Merge tag 'pcie_kw-3.11-2' of git://git.infradead.org/users/jcooper/linux into next/soc
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / char / ipmi / ipmi_msghandler.c
1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
49
50 #define PFX "IPMI message handler: "
51
52 #define IPMI_DRIVER_VERSION "39.2"
53
54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
55 static int ipmi_init_msghandler(void);
56 static void smi_recv_tasklet(unsigned long);
57 static void handle_new_recv_msgs(ipmi_smi_t intf);
58
59 static int initialized;
60
61 #ifdef CONFIG_PROC_FS
62 static struct proc_dir_entry *proc_ipmi_root;
63 #endif /* CONFIG_PROC_FS */
64
65 /* Remain in auto-maintenance mode for this amount of time (in ms). */
66 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
67
68 #define MAX_EVENTS_IN_QUEUE     25
69
70 /*
71  * Don't let a message sit in a queue forever, always time it with at lest
72  * the max message timer.  This is in milliseconds.
73  */
74 #define MAX_MSG_TIMEOUT         60000
75
76 /*
77  * The main "user" data structure.
78  */
79 struct ipmi_user {
80         struct list_head link;
81
82         /* Set to "0" when the user is destroyed. */
83         int valid;
84
85         struct kref refcount;
86
87         /* The upper layer that handles receive messages. */
88         struct ipmi_user_hndl *handler;
89         void             *handler_data;
90
91         /* The interface this user is bound to. */
92         ipmi_smi_t intf;
93
94         /* Does this interface receive IPMI events? */
95         int gets_events;
96 };
97
98 struct cmd_rcvr {
99         struct list_head link;
100
101         ipmi_user_t   user;
102         unsigned char netfn;
103         unsigned char cmd;
104         unsigned int  chans;
105
106         /*
107          * This is used to form a linked lised during mass deletion.
108          * Since this is in an RCU list, we cannot use the link above
109          * or change any data until the RCU period completes.  So we
110          * use this next variable during mass deletion so we can have
111          * a list and don't have to wait and restart the search on
112          * every individual deletion of a command.
113          */
114         struct cmd_rcvr *next;
115 };
116
117 struct seq_table {
118         unsigned int         inuse : 1;
119         unsigned int         broadcast : 1;
120
121         unsigned long        timeout;
122         unsigned long        orig_timeout;
123         unsigned int         retries_left;
124
125         /*
126          * To verify on an incoming send message response that this is
127          * the message that the response is for, we keep a sequence id
128          * and increment it every time we send a message.
129          */
130         long                 seqid;
131
132         /*
133          * This is held so we can properly respond to the message on a
134          * timeout, and it is used to hold the temporary data for
135          * retransmission, too.
136          */
137         struct ipmi_recv_msg *recv_msg;
138 };
139
140 /*
141  * Store the information in a msgid (long) to allow us to find a
142  * sequence table entry from the msgid.
143  */
144 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
145
146 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
147         do {                                                            \
148                 seq = ((msgid >> 26) & 0x3f);                           \
149                 seqid = (msgid & 0x3fffff);                             \
150         } while (0)
151
152 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
153
154 struct ipmi_channel {
155         unsigned char medium;
156         unsigned char protocol;
157
158         /*
159          * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
160          * but may be changed by the user.
161          */
162         unsigned char address;
163
164         /*
165          * My LUN.  This should generally stay the SMS LUN, but just in
166          * case...
167          */
168         unsigned char lun;
169 };
170
171 #ifdef CONFIG_PROC_FS
172 struct ipmi_proc_entry {
173         char                   *name;
174         struct ipmi_proc_entry *next;
175 };
176 #endif
177
178 struct bmc_device {
179         struct platform_device *dev;
180         struct ipmi_device_id  id;
181         unsigned char          guid[16];
182         int                    guid_set;
183
184         struct kref            refcount;
185
186         /* bmc device attributes */
187         struct device_attribute device_id_attr;
188         struct device_attribute provides_dev_sdrs_attr;
189         struct device_attribute revision_attr;
190         struct device_attribute firmware_rev_attr;
191         struct device_attribute version_attr;
192         struct device_attribute add_dev_support_attr;
193         struct device_attribute manufacturer_id_attr;
194         struct device_attribute product_id_attr;
195         struct device_attribute guid_attr;
196         struct device_attribute aux_firmware_rev_attr;
197 };
198
199 /*
200  * Various statistics for IPMI, these index stats[] in the ipmi_smi
201  * structure.
202  */
203 enum ipmi_stat_indexes {
204         /* Commands we got from the user that were invalid. */
205         IPMI_STAT_sent_invalid_commands = 0,
206
207         /* Commands we sent to the MC. */
208         IPMI_STAT_sent_local_commands,
209
210         /* Responses from the MC that were delivered to a user. */
211         IPMI_STAT_handled_local_responses,
212
213         /* Responses from the MC that were not delivered to a user. */
214         IPMI_STAT_unhandled_local_responses,
215
216         /* Commands we sent out to the IPMB bus. */
217         IPMI_STAT_sent_ipmb_commands,
218
219         /* Commands sent on the IPMB that had errors on the SEND CMD */
220         IPMI_STAT_sent_ipmb_command_errs,
221
222         /* Each retransmit increments this count. */
223         IPMI_STAT_retransmitted_ipmb_commands,
224
225         /*
226          * When a message times out (runs out of retransmits) this is
227          * incremented.
228          */
229         IPMI_STAT_timed_out_ipmb_commands,
230
231         /*
232          * This is like above, but for broadcasts.  Broadcasts are
233          * *not* included in the above count (they are expected to
234          * time out).
235          */
236         IPMI_STAT_timed_out_ipmb_broadcasts,
237
238         /* Responses I have sent to the IPMB bus. */
239         IPMI_STAT_sent_ipmb_responses,
240
241         /* The response was delivered to the user. */
242         IPMI_STAT_handled_ipmb_responses,
243
244         /* The response had invalid data in it. */
245         IPMI_STAT_invalid_ipmb_responses,
246
247         /* The response didn't have anyone waiting for it. */
248         IPMI_STAT_unhandled_ipmb_responses,
249
250         /* Commands we sent out to the IPMB bus. */
251         IPMI_STAT_sent_lan_commands,
252
253         /* Commands sent on the IPMB that had errors on the SEND CMD */
254         IPMI_STAT_sent_lan_command_errs,
255
256         /* Each retransmit increments this count. */
257         IPMI_STAT_retransmitted_lan_commands,
258
259         /*
260          * When a message times out (runs out of retransmits) this is
261          * incremented.
262          */
263         IPMI_STAT_timed_out_lan_commands,
264
265         /* Responses I have sent to the IPMB bus. */
266         IPMI_STAT_sent_lan_responses,
267
268         /* The response was delivered to the user. */
269         IPMI_STAT_handled_lan_responses,
270
271         /* The response had invalid data in it. */
272         IPMI_STAT_invalid_lan_responses,
273
274         /* The response didn't have anyone waiting for it. */
275         IPMI_STAT_unhandled_lan_responses,
276
277         /* The command was delivered to the user. */
278         IPMI_STAT_handled_commands,
279
280         /* The command had invalid data in it. */
281         IPMI_STAT_invalid_commands,
282
283         /* The command didn't have anyone waiting for it. */
284         IPMI_STAT_unhandled_commands,
285
286         /* Invalid data in an event. */
287         IPMI_STAT_invalid_events,
288
289         /* Events that were received with the proper format. */
290         IPMI_STAT_events,
291
292         /* Retransmissions on IPMB that failed. */
293         IPMI_STAT_dropped_rexmit_ipmb_commands,
294
295         /* Retransmissions on LAN that failed. */
296         IPMI_STAT_dropped_rexmit_lan_commands,
297
298         /* This *must* remain last, add new values above this. */
299         IPMI_NUM_STATS
300 };
301
302
303 #define IPMI_IPMB_NUM_SEQ       64
304 #define IPMI_MAX_CHANNELS       16
305 struct ipmi_smi {
306         /* What interface number are we? */
307         int intf_num;
308
309         struct kref refcount;
310
311         /* Used for a list of interfaces. */
312         struct list_head link;
313
314         /*
315          * The list of upper layers that are using me.  seq_lock
316          * protects this.
317          */
318         struct list_head users;
319
320         /* Information to supply to users. */
321         unsigned char ipmi_version_major;
322         unsigned char ipmi_version_minor;
323
324         /* Used for wake ups at startup. */
325         wait_queue_head_t waitq;
326
327         struct bmc_device *bmc;
328         char *my_dev_name;
329         char *sysfs_name;
330
331         /*
332          * This is the lower-layer's sender routine.  Note that you
333          * must either be holding the ipmi_interfaces_mutex or be in
334          * an umpreemptible region to use this.  You must fetch the
335          * value into a local variable and make sure it is not NULL.
336          */
337         struct ipmi_smi_handlers *handlers;
338         void                     *send_info;
339
340 #ifdef CONFIG_PROC_FS
341         /* A list of proc entries for this interface. */
342         struct mutex           proc_entry_lock;
343         struct ipmi_proc_entry *proc_entries;
344 #endif
345
346         /* Driver-model device for the system interface. */
347         struct device          *si_dev;
348
349         /*
350          * A table of sequence numbers for this interface.  We use the
351          * sequence numbers for IPMB messages that go out of the
352          * interface to match them up with their responses.  A routine
353          * is called periodically to time the items in this list.
354          */
355         spinlock_t       seq_lock;
356         struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
357         int curr_seq;
358
359         /*
360          * Messages queued for delivery.  If delivery fails (out of memory
361          * for instance), They will stay in here to be processed later in a
362          * periodic timer interrupt.  The tasklet is for handling received
363          * messages directly from the handler.
364          */
365         spinlock_t       waiting_msgs_lock;
366         struct list_head waiting_msgs;
367         atomic_t         watchdog_pretimeouts_to_deliver;
368         struct tasklet_struct recv_tasklet;
369
370         /*
371          * The list of command receivers that are registered for commands
372          * on this interface.
373          */
374         struct mutex     cmd_rcvrs_mutex;
375         struct list_head cmd_rcvrs;
376
377         /*
378          * Events that were queues because no one was there to receive
379          * them.
380          */
381         spinlock_t       events_lock; /* For dealing with event stuff. */
382         struct list_head waiting_events;
383         unsigned int     waiting_events_count; /* How many events in queue? */
384         char             delivering_events;
385         char             event_msg_printed;
386
387         /*
388          * The event receiver for my BMC, only really used at panic
389          * shutdown as a place to store this.
390          */
391         unsigned char event_receiver;
392         unsigned char event_receiver_lun;
393         unsigned char local_sel_device;
394         unsigned char local_event_generator;
395
396         /* For handling of maintenance mode. */
397         int maintenance_mode;
398         int maintenance_mode_enable;
399         int auto_maintenance_timeout;
400         spinlock_t maintenance_mode_lock; /* Used in a timer... */
401
402         /*
403          * A cheap hack, if this is non-null and a message to an
404          * interface comes in with a NULL user, call this routine with
405          * it.  Note that the message will still be freed by the
406          * caller.  This only works on the system interface.
407          */
408         void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
409
410         /*
411          * When we are scanning the channels for an SMI, this will
412          * tell which channel we are scanning.
413          */
414         int curr_channel;
415
416         /* Channel information */
417         struct ipmi_channel channels[IPMI_MAX_CHANNELS];
418
419         /* Proc FS stuff. */
420         struct proc_dir_entry *proc_dir;
421         char                  proc_dir_name[10];
422
423         atomic_t stats[IPMI_NUM_STATS];
424
425         /*
426          * run_to_completion duplicate of smb_info, smi_info
427          * and ipmi_serial_info structures. Used to decrease numbers of
428          * parameters passed by "low" level IPMI code.
