966                 M_ODF("pll2_q", "vco2", RCC_PLLCFGR, 20, RCC_PLL2DIVR, 16, 7),
967                 M_ODF("pll2_r", "vco2", RCC_PLLCFGR, 21, RCC_PLL2DIVR, 24, 7),
968         },
969         {
970                 M_ODF("pll3_p", "vco3", RCC_PLLCFGR, 22, RCC_PLL3DIVR,  9, 7),
971                 M_ODF("pll3_q", "vco3", RCC_PLLCFGR, 23, RCC_PLL3DIVR, 16, 7),
972                 M_ODF("pll3_r", "vco3", RCC_PLLCFGR, 24, RCC_PLL3DIVR, 24, 7),
973         }
974 };
975
976 /* PERIF CLOCKS */
977 struct pclk_t {
978         u32 gate_offset;
979         u8 bit_idx;
980         const char *name;
981         const char *parent;
982         u32 flags;
983 };
984
985 #define PER_CLKF(_gate_offset, _bit_idx, _name, _parent, _flags)\
986 {\
987         .gate_offset    = _gate_offset,\
988         .bit_idx        = _bit_idx,\
989         .name           = _name,\
990         .parent         = _parent,\
991         .flags          = _flags,\
992 }
993
994 #define PER_CLK(_gate_offset, _bit_idx, _name, _parent)\
995         PER_CLKF(_gate_offset, _bit_idx, _name, _parent, 0)
996
997 static const struct pclk_t pclk[] = {
998         PER_CLK(RCC_AHB3ENR, 31, "d1sram1", "hclk"),
999         PER_CLK(RCC_AHB3ENR, 30, "itcm", "hclk"),
1000         PER_CLK(RCC_AHB3ENR, 29, "dtcm2", "hclk"),
1001         PER_CLK(RCC_AHB3ENR, 28, "dtcm1", "hclk"),
1002         PER_CLK(RCC_AHB3ENR, 8, "flitf", "hclk"),
1003         PER_CLK(RCC_AHB3ENR, 5, "jpgdec", "hclk"),
1004         PER_CLK(RCC_AHB3ENR, 4, "dma2d", "hclk"),
1005         PER_CLK(RCC_AHB3ENR, 0, "mdma", "hclk"),
1006         PER_CLK(RCC_AHB1ENR, 28, "usb2ulpi", "hclk"),
1007         PER_CLK(RCC_AHB1ENR, 26, "usb1ulpi", "hclk"),
1008         PER_CLK(RCC_AHB1ENR, 17, "eth1rx", "hclk"),
1009         PER_CLK(RCC_AHB1ENR, 16, "eth1tx", "hclk"),
1010         PER_CLK(RCC_AHB1ENR, 15, "eth1mac", "hclk"),
1011         PER_CLK(RCC_AHB1ENR, 14, "art", "hclk"),
1012         PER_CLK(RCC_AHB1ENR, 1, "dma2", "hclk"),
1013         PER_CLK(RCC_AHB1ENR, 0, "dma1", "hclk"),
1014         PER_CLK(RCC_AHB2ENR, 31, "d2sram3", "hclk"),
1015         PER_CLK(RCC_AHB2ENR, 30, "d2sram2", "hclk"),
1016         PER_CLK(RCC_AHB2ENR, 29, "d2sram1", "hclk"),
1017         PER_CLK(RCC_AHB2ENR, 5, "hash", "hclk"),
1018         PER_CLK(RCC_AHB2ENR, 4, "crypt", "hclk"),
1019         PER_CLK(RCC_AHB2ENR, 0, "camitf", "hclk"),
1020         PER_CLK(RCC_AHB4ENR, 28, "bkpram", "hclk"),
1021         PER_CLK(RCC_AHB4ENR, 25, "hsem", "hclk"),
1022         PER_CLK(RCC_AHB4ENR, 21, "bdma", "hclk"),
1023         PER_CLK(RCC_AHB4ENR, 19, "crc", "hclk"),
