Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[platform/kernel/linux-rpi.git] / drivers / clk / clk-cdce925.c
1 /*
2  * Driver for TI Multi PLL CDCE913/925/937/949 clock synthesizer
3  *
4  * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1,
5  * Y4/Y5 to PLL2, and so on. PLL frequency is set on a first-come-first-serve
6  * basis. Clients can directly request any frequency that the chip can
7  * deliver using the standard clk framework. In addition, the device can
8  * be configured and activated via the devicetree.
9  *
10  * Copyright (C) 2014, Topic Embedded Products
11  * Licenced under GPL
12  */
13 #include <linux/clk.h>
14 #include <linux/clk-provider.h>
15 #include <linux/delay.h>
16 #include <linux/module.h>
17 #include <linux/i2c.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include <linux/gcd.h>
22
23 /* Each chip has different number of PLLs and outputs, for example:
24  * The CECE925 has 2 PLLs which can be routed through dividers to 5 outputs.
25  * Model this as 2 PLL clocks which are parents to the outputs.
26  */
27
28 enum {
29         CDCE913,
30         CDCE925,
31         CDCE937,
32         CDCE949,
33 };
34
35 struct clk_cdce925_chip_info {
36         int num_plls;
37         int num_outputs;
38 };
39
40 static const struct clk_cdce925_chip_info clk_cdce925_chip_info_tbl[] = {
41         [CDCE913] = { .num_plls = 1, .num_outputs = 3 },
42         [CDCE925] = { .num_plls = 2, .num_outputs = 5 },
43         [CDCE937] = { .num_plls = 3, .num_outputs = 7 },
44         [CDCE949] = { .num_plls = 4, .num_outputs = 9 },
45 };
46
47 #define MAX_NUMBER_OF_PLLS      4
48 #define MAX_NUMBER_OF_OUTPUTS   9
49
50 #define CDCE925_REG_GLOBAL1     0x01
51 #define CDCE925_REG_Y1SPIPDIVH  0x02
52 #define CDCE925_REG_PDIVL       0x03
53 #define CDCE925_REG_XCSEL       0x05
54 /* PLL parameters start at 0x10, steps of 0x10 */
55 #define CDCE925_OFFSET_PLL      0x10
56 /* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
57 #define CDCE925_PLL_MUX_OUTPUTS 0x14
58 #define CDCE925_PLL_MULDIV      0x18
59
60 #define CDCE925_PLL_FREQUENCY_MIN        80000000ul
61 #define CDCE925_PLL_FREQUENCY_MAX       230000000ul
62 struct clk_cdce925_chip;
63
64 struct clk_cdce925_output {
65         struct clk_hw hw;
66         struct clk_cdce925_chip *chip;
67         u8 index;
68         u16 pdiv; /* 1..127 for Y2-Y9; 1..1023 for Y1 */
69 };
70 #define to_clk_cdce925_output(_hw) \
71         container_of(_hw, struct clk_cdce925_output, hw)
72
73 struct clk_cdce925_pll {
74         struct clk_hw hw;
75         struct clk_cdce925_chip *chip;
76         u8 index;
77         u16 m;   /* 1..511 */
78         u16 n;   /* 1..4095 */
79 };
80 #define to_clk_cdce925_pll(_hw) container_of(_hw, struct clk_cdce925_pll, hw)
81
82 struct clk_cdce925_chip {
83         struct regmap *regmap;
84         struct i2c_client *i2c_client;
85         const struct clk_cdce925_chip_info *chip_info;
86         struct clk_cdce925_pll pll[MAX_NUMBER_OF_PLLS];
87         struct clk_cdce925_output clk[MAX_NUMBER_OF_OUTPUTS];
88 };
89
90 /* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
91
92 static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
93         u16 n, u16 m)
94 {
95         if ((!m || !n) || (m == n))
96                 return parent_rate; /* In bypass mode runs at same frequency */
97         return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
98 }
99
100 static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
101                 unsigned long parent_rate)
102 {
103         /* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
104         struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
105
106         return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
107 }
108
109 static void cdce925_pll_find_rate(unsigned long rate,
110                 unsigned long parent_rate, u16 *n, u16 *m)
111 {
112         unsigned long un;
113         unsigned long um;
114         unsigned long g;
115
116         if (rate <= parent_rate) {
117                 /* Can always deliver parent_rate in bypass mode */
118                 rate = parent_rate;
119                 *n = 0;
120                 *m = 0;
121         } else {
122                 /* In PLL mode, need to apply min/max range */
123                 if (rate < CDCE925_PLL_FREQUENCY_MIN)
124                         rate = CDCE925_PLL_FREQUENCY_MIN;