429          */
430         int run_to_completion;
431 };
432 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
433
434 /**
435  * The driver model view of the IPMI messaging driver.
436  */
437 static struct platform_driver ipmidriver = {
438         .driver = {
439                 .name = "ipmi",
440                 .bus = &platform_bus_type
441         }
442 };
443 static DEFINE_MUTEX(ipmidriver_mutex);
444
445 static LIST_HEAD(ipmi_interfaces);
446 static DEFINE_MUTEX(ipmi_interfaces_mutex);
447
448 /*
449  * List of watchers that want to know when smi's are added and deleted.
450  */
451 static LIST_HEAD(smi_watchers);
452 static DEFINE_MUTEX(smi_watchers_mutex);
453
454
455 #define ipmi_inc_stat(intf, stat) \
456         atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
457 #define ipmi_get_stat(intf, stat) \
458         ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
459
460 static int is_lan_addr(struct ipmi_addr *addr)
461 {
462         return addr->addr_type == IPMI_LAN_ADDR_TYPE;
463 }
464
465 static int is_ipmb_addr(struct ipmi_addr *addr)
466 {
467         return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
468 }
469
470 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
471 {
472         return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
473 }
474
475 static void free_recv_msg_list(struct list_head *q)
476 {
477         struct ipmi_recv_msg *msg, *msg2;
478
479         list_for_each_entry_safe(msg, msg2, q, link) {
480                 list_del(&msg->link);
481                 ipmi_free_recv_msg(msg);
482         }
483 }
484
485 static void free_smi_msg_list(struct list_head *q)
486 {
487         struct ipmi_smi_msg *msg, *msg2;
488
489         list_for_each_entry_safe(msg, msg2, q, link) {
490                 list_del(&msg->link);
491                 ipmi_free_smi_msg(msg);
492         }
493 }
494
495 static void clean_up_interface_data(ipmi_smi_t intf)
496 {
497         int              i;
498         struct cmd_rcvr  *rcvr, *rcvr2;
499         struct list_head list;
500
501         tasklet_kill(&intf->recv_tasklet);
502
503         free_smi_msg_list(&intf->waiting_msgs);
504         free_recv_msg_list(&intf->waiting_events);
505
506         /*
507          * Wholesale remove all the entries from the list in the
508          * interface and wait for RCU to know that none are in use.
509          */
510         mutex_lock(&intf->cmd_rcvrs_mutex);
511         INIT_LIST_HEAD(&list);
512         list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
513         mutex_unlock(&intf->cmd_rcvrs_mutex);
514
515         list_for_each_entry_safe(rcvr, rcvr2, &list, link)
516                 kfree(rcvr);
517
518         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
519                 if ((intf->seq_table[i].inuse)
520                                         && (intf->seq_table[i].recv_msg))
521                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
522         }
523 }
524
525 static void intf_free(struct kref *ref)
526 {
527         ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
528
529         clean_up_interface_data(intf);
530         kfree(intf);
531 }
532
533 struct watcher_entry {
534         int              intf_num;
535         ipmi_smi_t       intf;
536         struct list_head link;
537 };
538
539 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
540 {
541         ipmi_smi_t intf;
542         LIST_HEAD(to_deliver);
543         struct watcher_entry *e, *e2;
544
545         mutex_lock(&smi_watchers_mutex);
546
547         mutex_lock(&ipmi_interfaces_mutex);
548
549         /* Build a list of things to deliver. */
550         list_for_each_entry(intf, &ipmi_interfaces, link) {
551                 if (intf->intf_num == -1)
552                         continue;
553                 e = kmalloc(sizeof(*e), GFP_KERNEL);
554                 if (!e)
555                         goto out_err;
556                 kref_get(&intf->refcount);
557                 e->intf = intf;
558                 e->intf_num = intf->intf_num;
559                 list_add_tail(&e->link, &to_deliver);
560         }
561
562         /* We will succeed, so add it to the list. */
563         list_add(&watcher->link, &smi_watchers);
564
565         mutex_unlock(&ipmi_interfaces_mutex);
566
567         list_for_each_entry_safe(e, e2, &to_deliver, link) {
568                 list_del(&e->link);
569                 watcher->new_smi(e->intf_num, e->intf->si_dev);
570                 kref_put(&e->intf->refcount, intf_free);
571                 kfree(e);
572         }
573
574         mutex_unlock(&smi_watchers_mutex);
575
576         return 0;
577
578  out_err:
579         mutex_unlock(&ipmi_interfaces_mutex);
580         mutex_unlock(&smi_watchers_mutex);
581         list_for_each_entry_safe(e, e2, &to_deliver, link) {
582                 list_del(&e->link);
583                 kref_put(&e->intf->refcount, intf_free);
584                 kfree(e);
585         }
586         return -ENOMEM;
587 }
588 EXPORT_SYMBOL(ipmi_smi_watcher_register);
589
590 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
591 {
592         mutex_lock(&smi_watchers_mutex);
593         list_del(&(watcher->link));
594         mutex_unlock(&smi_watchers_mutex);
595         return 0;
596 }
597 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
598
599 /*
600  * Must be called with smi_watchers_mutex held.
601  */
602 static void
603 call_smi_watchers(int i, struct device *dev)
604 {
605         struct ipmi_smi_watcher *w;
606
607         list_for_each_entry(w, &smi_watchers, link) {
608                 if (try_module_get(w->owner)) {
609                         w->new_smi(i, dev);
610                         module_put(w->owner);
611                 }
612         }
613 }
614
615 static int
616 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
617 {
618         if (addr1->addr_type != addr2->addr_type)
619                 return 0;
620
621         if (addr1->channel != addr2->channel)
622                 return 0;
623
624         if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
625                 struct ipmi_system_interface_addr *smi_addr1
626                     = (struct ipmi_system_interface_addr *) addr1;
627                 struct ipmi_system_interface_addr *smi_addr2
628                     = (struct ipmi_system_interface_addr *) addr2;
629                 return (smi_addr1->lun == smi_addr2->lun);
630         }
631
632         if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
633                 struct ipmi_ipmb_addr *ipmb_addr1
634                     = (struct ipmi_ipmb_addr *) addr1;
635                 struct ipmi_ipmb_addr *ipmb_addr2
636                     = (struct ipmi_ipmb_addr *) addr2;
637
638                 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
639                         && (ipmb_addr1->lun == ipmb_addr2->lun));
640         }
641
642         if (is_lan_addr(addr1)) {
643                 struct ipmi_lan_addr *lan_addr1
644                         = (struct ipmi_lan_addr *) addr1;
645                 struct ipmi_lan_addr *lan_addr2
646                     = (struct ipmi_lan_addr *) addr2;
647
648                 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
649                         && (lan_addr1->local_SWID == lan_addr2->local_SWID)
650                         && (lan_addr1->session_handle
651                             == lan_addr2->session_handle)
652                         && (lan_addr1->lun == lan_addr2->lun));
653         }
654
655         return 1;
656 }
657
658 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
659 {
660         if (len < sizeof(struct ipmi_system_interface_addr))
661                 return -EINVAL;
662
663         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
664                 if (addr->channel != IPMI_BMC_CHANNEL)
665                         return -EINVAL;
666                 return 0;
667         }
668
669         if ((addr->channel == IPMI_BMC_CHANNEL)
670             || (addr->channel >= IPMI_MAX_CHANNELS)
671             || (addr->channel < 0))
672                 return -EINVAL;
673
674         if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
675                 if (len < sizeof(struct ipmi_ipmb_addr))
676                         return -EINVAL;
677                 return 0;
678         }
679
680         if (is_lan_addr(addr)) {
681                 if (len < sizeof(struct ipmi_lan_addr))
682                         return -EINVAL;
683                 return 0;
684         }
685
686         return -EINVAL;
687 }
688 EXPORT_SYMBOL(ipmi_validate_addr);
689
690 unsigned int ipmi_addr_length(int addr_type)
691 {
692         if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
693                 return sizeof(struct ipmi_system_interface_addr);
694
695         if ((addr_type == IPMI_IPMB_ADDR_TYPE)
696                         || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
697                 return sizeof(struct ipmi_ipmb_addr);
698
699         if (addr_type == IPMI_LAN_ADDR_TYPE)
700                 return sizeof(struct ipmi_lan_addr);
701
702         return 0;
703 }
704 EXPORT_SYMBOL(ipmi_addr_length);
705
706 static void deliver_response(struct ipmi_recv_msg *msg)
707 {
708         if (!msg->user) {
709                 ipmi_smi_t    intf = msg->user_msg_data;
710
711                 /* Special handling for NULL users. */
712                 if (intf->null_user_handler) {
713                         intf->null_user_handler(intf, msg);
714                         ipmi_inc_stat(intf, handled_local_responses);
715                 } else {
716                         /* No handler, so give up. */
717                         ipmi_inc_stat(intf, unhandled_local_responses);
718                 }
719                 ipmi_free_recv_msg(msg);
720         } else {
721                 ipmi_user_t user = msg->user;
722                 user->handler->ipmi_recv_hndl(msg, user->handler_data);
723         }
724 }
725
726 static void
727 deliver_err_response(struct ipmi_recv_msg *msg, int err)
728 {
729         msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
730         msg->msg_data[0] = err;
731         msg->msg.netfn |= 1; /* Convert to a response. */
732         msg->msg.data_len = 1;
733         msg->msg.data = msg->msg_data;
734         deliver_response(msg);
735 }
736
737 /*
738  * Find the next sequence number not being used and add the given
739  * message with the given timeout to the sequence table.  This must be
740  * called with the interface's seq_lock held.
741  */
742 static int intf_next_seq(ipmi_smi_t           intf,
743                          struct ipmi_recv_msg *recv_msg,
744                          unsigned long        timeout,
745                          int                  retries,
746                          int                  broadcast,
747                          unsigned char        *seq,
748                          long                 *seqid)
749 {
750         int          rv = 0;
751         unsigned int i;
752
753         for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
754                                         i = (i+1)%IPMI_IPMB_NUM_SEQ) {
755                 if (!intf->seq_table[i].inuse)
756                         break;
757         }
758
759         if (!intf->seq_table[i].inuse) {
760                 intf->seq_table[i].recv_msg = recv_msg;
761
762                 /*
763                  * Start with the maximum timeout, when the send response
764                  * comes in we will start the real timer.
765                  */
766                 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
767                 intf->seq_table[i].orig_timeout = timeout;
768                 intf->seq_table[i].retries_left = retries;
769                 intf->seq_table[i].broadcast = broadcast;
770                 intf->seq_table[i].inuse = 1;
771                 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
772                 *seq = i;
773                 *seqid = intf->seq_table[i].seqid;
774                 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
775         } else {
776                 rv = -EAGAIN;
777         }
778
779         return rv;
780 }
781
782 /*
783  * Return the receive message for the given sequence number and
784  * release the sequence number so it can be reused.  Some other data
785  * is passed in to be sure the message matches up correctly (to help
786  * guard against message coming in after their timeout and the
787  * sequence number being reused).
