141ce19bc57002bfabe6c2658118ff26a6eb0fec
[platform/kernel/linux-rpi.git] / drivers / clk / bcm / clk-bcm2835.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2010,2015 Broadcom
4  * Copyright (C) 2012 Stephen Warren
5  */
6
7 /**
8  * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
9  *
10  * The clock tree on the 2835 has several levels.  There's a root
11  * oscillator running at 19.2Mhz.  After the oscillator there are 5
12  * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
13  * and "HDMI displays".  Those 5 PLLs each can divide their output to
14  * produce up to 4 channels.  Finally, there is the level of clocks to
15  * be consumed by other hardware components (like "H264" or "HDMI
16  * state machine"), which divide off of some subset of the PLL
17  * channels.
18  *
19  * All of the clocks in the tree are exposed in the DT, because the DT
20  * may want to make assignments of the final layer of clocks to the
21  * PLL channels, and some components of the hardware will actually
22  * skip layers of the tree (for example, the pixel clock comes
23  * directly from the PLLH PIX channel without using a CM_*CTL clock
24  * generator).
25  */
26
27 #include <linux/clk-provider.h>
28 #include <linux/clkdev.h>
29 #include <linux/clk.h>
30 #include <linux/debugfs.h>
31 #include <linux/delay.h>
32 #include <linux/io.h>
33 #include <linux/math.h>
34 #include <linux/module.h>
35 #include <linux/of_device.h>
36 #include <linux/platform_device.h>
37 #include <linux/slab.h>
38 #include <dt-bindings/clock/bcm2835.h>
39
40 #define CM_PASSWORD             0x5a000000
41
42 #define CM_GNRICCTL             0x000
43 #define CM_GNRICDIV             0x004
44 # define CM_DIV_FRAC_BITS       12
45 # define CM_DIV_FRAC_MASK       GENMASK(CM_DIV_FRAC_BITS - 1, 0)
46
47 #define CM_VPUCTL               0x008
48 #define CM_VPUDIV               0x00c
49 #define CM_SYSCTL               0x010
50 #define CM_SYSDIV               0x014
51 #define CM_PERIACTL             0x018
52 #define CM_PERIADIV             0x01c
53 #define CM_PERIICTL             0x020
54 #define CM_PERIIDIV             0x024
55 #define CM_H264CTL              0x028
56 #define CM_H264DIV              0x02c
57 #define CM_ISPCTL               0x030
58 #define CM_ISPDIV               0x034
59 #define CM_V3DCTL               0x038
60 #define CM_V3DDIV               0x03c
61 #define CM_CAM0CTL              0x040
62 #define CM_CAM0DIV              0x044
63 #define CM_CAM1CTL              0x048
64 #define CM_CAM1DIV              0x04c
65 #define CM_CCP2CTL              0x050
66 #define CM_CCP2DIV              0x054
67 #define CM_DSI0ECTL             0x058
68 #define CM_DSI0EDIV             0x05c
69 #define CM_DSI0PCTL             0x060
70 #define CM_DSI0PDIV             0x064
71 #define CM_DPICTL               0x068
72 #define CM_DPIDIV               0x06c
73 #define CM_GP0CTL               0x070
74 #define CM_GP0DIV               0x074
75 #define CM_GP1CTL               0x078
76 #define CM_GP1DIV               0x07c
77 #define CM_GP2CTL               0x080
78 #define CM_GP2DIV               0x084
79 #define CM_HSMCTL               0x088
80 #define CM_HSMDIV               0x08c
81 #define CM_OTPCTL               0x090
82 #define CM_OTPDIV               0x094
83 #define CM_PCMCTL               0x098
84 #define CM_PCMDIV               0x09c
85 #define CM_PWMCTL               0x0a0
86 #define CM_PWMDIV               0x0a4
87 #define CM_SLIMCTL              0x0a8
88 #define CM_SLIMDIV              0x0ac
89 #define CM_SMICTL               0x0b0
90 #define CM_SMIDIV               0x0b4
91 /* no definition for 0x0b8  and 0x0bc */
92 #define CM_TCNTCTL              0x0c0
93 # define CM_TCNT_SRC1_SHIFT             12
94 #define CM_TCNTCNT              0x0c4
95 #define CM_TECCTL               0x0c8
96 #define CM_TECDIV               0x0cc
97 #define CM_TD0CTL               0x0d0
98 #define CM_TD0DIV               0x0d4
99 #define CM_TD1CTL               0x0d8
100 #define CM_TD1DIV               0x0dc
101 #define CM_TSENSCTL             0x0e0
102 #define CM_TSENSDIV             0x0e4
103 #define CM_TIMERCTL             0x0e8
104 #define CM_TIMERDIV             0x0ec
105 #define CM_UARTCTL              0x0f0
106 #define CM_UARTDIV              0x0f4
107 #define CM_VECCTL               0x0f8
108 #define CM_VECDIV               0x0fc
109 #define CM_PULSECTL             0x190
110 #define CM_PULSEDIV             0x194
111 #define CM_SDCCTL               0x1a8
112 #define CM_SDCDIV               0x1ac
113 #define CM_ARMCTL               0x1b0
114 #define CM_AVEOCTL              0x1b8
115 #define CM_AVEODIV              0x1bc
116 #define CM_EMMCCTL              0x1c0
117 #define CM_EMMCDIV              0x1c4
118 #define CM_EMMC2CTL             0x1d0
119 #define CM_EMMC2DIV             0x1d4
120
121 /* General bits for the CM_*CTL regs */
122 # define CM_ENABLE                      BIT(4)
123 # define CM_KILL                        BIT(5)
124 # define CM_GATE_BIT                    6
125 # define CM_GATE                        BIT(CM_GATE_BIT)
126 # define CM_BUSY                        BIT(7)
127 # define CM_BUSYD                       BIT(8)
128 # define CM_FRAC                        BIT(9)
129 # define CM_SRC_SHIFT                   0
130 # define CM_SRC_BITS                    4
131 # define CM_SRC_MASK                    0xf
132 # define CM_SRC_GND                     0
133 # define CM_SRC_OSC                     1
134 # define CM_SRC_TESTDEBUG0              2
135 # define CM_SRC_TESTDEBUG1              3
136 # define CM_SRC_PLLA_CORE               4
137 # define CM_SRC_PLLA_PER                4
138 # define CM_SRC_PLLC_CORE0              5
139 # define CM_SRC_PLLC_PER                5
140 # define CM_SRC_PLLC_CORE1              8
141 # define CM_SRC_PLLD_CORE               6
142 # define CM_SRC_PLLD_PER                6
143 # define CM_SRC_PLLH_AUX                7
144 # define CM_SRC_PLLC_CORE1              8
145 # define CM_SRC_PLLC_CORE2              9
146
147 #define CM_OSCCOUNT             0x100
148
149 #define CM_PLLA                 0x104
150 # define CM_PLL_ANARST                  BIT(8)
151 # define CM_PLLA_HOLDPER                BIT(7)
152 # define CM_PLLA_LOADPER                BIT(6)
153 # define CM_PLLA_HOLDCORE               BIT(5)
154 # define CM_PLLA_LOADCORE               BIT(4)
155 # define CM_PLLA_HOLDCCP2               BIT(3)
156 # define CM_PLLA_LOADCCP2               BIT(2)
157 # define CM_PLLA_HOLDDSI0               BIT(1)
158 # define CM_PLLA_LOADDSI0               BIT(0)
159
160 #define CM_PLLC                 0x108
161 # define CM_PLLC_HOLDPER                BIT(7)
162 # define CM_PLLC_LOADPER                BIT(6)
163 # define CM_PLLC_HOLDCORE2              BIT(5)
164 # define CM_PLLC_LOADCORE2              BIT(4)
165 # define CM_PLLC_HOLDCORE1              BIT(3)
166 # define CM_PLLC_LOADCORE1              BIT(2)
167 # define CM_PLLC_HOLDCORE0              BIT(1)
168 # define CM_PLLC_LOADCORE0              BIT(0)
169
170 #define CM_PLLD                 0x10c
171 # define CM_PLLD_HOLDPER                BIT(7)
172 # define CM_PLLD_LOADPER                BIT(6)
173 # define CM_PLLD_HOLDCORE               BIT(5)
174 # define CM_PLLD_LOADCORE               BIT(4)
175 # define CM_PLLD_HOLDDSI1               BIT(3)
176 # define CM_PLLD_LOADDSI1               BIT(2)
177 # define CM_PLLD_HOLDDSI0               BIT(1)
178 # define CM_PLLD_LOADDSI0               BIT(0)
179
180 #define CM_PLLH                 0x110
181 # define CM_PLLH_LOADRCAL               BIT(2)
182 # define CM_PLLH_LOADAUX                BIT(1)
183 # define CM_PLLH_LOADPIX                BIT(0)
184
185 #define CM_LOCK                 0x114
186 # define CM_LOCK_FLOCKH                 BIT(12)
187 # define CM_LOCK_FLOCKD                 BIT(11)
188 # define CM_LOCK_FLOCKC                 BIT(10)
189 # define CM_LOCK_FLOCKB                 BIT(9)
190 # define CM_LOCK_FLOCKA                 BIT(8)
191
192 #define CM_EVENT                0x118
193 #define CM_DSI1ECTL             0x158
194 #define CM_DSI1EDIV             0x15c
195 #define CM_DSI1PCTL             0x160
196 #define CM_DSI1PDIV             0x164
197 #define CM_DFTCTL               0x168
198 #define CM_DFTDIV               0x16c
199
200 #define CM_PLLB                 0x170
201 # define CM_PLLB_HOLDARM                BIT(1)
202 # define CM_PLLB_LOADARM                BIT(0)
203
204 #define A2W_PLLA_CTRL           0x1100
205 #define A2W_PLLC_CTRL           0x1120
206 #define A2W_PLLD_CTRL           0x1140
207 #define A2W_PLLH_CTRL           0x1160
208 #define A2W_PLLB_CTRL           0x11e0
209 # define A2W_PLL_CTRL_PRST_DISABLE      BIT(17)
210 # define A2W_PLL_CTRL_PWRDN             BIT(16)
211 # define A2W_PLL_CTRL_PDIV_MASK         0x000007000
212 # define A2W_PLL_CTRL_PDIV_SHIFT        12
213 # define A2W_PLL_CTRL_NDIV_MASK         0x0000003ff
214 # define A2W_PLL_CTRL_NDIV_SHIFT        0
215
216 #define A2W_PLLA_ANA0           0x1010
217 #define A2W_PLLC_ANA0           0x1030
218 #define A2W_PLLD_ANA0           0x1050
219 #define A2W_PLLH_ANA0           0x1070
220 #define A2W_PLLB_ANA0           0x10f0
221
222 #define A2W_PLL_KA_SHIFT        7
223 #define A2W_PLL_KA_MASK         GENMASK(9, 7)
224 #define A2W_PLL_KI_SHIFT        19
225 #define A2W_PLL_KI_MASK         GENMASK(21, 19)
226 #define A2W_PLL_KP_SHIFT        15
227 #define A2W_PLL_KP_MASK         GENMASK(18, 15)
228
229 #define A2W_PLLH_KA_SHIFT       19
230 #define A2W_PLLH_KA_MASK        GENMASK(21, 19)
231 #define A2W_PLLH_KI_LOW_SHIFT   22
232 #define A2W_PLLH_KI_LOW_MASK    GENMASK(23, 22)
233 #define A2W_PLLH_KI_HIGH_SHIFT  0
234 #define A2W_PLLH_KI_HIGH_MASK   GENMASK(0, 0)
235 #define A2W_PLLH_KP_SHIFT       1
236 #define A2W_PLLH_KP_MASK        GENMASK(4, 1)
237
238 #define A2W_XOSC_CTRL           0x1190