1024         PER_CLK(RCC_AHB4ENR, 10, "gpiok", "hclk"),
1025         PER_CLK(RCC_AHB4ENR, 9, "gpioj", "hclk"),
1026         PER_CLK(RCC_AHB4ENR, 8, "gpioi", "hclk"),
1027         PER_CLK(RCC_AHB4ENR, 7, "gpioh", "hclk"),
1028         PER_CLK(RCC_AHB4ENR, 6, "gpiog", "hclk"),
1029         PER_CLK(RCC_AHB4ENR, 5, "gpiof", "hclk"),
1030         PER_CLK(RCC_AHB4ENR, 4, "gpioe", "hclk"),
1031         PER_CLK(RCC_AHB4ENR, 3, "gpiod", "hclk"),
1032         PER_CLK(RCC_AHB4ENR, 2, "gpioc", "hclk"),
1033         PER_CLK(RCC_AHB4ENR, 1, "gpiob", "hclk"),
1034         PER_CLK(RCC_AHB4ENR, 0, "gpioa", "hclk"),
1035         PER_CLK(RCC_APB3ENR, 6, "wwdg1", "pclk3"),
1036         PER_CLK(RCC_APB1LENR, 29, "dac12", "pclk1"),
1037         PER_CLK(RCC_APB1LENR, 11, "wwdg2", "pclk1"),
1038         PER_CLK(RCC_APB1LENR, 8, "tim14", "tim1_ker"),
1039         PER_CLK(RCC_APB1LENR, 7, "tim13", "tim1_ker"),
1040         PER_CLK(RCC_APB1LENR, 6, "tim12", "tim1_ker"),
1041         PER_CLK(RCC_APB1LENR, 5, "tim7", "tim1_ker"),
1042         PER_CLK(RCC_APB1LENR, 4, "tim6", "tim1_ker"),
1043         PER_CLK(RCC_APB1LENR, 3, "tim5", "tim1_ker"),
1044         PER_CLK(RCC_APB1LENR, 2, "tim4", "tim1_ker"),
1045         PER_CLK(RCC_APB1LENR, 1, "tim3", "tim1_ker"),
1046         PER_CLK(RCC_APB1LENR, 0, "tim2", "tim1_ker"),
1047         PER_CLK(RCC_APB1HENR, 5, "mdios", "pclk1"),
1048         PER_CLK(RCC_APB1HENR, 4, "opamp", "pclk1"),
1049         PER_CLK(RCC_APB1HENR, 1, "crs", "pclk1"),
1050         PER_CLK(RCC_APB2ENR, 18, "tim17", "tim2_ker"),
1051         PER_CLK(RCC_APB2ENR, 17, "tim16", "tim2_ker"),
1052         PER_CLK(RCC_APB2ENR, 16, "tim15", "tim2_ker"),
1053         PER_CLK(RCC_APB2ENR, 1, "tim8", "tim2_ker"),
1054         PER_CLK(RCC_APB2ENR, 0, "tim1", "tim2_ker"),
1055         PER_CLK(RCC_APB4ENR, 26, "tmpsens", "pclk4"),
1056         PER_CLK(RCC_APB4ENR, 16, "rtcapb", "pclk4"),
1057         PER_CLK(RCC_APB4ENR, 15, "vref", "pclk4"),
1058         PER_CLK(RCC_APB4ENR, 14, "comp12", "pclk4"),
1059         PER_CLK(RCC_APB4ENR, 1, "syscfg", "pclk4"),
1060 };
1061
1062 /* KERNEL CLOCKS */
1063 #define KER_CLKF(_gate_offset, _bit_idx,\
1064                 _mux_offset, _mux_shift, _mux_width,\
1065                 _name, _parent_name,\
1066                 _flags) \
1067 { \
1068         .gate = &(struct gate_cfg) {_gate_offset, _bit_idx},\
1069         .mux = &(struct muxdiv_cfg) {_mux_offset, _mux_shift, _mux_width },\
1070         .name = _name, \
1071         .parent_name = _parent_name, \