125                 else if (rate > CDCE925_PLL_FREQUENCY_MAX)
126                         rate = CDCE925_PLL_FREQUENCY_MAX;
127
128                 g = gcd(rate, parent_rate);
129                 um = parent_rate / g;
130                 un = rate / g;
131                 /* When outside hw range, reduce to fit (rounding errors) */
132                 while ((un > 4095) || (um > 511)) {
133                         un >>= 1;
134                         um >>= 1;
135                 }
136                 if (un == 0)
137                         un = 1;
138                 if (um == 0)
139                         um = 1;
140
141                 *n = un;
142                 *m = um;
143         }
144 }
145
146 static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
147                 unsigned long *parent_rate)
148 {
149         u16 n, m;
150
151         cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
152         return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
153 }
154
155 static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
156                 unsigned long parent_rate)
157 {
158         struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
159
160         if (!rate || (rate == parent_rate)) {
161                 data->m = 0; /* Bypass mode */
162                 data->n = 0;
163                 return 0;
164         }
165
166         if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
167                 (rate > CDCE925_PLL_FREQUENCY_MAX)) {
168                 pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
169                 return -EINVAL;
170         }
171
172         if (rate < parent_rate) {
173                 pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
174                         rate, parent_rate);
175                 return -EINVAL;
176         }
177
178         cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
179         return 0;
180 }
181
182
183 /* calculate p = max(0, 4 - int(log2 (n/m))) */
184 static u8 cdce925_pll_calc_p(u16 n, u16 m)
185 {
186         u8 p;
187         u16 r = n / m;
188
189         if (r >= 16)
190                 return 0;
191         p = 4;
192         while (r > 1) {
193                 r >>= 1;
194                 --p;
195         }
196         return p;
197 }
198
199 /* Returns VCO range bits for VCO1_0_RANGE */
200 static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
201 {
202         struct clk *parent = clk_get_parent(hw->clk);
203         unsigned long rate = clk_get_rate(parent);
204
205         rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
206         if (rate >= 175000000)
207                 return 0x3;
208         if (rate >= 150000000)
209                 return 0x02;
210         if (rate >= 125000000)
211                 return 0x01;
212         return 0x00;
213 }
214
215 /* I2C clock, hence everything must happen in (un)prepare because this
216  * may sleep */
217 static int cdce925_pll_prepare(struct clk_hw *hw)
218 {
219         struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
220         u16 n = data->n;
221         u16 m = data->m;
222         u16 r;
223         u8 q;
224         u8 p;
225         u16 nn;
226         u8 pll[4]; /* Bits are spread out over 4 byte registers */
227         u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
228         unsigned i;
229
230         if ((!m || !n) || (m == n)) {
231                 /* Set PLL mux to bypass mode, leave the rest as is */
232                 regmap_update_bits(data->chip->regmap,
233                         reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
234         } else {
235                 /* According to data sheet: */
236                 /* p = max(0, 4 - int(log2 (n/m))) */
237                 p = cdce925_pll_calc_p(n, m);
238                 /* nn = n * 2^p */
239                 nn = n * BIT(p);
240                 /* q = int(nn/m) */
241                 q = nn / m;
242                 if ((q < 16) || (q > 63)) {
243                         pr_debug("%s invalid q=%d\n", __func__, q);
244                         return -EINVAL;
245                 }
246                 r = nn - (m*q);
247                 if (r > 511) {
248                         pr_debug("%s invalid r=%d\n", __func__, r);
249                         return -EINVAL;
250                 }
251                 pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
252                         n, m, p, q, r);