239 # define A2W_XOSC_CTRL_PLLB_ENABLE      BIT(7)
240 # define A2W_XOSC_CTRL_PLLA_ENABLE      BIT(6)
241 # define A2W_XOSC_CTRL_PLLD_ENABLE      BIT(5)
242 # define A2W_XOSC_CTRL_DDR_ENABLE       BIT(4)
243 # define A2W_XOSC_CTRL_CPR1_ENABLE      BIT(3)
244 # define A2W_XOSC_CTRL_USB_ENABLE       BIT(2)
245 # define A2W_XOSC_CTRL_HDMI_ENABLE      BIT(1)
246 # define A2W_XOSC_CTRL_PLLC_ENABLE      BIT(0)
247
248 #define A2W_PLLA_FRAC           0x1200
249 #define A2W_PLLC_FRAC           0x1220
250 #define A2W_PLLD_FRAC           0x1240
251 #define A2W_PLLH_FRAC           0x1260
252 #define A2W_PLLB_FRAC           0x12e0
253 # define A2W_PLL_FRAC_MASK              ((1 << A2W_PLL_FRAC_BITS) - 1)
254 # define A2W_PLL_FRAC_BITS              20
255
256 #define A2W_PLL_CHANNEL_DISABLE         BIT(8)
257 #define A2W_PLL_DIV_BITS                8
258 #define A2W_PLL_DIV_SHIFT               0
259
260 #define A2W_PLLA_DSI0           0x1300
261 #define A2W_PLLA_CORE           0x1400
262 #define A2W_PLLA_PER            0x1500
263 #define A2W_PLLA_CCP2           0x1600
264
265 #define A2W_PLLC_CORE2          0x1320
266 #define A2W_PLLC_CORE1          0x1420
267 #define A2W_PLLC_PER            0x1520
268 #define A2W_PLLC_CORE0          0x1620
269
270 #define A2W_PLLD_DSI0           0x1340
271 #define A2W_PLLD_CORE           0x1440
272 #define A2W_PLLD_PER            0x1540
273 #define A2W_PLLD_DSI1           0x1640
274
275 #define A2W_PLLH_AUX            0x1360
276 #define A2W_PLLH_RCAL           0x1460
277 #define A2W_PLLH_PIX            0x1560
278 #define A2W_PLLH_STS            0x1660
279
280 #define A2W_PLLH_CTRLR          0x1960
281 #define A2W_PLLH_FRACR          0x1a60
282 #define A2W_PLLH_AUXR           0x1b60
283 #define A2W_PLLH_RCALR          0x1c60
284 #define A2W_PLLH_PIXR           0x1d60
285 #define A2W_PLLH_STSR           0x1e60
286
287 #define A2W_PLLB_ARM            0x13e0
288 #define A2W_PLLB_SP0            0x14e0
289 #define A2W_PLLB_SP1            0x15e0
290 #define A2W_PLLB_SP2            0x16e0
291
292 #define LOCK_TIMEOUT_NS         100000000
293 #define BCM2835_MAX_FB_RATE     1750000000u
294
295 #define SOC_BCM2835             BIT(0)
296 #define SOC_BCM2711             BIT(1)
297 #define SOC_ALL                 (SOC_BCM2835 | SOC_BCM2711)
298
299 /*
300  * Names of clocks used within the driver that need to be replaced
301  * with an external parent's name.  This array is in the order that
302  * the clocks node in the DT references external clocks.
303  */
304 static const char *const cprman_parent_names[] = {
305         "xosc",
306         "dsi0_byte",
307         "dsi0_ddr2",
308         "dsi0_ddr",
309         "dsi1_byte",
310         "dsi1_ddr2",
311         "dsi1_ddr",
312 };
313
314 struct bcm2835_cprman {
315         struct device *dev;
316         void __iomem *regs;
317         spinlock_t regs_lock; /* spinlock for all clocks */
318         unsigned int soc;
319
320         /*
321          * Real names of cprman clock parents looked up through
322          * of_clk_get_parent_name(), which will be used in the
323          * parent_names[] arrays for clock registration.
324          */
325         const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
326
327         /* Must be last */
328         struct clk_hw_onecell_data onecell;
329 };
330
331 struct cprman_plat_data {
332         unsigned int soc;
333 };
334
335 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
336 {
337         writel(CM_PASSWORD | val, cprman->regs + reg);
338 }
339
340 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
341 {
342         return readl(cprman->regs + reg);
343 }
344
345 /* Does a cycle of measuring a clock through the TCNT clock, which may
346  * source from many other clocks in the system.
347  */
348 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
349                                               u32 tcnt_mux)
350 {
351         u32 osccount = 19200; /* 1ms */
352         u32 count;
353         ktime_t timeout;
354
355         spin_lock(&cprman->regs_lock);
356
357         cprman_write(cprman, CM_TCNTCTL, CM_KILL);
358
359         cprman_write(cprman, CM_TCNTCTL,
360                      (tcnt_mux & CM_SRC_MASK) |
361                      (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
362
363         cprman_write(cprman, CM_OSCCOUNT, osccount);
364
365         /* do a kind delay at the start */
366         mdelay(1);
367
368         /* Finish off whatever is left of OSCCOUNT */
369         timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
370         while (cprman_read(cprman, CM_OSCCOUNT)) {
371                 if (ktime_after(ktime_get(), timeout)) {
372                         dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
373                         count = 0;
374                         goto out;
375                 }
376                 cpu_relax();
377         }
378
379         /* Wait for BUSY to clear. */
380         timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
381         while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
382                 if (ktime_after(ktime_get(), timeout)) {
383                         dev_err(cprman->dev, "timeout waiting for !BUSY\n");
384                         count = 0;
385                         goto out;
386                 }
387                 cpu_relax();
388         }
389
390         count = cprman_read(cprman, CM_TCNTCNT);
391
392         cprman_write(cprman, CM_TCNTCTL, 0);
393
394 out:
395         spin_unlock(&cprman->regs_lock);
396
397         return count * 1000;
398 }
399
400 static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
401                                    const struct debugfs_reg32 *regs,
402                                    size_t nregs, struct dentry *dentry)
403 {
404         struct debugfs_regset32 *regset;
405
406         regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
407         if (!regset)
408                 return;
409
410         regset->regs = regs;
411         regset->nregs = nregs;
412         regset->base = cprman->regs + base;
413
414         debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
415 }
416
417 struct bcm2835_pll_data {
418         const char *name;
419         u32 cm_ctrl_reg;
420         u32 a2w_ctrl_reg;
421         u32 frac_reg;
422         u32 ana_reg_base;
423         u32 reference_enable_mask;
424         /* Bit in CM_LOCK to indicate when the PLL has locked. */
425         u32 lock_mask;
426         u32 flags;
427
428         const struct bcm2835_pll_ana_bits *ana;
429
430         unsigned long min_rate;
431         unsigned long max_rate;
432         /*
433          * Highest rate for the VCO before we have to use the
434          * pre-divide-by-2.
435          */
436         unsigned long max_fb_rate;
437 };
438
439 struct bcm2835_pll_ana_bits {
440         u32 mask0;
441         u32 set0;
442         u32 mask1;
443         u32 set1;
444         u32 mask3;
445         u32 set3;
446         u32 fb_prediv_mask;
447 };
448
449 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
450         .mask0 = 0,
451         .set0 = 0,
452         .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
453         .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
454         .mask3 = A2W_PLL_KA_MASK,
455         .set3 = (2 << A2W_PLL_KA_SHIFT),
456         .fb_prediv_mask = BIT(14),
457 };
458
459 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
460         .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
461         .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
462         .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
463         .set1 = (6 << A2W_PLLH_KP_SHIFT),
464         .mask3 = 0,
465         .set3 = 0,
466         .fb_prediv_mask = BIT(11),
467 };
468
469 struct bcm2835_pll_divider_data {
470         const char *name;
471         const char *source_pll;
472
473         u32 cm_reg;
474         u32 a2w_reg;
475
476         u32 load_mask;
477         u32 hold_mask;
478         u32 fixed_divider;
479         u32 flags;
480 };
481
482 struct bcm2835_clock_data {
483         const char *name;
484
485         const char *const *parents;
486         int num_mux_parents;
487
488         /* Bitmap encoding which parents accept rate change propagation. */
489         unsigned int set_rate_parent;
490
491         u32 ctl_reg;
492         u32 div_reg;
493
494         /* Number of integer bits in the divider */
495         u32 int_bits;
496         /* Number of fractional bits in the divider */
497         u32 frac_bits;
498
499         u32 flags;
500
501         bool is_vpu_clock;
502         bool is_mash_clock;
503         bool low_jitter;
504
505         u32 tcnt_mux;
506
507         bool round_up;
508 };
509
510 struct bcm2835_gate_data {
511         const char *name;
512         const char *parent;
513
514         u32 ctl_reg;
515 };
516
517 struct bcm2835_pll {
518         struct clk_hw hw;
519         struct bcm2835_cprman *cprman;
520         const struct bcm2835_pll_data *data;
521 };
522
523 static int bcm2835_pll_is_on(struct clk_hw *hw)
524 {
525         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
526         struct bcm2835_cprman *cprman = pll->cprman;
527         const struct bcm2835_pll_data *data = pll->data;
528
529         return cprman_read(cprman, data->a2w_ctrl_reg) &
530                 A2W_PLL_CTRL_PRST_DISABLE;
531 }
532
533 static u32 bcm2835_pll_get_prediv_mask(struct bcm2835_cprman *cprman,
534                                        const struct bcm2835_pll_data *data)
535 {
536         /*
537          * On BCM2711 there isn't a pre-divisor available in the PLL feedback
538          * loop. Bits 13:14 of ANA1 (PLLA,PLLB,PLLC,PLLD) have been re-purposed
539          * for to for VCO RANGE bits.