1072         .num_parents = ARRAY_SIZE(_parent_name),\
1073         .flags = _flags,\
1074 }
1075
1076 #define KER_CLK(_gate_offset, _bit_idx, _mux_offset, _mux_shift, _mux_width,\
1077                 _name, _parent_name) \
1078 KER_CLKF(_gate_offset, _bit_idx, _mux_offset, _mux_shift, _mux_width,\
1079                 _name, _parent_name, 0)\
1080
1081 #define KER_CLKF_NOMUX(_gate_offset, _bit_idx,\
1082                 _name, _parent_name,\
1083                 _flags) \
1084 { \
1085         .gate = &(struct gate_cfg) {_gate_offset, _bit_idx},\
1086         .mux = NULL,\
1087         .name = _name, \
1088         .parent_name = _parent_name, \
1089         .num_parents = 1,\
1090         .flags = _flags,\
1091 }
1092
1093 static const struct composite_clk_cfg kclk[] = {
1094         KER_CLK(RCC_AHB3ENR,  16, RCC_D1CCIPR,  16, 1, "sdmmc1", sdmmc_src),
1095         KER_CLKF(RCC_AHB3ENR, 14, RCC_D1CCIPR,   4, 2, "quadspi", qspi_src,
1096                         CLK_IGNORE_UNUSED),
1097         KER_CLKF(RCC_AHB3ENR, 12, RCC_D1CCIPR,   0, 2, "fmc", fmc_src,
1098                         CLK_IGNORE_UNUSED),
1099         KER_CLK(RCC_AHB1ENR,  27, RCC_D2CCIP2R, 20, 2, "usb2otg", usbotg_src),
1100         KER_CLK(RCC_AHB1ENR,  25, RCC_D2CCIP2R, 20, 2, "usb1otg", usbotg_src),
1101         KER_CLK(RCC_AHB1ENR,   5, RCC_D3CCIPR,  16, 2, "adc12", adc_src),
1102         KER_CLK(RCC_AHB2ENR,   9, RCC_D1CCIPR,  16, 1, "sdmmc2", sdmmc_src),
1103         KER_CLK(RCC_AHB2ENR,   6, RCC_D2CCIP2R,  8, 2, "rng", rng_src),
1104         KER_CLK(RCC_AHB4ENR,  24, RCC_D3CCIPR,  16, 2, "adc3", adc_src),
1105         KER_CLKF(RCC_APB3ENR,   4, RCC_D1CCIPR,  8, 1, "dsi", dsi_src,
1106                         CLK_SET_RATE_PARENT),
1107         KER_CLKF_NOMUX(RCC_APB3ENR, 3, "ltdc", ltdc_src, CLK_SET_RATE_PARENT),
1108         KER_CLK(RCC_APB1LENR, 31, RCC_D2CCIP2R,  0, 3, "usart8", usart_src2),
1109         KER_CLK(RCC_APB1LENR, 30, RCC_D2CCIP2R,  0, 3, "usart7", usart_src2),
1110         KER_CLK(RCC_APB1LENR, 27, RCC_D2CCIP2R, 22, 2, "hdmicec", cec_src),
1111         KER_CLK(RCC_APB1LENR, 23, RCC_D2CCIP2R, 12, 2, "i2c3", i2c_src1),
1112         KER_CLK(RCC_APB1LENR, 22, RCC_D2CCIP2R, 12, 2, "i2c2", i2c_src1),
1113         KER_CLK(RCC_APB1LENR, 21, RCC_D2CCIP2R, 12, 2, "i2c1", i2c_src1),
1114         KER_CLK(RCC_APB1LENR, 20, RCC_D2CCIP2R,  0, 3, "uart5", usart_src2),
1115         KER_CLK(RCC_APB1LENR, 19, RCC_D2CCIP2R,  0, 3, "uart4", usart_src2),
1116         KER_CLK(RCC_APB1LENR, 18, RCC_D2CCIP2R,  0, 3, "usart3", usart_src2),