253                 /* encode into register bits */
254                 pll[0] = n >> 4;
255                 pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
256                 pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
257                 pll[3] = ((q & 0x07) << 5) | (p << 2) |
258                                 cdce925_pll_calc_range_bits(hw, n, m);
259                 /* Write to registers */
260                 for (i = 0; i < ARRAY_SIZE(pll); ++i)
261                         regmap_write(data->chip->regmap,
262                                 reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
263                 /* Enable PLL */
264                 regmap_update_bits(data->chip->regmap,
265                         reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
266         }
267
268         return 0;
269 }
270
271 static void cdce925_pll_unprepare(struct clk_hw *hw)
272 {
273         struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
274         u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
275
276         regmap_update_bits(data->chip->regmap,
277                         reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
278 }
279
280 static const struct clk_ops cdce925_pll_ops = {
281         .prepare = cdce925_pll_prepare,
282         .unprepare = cdce925_pll_unprepare,
283         .recalc_rate = cdce925_pll_recalc_rate,
284         .round_rate = cdce925_pll_round_rate,
285         .set_rate = cdce925_pll_set_rate,
286 };
287
288
289 static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
290 {
291         switch (data->index) {
292         case 0:
293                 regmap_update_bits(data->chip->regmap,
294                         CDCE925_REG_Y1SPIPDIVH,
295                         0x03, (pdiv >> 8) & 0x03);
296                 regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
297                 break;
298         case 1:
299                 regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
300                 break;
301         case 2:
302                 regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
303                 break;
304         case 3:
305                 regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
306                 break;
307         case 4:
308                 regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
309                 break;
310         case 5:
311                 regmap_update_bits(data->chip->regmap, 0x36, 0x7F, pdiv);
312                 break;
313         case 6:
314                 regmap_update_bits(data->chip->regmap, 0x37, 0x7F, pdiv);
315                 break;
316         case 7:
317                 regmap_update_bits(data->chip->regmap, 0x46, 0x7F, pdiv);
318                 break;
319         case 8:
320                 regmap_update_bits(data->chip->regmap, 0x47, 0x7F, pdiv);
321                 break;
322         }
323 }
324
325 static void cdce925_clk_activate(struct clk_cdce925_output *data)
326 {
327         switch (data->index) {
328         case 0:
329                 regmap_update_bits(data->chip->regmap,
330                         CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
331                 break;
332         case 1:
333         case 2:
334                 regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
335                 break;
336         case 3:
337         case 4:
338                 regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
339                 break;
340         case 5:
341         case 6:
342                 regmap_update_bits(data->chip->regmap, 0x34, 0x03, 0x03);
343                 break;
344         case 7:
345         case 8:
346                 regmap_update_bits(data->chip->regmap, 0x44, 0x03, 0x03);
347                 break;
348         }
349 }
350
351 static int cdce925_clk_prepare(struct clk_hw *hw)
352 {
353         struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
354
355         cdce925_clk_set_pdiv(data, data->pdiv);
356         cdce925_clk_activate(data);
357         return 0;
358 }
359
360 static void cdce925_clk_unprepare(struct clk_hw *hw)
361 {
362         struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
363
364         /* Disable clock by setting divider to "0" */
365         cdce925_clk_set_pdiv(data, 0);
366 }
367
368 static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