540          */
541         if (cprman->soc & SOC_BCM2711)
542                 return 0;
543
544         return data->ana->fb_prediv_mask;
545 }
546
547 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
548                                              unsigned long parent_rate,
549                                              u32 *ndiv, u32 *fdiv)
550 {
551         u64 div;
552
553         div = (u64)rate << A2W_PLL_FRAC_BITS;
554         do_div(div, parent_rate);
555
556         *ndiv = div >> A2W_PLL_FRAC_BITS;
557         *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
558 }
559
560 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
561                                            u32 ndiv, u32 fdiv, u32 pdiv)
562 {
563         u64 rate;
564
565         if (pdiv == 0)
566                 return 0;
567
568         rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
569         do_div(rate, pdiv);
570         return rate >> A2W_PLL_FRAC_BITS;
571 }
572
573 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
574                                    unsigned long *parent_rate)
575 {
576         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
577         const struct bcm2835_pll_data *data = pll->data;
578         u32 ndiv, fdiv;
579
580         rate = clamp(rate, data->min_rate, data->max_rate);
581
582         bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
583
584         return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
585 }
586
587 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
588                                           unsigned long parent_rate)
589 {
590         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
591         struct bcm2835_cprman *cprman = pll->cprman;
592         const struct bcm2835_pll_data *data = pll->data;
593         u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
594         u32 ndiv, pdiv, fdiv;
595         bool using_prediv;
596
597         if (parent_rate == 0)
598                 return 0;
599
600         fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
601         ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
602         pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
603         using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
604                        bcm2835_pll_get_prediv_mask(cprman, data);
605
606         if (using_prediv) {
607                 ndiv *= 2;
608                 fdiv *= 2;
609         }
610
611         return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
612 }
613
614 static void bcm2835_pll_off(struct clk_hw *hw)
615 {
616         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
617         struct bcm2835_cprman *cprman = pll->cprman;
618         const struct bcm2835_pll_data *data = pll->data;
619
620         spin_lock(&cprman->regs_lock);
621         cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
622         cprman_write(cprman, data->a2w_ctrl_reg,
623                      cprman_read(cprman, data->a2w_ctrl_reg) |
624                      A2W_PLL_CTRL_PWRDN);
625         spin_unlock(&cprman->regs_lock);
626 }
627
628 static int bcm2835_pll_on(struct clk_hw *hw)
629 {
630         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
631         struct bcm2835_cprman *cprman = pll->cprman;
632         const struct bcm2835_pll_data *data = pll->data;
633         ktime_t timeout;
634
635         cprman_write(cprman, data->a2w_ctrl_reg,
636                      cprman_read(cprman, data->a2w_ctrl_reg) &
637                      ~A2W_PLL_CTRL_PWRDN);
638
639         /* Take the PLL out of reset. */
640         spin_lock(&cprman->regs_lock);
641         cprman_write(cprman, data->cm_ctrl_reg,
642                      cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
643         spin_unlock(&cprman->regs_lock);
644
645         /* Wait for the PLL to lock. */
646         timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
647         while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
648                 if (ktime_after(ktime_get(), timeout)) {
649                         dev_err(cprman->dev, "%s: couldn't lock PLL\n",
650                                 clk_hw_get_name(hw));
651                         return -ETIMEDOUT;
652                 }
653
654                 cpu_relax();
655         }
656
657         cprman_write(cprman, data->a2w_ctrl_reg,
658                      cprman_read(cprman, data->a2w_ctrl_reg) |
659                      A2W_PLL_CTRL_PRST_DISABLE);
660
661         return 0;
662 }
663
664 static void
665 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
666 {
667         int i;
668
669         /*
670          * ANA register setup is done as a series of writes to
671          * ANA3-ANA0, in that order.  This lets us write all 4
672          * registers as a single cycle of the serdes interface (taking
673          * 100 xosc clocks), whereas if we were to update ana0, 1, and
674          * 3 individually through their partial-write registers, each
675          * would be their own serdes cycle.
676          */
677         for (i = 3; i >= 0; i--)
678                 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
679 }
680
681 static int bcm2835_pll_set_rate(struct clk_hw *hw,
682                                 unsigned long rate, unsigned long parent_rate)
683 {
684         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
685         struct bcm2835_cprman *cprman = pll->cprman;
686         const struct bcm2835_pll_data *data = pll->data;
687         u32 prediv_mask = bcm2835_pll_get_prediv_mask(cprman, data);
688         bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
689         u32 ndiv, fdiv, a2w_ctl;
690         u32 ana[4];
691         int i;
692
693         if (rate > data->max_fb_rate) {
694                 use_fb_prediv = true;
695                 rate /= 2;
696         } else {
697                 use_fb_prediv = false;
698         }
699
700         bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
701
702         for (i = 3; i >= 0; i--)
703                 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
704
705         was_using_prediv = ana[1] & prediv_mask;
706
707         ana[0] &= ~data->ana->mask0;
708         ana[0] |= data->ana->set0;
709         ana[1] &= ~data->ana->mask1;
710         ana[1] |= data->ana->set1;
711         ana[3] &= ~data->ana->mask3;
712         ana[3] |= data->ana->set3;
713
714         if (was_using_prediv && !use_fb_prediv) {
715                 ana[1] &= ~prediv_mask;
716                 do_ana_setup_first = true;
717         } else if (!was_using_prediv && use_fb_prediv) {
718                 ana[1] |= prediv_mask;
719                 do_ana_setup_first = false;
720         } else {
721                 do_ana_setup_first = true;
722         }
723
724         /* Unmask the reference clock from the oscillator. */
725         spin_lock(&cprman->regs_lock);
726         cprman_write(cprman, A2W_XOSC_CTRL,
727                      cprman_read(cprman, A2W_XOSC_CTRL) |
728                      data->reference_enable_mask);
729         spin_unlock(&cprman->regs_lock);
730
731         if (do_ana_setup_first)
732                 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
733
734         /* Set the PLL multiplier from the oscillator. */
735         cprman_write(cprman, data->frac_reg, fdiv);
736
737         a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
738         a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
739         a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
740         a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
741         a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
742         cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
743
744         if (!do_ana_setup_first)
745                 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
746
747         return 0;
748 }
749
750 static void bcm2835_pll_debug_init(struct clk_hw *hw,
751                                   struct dentry *dentry)
752 {
753         struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
754         struct bcm2835_cprman *cprman = pll->cprman;
755         const struct bcm2835_pll_data *data = pll->data;
756         struct debugfs_reg32 *regs;
757
758         regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
759         if (!regs)
760                 return;
761
762         regs[0].name = "cm_ctrl";
763         regs[0].offset = data->cm_ctrl_reg;
764         regs[1].name = "a2w_ctrl";
765         regs[1].offset = data->a2w_ctrl_reg;
766         regs[2].name = "frac";
767         regs[2].offset = data->frac_reg;
768         regs[3].name = "ana0";
769         regs[3].offset = data->ana_reg_base + 0 * 4;
770         regs[4].name = "ana1";
771         regs[4].offset = data->ana_reg_base + 1 * 4;
772         regs[5].name = "ana2";
773         regs[5].offset = data->ana_reg_base + 2 * 4;
774         regs[6].name = "ana3";
775         regs[6].offset = data->ana_reg_base + 3 * 4;
776
777         bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
778 }
779
780 static const struct clk_ops bcm2835_pll_clk_ops = {
781         .is_prepared = bcm2835_pll_is_on,
782         .prepare = bcm2835_pll_on,
783         .unprepare = bcm2835_pll_off,
784         .recalc_rate = bcm2835_pll_get_rate,
785         .set_rate = bcm2835_pll_set_rate,
786         .round_rate = bcm2835_pll_round_rate,
787         .debug_init = bcm2835_pll_debug_init,
788 };
789
790 struct bcm2835_pll_divider {
791         struct clk_divider div;
792         struct bcm2835_cprman *cprman;
793         const struct bcm2835_pll_divider_data *data;
794 };
795
796 static struct bcm2835_pll_divider *
797 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
798 {
799         return container_of(hw, struct bcm2835_pll_divider, div.hw);
800 }
801
802 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
803 {
804         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
805         struct bcm2835_cprman *cprman = divider->cprman;
806         const struct bcm2835_pll_divider_data *data = divider->data;
807
808         return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
809 }
810
811 static int bcm2835_pll_divider_determine_rate(struct clk_hw *hw,
812                                               struct clk_rate_request *req)
813 {
814         return clk_divider_ops.determine_rate(hw, req);
815 }
816
817 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
818                                                   unsigned long parent_rate)
819 {
820         return clk_divider_ops.recalc_rate(hw, parent_rate);
821 }
822
823 static void bcm2835_pll_divider_off(struct clk_hw *hw)
824 {
825         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
826         struct bcm2835_cprman *cprman = divider->cprman;
827         const struct bcm2835_pll_divider_data *data = divider->data;
828
829         spin_lock(&cprman->regs_lock);
830         cprman_write(cprman, data->cm_reg,
831                      (cprman_read(cprman, data->cm_reg) &
832                       ~data->load_mask) | data->hold_mask);
833         cprman_write(cprman, data->a2w_reg,
834                      cprman_read(cprman, data->a2w_reg) |
835                      A2W_PLL_CHANNEL_DISABLE);
836         spin_unlock(&cprman->regs_lock);
837 }
838
839 static int bcm2835_pll_divider_on(struct clk_hw *hw)
840 {
841         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
842         struct bcm2835_cprman *cprman = divider->cprman;
843         const struct bcm2835_pll_divider_data *data = divider->data;
844
845         spin_lock(&cprman->regs_lock);
846         cprman_write(cprman, data->a2w_reg,
847                      cprman_read(cprman, data->a2w_reg) &
848                      ~A2W_PLL_CHANNEL_DISABLE);
849
850         cprman_write(cprman, data->cm_reg,
851                      cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
852         spin_unlock(&cprman->regs_lock);
853
854         return 0;
855 }
856
857 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
858                                         unsigned long rate,
859                                         unsigned long parent_rate)
860 {
861         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
862         struct bcm2835_cprman *cprman = divider->cprman;
863         const struct bcm2835_pll_divider_data *data = divider->data;
864         u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
865
866         div = DIV_ROUND_UP_ULL(parent_rate, rate);
867
868         div = min(div, max_div);
869         if (div == max_div)
870                 div = 0;
871
872         cprman_write(cprman, data->a2w_reg, div);
873         cm = cprman_read(cprman, data->cm_reg);
874         cprman_write(cprman, data->cm_reg, cm | data->load_mask);
875         cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
876
877         return 0;
878 }
879
880 static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
881                                            struct dentry *dentry)
882 {
883         struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
884         struct bcm2835_cprman *cprman = divider->cprman;
885         const struct bcm2835_pll_divider_data *data = divider->data;
886         struct debugfs_reg32 *regs;
887
888         regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
889         if (!regs)
890                 return;
891
892         regs[0].name = "cm";
893         regs[0].offset = data->cm_reg;
894         regs[1].name = "a2w";
895         regs[1].offset = data->a2w_reg;
896
897         bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
898 }
899
900 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
901         .is_prepared = bcm2835_pll_divider_is_on,
902         .prepare = bcm2835_pll_divider_on,
903         .unprepare = bcm2835_pll_divider_off,
904         .recalc_rate = bcm2835_pll_divider_get_rate,
905         .set_rate = bcm2835_pll_divider_set_rate,
906         .determine_rate = bcm2835_pll_divider_determine_rate,
907         .debug_init = bcm2835_pll_divider_debug_init,
908 };
909
910 /*
911  * The CM dividers do fixed-point division, so we can't use the
912  * generic integer divider code like the PLL dividers do (and we can't
913  * fake it by having some fixed shifts preceding it in the clock tree,
914  * because we'd run out of bits in a 32-bit unsigned long).