788  */
789 static int intf_find_seq(ipmi_smi_t           intf,
790                          unsigned char        seq,
791                          short                channel,
792                          unsigned char        cmd,
793                          unsigned char        netfn,
794                          struct ipmi_addr     *addr,
795                          struct ipmi_recv_msg **recv_msg)
796 {
797         int           rv = -ENODEV;
798         unsigned long flags;
799
800         if (seq >= IPMI_IPMB_NUM_SEQ)
801                 return -EINVAL;
802
803         spin_lock_irqsave(&(intf->seq_lock), flags);
804         if (intf->seq_table[seq].inuse) {
805                 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
806
807                 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
808                                 && (msg->msg.netfn == netfn)
809                                 && (ipmi_addr_equal(addr, &(msg->addr)))) {
810                         *recv_msg = msg;
811                         intf->seq_table[seq].inuse = 0;
812                         rv = 0;
813                 }
814         }
815         spin_unlock_irqrestore(&(intf->seq_lock), flags);
816
817         return rv;
818 }
819
820
821 /* Start the timer for a specific sequence table entry. */
822 static int intf_start_seq_timer(ipmi_smi_t intf,
823                                 long       msgid)
824 {
825         int           rv = -ENODEV;
826         unsigned long flags;
827         unsigned char seq;
828         unsigned long seqid;
829
830
831         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
832
833         spin_lock_irqsave(&(intf->seq_lock), flags);
834         /*
835          * We do this verification because the user can be deleted
836          * while a message is outstanding.
837          */
838         if ((intf->seq_table[seq].inuse)
839                                 && (intf->seq_table[seq].seqid == seqid)) {
840                 struct seq_table *ent = &(intf->seq_table[seq]);
841                 ent->timeout = ent->orig_timeout;
842                 rv = 0;
843         }
844         spin_unlock_irqrestore(&(intf->seq_lock), flags);
845
846         return rv;
847 }
848
849 /* Got an error for the send message for a specific sequence number. */
850 static int intf_err_seq(ipmi_smi_t   intf,
851                         long         msgid,
852                         unsigned int err)
853 {
854         int                  rv = -ENODEV;
855         unsigned long        flags;
856         unsigned char        seq;
857         unsigned long        seqid;
858         struct ipmi_recv_msg *msg = NULL;
859
860
861         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
862
863         spin_lock_irqsave(&(intf->seq_lock), flags);
864         /*
865          * We do this verification because the user can be deleted
866          * while a message is outstanding.
867          */
868         if ((intf->seq_table[seq].inuse)
869                                 && (intf->seq_table[seq].seqid == seqid)) {
870                 struct seq_table *ent = &(intf->seq_table[seq]);
871
872                 ent->inuse = 0;
873                 msg = ent->recv_msg;
874                 rv = 0;
875         }
876         spin_unlock_irqrestore(&(intf->seq_lock), flags);
877
878         if (msg)
879                 deliver_err_response(msg, err);
880
881         return rv;
882 }
883
884
885 int ipmi_create_user(unsigned int          if_num,
886                      struct ipmi_user_hndl *handler,
887                      void                  *handler_data,
888                      ipmi_user_t           *user)
889 {
890         unsigned long flags;
891         ipmi_user_t   new_user;
892         int           rv = 0;
893         ipmi_smi_t    intf;
894
895         /*
896          * There is no module usecount here, because it's not
897          * required.  Since this can only be used by and called from
898          * other modules, they will implicitly use this module, and
899          * thus this can't be removed unless the other modules are
900          * removed.
901          */
902
903         if (handler == NULL)
904                 return -EINVAL;
905
906         /*
907          * Make sure the driver is actually initialized, this handles
908          * problems with initialization order.
909          */
910         if (!initialized) {
911                 rv = ipmi_init_msghandler();
912                 if (rv)
913                         return rv;
914
915                 /*
916                  * The init code doesn't return an error if it was turned
917                  * off, but it won't initialize.  Check that.
918                  */
919                 if (!initialized)
920                         return -ENODEV;
921         }
922
923         new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
924         if (!new_user)
925                 return -ENOMEM;
926
927         mutex_lock(&ipmi_interfaces_mutex);
928         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
929                 if (intf->intf_num == if_num)
930                         goto found;
931         }
932         /* Not found, return an error */
933         rv = -EINVAL;
934         goto out_kfree;
935
936  found:
937         /* Note that each existing user holds a refcount to the interface. */
938         kref_get(&intf->refcount);
939
940         kref_init(&new_user->refcount);
941         new_user->handler = handler;
942         new_user->handler_data = handler_data;
943         new_user->intf = intf;
944         new_user->gets_events = 0;
945
946         if (!try_module_get(intf->handlers->owner)) {
947                 rv = -ENODEV;
948                 goto out_kref;
949         }
950
951         if (intf->handlers->inc_usecount) {
952                 rv = intf->handlers->inc_usecount(intf->send_info);
953                 if (rv) {
954                         module_put(intf->handlers->owner);
955                         goto out_kref;
956                 }
957         }
958
959         /*
960          * Hold the lock so intf->handlers is guaranteed to be good
961          * until now
962          */
963         mutex_unlock(&ipmi_interfaces_mutex);
964
965         new_user->valid = 1;
966         spin_lock_irqsave(&intf->seq_lock, flags);
967         list_add_rcu(&new_user->link, &intf->users);
968         spin_unlock_irqrestore(&intf->seq_lock, flags);
969         *user = new_user;
970         return 0;
971
972 out_kref:
973         kref_put(&intf->refcount, intf_free);
974 out_kfree:
975         mutex_unlock(&ipmi_interfaces_mutex);
976         kfree(new_user);
977         return rv;
978 }
979 EXPORT_SYMBOL(ipmi_create_user);
980
981 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
982 {
983         int           rv = 0;
984         ipmi_smi_t    intf;
985         struct ipmi_smi_handlers *handlers;
986
987         mutex_lock(&ipmi_interfaces_mutex);
988         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
989                 if (intf->intf_num == if_num)
990                         goto found;
991         }
992         /* Not found, return an error */
993         rv = -EINVAL;
994         mutex_unlock(&ipmi_interfaces_mutex);
995         return rv;
996
997 found:
998         handlers = intf->handlers;
999         rv = -ENOSYS;
1000         if (handlers->get_smi_info)
1001                 rv = handlers->get_smi_info(intf->send_info, data);
1002         mutex_unlock(&ipmi_interfaces_mutex);
1003
1004         return rv;
1005 }
1006 EXPORT_SYMBOL(ipmi_get_smi_info);
1007
1008 static void free_user(struct kref *ref)
1009 {
1010         ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1011         kfree(user);
1012 }
1013
1014 int ipmi_destroy_user(ipmi_user_t user)
1015 {
1016         ipmi_smi_t       intf = user->intf;
1017         int              i;
1018         unsigned long    flags;
1019         struct cmd_rcvr  *rcvr;
1020         struct cmd_rcvr  *rcvrs = NULL;
1021
1022         user->valid = 0;
1023
1024         /* Remove the user from the interface's sequence table. */
1025         spin_lock_irqsave(&intf->seq_lock, flags);
1026         list_del_rcu(&user->link);
1027
1028         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1029                 if (intf->seq_table[i].inuse
1030                     && (intf->seq_table[i].recv_msg->user == user)) {
1031                         intf->seq_table[i].inuse = 0;
1032                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1033                 }
1034         }
1035         spin_unlock_irqrestore(&intf->seq_lock, flags);
1036
1037         /*
1038          * Remove the user from the command receiver's table.  First
1039          * we build a list of everything (not using the standard link,
1040          * since other things may be using it till we do
1041          * synchronize_rcu()) then free everything in that list.
1042          */
1043         mutex_lock(&intf->cmd_rcvrs_mutex);
1044         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1045                 if (rcvr->user == user) {
1046                         list_del_rcu(&rcvr->link);
1047                         rcvr->next = rcvrs;
1048                         rcvrs = rcvr;
1049                 }
1050         }
1051         mutex_unlock(&intf->cmd_rcvrs_mutex);
1052         synchronize_rcu();
1053         while (rcvrs) {
1054                 rcvr = rcvrs;
1055                 rcvrs = rcvr->next;
1056                 kfree(rcvr);
1057         }
1058
1059         mutex_lock(&ipmi_interfaces_mutex);
1060         if (intf->handlers) {
1061                 module_put(intf->handlers->owner);
1062                 if (intf->handlers->dec_usecount)
1063                         intf->handlers->dec_usecount(intf->send_info);
1064         }
1065         mutex_unlock(&ipmi_interfaces_mutex);
1066
1067         kref_put(&intf->refcount, intf_free);
1068
1069         kref_put(&user->refcount, free_user);
1070
1071         return 0;
1072 }
1073 EXPORT_SYMBOL(ipmi_destroy_user);
1074
1075 void ipmi_get_version(ipmi_user_t   user,
1076                       unsigned char *major,
1077                       unsigned char *minor)
1078 {
1079         *major = user->intf->ipmi_version_major;
1080         *minor = user->intf->ipmi_version_minor;
1081 }
1082 EXPORT_SYMBOL(ipmi_get_version);
1083
1084 int ipmi_set_my_address(ipmi_user_t   user,
1085                         unsigned int  channel,
1086                         unsigned char address)
1087 {
1088         if (channel >= IPMI_MAX_CHANNELS)
1089                 return -EINVAL;
1090         user->intf->channels[channel].address = address;
1091         return 0;
1092 }
1093 EXPORT_SYMBOL(ipmi_set_my_address);
1094
1095 int ipmi_get_my_address(ipmi_user_t   user,
1096                         unsigned int  channel,
1097                         unsigned char *address)
1098 {
1099         if (channel >= IPMI_MAX_CHANNELS)
1100                 return -EINVAL;
1101         *address = user->intf->channels[channel].address;
1102         return 0;
1103 }
1104 EXPORT_SYMBOL(ipmi_get_my_address);
1105
1106 int ipmi_set_my_LUN(ipmi_user_t   user,
1107                     unsigned int  channel,
1108                     unsigned char LUN)
1109 {
1110         if (channel >= IPMI_MAX_CHANNELS)
1111                 return -EINVAL;
1112         user->intf->channels[channel].lun = LUN & 0x3;
1113         return 0;
1114 }
1115 EXPORT_SYMBOL(ipmi_set_my_LUN);
1116
1117 int ipmi_get_my_LUN(ipmi_user_t   user,
1118                     unsigned int  channel,
1119                     unsigned char *address)
1120 {
1121         if (channel >= IPMI_MAX_CHANNELS)
1122                 return -EINVAL;
1123         *address = user->intf->channels[channel].lun;
1124         return 0;
1125 }
1126 EXPORT_SYMBOL(ipmi_get_my_LUN);
1127
1128 int ipmi_get_maintenance_mode(ipmi_user_t user)
1129 {
1130         int           mode;
1131         unsigned long flags;
1132
1133         spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1134         mode = user->intf->maintenance_mode;
1135         spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1136
1137         return mode;
1138 }
1139 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1140
1141 static void maintenance_mode_update(ipmi_smi_t intf)
1142 {
1143         if (intf->handlers->set_maintenance_mode)
1144                 intf->handlers->set_maintenance_mode(
1145                         intf->send_info, intf->maintenance_mode_enable);
1146 }
1147
1148 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1149 {
1150         int           rv = 0;
1151         unsigned long flags;
1152         ipmi_smi_t    intf = user->intf;
1153
1154         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1155         if (intf->maintenance_mode != mode) {
1156                 switch (mode) {
1157                 case IPMI_MAINTENANCE_MODE_AUTO:
1158                         intf->maintenance_mode = mode;
1159                         intf->maintenance_mode_enable
1160                                 = (intf->auto_maintenance_timeout > 0);
1161                         break;
1162
1163                 case IPMI_MAINTENANCE_MODE_OFF:
1164                         intf->maintenance_mode = mode;
1165                         intf->maintenance_mode_enable = 0;
1166                         break;
1167
1168                 case IPMI_MAINTENANCE_MODE_ON:
1169                         intf->maintenance_mode = mode;
1170                         intf->maintenance_mode_enable = 1;
1171                         break;
1172
1173                 default:
1174                         rv = -EINVAL;
1175                         goto out_unlock;
1176                 }
1177
1178                 maintenance_mode_update(intf);
1179         }
1180  out_unlock:
1181         spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1182
1183         return rv;
1184 }
1185 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1186
1187 int ipmi_set_gets_events(ipmi_user_t user, int val)
1188 {
1189         unsigned long        flags;
1190         ipmi_smi_t           intf = user->intf;
1191         struct ipmi_recv_msg *msg, *msg2;
1192         struct list_head     msgs;
1193
1194         INIT_LIST_HEAD(&msgs);
1195
1196         spin_lock_irqsave(&intf->events_lock, flags);
1197         user->gets_events = val;
1198
1199         if (intf->delivering_events)
1200                 /*
1201                  * Another thread is delivering events for this, so
1202                  * let it handle any new events.