369                 unsigned long parent_rate)
370 {
371         struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
372
373         if (data->pdiv)
374                 return parent_rate / data->pdiv;
375         return 0;
376 }
377
378 static u16 cdce925_calc_divider(unsigned long rate,
379                 unsigned long parent_rate)
380 {
381         unsigned long divider;
382
383         if (!rate)
384                 return 0;
385         if (rate >= parent_rate)
386                 return 1;
387
388         divider = DIV_ROUND_CLOSEST(parent_rate, rate);
389         if (divider > 0x7F)
390                 divider = 0x7F;
391
392         return (u16)divider;
393 }
394
395 static unsigned long cdce925_clk_best_parent_rate(
396         struct clk_hw *hw, unsigned long rate)
397 {
398         struct clk *pll = clk_get_parent(hw->clk);
399         struct clk *root = clk_get_parent(pll);
400         unsigned long root_rate = clk_get_rate(root);
401         unsigned long best_rate_error = rate;
402         u16 pdiv_min;
403         u16 pdiv_max;
404         u16 pdiv_best;
405         u16 pdiv_now;
406
407         if (root_rate % rate == 0)
408                 return root_rate; /* Don't need the PLL, use bypass */
409
410         pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
411         pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
412
413         if (pdiv_min > pdiv_max)
414                 return 0; /* No can do? */
415
416         pdiv_best = pdiv_min;
417         for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
418                 unsigned long target_rate = rate * pdiv_now;
419                 long pll_rate = clk_round_rate(pll, target_rate);
420                 unsigned long actual_rate;
421                 unsigned long rate_error;
422
423                 if (pll_rate <= 0)
424                         continue;
425                 actual_rate = pll_rate / pdiv_now;
426                 rate_error = abs((long)actual_rate - (long)rate);
427                 if (rate_error < best_rate_error) {
428                         pdiv_best = pdiv_now;
429                         best_rate_error = rate_error;
430                 }
431                 /* TODO: Consider PLL frequency based on smaller n/m values
432                  * and pick the better one if the error is equal */
433         }
434
435         return rate * pdiv_best;
436 }
437
438 static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
439                 unsigned long *parent_rate)
440 {
441         unsigned long l_parent_rate = *parent_rate;
442         u16 divider = cdce925_calc_divider(rate, l_parent_rate);
443
444         if (l_parent_rate / divider != rate) {
445                 l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
446                 divider = cdce925_calc_divider(rate, l_parent_rate);
447                 *parent_rate = l_parent_rate;
448         }
449
450         if (divider)
451                 return (long)(l_parent_rate / divider);
452         return 0;
453 }
454
455 static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
456                 unsigned long parent_rate)
457 {
458         struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
459
460         data->pdiv = cdce925_calc_divider(rate, parent_rate);
461
462         return 0;
463 }
464
465 static const struct clk_ops cdce925_clk_ops = {
466         .prepare = cdce925_clk_prepare,
467         .unprepare = cdce925_clk_unprepare,
468         .recalc_rate = cdce925_clk_recalc_rate,
469         .round_rate = cdce925_clk_round_rate,
470         .set_rate = cdce925_clk_set_rate,
471 };
472
473
474 static u16 cdce925_y1_calc_divider(unsigned long rate,
475                 unsigned long parent_rate)
476 {
477         unsigned long divider;
478
479         if (!rate)
480                 return 0;
481         if (rate >= parent_rate)
482                 return 1;
483
484         divider = DIV_ROUND_CLOSEST(parent_rate, rate);
485         if (divider > 0x3FF) /* Y1 has 10-bit divider */
486                 divider = 0x3FF;
487
488         return (u16)divider;
489 }
490
491 static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
492                 unsigned long *parent_rate)
493 {
494         unsigned long l_parent_rate = *parent_rate;
495         u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
496
497         if (divider)
498                 return (long)(l_parent_rate / divider);