915  */
916 struct bcm2835_clock {
917         struct clk_hw hw;
918         struct bcm2835_cprman *cprman;
919         const struct bcm2835_clock_data *data;
920 };
921
922 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
923 {
924         return container_of(hw, struct bcm2835_clock, hw);
925 }
926
927 static int bcm2835_clock_is_on(struct clk_hw *hw)
928 {
929         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
930         struct bcm2835_cprman *cprman = clock->cprman;
931         const struct bcm2835_clock_data *data = clock->data;
932
933         return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
934 }
935
936 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
937                                     unsigned long rate,
938                                     unsigned long parent_rate)
939 {
940         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
941         const struct bcm2835_clock_data *data = clock->data;
942         u32 unused_frac_mask =
943                 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
944         u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
945         u64 rem;
946         u32 div, mindiv, maxdiv;
947
948         rem = do_div(temp, rate);
949         div = temp;
950         div &= ~unused_frac_mask;
951
952         /* different clamping limits apply for a mash clock */
953         if (data->is_mash_clock) {
954                 /* clamp to min divider of 2 */
955                 mindiv = 2 << CM_DIV_FRAC_BITS;
956                 /* clamp to the highest possible integer divider */
957                 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
958         } else {
959                 /* clamp to min divider of 1 */
960                 mindiv = 1 << CM_DIV_FRAC_BITS;
961                 /* clamp to the highest possible fractional divider */
962                 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
963                                  CM_DIV_FRAC_BITS - data->frac_bits);
964         }
965
966         /* apply the clamping  limits */
967         div = max_t(u32, div, mindiv);
968         div = min_t(u32, div, maxdiv);
969
970         return div;
971 }
972
973 static unsigned long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
974                                                      unsigned long parent_rate,
975                                                      u32 div)
976 {
977         const struct bcm2835_clock_data *data = clock->data;
978         u64 temp;
979
980         if (data->int_bits == 0 && data->frac_bits == 0)
981                 return parent_rate;
982
983         /*
984          * The divisor is a 12.12 fixed point field, but only some of
985          * the bits are populated in any given clock.
986          */
987         div >>= CM_DIV_FRAC_BITS - data->frac_bits;
988         div &= (1 << (data->int_bits + data->frac_bits)) - 1;
989
990         if (div == 0)
991                 return 0;
992
993         temp = (u64)parent_rate << data->frac_bits;
994
995         do_div(temp, div);
996
997         return temp;
998 }
999
1000 static unsigned long bcm2835_round_rate(unsigned long rate)
1001 {
1002         unsigned long scaler;
1003         unsigned long limit;
1004
1005         limit = rate / 100000;
1006
1007         scaler = 1;
1008         while (scaler < limit)
1009                 scaler *= 10;
1010
1011         /*
1012          * If increasing a clock by less than 0.1% changes it
1013          * from ..999.. to ..000.., round up.
1014          */
1015         if ((rate + scaler - 1) / scaler % 1000 == 0)
1016                 rate = roundup(rate, scaler);
1017
1018         return rate;
1019 }
1020
1021 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1022                                             unsigned long parent_rate)
1023 {
1024         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1025         struct bcm2835_cprman *cprman = clock->cprman;
1026         const struct bcm2835_clock_data *data = clock->data;
1027         unsigned long rate;
1028         u32 div;
1029
1030         if (data->int_bits == 0 && data->frac_bits == 0)
1031                 return parent_rate;
1032
1033         div = cprman_read(cprman, data->div_reg);
1034
1035         rate = bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1036
1037         if (data->round_up)
1038                 rate = bcm2835_round_rate(rate);
1039
1040         return rate;
1041 }
1042
1043 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1044 {
1045         struct bcm2835_cprman *cprman = clock->cprman;
1046         const struct bcm2835_clock_data *data = clock->data;
1047         ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1048
1049         while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1050                 if (ktime_after(ktime_get(), timeout)) {
1051                         dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1052                                 clk_hw_get_name(&clock->hw));
1053                         return;
1054                 }
1055                 cpu_relax();
1056         }
1057 }
1058
1059 static void bcm2835_clock_off(struct clk_hw *hw)
1060 {
1061         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1062         struct bcm2835_cprman *cprman = clock->cprman;
1063         const struct bcm2835_clock_data *data = clock->data;
1064
1065         spin_lock(&cprman->regs_lock);
1066         cprman_write(cprman, data->ctl_reg,
1067                      cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1068         spin_unlock(&cprman->regs_lock);
1069
1070         /* BUSY will remain high until the divider completes its cycle. */
1071         bcm2835_clock_wait_busy(clock);
1072 }
1073
1074 static int bcm2835_clock_on(struct clk_hw *hw)
1075 {
1076         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1077         struct bcm2835_cprman *cprman = clock->cprman;
1078         const struct bcm2835_clock_data *data = clock->data;
1079
1080         spin_lock(&cprman->regs_lock);
1081         cprman_write(cprman, data->ctl_reg,
1082                      cprman_read(cprman, data->ctl_reg) |
1083                      CM_ENABLE |
1084                      CM_GATE);
1085         spin_unlock(&cprman->regs_lock);
1086
1087         /* Debug code to measure the clock once it's turned on to see
1088          * if it's ticking at the rate we expect.
1089          */
1090         if (data->tcnt_mux && false) {
1091                 dev_info(cprman->dev,
1092                          "clk %s: rate %ld, measure %ld\n",
1093                          data->name,
1094                          clk_hw_get_rate(hw),
1095                          bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1096         }
1097
1098         return 0;
1099 }
1100
1101 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1102                                   unsigned long rate, unsigned long parent_rate)
1103 {
1104         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1105         struct bcm2835_cprman *cprman = clock->cprman;
1106         const struct bcm2835_clock_data *data = clock->data;
1107         u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate);
1108         u32 ctl;
1109
1110         spin_lock(&cprman->regs_lock);
1111
1112         /*
1113          * Setting up frac support
1114          *
1115          * In principle it is recommended to stop/start the clock first,
1116          * but as we set CLK_SET_RATE_GATE during registration of the
1117          * clock this requirement should be take care of by the
1118          * clk-framework.
1119          */
1120         ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1121         ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1122         cprman_write(cprman, data->ctl_reg, ctl);
1123
1124         cprman_write(cprman, data->div_reg, div);
1125
1126         spin_unlock(&cprman->regs_lock);
1127
1128         return 0;
1129 }
1130
1131 static bool
1132 bcm2835_clk_is_pllc(struct clk_hw *hw)
1133 {
1134         if (!hw)
1135                 return false;
1136
1137         return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1138 }
1139
1140 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1141                                                         int parent_idx,
1142                                                         unsigned long rate,
1143                                                         u32 *div,
1144                                                         unsigned long *prate,
1145                                                         unsigned long *avgrate)
1146 {
1147         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1148         struct bcm2835_cprman *cprman = clock->cprman;
1149         const struct bcm2835_clock_data *data = clock->data;
1150         unsigned long best_rate = 0;
1151         u32 curdiv, mindiv, maxdiv;
1152         struct clk_hw *parent;
1153
1154         parent = clk_hw_get_parent_by_index(hw, parent_idx);
1155
1156         if (!(BIT(parent_idx) & data->set_rate_parent)) {
1157                 *prate = clk_hw_get_rate(parent);
1158                 *div = bcm2835_clock_choose_div(hw, rate, *prate);
1159
1160                 *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1161
1162                 if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1163                         unsigned long high, low;
1164                         u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1165
1166                         high = bcm2835_clock_rate_from_divisor(clock, *prate,
1167                                                                int_div);
1168                         int_div += CM_DIV_FRAC_MASK + 1;
1169                         low = bcm2835_clock_rate_from_divisor(clock, *prate,
1170                                                               int_div);
1171
1172                         /*
1173                          * Return a value which is the maximum deviation
1174                          * below the ideal rate, for use as a metric.
1175                          */
1176                         return *avgrate - max(*avgrate - low, high - *avgrate);
1177                 }
1178                 return *avgrate;
1179         }
1180
1181         if (data->frac_bits)
1182                 dev_warn(cprman->dev,
1183                         "frac bits are not used when propagating rate change");
1184
1185         /* clamp to min divider of 2 if we're dealing with a mash clock */
1186         mindiv = data->is_mash_clock ? 2 : 1;
1187         maxdiv = BIT(data->int_bits) - 1;
1188
1189         /* TODO: Be smart, and only test a subset of the available divisors. */
1190         for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1191                 unsigned long tmp_rate;
1192
1193                 tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1194                 tmp_rate /= curdiv;
1195                 if (curdiv == mindiv ||
1196                     (tmp_rate > best_rate && tmp_rate <= rate))
1197                         best_rate = tmp_rate;
1198
1199                 if (best_rate == rate)
1200                         break;
1201         }
1202
1203         *div = curdiv << CM_DIV_FRAC_BITS;
1204         *prate = curdiv * best_rate;
1205         *avgrate = best_rate;
1206
1207         return best_rate;
1208 }
1209
1210 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1211                                         struct clk_rate_request *req)
1212 {
1213         struct clk_hw *parent, *best_parent = NULL;
1214         bool current_parent_is_pllc;
1215         unsigned long rate, best_rate = 0;
1216         unsigned long prate, best_prate = 0;
1217         unsigned long avgrate, best_avgrate = 0;
1218         size_t i;
1219         u32 div;
1220
1221         current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1222
1223         /*
1224          * Select parent clock that results in the closest but lower rate
1225          */
1226         for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1227                 parent = clk_hw_get_parent_by_index(hw, i);
1228                 if (!parent)
1229                         continue;
1230
1231                 /*
1232                  * Don't choose a PLLC-derived clock as our parent
1233                  * unless it had been manually set that way.  PLLC's
1234                  * frequency gets adjusted by the firmware due to
1235                  * over-temp or under-voltage conditions, without
1236                  * prior notification to our clock consumer.