1203                  */
1204                 goto out;
1205
1206         /* Deliver any queued events. */
1207         while (user->gets_events && !list_empty(&intf->waiting_events)) {
1208                 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1209                         list_move_tail(&msg->link, &msgs);
1210                 intf->waiting_events_count = 0;
1211                 if (intf->event_msg_printed) {
1212                         printk(KERN_WARNING PFX "Event queue no longer"
1213                                " full\n");
1214                         intf->event_msg_printed = 0;
1215                 }
1216
1217                 intf->delivering_events = 1;
1218                 spin_unlock_irqrestore(&intf->events_lock, flags);
1219
1220                 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1221                         msg->user = user;
1222                         kref_get(&user->refcount);
1223                         deliver_response(msg);
1224                 }
1225
1226                 spin_lock_irqsave(&intf->events_lock, flags);
1227                 intf->delivering_events = 0;
1228         }
1229
1230  out:
1231         spin_unlock_irqrestore(&intf->events_lock, flags);
1232
1233         return 0;
1234 }
1235 EXPORT_SYMBOL(ipmi_set_gets_events);
1236
1237 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1238                                       unsigned char netfn,
1239                                       unsigned char cmd,
1240                                       unsigned char chan)
1241 {
1242         struct cmd_rcvr *rcvr;
1243
1244         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1245                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1246                                         && (rcvr->chans & (1 << chan)))
1247                         return rcvr;
1248         }
1249         return NULL;
1250 }
1251
1252 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1253                                  unsigned char netfn,
1254                                  unsigned char cmd,
1255                                  unsigned int  chans)
1256 {
1257         struct cmd_rcvr *rcvr;
1258
1259         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1260                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1261                                         && (rcvr->chans & chans))
1262                         return 0;
1263         }
1264         return 1;
1265 }
1266
1267 int ipmi_register_for_cmd(ipmi_user_t   user,
1268                           unsigned char netfn,
1269                           unsigned char cmd,
1270                           unsigned int  chans)
1271 {
1272         ipmi_smi_t      intf = user->intf;
1273         struct cmd_rcvr *rcvr;
1274         int             rv = 0;
1275
1276
1277         rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1278         if (!rcvr)
1279                 return -ENOMEM;
1280         rcvr->cmd = cmd;
1281         rcvr->netfn = netfn;
1282         rcvr->chans = chans;
1283         rcvr->user = user;
1284
1285         mutex_lock(&intf->cmd_rcvrs_mutex);
1286         /* Make sure the command/netfn is not already registered. */
1287         if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1288                 rv = -EBUSY;
1289                 goto out_unlock;
1290         }
1291
1292         list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1293
1294  out_unlock:
1295         mutex_unlock(&intf->cmd_rcvrs_mutex);
1296         if (rv)
1297                 kfree(rcvr);
1298
1299         return rv;
1300 }
1301 EXPORT_SYMBOL(ipmi_register_for_cmd);
1302
1303 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1304                             unsigned char netfn,
1305                             unsigned char cmd,
1306                             unsigned int  chans)
1307 {
1308         ipmi_smi_t      intf = user->intf;
1309         struct cmd_rcvr *rcvr;
1310         struct cmd_rcvr *rcvrs = NULL;
1311         int i, rv = -ENOENT;
1312
1313         mutex_lock(&intf->cmd_rcvrs_mutex);
1314         for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1315                 if (((1 << i) & chans) == 0)
1316                         continue;
1317                 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1318                 if (rcvr == NULL)
1319                         continue;
1320                 if (rcvr->user == user) {
1321                         rv = 0;
1322                         rcvr->chans &= ~chans;
1323                         if (rcvr->chans == 0) {
1324                                 list_del_rcu(&rcvr->link);
1325                                 rcvr->next = rcvrs;
1326                                 rcvrs = rcvr;
1327                         }
1328                 }
1329         }
1330         mutex_unlock(&intf->cmd_rcvrs_mutex);
1331         synchronize_rcu();
1332         while (rcvrs) {
1333                 rcvr = rcvrs;
1334                 rcvrs = rcvr->next;
1335                 kfree(rcvr);
1336         }
1337         return rv;
1338 }
1339 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1340
1341 static unsigned char
1342 ipmb_checksum(unsigned char *data, int size)
1343 {
1344         unsigned char csum = 0;
1345
1346         for (; size > 0; size--, data++)
1347                 csum += *data;
1348
1349         return -csum;
1350 }
1351
1352 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1353                                    struct kernel_ipmi_msg *msg,
1354                                    struct ipmi_ipmb_addr *ipmb_addr,
1355                                    long                  msgid,
1356                                    unsigned char         ipmb_seq,
1357                                    int                   broadcast,
1358                                    unsigned char         source_address,
1359                                    unsigned char         source_lun)
1360 {
1361         int i = broadcast;
1362
1363         /* Format the IPMB header data. */
1364         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1365         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1366         smi_msg->data[2] = ipmb_addr->channel;
1367         if (broadcast)
1368                 smi_msg->data[3] = 0;
1369         smi_msg->data[i+3] = ipmb_addr->slave_addr;
1370         smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1371         smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1372         smi_msg->data[i+6] = source_address;
1373         smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1374         smi_msg->data[i+8] = msg->cmd;
1375
1376         /* Now tack on the data to the message. */
1377         if (msg->data_len > 0)
1378                 memcpy(&(smi_msg->data[i+9]), msg->data,
1379                        msg->data_len);
1380         smi_msg->data_size = msg->data_len + 9;
1381
1382         /* Now calculate the checksum and tack it on. */
1383         smi_msg->data[i+smi_msg->data_size]
1384                 = ipmb_checksum(&(smi_msg->data[i+6]),
1385                                 smi_msg->data_size-6);
1386
1387         /*
1388          * Add on the checksum size and the offset from the
1389          * broadcast.
1390          */
1391         smi_msg->data_size += 1 + i;
1392
1393         smi_msg->msgid = msgid;
1394 }
1395
1396 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1397                                   struct kernel_ipmi_msg *msg,
1398                                   struct ipmi_lan_addr  *lan_addr,
1399                                   long                  msgid,
1400                                   unsigned char         ipmb_seq,
1401                                   unsigned char         source_lun)
1402 {
1403         /* Format the IPMB header data. */
1404         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1405         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1406         smi_msg->data[2] = lan_addr->channel;
1407         smi_msg->data[3] = lan_addr->session_handle;
1408         smi_msg->data[4] = lan_addr->remote_SWID;
1409         smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1410         smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1411         smi_msg->data[7] = lan_addr->local_SWID;
1412         smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1413         smi_msg->data[9] = msg->cmd;
1414
1415         /* Now tack on the data to the message. */
1416         if (msg->data_len > 0)
1417                 memcpy(&(smi_msg->data[10]), msg->data,
1418                        msg->data_len);
1419         smi_msg->data_size = msg->data_len + 10;
1420
1421         /* Now calculate the checksum and tack it on. */
1422         smi_msg->data[smi_msg->data_size]
1423                 = ipmb_checksum(&(smi_msg->data[7]),
1424                                 smi_msg->data_size-7);
1425
1426         /*
1427          * Add on the checksum size and the offset from the
1428          * broadcast.
1429          */
1430         smi_msg->data_size += 1;
1431
1432         smi_msg->msgid = msgid;
1433 }
1434
1435 /*
1436  * Separate from ipmi_request so that the user does not have to be
1437  * supplied in certain circumstances (mainly at panic time).  If
1438  * messages are supplied, they will be freed, even if an error
1439  * occurs.
1440  */
1441 static int i_ipmi_request(ipmi_user_t          user,
1442                           ipmi_smi_t           intf,
1443                           struct ipmi_addr     *addr,
1444                           long                 msgid,
1445                           struct kernel_ipmi_msg *msg,
1446                           void                 *user_msg_data,
1447                           void                 *supplied_smi,
1448                           struct ipmi_recv_msg *supplied_recv,
1449                           int                  priority,
1450                           unsigned char        source_address,
1451                           unsigned char        source_lun,
1452                           int                  retries,
1453                           unsigned int         retry_time_ms)
1454 {
1455         int                      rv = 0;
1456         struct ipmi_smi_msg      *smi_msg;
1457         struct ipmi_recv_msg     *recv_msg;
1458         unsigned long            flags;
1459         struct ipmi_smi_handlers *handlers;
1460
1461
1462         if (supplied_recv)
1463                 recv_msg = supplied_recv;
1464         else {
1465                 recv_msg = ipmi_alloc_recv_msg();
1466                 if (recv_msg == NULL)
1467                         return -ENOMEM;
1468         }
1469         recv_msg->user_msg_data = user_msg_data;
1470
1471         if (supplied_smi)
1472                 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1473         else {
1474                 smi_msg = ipmi_alloc_smi_msg();
1475                 if (smi_msg == NULL) {
1476                         ipmi_free_recv_msg(recv_msg);
1477                         return -ENOMEM;
1478                 }
1479         }
1480
1481         rcu_read_lock();
1482         handlers = intf->handlers;
1483         if (!handlers) {
1484                 rv = -ENODEV;
1485                 goto out_err;
1486         }
1487
1488         recv_msg->user = user;
1489         if (user)
1490                 kref_get(&user->refcount);
1491         recv_msg->msgid = msgid;
1492         /*
1493          * Store the message to send in the receive message so timeout
1494          * responses can get the proper response data.
1495          */
1496         recv_msg->msg = *msg;
1497
1498         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1499                 struct ipmi_system_interface_addr *smi_addr;
1500
1501                 if (msg->netfn & 1) {
1502                         /* Responses are not allowed to the SMI. */
1503                         rv = -EINVAL;
1504                         goto out_err;
1505                 }
1506
1507                 smi_addr = (struct ipmi_system_interface_addr *) addr;
1508                 if (smi_addr->lun > 3) {
1509                         ipmi_inc_stat(intf, sent_invalid_commands);
1510                         rv = -EINVAL;
1511                         goto out_err;
1512                 }
1513
1514                 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1515
1516                 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1517                     && ((msg->cmd == IPMI_SEND_MSG_CMD)
1518                         || (msg->cmd == IPMI_GET_MSG_CMD)
1519                         || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1520                         /*
1521                          * We don't let the user do these, since we manage
1522                          * the sequence numbers.
