2 * linux/drivers/char/raw.c
4 * Front-end raw character devices. These can be bound to any block
5 * devices to provide genuine Unix raw character device semantics.
7 * We reserve minor number 0 for a control interface. ioctl()s on this
8 * device are used to bind the other minor numbers to block devices.
11 #include <linux/init.h>
13 #include <linux/major.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/raw.h>
17 #include <linux/capability.h>
18 #include <linux/uio.h>
19 #include <linux/cdev.h>
20 #include <linux/device.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/compat.h>
24 #include <linux/vmalloc.h>
26 #include <asm/uaccess.h>
28 struct raw_device_data {
29 struct block_device *binding;
33 static struct class *raw_class;
34 static struct raw_device_data *raw_devices;
35 static DEFINE_MUTEX(raw_mutex);
36 static const struct file_operations raw_ctl_fops; /* forward declaration */
38 static int max_raw_minors = MAX_RAW_MINORS;
40 module_param(max_raw_minors, int, 0);
41 MODULE_PARM_DESC(max_raw_minors, "Maximum number of raw devices (1-65536)");
44 * Open/close code for raw IO.
46 * We just rewrite the i_mapping for the /dev/raw/rawN file descriptor to
47 * point at the blockdev's address_space and set the file handle to use
50 * Set the device's soft blocksize to the minimum possible. This gives the
51 * finest possible alignment and has no adverse impact on performance.
53 static int raw_open(struct inode *inode, struct file *filp)
55 const int minor = iminor(inode);
56 struct block_device *bdev;
59 if (minor == 0) { /* It is the control device */
60 filp->f_op = &raw_ctl_fops;
64 mutex_lock(&raw_mutex);
67 * All we need to do on open is check that the device is bound.
69 bdev = raw_devices[minor].binding;
73 igrab(bdev->bd_inode);
74 err = blkdev_get(bdev, filp->f_mode | FMODE_EXCL, raw_open);
77 err = set_blocksize(bdev, bdev_logical_block_size(bdev));
80 filp->f_flags |= O_DIRECT;
81 filp->f_mapping = bdev->bd_inode->i_mapping;
82 if (++raw_devices[minor].inuse == 1)
83 filp->f_path.dentry->d_inode->i_mapping =
84 bdev->bd_inode->i_mapping;
85 filp->private_data = bdev;
86 mutex_unlock(&raw_mutex);
90 blkdev_put(bdev, filp->f_mode | FMODE_EXCL);
92 mutex_unlock(&raw_mutex);
97 * When the final fd which refers to this character-special node is closed, we
98 * make its ->mapping point back at its own i_data.
100 static int raw_release(struct inode *inode, struct file *filp)
102 const int minor= iminor(inode);
103 struct block_device *bdev;
105 mutex_lock(&raw_mutex);
106 bdev = raw_devices[minor].binding;
107 if (--raw_devices[minor].inuse == 0) {
108 /* Here inode->i_mapping == bdev->bd_inode->i_mapping */
109 inode->i_mapping = &inode->i_data;
110 inode->i_mapping->backing_dev_info = &default_backing_dev_info;
112 mutex_unlock(&raw_mutex);
114 blkdev_put(bdev, filp->f_mode | FMODE_EXCL);
119 * Forward ioctls to the underlying block device.
122 raw_ioctl(struct file *filp, unsigned int command, unsigned long arg)
124 struct block_device *bdev = filp->private_data;
125 return blkdev_ioctl(bdev, 0, command, arg);
128 static int bind_set(int number, u64 major, u64 minor)
130 dev_t dev = MKDEV(major, minor);
131 struct raw_device_data *rawdev;
134 if (number <= 0 || number >= max_raw_minors)
137 if (MAJOR(dev) != major || MINOR(dev) != minor)
140 rawdev = &raw_devices[number];
143 * This is like making block devices, so demand the
146 if (!capable(CAP_SYS_ADMIN))
150 * For now, we don't need to check that the underlying
151 * block device is present or not: we can do that when
152 * the raw device is opened. Just check that the
153 * major/minor numbers make sense.