1237                  */
1238                 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1239                         continue;
1240
1241                 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1242                                                           &div, &prate,
1243                                                           &avgrate);
1244                 if (abs(req->rate - rate) < abs(req->rate - best_rate)) {
1245                         best_parent = parent;
1246                         best_prate = prate;
1247                         best_rate = rate;
1248                         best_avgrate = avgrate;
1249                 }
1250         }
1251
1252         if (!best_parent)
1253                 return -EINVAL;
1254
1255         req->best_parent_hw = best_parent;
1256         req->best_parent_rate = best_prate;
1257
1258         req->rate = best_avgrate;
1259
1260         return 0;
1261 }
1262
1263 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1264 {
1265         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1266         struct bcm2835_cprman *cprman = clock->cprman;
1267         const struct bcm2835_clock_data *data = clock->data;
1268         u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1269
1270         cprman_write(cprman, data->ctl_reg, src);
1271         return 0;
1272 }
1273
1274 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1275 {
1276         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1277         struct bcm2835_cprman *cprman = clock->cprman;
1278         const struct bcm2835_clock_data *data = clock->data;
1279         u32 src = cprman_read(cprman, data->ctl_reg);
1280
1281         return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1282 }
1283
1284 static const struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1285         {
1286                 .name = "ctl",
1287                 .offset = 0,
1288         },
1289         {
1290                 .name = "div",
1291                 .offset = 4,
1292         },
1293 };
1294
1295 static void bcm2835_clock_debug_init(struct clk_hw *hw,
1296                                     struct dentry *dentry)
1297 {
1298         struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1299         struct bcm2835_cprman *cprman = clock->cprman;
1300         const struct bcm2835_clock_data *data = clock->data;
1301
1302         bcm2835_debugfs_regset(cprman, data->ctl_reg,
1303                 bcm2835_debugfs_clock_reg32,
1304                 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1305                 dentry);
1306 }
1307
1308 static const struct clk_ops bcm2835_clock_clk_ops = {
1309         .is_prepared = bcm2835_clock_is_on,
1310         .prepare = bcm2835_clock_on,
1311         .unprepare = bcm2835_clock_off,
1312         .recalc_rate = bcm2835_clock_get_rate,
1313         .set_rate = bcm2835_clock_set_rate,
1314         .determine_rate = bcm2835_clock_determine_rate,
1315         .set_parent = bcm2835_clock_set_parent,
1316         .get_parent = bcm2835_clock_get_parent,
1317         .debug_init = bcm2835_clock_debug_init,
1318 };
1319
1320 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1321 {
1322         return true;
1323 }
1324
1325 /*
1326  * The VPU clock can never be disabled (it doesn't have an ENABLE
1327  * bit), so it gets its own set of clock ops.
1328  */
1329 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1330         .is_prepared = bcm2835_vpu_clock_is_on,
1331         .recalc_rate = bcm2835_clock_get_rate,
1332         .set_rate = bcm2835_clock_set_rate,
1333         .determine_rate = bcm2835_clock_determine_rate,
1334         .set_parent = bcm2835_clock_set_parent,
1335         .get_parent = bcm2835_clock_get_parent,
1336         .debug_init = bcm2835_clock_debug_init,
1337 };
1338
1339 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1340                                            const void *data)
1341 {
1342         const struct bcm2835_pll_data *pll_data = data;
1343         struct bcm2835_pll *pll;
1344         struct clk_init_data init;
1345         int ret;
1346
1347         memset(&init, 0, sizeof(init));
1348
1349         /* All of the PLLs derive from the external oscillator. */
1350         init.parent_names = &cprman->real_parent_names[0];
1351         init.num_parents = 1;
1352         init.name = pll_data->name;
1353         init.ops = &bcm2835_pll_clk_ops;
1354         init.flags = pll_data->flags | CLK_IGNORE_UNUSED;
1355
1356         pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1357         if (!pll)
1358                 return NULL;
1359
1360         pll->cprman = cprman;
1361         pll->data = pll_data;
1362         pll->hw.init = &init;
1363
1364         ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1365         if (ret) {
1366                 kfree(pll);
1367                 return NULL;
1368         }
1369         return &pll->hw;
1370 }
1371
1372 static struct clk_hw *
1373 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1374                              const void *data)
1375 {
1376         const struct bcm2835_pll_divider_data *divider_data = data;
1377         struct bcm2835_pll_divider *divider;
1378         struct clk_init_data init;
1379         const char *divider_name;
1380         int ret;
1381
1382         if (divider_data->fixed_divider != 1) {
1383                 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1384                                               "%s_prediv", divider_data->name);
1385                 if (!divider_name)
1386                         return NULL;
1387         } else {
1388                 divider_name = divider_data->name;
1389         }
1390
1391         memset(&init, 0, sizeof(init));
1392
1393         init.parent_names = &divider_data->source_pll;
1394         init.num_parents = 1;
1395         init.name = divider_name;
1396         init.ops = &bcm2835_pll_divider_clk_ops;
1397         init.flags = divider_data->flags | CLK_IGNORE_UNUSED;
1398
1399         divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1400         if (!divider)
1401                 return NULL;
1402
1403         divider->div.reg = cprman->regs + divider_data->a2w_reg;
1404         divider->div.shift = A2W_PLL_DIV_SHIFT;
1405         divider->div.width = A2W_PLL_DIV_BITS;
1406         divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1407         divider->div.lock = &cprman->regs_lock;
1408         divider->div.hw.init = &init;
1409         divider->div.table = NULL;
1410
1411         divider->cprman = cprman;
1412         divider->data = divider_data;
1413
1414         ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1415         if (ret)
1416                 return ERR_PTR(ret);
1417
1418         /*
1419          * PLLH's channels have a fixed divide by 10 afterwards, which
1420          * is what our consumers are actually using.
1421          */
1422         if (divider_data->fixed_divider != 1) {
1423                 return clk_hw_register_fixed_factor(cprman->dev,
1424                                                     divider_data->name,
1425                                                     divider_name,
1426                                                     CLK_SET_RATE_PARENT,
1427                                                     1,
1428                                                     divider_data->fixed_divider);
1429         }
1430
1431         return &divider->div.hw;
1432 }
1433
1434 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1435                                              const void *data)
1436 {
1437         const struct bcm2835_clock_data *clock_data = data;
1438         struct bcm2835_clock *clock;
1439         struct clk_init_data init;
1440         const char *parents[1 << CM_SRC_BITS];
1441         size_t i;
1442         int ret;
1443
1444         /*
1445          * Replace our strings referencing parent clocks with the
1446          * actual clock-output-name of the parent.
1447          */
1448         for (i = 0; i < clock_data->num_mux_parents; i++) {
1449                 parents[i] = clock_data->parents[i];
1450
1451                 ret = match_string(cprman_parent_names,
1452                                    ARRAY_SIZE(cprman_parent_names),
1453                                    parents[i]);
1454                 if (ret >= 0)
1455                         parents[i] = cprman->real_parent_names[ret];
1456         }
1457
1458         memset(&init, 0, sizeof(init));
1459         init.parent_names = parents;
1460         init.num_parents = clock_data->num_mux_parents;
1461         init.name = clock_data->name;
1462         init.flags = clock_data->flags | CLK_IGNORE_UNUSED;
1463
1464         /*
1465          * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1466          * rate changes on at least of the parents.
1467          */
1468         if (clock_data->set_rate_parent)
1469                 init.flags |= CLK_SET_RATE_PARENT;
1470
1471         if (clock_data->is_vpu_clock) {
1472                 init.ops = &bcm2835_vpu_clock_clk_ops;
1473         } else {
1474                 init.ops = &bcm2835_clock_clk_ops;
1475                 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1476
1477                 /* If the clock wasn't actually enabled at boot, it's not
1478                  * critical.
1479                  */
1480                 if (!(cprman_read(cprman, clock_data->ctl_reg) & CM_ENABLE))
1481                         init.flags &= ~CLK_IS_CRITICAL;
1482         }
1483
1484         clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1485         if (!clock)
1486                 return NULL;
1487
1488         clock->cprman = cprman;
1489         clock->data = clock_data;
1490         clock->hw.init = &init;
1491
1492         ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1493         if (ret)
1494                 return ERR_PTR(ret);
1495         return &clock->hw;
1496 }
1497
1498 static struct clk_hw *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1499                                             const void *data)
1500 {
1501         const struct bcm2835_gate_data *gate_data = data;
1502
1503         return clk_hw_register_gate(cprman->dev, gate_data->name,
1504                                     gate_data->parent,
1505                                     CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1506                                     cprman->regs + gate_data->ctl_reg,
1507                                     CM_GATE_BIT, 0, &cprman->regs_lock);
1508 }
1509
1510 struct bcm2835_clk_desc {
1511         struct clk_hw *(*clk_register)(struct bcm2835_cprman *cprman,
1512                                        const void *data);
1513         unsigned int supported;
1514         const void *data;
1515 };
1516
1517 /* assignment helper macros for different clock types */
1518 #define _REGISTER(f, s, ...) { .clk_register = f, \
1519                                .supported = s,                          \
1520                                .data = __VA_ARGS__ }
1521 #define REGISTER_PLL(s, ...)    _REGISTER(&bcm2835_register_pll,        \
1522                                           s,                            \
1523                                           &(struct bcm2835_pll_data)    \
1524                                           {__VA_ARGS__})
1525 #define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1526                                            s,                             \
1527                                            &(struct bcm2835_pll_divider_data) \
1528                                            {__VA_ARGS__})
1529 #define REGISTER_CLK(s, ...)    _REGISTER(&bcm2835_register_clock,      \
1530                                           s,                            \
1531                                           &(struct bcm2835_clock_data)  \
1532                                           {__VA_ARGS__})
1533 #define REGISTER_GATE(s, ...)   _REGISTER(&bcm2835_register_gate,       \
1534                                           s,                            \
1535                                           &(struct bcm2835_gate_data)   \
1536                                           {__VA_ARGS__})
1537
1538 /* parent mux arrays plus helper macros */
1539
1540 /* main oscillator parent mux */
1541 static const char *const bcm2835_clock_osc_parents[] = {
1542         "gnd",
1543         "xosc",
1544         "testdebug0",
1545         "testdebug1"
1546 };
1547
1548 #define REGISTER_OSC_CLK(s, ...)        REGISTER_CLK(                   \
1549         s,                                                              \
1550         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),       \
1551         .parents = bcm2835_clock_osc_parents,                           \
1552         __VA_ARGS__)
1553
1554 /* main peripherial parent mux */
1555 static const char *const bcm2835_clock_per_parents[] = {
1556         "gnd",
1557         "xosc",
1558         "testdebug0",
1559         "testdebug1",
1560         "plla_per",
1561         "pllc_per",
1562         "plld_per",
1563         "pllh_aux",
1564 };
1565
1566 #define REGISTER_PER_CLK(s, ...)        REGISTER_CLK(                   \
1567         s,                                                              \
1568         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),       \
1569         .parents = bcm2835_clock_per_parents,                           \
1570         __VA_ARGS__)
1571
1572 /*
1573  * Restrict clock sources for the PCM peripheral to the oscillator and
1574  * PLLD_PER because other source may have varying rates or be switched
1575  * off.
1576  *
1577  * Prevent other sources from being selected by replacing their names in
1578  * the list of potential parents with dummy entries (entry index is
1579  * significant).