1523                          */
1524                         ipmi_inc_stat(intf, sent_invalid_commands);
1525                         rv = -EINVAL;
1526                         goto out_err;
1527                 }
1528
1529                 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1530                       && ((msg->cmd == IPMI_COLD_RESET_CMD)
1531                           || (msg->cmd == IPMI_WARM_RESET_CMD)))
1532                      || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1533                         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1534                         intf->auto_maintenance_timeout
1535                                 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1536                         if (!intf->maintenance_mode
1537                             && !intf->maintenance_mode_enable) {
1538                                 intf->maintenance_mode_enable = 1;
1539                                 maintenance_mode_update(intf);
1540                         }
1541                         spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1542                                                flags);
1543                 }
1544
1545                 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1546                         ipmi_inc_stat(intf, sent_invalid_commands);
1547                         rv = -EMSGSIZE;
1548                         goto out_err;
1549                 }
1550
1551                 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1552                 smi_msg->data[1] = msg->cmd;
1553                 smi_msg->msgid = msgid;
1554                 smi_msg->user_data = recv_msg;
1555                 if (msg->data_len > 0)
1556                         memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1557                 smi_msg->data_size = msg->data_len + 2;
1558                 ipmi_inc_stat(intf, sent_local_commands);
1559         } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1560                 struct ipmi_ipmb_addr *ipmb_addr;
1561                 unsigned char         ipmb_seq;
1562                 long                  seqid;
1563                 int                   broadcast = 0;
1564
1565                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1566                         ipmi_inc_stat(intf, sent_invalid_commands);
1567                         rv = -EINVAL;
1568                         goto out_err;
1569                 }
1570
1571                 if (intf->channels[addr->channel].medium
1572                                         != IPMI_CHANNEL_MEDIUM_IPMB) {
1573                         ipmi_inc_stat(intf, sent_invalid_commands);
1574                         rv = -EINVAL;
1575                         goto out_err;
1576                 }
1577
1578                 if (retries < 0) {
1579                     if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1580                         retries = 0; /* Don't retry broadcasts. */
1581                     else
1582                         retries = 4;
1583                 }
1584                 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1585                     /*
1586                      * Broadcasts add a zero at the beginning of the
1587                      * message, but otherwise is the same as an IPMB
1588                      * address.
1589                      */
1590                     addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1591                     broadcast = 1;
1592                 }
1593
1594
1595                 /* Default to 1 second retries. */
1596                 if (retry_time_ms == 0)
1597                     retry_time_ms = 1000;
1598
1599                 /*
1600                  * 9 for the header and 1 for the checksum, plus
1601                  * possibly one for the broadcast.
1602                  */
1603                 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1604                         ipmi_inc_stat(intf, sent_invalid_commands);
1605                         rv = -EMSGSIZE;
1606                         goto out_err;
1607                 }
1608
1609                 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1610                 if (ipmb_addr->lun > 3) {
1611                         ipmi_inc_stat(intf, sent_invalid_commands);
1612                         rv = -EINVAL;
1613                         goto out_err;
1614                 }
1615
1616                 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1617
1618                 if (recv_msg->msg.netfn & 0x1) {
1619                         /*
1620                          * It's a response, so use the user's sequence
1621                          * from msgid.
1622                          */
1623                         ipmi_inc_stat(intf, sent_ipmb_responses);
1624                         format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1625                                         msgid, broadcast,
1626                                         source_address, source_lun);
1627
1628                         /*
1629                          * Save the receive message so we can use it
1630                          * to deliver the response.
1631                          */
1632                         smi_msg->user_data = recv_msg;
1633                 } else {
1634                         /* It's a command, so get a sequence for it. */
1635
1636                         spin_lock_irqsave(&(intf->seq_lock), flags);
1637
1638                         /*
1639                          * Create a sequence number with a 1 second
1640                          * timeout and 4 retries.
1641                          */
1642                         rv = intf_next_seq(intf,
1643                                            recv_msg,
1644                                            retry_time_ms,
1645                                            retries,
1646                                            broadcast,
1647                                            &ipmb_seq,
1648                                            &seqid);
1649                         if (rv) {
1650                                 /*
1651                                  * We have used up all the sequence numbers,
1652                                  * probably, so abort.
1653                                  */
1654                                 spin_unlock_irqrestore(&(intf->seq_lock),
1655                                                        flags);
1656                                 goto out_err;
1657                         }
1658
1659                         ipmi_inc_stat(intf, sent_ipmb_commands);
1660
1661                         /*
1662                          * Store the sequence number in the message,
1663                          * so that when the send message response
1664                          * comes back we can start the timer.
1665                          */
1666                         format_ipmb_msg(smi_msg, msg, ipmb_addr,
1667                                         STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1668                                         ipmb_seq, broadcast,
1669                                         source_address, source_lun);
1670
1671                         /*
1672                          * Copy the message into the recv message data, so we
1673                          * can retransmit it later if necessary.
1674                          */
1675                         memcpy(recv_msg->msg_data, smi_msg->data,
1676                                smi_msg->data_size);
1677                         recv_msg->msg.data = recv_msg->msg_data;
1678                         recv_msg->msg.data_len = smi_msg->data_size;
1679
1680                         /*
1681                          * We don't unlock until here, because we need
1682                          * to copy the completed message into the
1683                          * recv_msg before we release the lock.
1684                          * Otherwise, race conditions may bite us.  I
1685                          * know that's pretty paranoid, but I prefer
1686                          * to be correct.
1687                          */
1688                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1689                 }
1690         } else if (is_lan_addr(addr)) {
1691                 struct ipmi_lan_addr  *lan_addr;
1692                 unsigned char         ipmb_seq;
1693                 long                  seqid;
1694
1695                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1696                         ipmi_inc_stat(intf, sent_invalid_commands);
1697                         rv = -EINVAL;
1698                         goto out_err;
1699                 }
1700
1701                 if ((intf->channels[addr->channel].medium
1702                                 != IPMI_CHANNEL_MEDIUM_8023LAN)
1703                     && (intf->channels[addr->channel].medium
1704                                 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1705                         ipmi_inc_stat(intf, sent_invalid_commands);
1706                         rv = -EINVAL;
1707                         goto out_err;
1708                 }
1709
1710                 retries = 4;
1711
1712                 /* Default to 1 second retries. */
1713                 if (retry_time_ms == 0)
1714                     retry_time_ms = 1000;
1715
1716                 /* 11 for the header and 1 for the checksum. */
1717                 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1718                         ipmi_inc_stat(intf, sent_invalid_commands);
1719                         rv = -EMSGSIZE;
1720                         goto out_err;
1721                 }
1722
1723                 lan_addr = (struct ipmi_lan_addr *) addr;
1724                 if (lan_addr->lun > 3) {
1725                         ipmi_inc_stat(intf, sent_invalid_commands);
1726                         rv = -EINVAL;
1727                         goto out_err;
1728                 }
1729
1730                 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1731
1732                 if (recv_msg->msg.netfn & 0x1) {
1733                         /*
1734                          * It's a response, so use the user's sequence
1735                          * from msgid.
1736                          */
1737                         ipmi_inc_stat(intf, sent_lan_responses);
1738                         format_lan_msg(smi_msg, msg, lan_addr, msgid,
1739                                        msgid, source_lun);
1740
1741                         /*
1742                          * Save the receive message so we can use it
1743                          * to deliver the response.
1744                          */
1745                         smi_msg->user_data = recv_msg;
1746                 } else {
1747                         /* It's a command, so get a sequence for it. */
1748
1749                         spin_lock_irqsave(&(intf->seq_lock), flags);
1750
1751                         /*
1752                          * Create a sequence number with a 1 second
1753                          * timeout and 4 retries.
1754                          */
1755                         rv = intf_next_seq(intf,
1756                                            recv_msg,
1757                                            retry_time_ms,
1758                                            retries,
1759                                            0,
1760                                            &ipmb_seq,
1761                                            &seqid);
1762                         if (rv) {
1763                                 /*
1764                                  * We have used up all the sequence numbers,
1765                                  * probably, so abort.
1766                                  */
1767                                 spin_unlock_irqrestore(&(intf->seq_lock),
1768                                                        flags);
1769                                 goto out_err;
1770                         }
1771
1772                         ipmi_inc_stat(intf, sent_lan_commands);
1773
1774                         /*
1775                          * Store the sequence number in the message,
1776                          * so that when the send message response
1777                          * comes back we can start the timer.
1778                          */
1779                         format_lan_msg(smi_msg, msg, lan_addr,
1780                                        STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1781                                        ipmb_seq, source_lun);
1782
1783                         /*
1784                          * Copy the message into the recv message data, so we
1785                          * can retransmit it later if necessary.
1786                          */
1787                         memcpy(recv_msg->msg_data, smi_msg->data,
1788                                smi_msg->data_size);
1789                         recv_msg->msg.data = recv_msg->msg_data;
1790                         recv_msg->msg.data_len = smi_msg->data_size;
1791
1792                         /*
1793                          * We don't unlock until here, because we need
1794                          * to copy the completed message into the
1795                          * recv_msg before we release the lock.
1796                          * Otherwise, race conditions may bite us.  I
1797                          * know that's pretty paranoid, but I prefer
1798                          * to be correct.