499         return 0;
500 }
501
502 static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
503                 unsigned long parent_rate)
504 {
505         struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
506
507         data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
508
509         return 0;
510 }
511
512 static const struct clk_ops cdce925_clk_y1_ops = {
513         .prepare = cdce925_clk_prepare,
514         .unprepare = cdce925_clk_unprepare,
515         .recalc_rate = cdce925_clk_recalc_rate,
516         .round_rate = cdce925_clk_y1_round_rate,
517         .set_rate = cdce925_clk_y1_set_rate,
518 };
519
520 #define CDCE925_I2C_COMMAND_BLOCK_TRANSFER      0x00
521 #define CDCE925_I2C_COMMAND_BYTE_TRANSFER       0x80
522
523 static int cdce925_regmap_i2c_write(
524         void *context, const void *data, size_t count)
525 {
526         struct device *dev = context;
527         struct i2c_client *i2c = to_i2c_client(dev);
528         int ret;
529         u8 reg_data[2];
530
531         if (count != 2)
532                 return -ENOTSUPP;
533
534         /* First byte is command code */
535         reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
536         reg_data[1] = ((u8 *)data)[1];
537
538         dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
539                         reg_data[0], reg_data[1]);
540
541         ret = i2c_master_send(i2c, reg_data, count);
542         if (likely(ret == count))
543                 return 0;
544         else if (ret < 0)
545                 return ret;
546         else
547                 return -EIO;
548 }
549
550 static int cdce925_regmap_i2c_read(void *context,
551            const void *reg, size_t reg_size, void *val, size_t val_size)
552 {
553         struct device *dev = context;
554         struct i2c_client *i2c = to_i2c_client(dev);
555         struct i2c_msg xfer[2];
556         int ret;
557         u8 reg_data[2];
558
559         if (reg_size != 1)
560                 return -ENOTSUPP;
561
562         xfer[0].addr = i2c->addr;
563         xfer[0].flags = 0;
564         xfer[0].buf = reg_data;
565         if (val_size == 1) {
566                 reg_data[0] =
567                         CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
568                 xfer[0].len = 1;
569         } else {
570                 reg_data[0] =
571                         CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
572                 reg_data[1] = val_size;
573                 xfer[0].len = 2;
574         }
575
576         xfer[1].addr = i2c->addr;
577         xfer[1].flags = I2C_M_RD;
578         xfer[1].len = val_size;
579         xfer[1].buf = val;
580
581         ret = i2c_transfer(i2c->adapter, xfer, 2);
582         if (likely(ret == 2)) {
583                 dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
584                                 reg_size, val_size, reg_data[0], *((u8 *)val));
585                 return 0;
586         } else if (ret < 0)
587                 return ret;
588         else
589                 return -EIO;
590 }
591
592 static struct clk_hw *
593 of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
594 {
595         struct clk_cdce925_chip *data = _data;
596         unsigned int idx = clkspec->args[0];
597
598         if (idx >= ARRAY_SIZE(data->clk)) {
599                 pr_err("%s: invalid index %u\n", __func__, idx);
600                 return ERR_PTR(-EINVAL);
601         }
602
603         return &data->clk[idx].hw;
604 }
605
606 static void cdce925_regulator_disable(void *regulator)
607 {
608         regulator_disable(regulator);
609 }
610
611 static int cdce925_regulator_enable(struct device *dev, const char *name)
612 {
613         struct regulator *regulator;
614         int err;
615
616         regulator = devm_regulator_get(dev, name);
617         if (IS_ERR(regulator))
618                 return PTR_ERR(regulator);
619
620         err = regulator_enable(regulator);
621         if (err) {
622                 dev_err(dev, "Failed to enable %s: %d\n", name, err);
623                 return err;
624         }
625
626         return devm_add_action_or_reset(dev, cdce925_regulator_disable,
627                                         regulator);
628 }
629
630 /* The CDCE925 uses a funky way to read/write registers. Bulk mode is
631  * just weird, so just use the single byte mode exclusively. */