1580  */
1581 static const char *const bcm2835_pcm_per_parents[] = {
1582         "-",
1583         "xosc",
1584         "-",
1585         "-",
1586         "-",
1587         "-",
1588         "plld_per",
1589         "-",
1590 };
1591
1592 #define REGISTER_PCM_CLK(s, ...)        REGISTER_CLK(                   \
1593         s,                                                              \
1594         .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),         \
1595         .parents = bcm2835_pcm_per_parents,                             \
1596         __VA_ARGS__)
1597
1598 /* main vpu parent mux */
1599 static const char *const bcm2835_clock_vpu_parents[] = {
1600         "gnd",
1601         "xosc",
1602         "testdebug0",
1603         "testdebug1",
1604         "plla_core",
1605         "pllc_core0",
1606         "plld_core",
1607         "pllh_aux",
1608         "pllc_core1",
1609         "pllc_core2",
1610 };
1611
1612 #define REGISTER_VPU_CLK(s, ...)        REGISTER_CLK(                   \
1613         s,                                                              \
1614         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),       \
1615         .parents = bcm2835_clock_vpu_parents,                           \
1616         __VA_ARGS__)
1617
1618 /*
1619  * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1620  * analog PHY.  The _inv variants are generated internally to cprman,
1621  * but we don't use them so they aren't hooked up.
1622  */
1623 static const char *const bcm2835_clock_dsi0_parents[] = {
1624         "gnd",
1625         "xosc",
1626         "testdebug0",
1627         "testdebug1",
1628         "dsi0_ddr",
1629         "dsi0_ddr_inv",
1630         "dsi0_ddr2",
1631         "dsi0_ddr2_inv",
1632         "dsi0_byte",
1633         "dsi0_byte_inv",
1634 };
1635
1636 static const char *const bcm2835_clock_dsi1_parents[] = {
1637         "gnd",
1638         "xosc",
1639         "testdebug0",
1640         "testdebug1",
1641         "dsi1_ddr",
1642         "dsi1_ddr_inv",
1643         "dsi1_ddr2",
1644         "dsi1_ddr2_inv",
1645         "dsi1_byte",
1646         "dsi1_byte_inv",
1647 };
1648
1649 #define REGISTER_DSI0_CLK(s, ...)       REGISTER_CLK(                   \
1650         s,                                                              \
1651         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),      \
1652         .parents = bcm2835_clock_dsi0_parents,                          \
1653         __VA_ARGS__)
1654
1655 #define REGISTER_DSI1_CLK(s, ...)       REGISTER_CLK(                   \
1656         s,                                                              \
1657         .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),      \
1658         .parents = bcm2835_clock_dsi1_parents,                          \
1659         __VA_ARGS__)
1660
1661 /*
1662  * the real definition of all the pll, pll_dividers and clocks
1663  * these make use of the above REGISTER_* macros
1664  */
1665 static const struct bcm2835_clk_desc clk_desc_array[] = {
1666         /* the PLL + PLL dividers */
1667
1668         /*
1669          * PLLA is the auxiliary PLL, used to drive the CCP2
1670          * (Compact Camera Port 2) transmitter clock.
1671          *
1672          * It is in the PX LDO power domain, which is on when the
1673          * AUDIO domain is on.
1674          */
1675         [BCM2835_PLLA]          = REGISTER_PLL(
1676                 SOC_ALL,
1677                 .name = "plla",
1678                 .cm_ctrl_reg = CM_PLLA,
1679                 .a2w_ctrl_reg = A2W_PLLA_CTRL,
1680                 .frac_reg = A2W_PLLA_FRAC,
1681                 .ana_reg_base = A2W_PLLA_ANA0,
1682                 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1683                 .lock_mask = CM_LOCK_FLOCKA,
1684
1685                 .ana = &bcm2835_ana_default,
1686
1687                 .min_rate = 600000000u,
1688                 .max_rate = 2400000000u,
1689                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1690         [BCM2835_PLLA_CORE]     = REGISTER_PLL_DIV(
1691                 SOC_ALL,
1692                 .name = "plla_core",
1693                 .source_pll = "plla",
1694                 .cm_reg = CM_PLLA,
1695                 .a2w_reg = A2W_PLLA_CORE,
1696                 .load_mask = CM_PLLA_LOADCORE,
1697                 .hold_mask = CM_PLLA_HOLDCORE,
1698                 .fixed_divider = 1,
1699                 .flags = CLK_SET_RATE_PARENT),
1700         [BCM2835_PLLA_PER]      = REGISTER_PLL_DIV(
1701                 SOC_ALL,
1702                 .name = "plla_per",
1703                 .source_pll = "plla",
1704                 .cm_reg = CM_PLLA,
1705                 .a2w_reg = A2W_PLLA_PER,
1706                 .load_mask = CM_PLLA_LOADPER,
1707                 .hold_mask = CM_PLLA_HOLDPER,
1708                 .fixed_divider = 1,
1709                 .flags = CLK_SET_RATE_PARENT),
1710         [BCM2835_PLLA_DSI0]     = REGISTER_PLL_DIV(
1711                 SOC_ALL,
1712                 .name = "plla_dsi0",
1713                 .source_pll = "plla",
1714                 .cm_reg = CM_PLLA,
1715                 .a2w_reg = A2W_PLLA_DSI0,
1716                 .load_mask = CM_PLLA_LOADDSI0,
1717                 .hold_mask = CM_PLLA_HOLDDSI0,
1718                 .fixed_divider = 1),
1719         [BCM2835_PLLA_CCP2]     = REGISTER_PLL_DIV(
1720                 SOC_ALL,
1721                 .name = "plla_ccp2",
1722                 .source_pll = "plla",
1723                 .cm_reg = CM_PLLA,
1724                 .a2w_reg = A2W_PLLA_CCP2,
1725                 .load_mask = CM_PLLA_LOADCCP2,
1726                 .hold_mask = CM_PLLA_HOLDCCP2,
1727                 .fixed_divider = 1,
1728                 .flags = CLK_SET_RATE_PARENT),
1729
1730         /* PLLB is used for the ARM's clock. */
1731         [BCM2835_PLLB]          = REGISTER_PLL(
1732                 SOC_ALL,
1733                 .name = "pllb",
1734                 .cm_ctrl_reg = CM_PLLB,
1735                 .a2w_ctrl_reg = A2W_PLLB_CTRL,
1736                 .frac_reg = A2W_PLLB_FRAC,
1737                 .ana_reg_base = A2W_PLLB_ANA0,
1738                 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1739                 .lock_mask = CM_LOCK_FLOCKB,
1740
1741                 .ana = &bcm2835_ana_default,
1742
1743                 .min_rate = 600000000u,
1744                 .max_rate = 3000000000u,
1745                 .max_fb_rate = BCM2835_MAX_FB_RATE,
1746                 .flags = CLK_GET_RATE_NOCACHE),
1747         [BCM2835_PLLB_ARM]      = REGISTER_PLL_DIV(
1748                 SOC_ALL,
1749                 .name = "pllb_arm",
1750                 .source_pll = "pllb",
1751                 .cm_reg = CM_PLLB,
1752                 .a2w_reg = A2W_PLLB_ARM,
1753                 .load_mask = CM_PLLB_LOADARM,
1754                 .hold_mask = CM_PLLB_HOLDARM,
1755                 .fixed_divider = 1,
1756                 .flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE),
1757
1758         /*
1759          * PLLC is the core PLL, used to drive the core VPU clock.
1760          *
1761          * It is in the PX LDO power domain, which is on when the
1762          * AUDIO domain is on.
1763          */
1764         [BCM2835_PLLC]          = REGISTER_PLL(
1765                 SOC_ALL,
1766                 .name = "pllc",
1767                 .cm_ctrl_reg = CM_PLLC,
1768                 .a2w_ctrl_reg = A2W_PLLC_CTRL,
1769                 .frac_reg = A2W_PLLC_FRAC,
1770                 .ana_reg_base = A2W_PLLC_ANA0,
1771                 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1772                 .lock_mask = CM_LOCK_FLOCKC,
1773
1774                 .ana = &bcm2835_ana_default,
1775
1776                 .min_rate = 600000000u,
1777                 .max_rate = 3000000000u,
1778                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1779         [BCM2835_PLLC_CORE0]    = REGISTER_PLL_DIV(
1780                 SOC_ALL,
1781                 .name = "pllc_core0",
1782                 .source_pll = "pllc",
1783                 .cm_reg = CM_PLLC,
1784                 .a2w_reg = A2W_PLLC_CORE0,
1785                 .load_mask = CM_PLLC_LOADCORE0,
1786                 .hold_mask = CM_PLLC_HOLDCORE0,
1787                 .fixed_divider = 1,
1788                 .flags = CLK_SET_RATE_PARENT),
1789         [BCM2835_PLLC_CORE1]    = REGISTER_PLL_DIV(
1790                 SOC_ALL,
1791                 .name = "pllc_core1",
1792                 .source_pll = "pllc",
1793                 .cm_reg = CM_PLLC,
1794                 .a2w_reg = A2W_PLLC_CORE1,
1795                 .load_mask = CM_PLLC_LOADCORE1,
1796                 .hold_mask = CM_PLLC_HOLDCORE1,
1797                 .fixed_divider = 1,
1798                 .flags = CLK_SET_RATE_PARENT),
1799         [BCM2835_PLLC_CORE2]    = REGISTER_PLL_DIV(
1800                 SOC_ALL,
1801                 .name = "pllc_core2",
1802                 .source_pll = "pllc",
1803                 .cm_reg = CM_PLLC,
1804                 .a2w_reg = A2W_PLLC_CORE2,
1805                 .load_mask = CM_PLLC_LOADCORE2,
1806                 .hold_mask = CM_PLLC_HOLDCORE2,
1807                 .fixed_divider = 1,
1808                 .flags = CLK_SET_RATE_PARENT),
1809         [BCM2835_PLLC_PER]      = REGISTER_PLL_DIV(
1810                 SOC_ALL,
1811                 .name = "pllc_per",
1812                 .source_pll = "pllc",
1813                 .cm_reg = CM_PLLC,
1814                 .a2w_reg = A2W_PLLC_PER,
1815                 .load_mask = CM_PLLC_LOADPER,
1816                 .hold_mask = CM_PLLC_HOLDPER,
1817                 .fixed_divider = 1,
1818                 .flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1819
1820         /*
1821          * PLLD is the display PLL, used to drive DSI display panels.
1822          *
1823          * It is in the PX LDO power domain, which is on when the
1824          * AUDIO domain is on.