1799                          */
1800                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1801                 }
1802         } else {
1803             /* Unknown address type. */
1804                 ipmi_inc_stat(intf, sent_invalid_commands);
1805                 rv = -EINVAL;
1806                 goto out_err;
1807         }
1808
1809 #ifdef DEBUG_MSGING
1810         {
1811                 int m;
1812                 for (m = 0; m < smi_msg->data_size; m++)
1813                         printk(" %2.2x", smi_msg->data[m]);
1814                 printk("\n");
1815         }
1816 #endif
1817
1818         handlers->sender(intf->send_info, smi_msg, priority);
1819         rcu_read_unlock();
1820
1821         return 0;
1822
1823  out_err:
1824         rcu_read_unlock();
1825         ipmi_free_smi_msg(smi_msg);
1826         ipmi_free_recv_msg(recv_msg);
1827         return rv;
1828 }
1829
1830 static int check_addr(ipmi_smi_t       intf,
1831                       struct ipmi_addr *addr,
1832                       unsigned char    *saddr,
1833                       unsigned char    *lun)
1834 {
1835         if (addr->channel >= IPMI_MAX_CHANNELS)
1836                 return -EINVAL;
1837         *lun = intf->channels[addr->channel].lun;
1838         *saddr = intf->channels[addr->channel].address;
1839         return 0;
1840 }
1841
1842 int ipmi_request_settime(ipmi_user_t      user,
1843                          struct ipmi_addr *addr,
1844                          long             msgid,
1845                          struct kernel_ipmi_msg  *msg,
1846                          void             *user_msg_data,
1847                          int              priority,
1848                          int              retries,
1849                          unsigned int     retry_time_ms)
1850 {
1851         unsigned char saddr, lun;
1852         int           rv;
1853
1854         if (!user)
1855                 return -EINVAL;
1856         rv = check_addr(user->intf, addr, &saddr, &lun);
1857         if (rv)
1858                 return rv;
1859         return i_ipmi_request(user,
1860                               user->intf,
1861                               addr,
1862                               msgid,
1863                               msg,
1864                               user_msg_data,
1865                               NULL, NULL,
1866                               priority,
1867                               saddr,
1868                               lun,
1869                               retries,
1870                               retry_time_ms);
1871 }
1872 EXPORT_SYMBOL(ipmi_request_settime);
1873
1874 int ipmi_request_supply_msgs(ipmi_user_t          user,
1875                              struct ipmi_addr     *addr,
1876                              long                 msgid,
1877                              struct kernel_ipmi_msg *msg,
1878                              void                 *user_msg_data,
1879                              void                 *supplied_smi,
1880                              struct ipmi_recv_msg *supplied_recv,
1881                              int                  priority)
1882 {
1883         unsigned char saddr = 0, lun = 0;
1884         int           rv;
1885
1886         if (!user)
1887                 return -EINVAL;
1888         rv = check_addr(user->intf, addr, &saddr, &lun);
1889         if (rv)
1890                 return rv;
1891         return i_ipmi_request(user,
1892                               user->intf,
1893                               addr,
1894                               msgid,
1895                               msg,
1896                               user_msg_data,
1897                               supplied_smi,
1898                               supplied_recv,
1899                               priority,
1900                               saddr,
1901                               lun,
1902                               -1, 0);
1903 }
1904 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1905
1906 #ifdef CONFIG_PROC_FS
1907 static int smi_ipmb_proc_show(struct seq_file *m, void *v)
1908 {
1909         ipmi_smi_t intf = m->private;
1910         int        i;
1911
1912         seq_printf(m, "%x", intf->channels[0].address);
1913         for (i = 1; i < IPMI_MAX_CHANNELS; i++)
1914                 seq_printf(m, " %x", intf->channels[i].address);
1915         return seq_putc(m, '\n');
1916 }
1917
1918 static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
1919 {
1920         return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
1921 }
1922
1923 static const struct file_operations smi_ipmb_proc_ops = {
1924         .open           = smi_ipmb_proc_open,
1925         .read           = seq_read,
1926         .llseek         = seq_lseek,
1927         .release        = single_release,
1928 };
1929
1930 static int smi_version_proc_show(struct seq_file *m, void *v)
1931 {
1932         ipmi_smi_t intf = m->private;
1933
1934         return seq_printf(m, "%u.%u\n",
1935                        ipmi_version_major(&intf->bmc->id),
1936                        ipmi_version_minor(&intf->bmc->id));
1937 }
1938
1939 static int smi_version_proc_open(struct inode *inode, struct file *file)
1940 {
1941         return single_open(file, smi_version_proc_show, PDE_DATA(inode));
1942 }
1943
1944 static const struct file_operations smi_version_proc_ops = {
1945         .open           = smi_version_proc_open,
1946         .read           = seq_read,
1947         .llseek         = seq_lseek,
1948         .release        = single_release,
1949 };
1950
1951 static int smi_stats_proc_show(struct seq_file *m, void *v)
1952 {
1953         ipmi_smi_t intf = m->private;
1954
1955         seq_printf(m, "sent_invalid_commands:       %u\n",
1956                        ipmi_get_stat(intf, sent_invalid_commands));
1957         seq_printf(m, "sent_local_commands:         %u\n",
1958                        ipmi_get_stat(intf, sent_local_commands));
1959         seq_printf(m, "handled_local_responses:     %u\n",
1960                        ipmi_get_stat(intf, handled_local_responses));
1961         seq_printf(m, "unhandled_local_responses:   %u\n",
1962                        ipmi_get_stat(intf, unhandled_local_responses));
1963         seq_printf(m, "sent_ipmb_commands:          %u\n",
1964                        ipmi_get_stat(intf, sent_ipmb_commands));
1965         seq_printf(m, "sent_ipmb_command_errs:      %u\n",
1966                        ipmi_get_stat(intf, sent_ipmb_command_errs));
1967         seq_printf(m, "retransmitted_ipmb_commands: %u\n",
1968                        ipmi_get_stat(intf, retransmitted_ipmb_commands));
1969         seq_printf(m, "timed_out_ipmb_commands:     %u\n",
1970                        ipmi_get_stat(intf, timed_out_ipmb_commands));
1971         seq_printf(m, "timed_out_ipmb_broadcasts:   %u\n",
1972                        ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
1973         seq_printf(m, "sent_ipmb_responses:         %u\n",
1974                        ipmi_get_stat(intf, sent_ipmb_responses));
1975         seq_printf(m, "handled_ipmb_responses:      %u\n",
1976                        ipmi_get_stat(intf, handled_ipmb_responses));
1977         seq_printf(m, "invalid_ipmb_responses:      %u\n",
1978                        ipmi_get_stat(intf, invalid_ipmb_responses));
1979         seq_printf(m, "unhandled_ipmb_responses:    %u\n",
1980                        ipmi_get_stat(intf, unhandled_ipmb_responses));
1981         seq_printf(m, "sent_lan_commands:           %u\n",
1982                        ipmi_get_stat(intf, sent_lan_commands));
1983         seq_printf(m, "sent_lan_command_errs:       %u\n",
1984                        ipmi_get_stat(intf, sent_lan_command_errs));
1985         seq_printf(m, "retransmitted_lan_commands:  %u\n",
1986                        ipmi_get_stat(intf, retransmitted_lan_commands));
1987         seq_printf(m, "timed_out_lan_commands:      %u\n",
1988                        ipmi_get_stat(intf, timed_out_lan_commands));
1989         seq_printf(m, "sent_lan_responses:          %u\n",
1990                        ipmi_get_stat(intf, sent_lan_responses));
1991         seq_printf(m, "handled_lan_responses:       %u\n",
1992                        ipmi_get_stat(intf, handled_lan_responses));
1993         seq_printf(m, "invalid_lan_responses:       %u\n",
1994                        ipmi_get_stat(intf, invalid_lan_responses));
1995         seq_printf(m, "unhandled_lan_responses:     %u\n",
1996                        ipmi_get_stat(intf, unhandled_lan_responses));
1997         seq_printf(m, "handled_commands:            %u\n",
1998                        ipmi_get_stat(intf, handled_commands));
1999         seq_printf(m, "invalid_commands:            %u\n",
2000                        ipmi_get_stat(intf, invalid_commands));
2001         seq_printf(m, "unhandled_commands:          %u\n",
2002                        ipmi_get_stat(intf, unhandled_commands));
2003         seq_printf(m, "invalid_events:              %u\n",
2004                        ipmi_get_stat(intf, invalid_events));
2005         seq_printf(m, "events:                      %u\n",
2006                        ipmi_get_stat(intf, events));
2007         seq_printf(m, "failed rexmit LAN msgs:      %u\n",
2008                        ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2009         seq_printf(m, "failed rexmit IPMB msgs:     %u\n",
2010                        ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2011         return 0;
2012 }
2013
2014 static int smi_stats_proc_open(struct inode *inode, struct file *file)
2015 {
2016         return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2017 }
2018
2019 static const struct file_operations smi_stats_proc_ops = {
2020         .open           = smi_stats_proc_open,
2021         .read           = seq_read,
2022         .llseek         = seq_lseek,
2023         .release        = single_release,
2024 };
2025 #endif /* CONFIG_PROC_FS */
2026
2027 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2028                             const struct file_operations *proc_ops,
2029                             void *data)
2030 {
2031         int                    rv = 0;
2032 #ifdef CONFIG_PROC_FS
2033         struct proc_dir_entry  *file;
2034         struct ipmi_proc_entry *entry;
2035
2036         /* Create a list element. */
2037         entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2038         if (!entry)
2039                 return -ENOMEM;
2040         entry->name = kstrdup(name, GFP_KERNEL);
2041         if (!entry->name) {
2042                 kfree(entry);
2043                 return -ENOMEM;
2044         }
2045
2046         file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2047         if (!file) {
2048                 kfree(entry->name);
2049                 kfree(entry);
2050                 rv = -ENOMEM;
2051         } else {
2052                 mutex_lock(&smi->proc_entry_lock);
2053                 /* Stick it on the list. */
2054                 entry->next = smi->proc_entries;
2055                 smi->proc_entries = entry;
2056                 mutex_unlock(&smi->proc_entry_lock);
2057         }
2058 #endif /* CONFIG_PROC_FS */
2059
2060         return rv;
2061 }
2062 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2063
2064 static int add_proc_entries(ipmi_smi_t smi, int num)
2065 {
2066         int rv = 0;
2067
2068 #ifdef CONFIG_PROC_FS
2069         sprintf(smi->proc_dir_name, "%d", num);
2070         smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2071         if (!smi->proc_dir)
2072                 rv = -ENOMEM;
2073
2074         if (rv == 0)
2075                 rv = ipmi_smi_add_proc_entry(smi, "stats",
2076                                              &smi_stats_proc_ops,
2077                                              smi);
2078
2079         if (rv == 0)
2080                 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2081                                              &smi_ipmb_proc_ops,
2082                                              smi);
2083
2084         if (rv == 0)
2085                 rv = ipmi_smi_add_proc_entry(smi, "version",
2086                                              &smi_version_proc_ops,
2087                                              smi);
2088 #endif /* CONFIG_PROC_FS */
2089
2090         return rv;
2091 }
2092
2093 static void remove_proc_entries(ipmi_smi_t smi)
2094 {
2095 #ifdef CONFIG_PROC_FS
2096         struct ipmi_proc_entry *entry;
2097
2098         mutex_lock(&smi->proc_entry_lock);
2099         while (smi->proc_entries) {
2100                 entry = smi->proc_entries;
2101                 smi->proc_entries = entry->next;
2102
2103                 remove_proc_entry(entry->name, smi->proc_dir);
2104                 kfree(entry->name);
2105                 kfree(entry);
2106         }
2107         mutex_unlock(&smi->proc_entry_lock);
2108         remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2109 #endif /* CONFIG_PROC_FS */
2110 }
2111
2112 static int __find_bmc_guid(struct device *dev, void *data)
2113 {
2114         unsigned char *id = data;
2115         struct bmc_device *bmc = dev_get_drvdata(dev);
2116         return memcmp(bmc->guid, id, 16) == 0;
2117 }
2118
2119 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2120                                              unsigned char *guid)
2121 {
2122         struct device *dev;
2123
2124         dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2125         if (dev)
2126                 return dev_get_drvdata(dev);
2127         else
2128                 return NULL;
2129 }
2130
2131 struct prod_dev_id {
2132         unsigned int  product_id;
2133         unsigned char device_id;
2134 };
2135
2136 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2137 {
2138         struct prod_dev_id *id = data;
2139         struct bmc_device *bmc = dev_get_drvdata(dev);
2140
2141         return (bmc->id.product_id == id->product_id
2142                 && bmc->id.device_id == id->device_id);
2143 }
2144
2145 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2146         struct device_driver *drv,
2147         unsigned int product_id, unsigned char device_id)
2148 {
2149         struct prod_dev_id id = {
2150                 .product_id = product_id,
2151                 .device_id = device_id,
2152         };
2153         struct device *dev;
2154
2155         dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2156         if (dev)
2157                 return dev_get_drvdata(dev);