1117         KER_CLK(RCC_APB1LENR, 17, RCC_D2CCIP2R,  0, 3, "usart2", usart_src2),
1118         KER_CLK(RCC_APB1LENR, 16, RCC_D2CCIP1R, 20, 2, "spdifrx", spdifrx_src),
1119         KER_CLK(RCC_APB1LENR, 15, RCC_D2CCIP1R, 16, 3, "spi3", spi_src1),
1120         KER_CLK(RCC_APB1LENR, 14, RCC_D2CCIP1R, 16, 3, "spi2", spi_src1),
1121         KER_CLK(RCC_APB1LENR,  9, RCC_D2CCIP2R, 28, 3, "lptim1", lptim_src1),
1122         KER_CLK(RCC_APB1HENR,  8, RCC_D2CCIP1R, 28, 2, "fdcan", fdcan_src),
1123         KER_CLK(RCC_APB1HENR,  2, RCC_D2CCIP1R, 31, 1, "swp", swp_src),
1124         KER_CLK(RCC_APB2ENR,  29, RCC_CFGR,     14, 1, "hrtim", hrtim_src),
1125         KER_CLK(RCC_APB2ENR,  28, RCC_D2CCIP1R, 24, 1, "dfsdm1", dfsdm1_src),
1126         KER_CLKF(RCC_APB2ENR,  24, RCC_D2CCIP1R,  6, 3, "sai3", sai_src,
1127                  CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
1128         KER_CLKF(RCC_APB2ENR,  23, RCC_D2CCIP1R,  6, 3, "sai2", sai_src,
1129                  CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
1130         KER_CLKF(RCC_APB2ENR,  22, RCC_D2CCIP1R,  0, 3, "sai1", sai_src,
1131                  CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
1132         KER_CLK(RCC_APB2ENR,  20, RCC_D2CCIP1R, 16, 3, "spi5", spi_src2),
1133         KER_CLK(RCC_APB2ENR,  13, RCC_D2CCIP1R, 16, 3, "spi4", spi_src2),
1134         KER_CLK(RCC_APB2ENR,  12, RCC_D2CCIP1R, 16, 3, "spi1", spi_src1),
1135         KER_CLK(RCC_APB2ENR,   5, RCC_D2CCIP2R,  3, 3, "usart6", usart_src1),
1136         KER_CLK(RCC_APB2ENR,   4, RCC_D2CCIP2R,  3, 3, "usart1", usart_src1),
1137         KER_CLK(RCC_APB4ENR,  21, RCC_D3CCIPR,  24, 3, "sai4b", sai_src),
1138         KER_CLK(RCC_APB4ENR,  21, RCC_D3CCIPR,  21, 3, "sai4a", sai_src),
1139         KER_CLK(RCC_APB4ENR,  12, RCC_D3CCIPR,  13, 3, "lptim5", lptim_src2),
1140         KER_CLK(RCC_APB4ENR,  11, RCC_D3CCIPR,  13, 3, "lptim4", lptim_src2),
1141         KER_CLK(RCC_APB4ENR,  10, RCC_D3CCIPR,  13, 3, "lptim3", lptim_src2),
1142         KER_CLK(RCC_APB4ENR,   9, RCC_D3CCIPR,  10, 3, "lptim2", lptim_src2),
1143         KER_CLK(RCC_APB4ENR,   7, RCC_D3CCIPR,   8, 2, "i2c4", i2c_src2),
1144         KER_CLK(RCC_APB4ENR,   5, RCC_D3CCIPR,  28, 3, "spi6", spi_src3),
1145         KER_CLK(RCC_APB4ENR,   3, RCC_D3CCIPR,   0, 3, "lpuart1", lpuart1_src),
1146 };
1147
1148 static struct composite_clk_gcfg kernel_clk_cfg = {
1149         M_CFG_MUX(NULL, 0),
1150         M_CFG_GATE(NULL, 0),
1151 };
1152
1153 /* RTC clock */
1154 /*
1155  * RTC & LSE registers are protected against parasitic write access.