1825          */
1826         [BCM2835_PLLD]          = REGISTER_PLL(
1827                 SOC_ALL,
1828                 .name = "plld",
1829                 .cm_ctrl_reg = CM_PLLD,
1830                 .a2w_ctrl_reg = A2W_PLLD_CTRL,
1831                 .frac_reg = A2W_PLLD_FRAC,
1832                 .ana_reg_base = A2W_PLLD_ANA0,
1833                 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1834                 .lock_mask = CM_LOCK_FLOCKD,
1835
1836                 .ana = &bcm2835_ana_default,
1837
1838                 .min_rate = 600000000u,
1839                 .max_rate = 2400000000u,
1840                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1841         [BCM2835_PLLD_CORE]     = REGISTER_PLL_DIV(
1842                 SOC_ALL,
1843                 .name = "plld_core",
1844                 .source_pll = "plld",
1845                 .cm_reg = CM_PLLD,
1846                 .a2w_reg = A2W_PLLD_CORE,
1847                 .load_mask = CM_PLLD_LOADCORE,
1848                 .hold_mask = CM_PLLD_HOLDCORE,
1849                 .fixed_divider = 1,
1850                 .flags = CLK_SET_RATE_PARENT),
1851         /*
1852          * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1853          * Otherwise this could cause firmware lookups. That's why we mark
1854          * it as critical.
1855          */
1856         [BCM2835_PLLD_PER]      = REGISTER_PLL_DIV(
1857                 SOC_ALL,
1858                 .name = "plld_per",
1859                 .source_pll = "plld",
1860                 .cm_reg = CM_PLLD,
1861                 .a2w_reg = A2W_PLLD_PER,
1862                 .load_mask = CM_PLLD_LOADPER,
1863                 .hold_mask = CM_PLLD_HOLDPER,
1864                 .fixed_divider = 1,
1865                 .flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1866         [BCM2835_PLLD_DSI0]     = REGISTER_PLL_DIV(
1867                 SOC_ALL,
1868                 .name = "plld_dsi0",
1869                 .source_pll = "plld",
1870                 .cm_reg = CM_PLLD,
1871                 .a2w_reg = A2W_PLLD_DSI0,
1872                 .load_mask = CM_PLLD_LOADDSI0,
1873                 .hold_mask = CM_PLLD_HOLDDSI0,
1874                 .fixed_divider = 1),
1875         [BCM2835_PLLD_DSI1]     = REGISTER_PLL_DIV(
1876                 SOC_ALL,
1877                 .name = "plld_dsi1",
1878                 .source_pll = "plld",
1879                 .cm_reg = CM_PLLD,
1880                 .a2w_reg = A2W_PLLD_DSI1,
1881                 .load_mask = CM_PLLD_LOADDSI1,
1882                 .hold_mask = CM_PLLD_HOLDDSI1,
1883                 .fixed_divider = 1),
1884
1885         /*
1886          * PLLH is used to supply the pixel clock or the AUX clock for the
1887          * TV encoder.
1888          *
1889          * It is in the HDMI power domain.
1890          */
1891         [BCM2835_PLLH]          = REGISTER_PLL(
1892                 SOC_BCM2835,
1893                 "pllh",
1894                 .cm_ctrl_reg = CM_PLLH,
1895                 .a2w_ctrl_reg = A2W_PLLH_CTRL,
1896                 .frac_reg = A2W_PLLH_FRAC,
1897                 .ana_reg_base = A2W_PLLH_ANA0,
1898                 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1899                 .lock_mask = CM_LOCK_FLOCKH,
1900
1901                 .ana = &bcm2835_ana_pllh,
1902
1903                 .min_rate = 600000000u,
1904                 .max_rate = 3000000000u,
1905                 .max_fb_rate = BCM2835_MAX_FB_RATE),
1906         [BCM2835_PLLH_RCAL]     = REGISTER_PLL_DIV(
1907                 SOC_BCM2835,
1908                 .name = "pllh_rcal",
1909                 .source_pll = "pllh",
1910                 .cm_reg = CM_PLLH,
1911                 .a2w_reg = A2W_PLLH_RCAL,
1912                 .load_mask = CM_PLLH_LOADRCAL,
1913                 .hold_mask = 0,
1914                 .fixed_divider = 10,
1915                 .flags = CLK_SET_RATE_PARENT),
1916         [BCM2835_PLLH_AUX]      = REGISTER_PLL_DIV(
1917                 SOC_BCM2835,
1918                 .name = "pllh_aux",
1919                 .source_pll = "pllh",
1920                 .cm_reg = CM_PLLH,
1921                 .a2w_reg = A2W_PLLH_AUX,
1922                 .load_mask = CM_PLLH_LOADAUX,
1923                 .hold_mask = 0,
1924                 .fixed_divider = 1,
1925                 .flags = CLK_SET_RATE_PARENT),
1926         [BCM2835_PLLH_PIX]      = REGISTER_PLL_DIV(
1927                 SOC_BCM2835,
1928                 .name = "pllh_pix",
1929                 .source_pll = "pllh",
1930                 .cm_reg = CM_PLLH,
1931                 .a2w_reg = A2W_PLLH_PIX,
1932                 .load_mask = CM_PLLH_LOADPIX,
1933                 .hold_mask = 0,
1934                 .fixed_divider = 10,
1935                 .flags = CLK_SET_RATE_PARENT),
1936
1937         /* the clocks */
1938
1939         /* clocks with oscillator parent mux */
1940
1941         /* One Time Programmable Memory clock.  Maximum 10Mhz. */
1942         [BCM2835_CLOCK_OTP]     = REGISTER_OSC_CLK(
1943                 SOC_ALL,
1944                 .name = "otp",
1945                 .ctl_reg = CM_OTPCTL,
1946                 .div_reg = CM_OTPDIV,
1947                 .int_bits = 4,
1948                 .frac_bits = 0,
1949                 .tcnt_mux = 6),
1950         /*
1951          * Used for a 1Mhz clock for the system clocksource, and also used
1952          * bythe watchdog timer and the camera pulse generator.
1953          */
1954         [BCM2835_CLOCK_TIMER]   = REGISTER_OSC_CLK(
1955                 SOC_ALL,
1956                 .name = "timer",
1957                 .ctl_reg = CM_TIMERCTL,
1958                 .div_reg = CM_TIMERDIV,
1959                 .int_bits = 6,
1960                 .frac_bits = 12),
1961         /*
1962          * Clock for the temperature sensor.
1963          * Generally run at 2Mhz, max 5Mhz.
1964          */
1965         [BCM2835_CLOCK_TSENS]   = REGISTER_OSC_CLK(
1966                 SOC_ALL,
1967                 .name = "tsens",
1968                 .ctl_reg = CM_TSENSCTL,
1969                 .div_reg = CM_TSENSDIV,
1970                 .int_bits = 5,
1971                 .frac_bits = 0),
1972         [BCM2835_CLOCK_TEC]     = REGISTER_OSC_CLK(
1973                 SOC_ALL,
1974                 .name = "tec",
1975                 .ctl_reg = CM_TECCTL,
1976                 .div_reg = CM_TECDIV,
1977                 .int_bits = 6,
1978                 .frac_bits = 0),
1979
1980         /* clocks with vpu parent mux */
1981         [BCM2835_CLOCK_H264]    = REGISTER_VPU_CLK(
1982                 SOC_ALL,
1983                 .name = "h264",
1984                 .ctl_reg = CM_H264CTL,
1985                 .div_reg = CM_H264DIV,
1986                 .int_bits = 4,
1987                 .frac_bits = 8,
1988                 .tcnt_mux = 1),
1989         [BCM2835_CLOCK_ISP]     = REGISTER_VPU_CLK(
1990                 SOC_ALL,
1991                 .name = "isp",
1992                 .ctl_reg = CM_ISPCTL,
1993                 .div_reg = CM_ISPDIV,
1994                 .int_bits = 4,
1995                 .frac_bits = 8,
1996                 .tcnt_mux = 2),
1997
1998         /*
1999          * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
2000          * in the SDRAM controller can't be used.
2001          */
2002         [BCM2835_CLOCK_SDRAM]   = REGISTER_VPU_CLK(
2003                 SOC_ALL,
2004                 .name = "sdram",
2005                 .ctl_reg = CM_SDCCTL,
2006                 .div_reg = CM_SDCDIV,
2007                 .int_bits = 6,
2008                 .frac_bits = 0,
2009                 .tcnt_mux = 3),
2010         [BCM2835_CLOCK_V3D]     = REGISTER_VPU_CLK(
2011                 SOC_ALL,
2012                 .name = "v3d",
2013                 .ctl_reg = CM_V3DCTL,
2014                 .div_reg = CM_V3DDIV,
2015                 .int_bits = 4,
2016                 .frac_bits = 8,
2017                 .tcnt_mux = 4),
2018         /*
2019          * VPU clock.  This doesn't have an enable bit, since it drives
2020          * the bus for everything else, and is special so it doesn't need
2021          * to be gated for rate changes.  It is also known as "clk_audio"
2022          * in various hardware documentation.