156 if (MAJOR(dev) == 0 && dev != 0)
159 mutex_lock(&raw_mutex);
161 mutex_unlock(&raw_mutex);
164 if (rawdev->binding) {
165 bdput(rawdev->binding);
166 module_put(THIS_MODULE);
170 rawdev->binding = NULL;
171 device_destroy(raw_class, MKDEV(RAW_MAJOR, number));
173 rawdev->binding = bdget(dev);
174 if (rawdev->binding == NULL) {
177 dev_t raw = MKDEV(RAW_MAJOR, number);
178 __module_get(THIS_MODULE);
179 device_destroy(raw_class, raw);
180 device_create(raw_class, NULL, raw, NULL,
184 mutex_unlock(&raw_mutex);
188 static int bind_get(int number, dev_t *dev)
190 struct raw_device_data *rawdev;
191 struct block_device *bdev;
193 if (number <= 0 || number >= MAX_RAW_MINORS)
196 rawdev = &raw_devices[number];
198 mutex_lock(&raw_mutex);
199 bdev = rawdev->binding;
200 *dev = bdev ? bdev->bd_dev : 0;
201 mutex_unlock(&raw_mutex);
206 * Deal with ioctls against the raw-device control interface, to bind
207 * and unbind other raw devices.
209 static long raw_ctl_ioctl(struct file *filp, unsigned int command,
212 struct raw_config_request rq;
218 if (copy_from_user(&rq, (void __user *) arg, sizeof(rq)))
221 return bind_set(rq.raw_minor, rq.block_major, rq.block_minor);
224 if (copy_from_user(&rq, (void __user *) arg, sizeof(rq)))
227 err = bind_get(rq.raw_minor, &dev);
231 rq.block_major = MAJOR(dev);
232 rq.block_minor = MINOR(dev);
234 if (copy_to_user((void __user *)arg, &rq, sizeof(rq)))
244 struct raw32_config_request {
245 compat_int_t raw_minor;
246 compat_u64 block_major;
247 compat_u64 block_minor;
250 static long raw_ctl_compat_ioctl(struct file *file, unsigned int cmd,
253 struct raw32_config_request __user *user_req = compat_ptr(arg);
254 struct raw32_config_request rq;
260 if (copy_from_user(&rq, user_req, sizeof(rq)))
263 return bind_set(rq.raw_minor, rq.block_major, rq.block_minor);
266 if (copy_from_user(&rq, user_req, sizeof(rq)))
269 err = bind_get(rq.raw_minor, &dev);
273 rq.block_major = MAJOR(dev);
274 rq.block_minor = MINOR(dev);
276 if (copy_to_user(user_req, &rq, sizeof(rq)))
286 static const struct file_operations raw_fops = {
287 .read = do_sync_read,
288 .aio_read = generic_file_aio_read,
289 .write = do_sync_write,
290 .aio_write = blkdev_aio_write,
291 .fsync = blkdev_fsync,
293 .release = raw_release,
294 .unlocked_ioctl = raw_ioctl,
295 .llseek = default_llseek,
296 .owner = THIS_MODULE,
299 static const struct file_operations raw_ctl_fops = {
300 .unlocked_ioctl = raw_ctl_ioctl,
302 .compat_ioctl = raw_ctl_compat_ioctl,
305 .owner = THIS_MODULE,
306 .llseek = noop_llseek,
309 static struct cdev raw_cdev;
311 static char *raw_devnode(struct device *dev, mode_t *mode)
313 return kasprintf(GFP_KERNEL, "raw/%s", dev_name(dev));
316 static int __init raw_init(void)
318 dev_t dev = MKDEV(RAW_MAJOR, 0);
321 if (max_raw_minors < 1 || max_raw_minors > 65536) {
322 printk(KERN_WARNING "raw: invalid max_raw_minors (must be"
323 " between 1 and 65536), using %d\n", MAX_RAW_MINORS);
324 max_raw_minors = MAX_RAW_MINORS;
327 raw_devices = vmalloc(sizeof(struct raw_device_data) * max_raw_minors);
329 printk(KERN_ERR "Not enough memory for raw device structures\n");
333 memset(raw_devices, 0, sizeof(struct raw_device_data) * max_raw_minors);
335 ret = register_chrdev_region(dev, max_raw_minors, "raw");
339 cdev_init(&raw_cdev, &raw_fops);
340 ret = cdev_add(&raw_cdev, dev, max_raw_minors);
345 raw_class = class_create(THIS_MODULE, "raw");
346 if (IS_ERR(raw_class)) {
347 printk(KERN_ERR "Error creating raw class.\n");
349 ret = PTR_ERR(raw_class);
352 raw_class->devnode = raw_devnode;
353 device_create(raw_class, NULL, MKDEV(RAW_MAJOR, 0), NULL, "rawctl");
358 unregister_chrdev_region(dev, max_raw_minors);
364 static void __exit raw_exit(void)
366 device_destroy(raw_class, MKDEV(RAW_MAJOR, 0));
367 class_destroy(raw_class);
369 unregister_chrdev_region(MKDEV(RAW_MAJOR, 0), max_raw_minors);
372 module_init(raw_init);
373 module_exit(raw_exit);
374 MODULE_LICENSE("GPL");