2158         else
2159                 return NULL;
2160 }
2161
2162 static ssize_t device_id_show(struct device *dev,
2163                               struct device_attribute *attr,
2164                               char *buf)
2165 {
2166         struct bmc_device *bmc = dev_get_drvdata(dev);
2167
2168         return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2169 }
2170
2171 static ssize_t provides_dev_sdrs_show(struct device *dev,
2172                                       struct device_attribute *attr,
2173                                       char *buf)
2174 {
2175         struct bmc_device *bmc = dev_get_drvdata(dev);
2176
2177         return snprintf(buf, 10, "%u\n",
2178                         (bmc->id.device_revision & 0x80) >> 7);
2179 }
2180
2181 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2182                              char *buf)
2183 {
2184         struct bmc_device *bmc = dev_get_drvdata(dev);
2185
2186         return snprintf(buf, 20, "%u\n",
2187                         bmc->id.device_revision & 0x0F);
2188 }
2189
2190 static ssize_t firmware_rev_show(struct device *dev,
2191                                  struct device_attribute *attr,
2192                                  char *buf)
2193 {
2194         struct bmc_device *bmc = dev_get_drvdata(dev);
2195
2196         return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2197                         bmc->id.firmware_revision_2);
2198 }
2199
2200 static ssize_t ipmi_version_show(struct device *dev,
2201                                  struct device_attribute *attr,
2202                                  char *buf)
2203 {
2204         struct bmc_device *bmc = dev_get_drvdata(dev);
2205
2206         return snprintf(buf, 20, "%u.%u\n",
2207                         ipmi_version_major(&bmc->id),
2208                         ipmi_version_minor(&bmc->id));
2209 }
2210
2211 static ssize_t add_dev_support_show(struct device *dev,
2212                                     struct device_attribute *attr,
2213                                     char *buf)
2214 {
2215         struct bmc_device *bmc = dev_get_drvdata(dev);
2216
2217         return snprintf(buf, 10, "0x%02x\n",
2218                         bmc->id.additional_device_support);
2219 }
2220
2221 static ssize_t manufacturer_id_show(struct device *dev,
2222                                     struct device_attribute *attr,
2223                                     char *buf)
2224 {
2225         struct bmc_device *bmc = dev_get_drvdata(dev);
2226
2227         return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2228 }
2229
2230 static ssize_t product_id_show(struct device *dev,
2231                                struct device_attribute *attr,
2232                                char *buf)
2233 {
2234         struct bmc_device *bmc = dev_get_drvdata(dev);
2235
2236         return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2237 }
2238
2239 static ssize_t aux_firmware_rev_show(struct device *dev,
2240                                      struct device_attribute *attr,
2241                                      char *buf)
2242 {
2243         struct bmc_device *bmc = dev_get_drvdata(dev);
2244
2245         return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2246                         bmc->id.aux_firmware_revision[3],
2247                         bmc->id.aux_firmware_revision[2],
2248                         bmc->id.aux_firmware_revision[1],
2249                         bmc->id.aux_firmware_revision[0]);
2250 }
2251
2252 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2253                          char *buf)
2254 {
2255         struct bmc_device *bmc = dev_get_drvdata(dev);
2256
2257         return snprintf(buf, 100, "%Lx%Lx\n",
2258                         (long long) bmc->guid[0],
2259                         (long long) bmc->guid[8]);
2260 }
2261
2262 static void remove_files(struct bmc_device *bmc)
2263 {
2264         if (!bmc->dev)
2265                 return;
2266
2267         device_remove_file(&bmc->dev->dev,
2268                            &bmc->device_id_attr);
2269         device_remove_file(&bmc->dev->dev,
2270                            &bmc->provides_dev_sdrs_attr);
2271         device_remove_file(&bmc->dev->dev,
2272                            &bmc->revision_attr);
2273         device_remove_file(&bmc->dev->dev,
2274                            &bmc->firmware_rev_attr);
2275         device_remove_file(&bmc->dev->dev,
2276                            &bmc->version_attr);
2277         device_remove_file(&bmc->dev->dev,
2278                            &bmc->add_dev_support_attr);
2279         device_remove_file(&bmc->dev->dev,
2280                            &bmc->manufacturer_id_attr);
2281         device_remove_file(&bmc->dev->dev,
2282                            &bmc->product_id_attr);
2283
2284         if (bmc->id.aux_firmware_revision_set)
2285                 device_remove_file(&bmc->dev->dev,
2286                                    &bmc->aux_firmware_rev_attr);
2287         if (bmc->guid_set)
2288                 device_remove_file(&bmc->dev->dev,
2289                                    &bmc->guid_attr);
2290 }
2291
2292 static void
2293 cleanup_bmc_device(struct kref *ref)
2294 {
2295         struct bmc_device *bmc;
2296
2297         bmc = container_of(ref, struct bmc_device, refcount);
2298
2299         remove_files(bmc);
2300         platform_device_unregister(bmc->dev);
2301         kfree(bmc);
2302 }
2303
2304 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2305 {
2306         struct bmc_device *bmc = intf->bmc;
2307
2308         if (intf->sysfs_name) {
2309                 sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
2310                 kfree(intf->sysfs_name);
2311                 intf->sysfs_name = NULL;
2312         }
2313         if (intf->my_dev_name) {
2314                 sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
2315                 kfree(intf->my_dev_name);
2316                 intf->my_dev_name = NULL;
2317         }
2318
2319         mutex_lock(&ipmidriver_mutex);
2320         kref_put(&bmc->refcount, cleanup_bmc_device);
2321         intf->bmc = NULL;
2322         mutex_unlock(&ipmidriver_mutex);
2323 }
2324
2325 static int create_files(struct bmc_device *bmc)
2326 {
2327         int err;
2328
2329         bmc->device_id_attr.attr.name = "device_id";
2330         bmc->device_id_attr.attr.mode = S_IRUGO;
2331         bmc->device_id_attr.show = device_id_show;
2332         sysfs_attr_init(&bmc->device_id_attr.attr);
2333
2334         bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
2335         bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
2336         bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
2337         sysfs_attr_init(&bmc->provides_dev_sdrs_attr.attr);
2338
2339         bmc->revision_attr.attr.name = "revision";
2340         bmc->revision_attr.attr.mode = S_IRUGO;
2341         bmc->revision_attr.show = revision_show;
2342         sysfs_attr_init(&bmc->revision_attr.attr);
2343
2344         bmc->firmware_rev_attr.attr.name = "firmware_revision";
2345         bmc->firmware_rev_attr.attr.mode = S_IRUGO;
2346         bmc->firmware_rev_attr.show = firmware_rev_show;
2347         sysfs_attr_init(&bmc->firmware_rev_attr.attr);
2348
2349         bmc->version_attr.attr.name = "ipmi_version";
2350         bmc->version_attr.attr.mode = S_IRUGO;
2351         bmc->version_attr.show = ipmi_version_show;
2352         sysfs_attr_init(&bmc->version_attr.attr);
2353
2354         bmc->add_dev_support_attr.attr.name = "additional_device_support";
2355         bmc->add_dev_support_attr.attr.mode = S_IRUGO;
2356         bmc->add_dev_support_attr.show = add_dev_support_show;
2357         sysfs_attr_init(&bmc->add_dev_support_attr.attr);
2358
2359         bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
2360         bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
2361         bmc->manufacturer_id_attr.show = manufacturer_id_show;
2362         sysfs_attr_init(&bmc->manufacturer_id_attr.attr);
2363
2364         bmc->product_id_attr.attr.name = "product_id";
2365         bmc->product_id_attr.attr.mode = S_IRUGO;
2366         bmc->product_id_attr.show = product_id_show;
2367         sysfs_attr_init(&bmc->product_id_attr.attr);
2368
2369         bmc->guid_attr.attr.name = "guid";
2370         bmc->guid_attr.attr.mode = S_IRUGO;
2371         bmc->guid_attr.show = guid_show;
2372         sysfs_attr_init(&bmc->guid_attr.attr);
2373
2374         bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2375         bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
2376         bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
2377         sysfs_attr_init(&bmc->aux_firmware_rev_attr.attr);
2378
2379         err = device_create_file(&bmc->dev->dev,
2380                            &bmc->device_id_attr);
2381         if (err)
2382                 goto out;
2383         err = device_create_file(&bmc->dev->dev,
2384                            &bmc->provides_dev_sdrs_attr);
2385         if (err)
2386                 goto out_devid;
2387         err = device_create_file(&bmc->dev->dev,
2388                            &bmc->revision_attr);
2389         if (err)
2390                 goto out_sdrs;
2391         err = device_create_file(&bmc->dev->dev,
2392                            &bmc->firmware_rev_attr);
2393         if (err)
2394                 goto out_rev;
2395         err = device_create_file(&bmc->dev->dev,
2396                            &bmc->version_attr);
2397         if (err)
2398                 goto out_firm;
2399         err = device_create_file(&bmc->dev->dev,
2400                            &bmc->add_dev_support_attr);
2401         if (err)
2402                 goto out_version;
2403         err = device_create_file(&bmc->dev->dev,
2404                            &bmc->manufacturer_id_attr);
2405         if (err)
2406                 goto out_add_dev;
2407         err = device_create_file(&bmc->dev->dev,
2408                            &bmc->product_id_attr);
2409         if (err)
2410                 goto out_manu;
2411         if (bmc->id.aux_firmware_revision_set) {
2412                 err = device_create_file(&bmc->dev->dev,
2413                                    &bmc->aux_firmware_rev_attr);
2414                 if (err)
2415                         goto out_prod_id;
2416         }
2417         if (bmc->guid_set) {
2418                 err = device_create_file(&bmc->dev->dev,
2419                                    &bmc->guid_attr);
2420                 if (err)
2421                         goto out_aux_firm;
2422         }
2423
2424         return 0;
2425
2426 out_aux_firm:
2427         if (bmc->id.aux_firmware_revision_set)
2428                 device_remove_file(&bmc->dev->dev,
2429                                    &bmc->aux_firmware_rev_attr);
2430 out_prod_id:
2431         device_remove_file(&bmc->dev->dev,
2432                            &bmc->product_id_attr);
2433 out_manu:
2434         device_remove_file(&bmc->dev->dev,
2435                            &bmc->manufacturer_id_attr);
2436 out_add_dev:
2437         device_remove_file(&bmc->dev->dev,
2438                            &bmc->add_dev_support_attr);
2439 out_version:
2440         device_remove_file(&bmc->dev->dev,
2441                            &bmc->version_attr);
2442 out_firm:
2443         device_remove_file(&bmc->dev->dev,
2444                            &bmc->firmware_rev_attr);
2445 out_rev:
2446         device_remove_file(&bmc->dev->dev,
2447                            &bmc->revision_attr);
2448 out_sdrs:
2449         device_remove_file(&bmc->dev->dev,
2450                            &bmc->provides_dev_sdrs_attr);
2451 out_devid:
2452         device_remove_file(&bmc->dev->dev,
2453                            &bmc->device_id_attr);
2454 out:
2455         return err;
2456 }
2457
2458 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
2459                              const char *sysfs_name)
2460 {
2461         int               rv;
2462         struct bmc_device *bmc = intf->bmc;
2463         struct bmc_device *old_bmc;
2464         int               size;
2465         char              dummy[1];
2466
2467         mutex_lock(&ipmidriver_mutex);
2468
2469         /*
2470          * Try to find if there is an bmc_device struct
2471          * representing the interfaced BMC already
2472          */
2473         if (bmc->guid_set)
2474                 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2475         else
2476                 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2477                                                     bmc->id.product_id,
2478                                                     bmc->id.device_id);
2479
2480         /*
2481          * If there is already an bmc_device, free the new one,
2482          * otherwise register the new BMC device
2483          */
2484         if (old_bmc) {
2485                 kfree(bmc);
2486                 intf->bmc = old_bmc;
2487                 bmc = old_bmc;
2488
2489                 kref_get(&bmc->refcount);
2490                 mutex_unlock(&ipmidriver_mutex);
2491
2492                 printk(KERN_INFO
2493                        "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2494                        " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2495                        bmc->id.manufacturer_id,
2496                        bmc->id.product_id,
2497                        bmc->id.device_id);
2498         } else {
2499                 char name[14];
2500                 unsigned char orig_dev_id = bmc->id.device_id;
2501                 int warn_printed = 0;
2502
2503                 snprintf(name, sizeof(name),
2504                          "ipmi_bmc.%4.4x", bmc->id.product_id);
2505
2506                 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2507                                                  bmc->id.product_id,
2508                                                  bmc->id.device_id)) {
2509                         if (!warn_printed) {
2510                                 printk(KERN_WARNING PFX
2511                                        "This machine has two different BMCs"
2512                                        " with the same product id and device"
2513                                        " id.  This is an error in the"
2514                                        " firmware, but incrementing the"
2515                                        " device id to work around the problem."