1156  * PWR_CR_DBP bit must be set to enable write access to RTC registers.
1157  */
1158 /* STM32_PWR_CR */
1159 #define PWR_CR                          0x00
1160 /* STM32_PWR_CR bit field */
1161 #define PWR_CR_DBP                      BIT(8)
1162
1163 static struct composite_clk_gcfg rtc_clk_cfg = {
1164         M_CFG_MUX(NULL, 0),
1165         M_CFG_GATE(NULL, 0),
1166 };
1167
1168 static const struct composite_clk_cfg rtc_clk =
1169         KER_CLK(RCC_BDCR, 15, RCC_BDCR, 8, 2, "rtc_ck", rtc_src);
1170
1171 /* Micro-controller output clock */
1172 static struct composite_clk_gcfg mco_clk_cfg = {
1173         M_CFG_MUX(NULL, 0),
1174         M_CFG_DIV(NULL, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO),
1175 };
1176
1177 #define M_MCO_F(_name, _parents, _mux_offset,  _mux_shift, _mux_width,\
1178                 _rate_offset, _rate_shift, _rate_width,\
1179                 _flags)\
1180 {\
1181         .mux = &(struct muxdiv_cfg) {_mux_offset, _mux_shift, _mux_width },\
1182         .div = &(struct muxdiv_cfg) {_rate_offset, _rate_shift, _rate_width},\
1183         .gate = NULL,\
1184         .name = _name,\
1185         .parent_name = _parents,\
1186         .num_parents = ARRAY_SIZE(_parents),\
1187         .flags = _flags,\
1188 }
1189
1190 static const struct composite_clk_cfg mco_clk[] = {
1191         M_MCO_F("mco1", mco_src1, RCC_CFGR, 22, 4, RCC_CFGR, 18, 4, 0),
1192         M_MCO_F("mco2", mco_src2, RCC_CFGR, 29, 3, RCC_CFGR, 25, 4, 0),
1193 };
1194
1195 static void __init stm32h7_rcc_init(struct device_node *np)
1196 {
1197         struct clk_hw_onecell_data *clk_data;
1198         struct composite_cfg c_cfg;
1199         int n;
1200         const char *hse_clk, *lse_clk, *i2s_clk;
1201         struct regmap *pdrm;
1202
1203         clk_data = kzalloc(struct_size(clk_data, hws, STM32H7_MAX_CLKS),
1204                            GFP_KERNEL);
1205         if (!clk_data)
1206                 return;
1207
1208         clk_data->num = STM32H7_MAX_CLKS;
1209
1210         hws = clk_data->hws;
1211
1212         for (n = 0; n < STM32H7_MAX_CLKS; n++)
1213                 hws[n] = ERR_PTR(-ENOENT);
1214
1215         /* get RCC base @ from DT */
1216         base = of_iomap(np, 0);
1217         if (!base) {
1218                 pr_err("%pOFn: unable to map resource", np);
1219                 goto err_free_clks;
1220         }
1221
1222         pdrm = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
1223         if (IS_ERR(pdrm))
1224                 pr_warn("%s: Unable to get syscfg\n", __func__);
1225         else
1226                 /* In any case disable backup domain write protection
1227                  * and will never be enabled.
1228                  * Needed by LSE & RTC clocks.