2023          */
2024         [BCM2835_CLOCK_VPU]     = REGISTER_VPU_CLK(
2025                 SOC_ALL,
2026                 .name = "vpu",
2027                 .ctl_reg = CM_VPUCTL,
2028                 .div_reg = CM_VPUDIV,
2029                 .int_bits = 12,
2030                 .frac_bits = 8,
2031                 .flags = CLK_IS_CRITICAL,
2032                 .is_vpu_clock = true,
2033                 .tcnt_mux = 5),
2034
2035         /* clocks with per parent mux */
2036         [BCM2835_CLOCK_AVEO]    = REGISTER_PER_CLK(
2037                 SOC_ALL,
2038                 .name = "aveo",
2039                 .ctl_reg = CM_AVEOCTL,
2040                 .div_reg = CM_AVEODIV,
2041                 .int_bits = 4,
2042                 .frac_bits = 0,
2043                 .tcnt_mux = 38),
2044         [BCM2835_CLOCK_CAM0]    = REGISTER_PER_CLK(
2045                 SOC_ALL,
2046                 .name = "cam0",
2047                 .ctl_reg = CM_CAM0CTL,
2048                 .div_reg = CM_CAM0DIV,
2049                 .int_bits = 4,
2050                 .frac_bits = 8,
2051                 .tcnt_mux = 14),
2052         [BCM2835_CLOCK_CAM1]    = REGISTER_PER_CLK(
2053                 SOC_ALL,
2054                 .name = "cam1",
2055                 .ctl_reg = CM_CAM1CTL,
2056                 .div_reg = CM_CAM1DIV,
2057                 .int_bits = 4,
2058                 .frac_bits = 8,
2059                 .tcnt_mux = 15),
2060         [BCM2835_CLOCK_DFT]     = REGISTER_PER_CLK(
2061                 SOC_ALL,
2062                 .name = "dft",
2063                 .ctl_reg = CM_DFTCTL,
2064                 .div_reg = CM_DFTDIV,
2065                 .int_bits = 5,
2066                 .frac_bits = 0),
2067         [BCM2835_CLOCK_DPI]     = REGISTER_PER_CLK(
2068                 SOC_ALL,
2069                 .name = "dpi",
2070                 .ctl_reg = CM_DPICTL,
2071                 .div_reg = CM_DPIDIV,
2072                 .int_bits = 4,
2073                 .frac_bits = 8,
2074                 .tcnt_mux = 17),
2075
2076         /* Arasan EMMC clock */
2077         [BCM2835_CLOCK_EMMC]    = REGISTER_PER_CLK(
2078                 SOC_ALL,
2079                 .name = "emmc",
2080                 .ctl_reg = CM_EMMCCTL,
2081                 .div_reg = CM_EMMCDIV,
2082                 .int_bits = 4,
2083                 .frac_bits = 8,
2084                 .tcnt_mux = 39),
2085
2086         /* EMMC2 clock (only available for BCM2711) */
2087         [BCM2711_CLOCK_EMMC2]   = REGISTER_PER_CLK(
2088                 SOC_BCM2711,
2089                 .name = "emmc2",
2090                 .ctl_reg = CM_EMMC2CTL,
2091                 .div_reg = CM_EMMC2DIV,
2092                 .int_bits = 4,
2093                 .frac_bits = 8,
2094                 .tcnt_mux = 42),
2095
2096         /* General purpose (GPIO) clocks */
2097         [BCM2835_CLOCK_GP0]     = REGISTER_PER_CLK(
2098                 SOC_ALL,
2099                 .name = "gp0",
2100                 .ctl_reg = CM_GP0CTL,
2101                 .div_reg = CM_GP0DIV,
2102                 .int_bits = 12,
2103                 .frac_bits = 12,
2104                 .is_mash_clock = true,
2105                 .tcnt_mux = 20),
2106         [BCM2835_CLOCK_GP1]     = REGISTER_PER_CLK(
2107                 SOC_ALL,
2108                 .name = "gp1",
2109                 .ctl_reg = CM_GP1CTL,
2110                 .div_reg = CM_GP1DIV,
2111                 .int_bits = 12,
2112                 .frac_bits = 12,
2113                 .flags = CLK_IS_CRITICAL,
2114                 .is_mash_clock = true,
2115                 .tcnt_mux = 21),
2116         [BCM2835_CLOCK_GP2]     = REGISTER_PER_CLK(
2117                 SOC_ALL,
2118                 .name = "gp2",
2119                 .ctl_reg = CM_GP2CTL,
2120                 .div_reg = CM_GP2DIV,
2121                 .int_bits = 12,
2122                 .frac_bits = 12,
2123                 .flags = CLK_IS_CRITICAL),
2124
2125         /* HDMI state machine */
2126         [BCM2835_CLOCK_HSM]     = REGISTER_PER_CLK(
2127                 SOC_ALL,
2128                 .name = "hsm",
2129                 .ctl_reg = CM_HSMCTL,
2130                 .div_reg = CM_HSMDIV,
2131                 .int_bits = 4,
2132                 .frac_bits = 8,
2133                 .tcnt_mux = 22),
2134         [BCM2835_CLOCK_PCM]     = REGISTER_PCM_CLK(
2135                 SOC_ALL,
2136                 .name = "pcm",
2137                 .ctl_reg = CM_PCMCTL,
2138                 .div_reg = CM_PCMDIV,
2139                 .int_bits = 12,
2140                 .frac_bits = 12,
2141                 .is_mash_clock = true,
2142                 .low_jitter = true,
2143                 .tcnt_mux = 23),
2144         [BCM2835_CLOCK_PWM]     = REGISTER_PER_CLK(
2145                 SOC_ALL,
2146                 .name = "pwm",
2147                 .ctl_reg = CM_PWMCTL,
2148                 .div_reg = CM_PWMDIV,
2149                 .int_bits = 12,
2150                 .frac_bits = 12,
2151                 .is_mash_clock = true,
2152                 .tcnt_mux = 24),
2153         [BCM2835_CLOCK_SLIM]    = REGISTER_PER_CLK(
2154                 SOC_ALL,
2155                 .name = "slim",
2156                 .ctl_reg = CM_SLIMCTL,
2157                 .div_reg = CM_SLIMDIV,
2158                 .int_bits = 12,
2159                 .frac_bits = 12,
2160                 .is_mash_clock = true,
2161                 .tcnt_mux = 25),
2162         [BCM2835_CLOCK_SMI]     = REGISTER_PER_CLK(
2163                 SOC_ALL,
2164                 .name = "smi",
2165                 .ctl_reg = CM_SMICTL,
2166                 .div_reg = CM_SMIDIV,
2167                 .int_bits = 4,
2168                 .frac_bits = 8,
2169                 .tcnt_mux = 27),
2170         [BCM2835_CLOCK_UART]    = REGISTER_PER_CLK(
2171                 SOC_ALL,
2172                 .name = "uart",
2173                 .ctl_reg = CM_UARTCTL,
2174                 .div_reg = CM_UARTDIV,
2175                 .int_bits = 10,
2176                 .frac_bits = 12,
2177                 .tcnt_mux = 28,
2178                 .round_up = true),
2179
2180         /* TV encoder clock.  Only operating frequency is 108Mhz.  */
2181         [BCM2835_CLOCK_VEC]     = REGISTER_PER_CLK(
2182                 SOC_ALL,
2183                 .name = "vec",
2184                 .ctl_reg = CM_VECCTL,
2185                 .div_reg = CM_VECDIV,
2186                 .int_bits = 4,
2187                 .frac_bits = 0,
2188                 /*
2189                  * Allow rate change propagation only on PLLH_AUX which is
2190                  * assigned index 7 in the parent array.
2191                  */
2192                 .set_rate_parent = BIT(7),
2193                 .tcnt_mux = 29),
2194
2195         /* dsi clocks */
2196         [BCM2835_CLOCK_DSI0E]   = REGISTER_PER_CLK(
2197                 SOC_ALL,
2198                 .name = "dsi0e",
2199                 .ctl_reg = CM_DSI0ECTL,
2200                 .div_reg = CM_DSI0EDIV,
2201                 .int_bits = 4,
2202                 .frac_bits = 8,
2203                 .tcnt_mux = 18),
2204         [BCM2835_CLOCK_DSI1E]   = REGISTER_PER_CLK(
2205                 SOC_ALL,
2206                 .name = "dsi1e",
2207                 .ctl_reg = CM_DSI1ECTL,
2208                 .div_reg = CM_DSI1EDIV,
2209                 .int_bits = 4,
2210                 .frac_bits = 8,
2211                 .tcnt_mux = 19),
2212         [BCM2835_CLOCK_DSI0P]   = REGISTER_DSI0_CLK(
2213                 SOC_ALL,
2214                 .name = "dsi0p",
2215                 .ctl_reg = CM_DSI0PCTL,
2216                 .div_reg = CM_DSI0PDIV,
2217                 .int_bits = 0,
2218                 .frac_bits = 0,
2219                 .tcnt_mux = 12),
2220         [BCM2835_CLOCK_DSI1P]   = REGISTER_DSI1_CLK(
2221                 SOC_ALL,
2222                 .name = "dsi1p",
2223                 .ctl_reg = CM_DSI1PCTL,
2224                 .div_reg = CM_DSI1PDIV,
2225                 .int_bits = 0,
2226                 .frac_bits = 0,
2227                 .tcnt_mux = 13),
2228
2229         /* the gates */
2230
2231         /*
2232          * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2233          * you have the debug bit set in the power manager, which we
2234          * don't bother exposing) are individual gates off of the
2235          * non-stop vpu clock.
2236          */
2237         [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2238                 SOC_ALL,
2239                 .name = "peri_image",
2240                 .parent = "vpu",
2241                 .ctl_reg = CM_PERIICTL),
2242 };
2243
2244 /*
2245  * Permanently take a reference on the parent of the SDRAM clock.
2246  *
2247  * While the SDRAM is being driven by its dedicated PLL most of the
2248  * time, there is a little loop running in the firmware that
2249  * periodically switches the SDRAM to using our CM clock to do PVT
2250  * recalibration, with the assumption that the previously configured
2251  * SDRAM parent is still enabled and running.
2252  */
2253 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2254 {
2255         struct clk *parent = clk_get_parent(sdc);
2256
2257         if (IS_ERR(parent))
2258                 return PTR_ERR(parent);
2259
2260         return clk_prepare_enable(parent);
2261 }
2262
2263 static int bcm2835_clk_probe(struct platform_device *pdev)
2264 {
2265         struct device *dev = &pdev->dev;
2266         struct clk_hw **hws;
2267         struct bcm2835_cprman *cprman;
2268         const struct bcm2835_clk_desc *desc;
2269         const size_t asize = ARRAY_SIZE(clk_desc_array);
2270         const struct cprman_plat_data *pdata;
2271         size_t i;
2272         int ret;
2273
2274         pdata = of_device_get_match_data(&pdev->dev);
2275         if (!pdata)
2276                 return -ENODEV;
2277
2278         cprman = devm_kzalloc(dev,
2279                               struct_size(cprman, onecell.hws, asize),
2280                               GFP_KERNEL);
2281         if (!cprman)
2282                 return -ENOMEM;
2283
2284         spin_lock_init(&cprman->regs_lock);
2285         cprman->dev = dev;
2286         cprman->regs = devm_platform_ioremap_resource(pdev, 0);
2287         if (IS_ERR(cprman->regs))
2288                 return PTR_ERR(cprman->regs);
2289
2290         memcpy(cprman->real_parent_names, cprman_parent_names,
2291                sizeof(cprman_parent_names));
2292         of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2293                            ARRAY_SIZE(cprman_parent_names));
2294
2295         /*
2296          * Make sure the external oscillator has been registered.
2297          *
2298          * The other (DSI) clocks are not present on older device
2299          * trees, which we still need to support for backwards
2300          * compatibility.
2301          */
2302         if (!cprman->real_parent_names[0])
2303                 return -ENODEV;
2304
2305         platform_set_drvdata(pdev, cprman);
2306
2307         cprman->onecell.num = asize;
2308         cprman->soc = pdata->soc;
2309         hws = cprman->onecell.hws;
2310
2311         for (i = 0; i < asize; i++) {
2312                 desc = &clk_desc_array[i];
2313                 if (desc->clk_register && desc->data &&
2314                     (desc->supported & pdata->soc)) {
2315                         hws[i] = desc->clk_register(cprman, desc->data);
2316                 }
2317         }
2318
2319         ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2320         if (ret)
2321                 return ret;
2322
2323         return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2324                                       &cprman->onecell);
2325 }
2326
2327 static const struct cprman_plat_data cprman_bcm2835_plat_data = {
2328         .soc = SOC_BCM2835,
2329 };
2330
2331 static const struct cprman_plat_data cprman_bcm2711_plat_data = {
2332         .soc = SOC_BCM2711,
2333 };
2334
2335 static const struct of_device_id bcm2835_clk_of_match[] = {
2336         { .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data },
2337         { .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data },
2338         {}
2339 };
2340 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2341
2342 static struct platform_driver bcm2835_clk_driver = {
2343         .driver = {
2344                 .name = "bcm2835-clk",
2345                 .of_match_table = bcm2835_clk_of_match,
2346         },
2347         .probe          = bcm2835_clk_probe,
2348 };
2349
2350 builtin_platform_driver(bcm2835_clk_driver);
2351
2352 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2353 MODULE_DESCRIPTION("BCM2835 clock driver");
2354 MODULE_LICENSE("GPL");