632 static struct regmap_bus regmap_cdce925_bus = {
633         .write = cdce925_regmap_i2c_write,
634         .read = cdce925_regmap_i2c_read,
635 };
636
637 static int cdce925_probe(struct i2c_client *client,
638                 const struct i2c_device_id *id)
639 {
640         struct clk_cdce925_chip *data;
641         struct device_node *node = client->dev.of_node;
642         const char *parent_name;
643         const char *pll_clk_name[MAX_NUMBER_OF_PLLS] = {NULL,};
644         struct clk_init_data init;
645         u32 value;
646         int i;
647         int err;
648         struct device_node *np_output;
649         char child_name[6];
650         struct regmap_config config = {
651                 .name = "configuration0",
652                 .reg_bits = 8,
653                 .val_bits = 8,
654                 .cache_type = REGCACHE_RBTREE,
655         };
656
657         dev_dbg(&client->dev, "%s\n", __func__);
658
659         err = cdce925_regulator_enable(&client->dev, "vdd");
660         if (err)
661                 return err;
662
663         err = cdce925_regulator_enable(&client->dev, "vddout");
664         if (err)
665                 return err;
666
667         data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
668         if (!data)
669                 return -ENOMEM;
670
671         data->i2c_client = client;
672         data->chip_info = &clk_cdce925_chip_info_tbl[id->driver_data];
673         config.max_register = CDCE925_OFFSET_PLL +
674                 data->chip_info->num_plls * 0x10 - 1;
675         data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
676                         &client->dev, &config);
677         if (IS_ERR(data->regmap)) {
678                 dev_err(&client->dev, "failed to allocate register map\n");
679                 return PTR_ERR(data->regmap);
680         }
681         i2c_set_clientdata(client, data);
682
683         parent_name = of_clk_get_parent_name(node, 0);
684         if (!parent_name) {
685                 dev_err(&client->dev, "missing parent clock\n");
686                 return -ENODEV;
687         }
688         dev_dbg(&client->dev, "parent is: %s\n", parent_name);
689
690         if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
691                 regmap_write(data->regmap,
692                         CDCE925_REG_XCSEL, (value << 3) & 0xF8);
693         /* PWDN bit */
694         regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
695
696         /* Set input source for Y1 to be the XTAL */
697         regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
698
699         init.ops = &cdce925_pll_ops;
700         init.flags = 0;
701         init.parent_names = &parent_name;
702         init.num_parents = 1;
703
704         /* Register PLL clocks */
705         for (i = 0; i < data->chip_info->num_plls; ++i) {
706                 pll_clk_name[i] = kasprintf(GFP_KERNEL, "%pOFn.pll%d",
707                         client->dev.of_node, i);
708                 init.name = pll_clk_name[i];
709                 data->pll[i].chip = data;
710                 data->pll[i].hw.init = &init;
711                 data->pll[i].index = i;
712                 err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
713                 if (err) {
714                         dev_err(&client->dev, "Failed register PLL %d\n", i);
715                         goto error;
716                 }
717                 sprintf(child_name, "PLL%d", i+1);
718                 np_output = of_get_child_by_name(node, child_name);
719                 if (!np_output)
720                         continue;
721                 if (!of_property_read_u32(np_output,
722                         "clock-frequency", &value)) {
723                         err = clk_set_rate(data->pll[i].hw.clk, value);
724                         if (err)
725                                 dev_err(&client->dev,
726                                         "unable to set PLL frequency %ud\n",
727                                         value);
728                 }
729                 if (!of_property_read_u32(np_output,
730                         "spread-spectrum", &value)) {
731                         u8 flag = of_property_read_bool(np_output,
732                                 "spread-spectrum-center") ? 0x80 : 0x00;
733                         regmap_update_bits(data->regmap,
734                                 0x16 + (i*CDCE925_OFFSET_PLL),