1229                  */
1230                 regmap_update_bits(pdrm, PWR_CR, PWR_CR_DBP, PWR_CR_DBP);
1231
1232         /* Put parent names from DT */
1233         hse_clk = of_clk_get_parent_name(np, 0);
1234         lse_clk = of_clk_get_parent_name(np, 1);
1235         i2s_clk = of_clk_get_parent_name(np, 2);
1236
1237         sai_src[3] = i2s_clk;
1238         spi_src1[3] = i2s_clk;
1239
1240         /* Register Internal oscillators */
1241         clk_hw_register_fixed_rate(NULL, "clk-hsi", NULL, 0, 64000000);
1242         clk_hw_register_fixed_rate(NULL, "clk-csi", NULL, 0, 4000000);
1243         clk_hw_register_fixed_rate(NULL, "clk-lsi", NULL, 0, 32000);
1244         clk_hw_register_fixed_rate(NULL, "clk-rc48", NULL, 0, 48000);
1245
1246         /* This clock is coming from outside. Frequencies unknown */
1247         hws[CK_DSI_PHY] = clk_hw_register_fixed_rate(NULL, "ck_dsi_phy", NULL,
1248                         0, 0);
1249
1250         hws[HSI_DIV] = clk_hw_register_divider(NULL, "hsidiv", "clk-hsi", 0,
1251                         base + RCC_CR, 3, 2, CLK_DIVIDER_POWER_OF_TWO,
1252                         &stm32rcc_lock);
1253
1254         hws[HSE_1M] = clk_hw_register_divider(NULL, "hse_1M", "hse_ck", 0,
1255                         base + RCC_CFGR, 8, 6, CLK_DIVIDER_ONE_BASED |
1256                         CLK_DIVIDER_ALLOW_ZERO,
1257                         &stm32rcc_lock);
1258
1259         /* Mux system clocks */
1260         for (n = 0; n < ARRAY_SIZE(stm32_mclk); n++)
1261                 hws[MCLK_BANK + n] = clk_hw_register_mux(NULL,
1262                                 stm32_mclk[n].name,
1263                                 stm32_mclk[n].parents,
1264                                 stm32_mclk[n].num_parents,
1265                                 stm32_mclk[n].flags,
1266                                 stm32_mclk[n].offset + base,
1267                                 stm32_mclk[n].shift,
1268                                 stm32_mclk[n].width,
1269                                 0,
1270                                 &stm32rcc_lock);
1271
1272         register_core_and_bus_clocks();
1273
1274         /* Oscillary clocks */
1275         for (n = 0; n < ARRAY_SIZE(stm32_oclk); n++)
1276                 hws[OSC_BANK + n] = clk_register_ready_gate(NULL,
1277                                 stm32_oclk[n].name,
1278                                 stm32_oclk[n].parent,
1279                                 stm32_oclk[n].gate_offset + base,
1280                                 stm32_oclk[n].bit_idx,
1281                                 stm32_oclk[n].bit_rdy,
1282                                 stm32_oclk[n].flags,
1283                                 &stm32rcc_lock);
1284
1285         hws[HSE_CK] = clk_register_ready_gate(NULL,
1286                                 "hse_ck",
1287                                 hse_clk,
1288                                 RCC_CR + base,
1289                                 16, 17,
1290                                 0,
1291                                 &stm32rcc_lock);
1292
1293         hws[LSE_CK] = clk_register_ready_gate(NULL,
1294                                 "lse_ck",
1295                                 lse_clk,
1296                                 RCC_BDCR + base,
1297                                 0, 1,
1298                                 0,
1299                                 &stm32rcc_lock);
1300
1301         hws[CSI_KER_DIV122 + n] = clk_hw_register_fixed_factor(NULL,
1302                         "csi_ker_div122", "csi_ker", 0, 1, 122);
1303
1304         /* PLLs */
1305         for (n = 0; n < ARRAY_SIZE(stm32_pll); n++) {
1306                 int odf;
1307
1308                 /* Register the VCO */
1309                 clk_register_stm32_pll(NULL, stm32_pll[n].name,
1310                                 stm32_pll[n].parent_name, stm32_pll[n].flags,
1311                                 stm32_pll[n].cfg,