735                                 0x80, flag);
736                         regmap_update_bits(data->regmap,
737                                 0x12 + (i*CDCE925_OFFSET_PLL),
738                                 0x07, value & 0x07);
739                 }
740                 of_node_put(np_output);
741         }
742
743         /* Register output clock Y1 */
744         init.ops = &cdce925_clk_y1_ops;
745         init.flags = 0;
746         init.num_parents = 1;
747         init.parent_names = &parent_name; /* Mux Y1 to input */
748         init.name = kasprintf(GFP_KERNEL, "%pOFn.Y1", client->dev.of_node);
749         data->clk[0].chip = data;
750         data->clk[0].hw.init = &init;
751         data->clk[0].index = 0;
752         data->clk[0].pdiv = 1;
753         err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
754         kfree(init.name); /* clock framework made a copy of the name */
755         if (err) {
756                 dev_err(&client->dev, "clock registration Y1 failed\n");
757                 goto error;
758         }
759
760         /* Register output clocks Y2 .. Y5*/
761         init.ops = &cdce925_clk_ops;
762         init.flags = CLK_SET_RATE_PARENT;
763         init.num_parents = 1;
764         for (i = 1; i < data->chip_info->num_outputs; ++i) {
765                 init.name = kasprintf(GFP_KERNEL, "%pOFn.Y%d",
766                         client->dev.of_node, i+1);
767                 data->clk[i].chip = data;
768                 data->clk[i].hw.init = &init;
769                 data->clk[i].index = i;
770                 data->clk[i].pdiv = 1;
771                 switch (i) {
772                 case 1:
773                 case 2:
774                         /* Mux Y2/3 to PLL1 */
775                         init.parent_names = &pll_clk_name[0];
776                         break;
777                 case 3:
778                 case 4:
779                         /* Mux Y4/5 to PLL2 */
780                         init.parent_names = &pll_clk_name[1];
781                         break;
782                 case 5:
783                 case 6:
784                         /* Mux Y6/7 to PLL3 */
785                         init.parent_names = &pll_clk_name[2];
786                         break;
787                 case 7:
788                 case 8:
789                         /* Mux Y8/9 to PLL4 */
790                         init.parent_names = &pll_clk_name[3];
791                         break;
792                 }
793                 err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
794                 kfree(init.name); /* clock framework made a copy of the name */
795                 if (err) {
796                         dev_err(&client->dev, "clock registration failed\n");
797                         goto error;
798                 }
799         }
800
801         /* Register the output clocks */
802         err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
803                                   data);
804         if (err)
805                 dev_err(&client->dev, "unable to add OF clock provider\n");
806
807         err = 0;
808
809 error:
810         for (i = 0; i < data->chip_info->num_plls; ++i)
811                 /* clock framework made a copy of the name */
812                 kfree(pll_clk_name[i]);
813
814         return err;
815 }
816
817 static const struct i2c_device_id cdce925_id[] = {
818         { "cdce913", CDCE913 },
819         { "cdce925", CDCE925 },
820         { "cdce937", CDCE937 },
821         { "cdce949", CDCE949 },
822         { }
823 };
824 MODULE_DEVICE_TABLE(i2c, cdce925_id);
825
826 static const struct of_device_id clk_cdce925_of_match[] = {
827         { .compatible = "ti,cdce913" },
828         { .compatible = "ti,cdce925" },
829         { .compatible = "ti,cdce937" },
830         { .compatible = "ti,cdce949" },
831         { },
832 };
833 MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
834
835 static struct i2c_driver cdce925_driver = {
836         .driver = {
837                 .name = "cdce925",
838                 .of_match_table = of_match_ptr(clk_cdce925_of_match),
839         },
840         .probe          = cdce925_probe,
841         .id_table       = cdce925_id,
842 };
843 module_i2c_driver(cdce925_driver);
844
845 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
846 MODULE_DESCRIPTION("TI CDCE913/925/937/949 driver");
847 MODULE_LICENSE("GPL");