1312                                 &stm32rcc_lock);
1313
1314                 /* Register the 3 output dividers */
1315                 for (odf = 0; odf < 3; odf++) {
1316                         int idx = n * 3 + odf;
1317
1318                         get_cfg_composite_div(&odf_clk_gcfg, &stm32_odf[n][odf],
1319                                         &c_cfg, &stm32rcc_lock);
1320
1321                         hws[ODF_BANK + idx] = clk_hw_register_composite(NULL,
1322                                         stm32_odf[n][odf].name,
1323                                         stm32_odf[n][odf].parent_name,
1324                                         stm32_odf[n][odf].num_parents,
1325                                         c_cfg.mux_hw, c_cfg.mux_ops,
1326                                         c_cfg.div_hw, c_cfg.div_ops,
1327                                         c_cfg.gate_hw, c_cfg.gate_ops,
1328                                         stm32_odf[n][odf].flags);
1329                 }
1330         }
1331
1332         /* Peripheral clocks */
1333         for (n = 0; n < ARRAY_SIZE(pclk); n++)
1334                 hws[PERIF_BANK + n] = clk_hw_register_gate(NULL, pclk[n].name,
1335                                 pclk[n].parent,
1336                                 pclk[n].flags, base + pclk[n].gate_offset,
1337                                 pclk[n].bit_idx, pclk[n].flags, &stm32rcc_lock);
1338
1339         /* Kernel clocks */
1340         for (n = 0; n < ARRAY_SIZE(kclk); n++) {
1341                 get_cfg_composite_div(&kernel_clk_cfg, &kclk[n], &c_cfg,
1342                                 &stm32rcc_lock);
1343
1344                 hws[KERN_BANK + n] = clk_hw_register_composite(NULL,
1345                                 kclk[n].name,
1346                                 kclk[n].parent_name,
1347                                 kclk[n].num_parents,
1348                                 c_cfg.mux_hw, c_cfg.mux_ops,
1349                                 c_cfg.div_hw, c_cfg.div_ops,
1350                                 c_cfg.gate_hw, c_cfg.gate_ops,
1351                                 kclk[n].flags);
1352         }
1353
1354         /* RTC clock (default state is off) */
1355         clk_hw_register_fixed_rate(NULL, "off", NULL, 0, 0);
1356
1357         get_cfg_composite_div(&rtc_clk_cfg, &rtc_clk, &c_cfg, &stm32rcc_lock);
1358
1359         hws[RTC_CK] = clk_hw_register_composite(NULL,
1360                         rtc_clk.name,
1361                         rtc_clk.parent_name,
1362                         rtc_clk.num_parents,
1363                         c_cfg.mux_hw, c_cfg.mux_ops,
1364                         c_cfg.div_hw, c_cfg.div_ops,
1365                         c_cfg.gate_hw, c_cfg.gate_ops,
1366                         rtc_clk.flags);
1367
1368         /* Micro-controller clocks */
1369         for (n = 0; n < ARRAY_SIZE(mco_clk); n++) {
1370                 get_cfg_composite_div(&mco_clk_cfg, &mco_clk[n], &c_cfg,
1371                                 &stm32rcc_lock);
1372
1373                 hws[MCO_BANK + n] = clk_hw_register_composite(NULL,
1374                                 mco_clk[n].name,
1375                                 mco_clk[n].parent_name,
1376                                 mco_clk[n].num_parents,
1377                                 c_cfg.mux_hw, c_cfg.mux_ops,
1378                                 c_cfg.div_hw, c_cfg.div_ops,
1379                                 c_cfg.gate_hw, c_cfg.gate_ops,
1380                                 mco_clk[n].flags);
1381         }
1382
1383         of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data);
1384
1385         return;
1386
1387 err_free_clks:
1388         kfree(clk_data);
1389 }
1390
1391 /* The RCC node is a clock and reset controller, and these
1392  * functionalities are supported by different drivers that
1393  * matches the same compatible strings.
1394  */
1395 CLK_OF_DECLARE_DRIVER(stm32h7_rcc, "st,stm32h743-rcc", stm32h7_rcc_init);