2516                                        " Prod ID = 0x%x, Dev ID = 0x%x\n",
2517                                        bmc->id.product_id, bmc->id.device_id);
2518                                 warn_printed = 1;
2519                         }
2520                         bmc->id.device_id++; /* Wraps at 255 */
2521                         if (bmc->id.device_id == orig_dev_id) {
2522                                 printk(KERN_ERR PFX
2523                                        "Out of device ids!\n");
2524                                 break;
2525                         }
2526                 }
2527
2528                 bmc->dev = platform_device_alloc(name, bmc->id.device_id);
2529                 if (!bmc->dev) {
2530                         mutex_unlock(&ipmidriver_mutex);
2531                         printk(KERN_ERR
2532                                "ipmi_msghandler:"
2533                                " Unable to allocate platform device\n");
2534                         return -ENOMEM;
2535                 }
2536                 bmc->dev->dev.driver = &ipmidriver.driver;
2537                 dev_set_drvdata(&bmc->dev->dev, bmc);
2538                 kref_init(&bmc->refcount);
2539
2540                 rv = platform_device_add(bmc->dev);
2541                 mutex_unlock(&ipmidriver_mutex);
2542                 if (rv) {
2543                         platform_device_put(bmc->dev);
2544                         bmc->dev = NULL;
2545                         printk(KERN_ERR
2546                                "ipmi_msghandler:"
2547                                " Unable to register bmc device: %d\n",
2548                                rv);
2549                         /*
2550                          * Don't go to out_err, you can only do that if
2551                          * the device is registered already.
2552                          */
2553                         return rv;
2554                 }
2555
2556                 rv = create_files(bmc);
2557                 if (rv) {
2558                         mutex_lock(&ipmidriver_mutex);
2559                         platform_device_unregister(bmc->dev);
2560                         mutex_unlock(&ipmidriver_mutex);
2561
2562                         return rv;
2563                 }
2564
2565                 dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2566                          "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2567                          bmc->id.manufacturer_id,
2568                          bmc->id.product_id,
2569                          bmc->id.device_id);
2570         }
2571
2572         /*
2573          * create symlink from system interface device to bmc device
2574          * and back.
2575          */
2576         intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
2577         if (!intf->sysfs_name) {
2578                 rv = -ENOMEM;
2579                 printk(KERN_ERR
2580                        "ipmi_msghandler: allocate link to BMC: %d\n",
2581                        rv);
2582                 goto out_err;
2583         }
2584
2585         rv = sysfs_create_link(&intf->si_dev->kobj,
2586                                &bmc->dev->dev.kobj, intf->sysfs_name);
2587         if (rv) {
2588                 kfree(intf->sysfs_name);
2589                 intf->sysfs_name = NULL;
2590                 printk(KERN_ERR
2591                        "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2592                        rv);
2593                 goto out_err;
2594         }
2595
2596         size = snprintf(dummy, 0, "ipmi%d", ifnum);
2597         intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
2598         if (!intf->my_dev_name) {
2599                 kfree(intf->sysfs_name);
2600                 intf->sysfs_name = NULL;
2601                 rv = -ENOMEM;
2602                 printk(KERN_ERR
2603                        "ipmi_msghandler: allocate link from BMC: %d\n",
2604                        rv);
2605                 goto out_err;
2606         }
2607         snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
2608
2609         rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
2610                                intf->my_dev_name);
2611         if (rv) {
2612                 kfree(intf->sysfs_name);
2613                 intf->sysfs_name = NULL;
2614                 kfree(intf->my_dev_name);
2615                 intf->my_dev_name = NULL;
2616                 printk(KERN_ERR
2617                        "ipmi_msghandler:"
2618                        " Unable to create symlink to bmc: %d\n",
2619                        rv);
2620                 goto out_err;
2621         }
2622
2623         return 0;
2624
2625 out_err:
2626         ipmi_bmc_unregister(intf);
2627         return rv;
2628 }
2629
2630 static int
2631 send_guid_cmd(ipmi_smi_t intf, int chan)
2632 {
2633         struct kernel_ipmi_msg            msg;
2634         struct ipmi_system_interface_addr si;
2635
2636         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2637         si.channel = IPMI_BMC_CHANNEL;
2638         si.lun = 0;
2639
2640         msg.netfn = IPMI_NETFN_APP_REQUEST;
2641         msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2642         msg.data = NULL;
2643         msg.data_len = 0;
2644         return i_ipmi_request(NULL,
2645                               intf,
2646                               (struct ipmi_addr *) &si,
2647                               0,
2648                               &msg,
2649                               intf,
2650                               NULL,
2651                               NULL,
2652                               0,
2653                               intf->channels[0].address,
2654                               intf->channels[0].lun,
2655                               -1, 0);
2656 }
2657
2658 static void
2659 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2660 {
2661         if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2662             || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2663             || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2664                 /* Not for me */
2665                 return;
2666
2667         if (msg->msg.data[0] != 0) {
2668                 /* Error from getting the GUID, the BMC doesn't have one. */
2669                 intf->bmc->guid_set = 0;
2670                 goto out;
2671         }
2672
2673         if (msg->msg.data_len < 17) {
2674                 intf->bmc->guid_set = 0;
2675                 printk(KERN_WARNING PFX
2676                        "guid_handler: The GUID response from the BMC was too"
2677                        " short, it was %d but should have been 17.  Assuming"
2678                        " GUID is not available.\n",
2679                        msg->msg.data_len);
2680                 goto out;
2681         }
2682
2683         memcpy(intf->bmc->guid, msg->msg.data, 16);
2684         intf->bmc->guid_set = 1;
2685  out:
2686         wake_up(&intf->waitq);
2687 }
2688
2689 static void
2690 get_guid(ipmi_smi_t intf)
2691 {
2692         int rv;
2693
2694         intf->bmc->guid_set = 0x2;
2695         intf->null_user_handler = guid_handler;
2696         rv = send_guid_cmd(intf, 0);
2697         if (rv)
2698                 /* Send failed, no GUID available. */
2699                 intf->bmc->guid_set = 0;
2700         wait_event(intf->waitq, intf->bmc->guid_set != 2);
2701         intf->null_user_handler = NULL;
2702 }
2703
2704 static int
2705 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2706 {
2707         struct kernel_ipmi_msg            msg;
2708         unsigned char                     data[1];
2709         struct ipmi_system_interface_addr si;
2710
2711         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2712         si.channel = IPMI_BMC_CHANNEL;
2713         si.lun = 0;
2714
2715         msg.netfn = IPMI_NETFN_APP_REQUEST;
2716         msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2717         msg.data = data;
2718         msg.data_len = 1;
2719         data[0] = chan;
2720         return i_ipmi_request(NULL,
2721                               intf,
2722                               (struct ipmi_addr *) &si,
2723                               0,
2724                               &msg,
2725                               intf,
2726                               NULL,
2727                               NULL,
2728                               0,
2729                               intf->channels[0].address,
2730                               intf->channels[0].lun,
2731                               -1, 0);
2732 }
2733
2734 static void
2735 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2736 {
2737         int rv = 0;
2738         int chan;
2739
2740         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2741             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2742             && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2743                 /* It's the one we want */
2744                 if (msg->msg.data[0] != 0) {
2745                         /* Got an error from the channel, just go on. */
2746
2747                         if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2748                                 /*
2749                                  * If the MC does not support this
2750                                  * command, that is legal.  We just
2751                                  * assume it has one IPMB at channel
2752                                  * zero.
2753                                  */
2754                                 intf->channels[0].medium
2755                                         = IPMI_CHANNEL_MEDIUM_IPMB;
2756                                 intf->channels[0].protocol
2757                                         = IPMI_CHANNEL_PROTOCOL_IPMB;
2758                                 rv = -ENOSYS;
2759
2760                                 intf->curr_channel = IPMI_MAX_CHANNELS;
2761                                 wake_up(&intf->waitq);
2762                                 goto out;
2763                         }
2764                         goto next_channel;
2765                 }
2766                 if (msg->msg.data_len < 4) {
2767                         /* Message not big enough, just go on. */
2768                         goto next_channel;
2769                 }
2770                 chan = intf->curr_channel;
2771                 intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2772                 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2773
2774  next_channel:
2775                 intf->curr_channel++;
2776                 if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2777                         wake_up(&intf->waitq);
2778                 else
2779                         rv = send_channel_info_cmd(intf, intf->curr_channel);
2780
2781                 if (rv) {
2782                         /* Got an error somehow, just give up. */
2783                         intf->curr_channel = IPMI_MAX_CHANNELS;
2784                         wake_up(&intf->waitq);
2785
2786                         printk(KERN_WARNING PFX
2787                                "Error sending channel information: %d\n",
2788                                rv);
2789                 }
2790         }
2791  out:
2792         return;
2793 }
2794
2795 static void ipmi_poll(ipmi_smi_t intf)
2796 {
2797         if (intf->handlers->poll)
2798                 intf->handlers->poll(intf->send_info);
2799         /* In case something came in */
2800         handle_new_recv_msgs(intf);
2801 }
2802
2803 void ipmi_poll_interface(ipmi_user_t user)
2804 {
2805         ipmi_poll(user->intf);
2806 }
2807 EXPORT_SYMBOL(ipmi_poll_interface);
2808
2809 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2810                       void                     *send_info,
2811                       struct ipmi_device_id    *device_id,
2812                       struct device            *si_dev,
2813                       const char               *sysfs_name,
2814                       unsigned char            slave_addr)
2815 {
2816         int              i, j;
2817         int              rv;
2818         ipmi_smi_t       intf;
2819         ipmi_smi_t       tintf;
2820         struct list_head *link;
2821
2822         /*
2823          * Make sure the driver is actually initialized, this handles
2824          * problems with initialization order.
2825          */
2826         if (!initialized) {
2827                 rv = ipmi_init_msghandler();
2828                 if (rv)
2829                         return rv;
2830                 /*
2831                  * The init code doesn't return an error if it was turned
2832                  * off, but it won't initialize.  Check that.
2833                  */
2834                 if (!initialized)
2835                         return -ENODEV;
2836         }
2837
2838         intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2839         if (!intf)
2840                 return -ENOMEM;
2841
2842         intf->ipmi_version_major = ipmi_version_major(device_id);
2843         intf->ipmi_version_minor = ipmi_version_minor(device_id);
2844
2845         intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2846         if (!intf->bmc) {
2847                 kfree(intf);
2848                 return -ENOMEM;
2849         }
2850         intf->intf_num = -1; /* Mark it invalid for now. */
2851         kref_init(&intf->refcount);
2852         intf->bmc->id = *device_id;
2853         intf->si_dev = si_dev;
2854         for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2855                 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2856                 intf->channels[j].lun = 2;
2857         }
2858         if (slave_addr != 0)
2859                 intf->channels[0].address = slave_addr;
2860         INIT_LIST_HEAD(&intf->users);
2861         intf->handlers = handlers;
2862         intf->send_info = send_info;
2863         spin_lock_init(&intf->seq_lock);
2864         for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2865                 intf->seq_table[j].inuse = 0;
2866                 intf->seq_table[j].seqid = 0;
2867         }
2868         intf->curr_seq = 0;
2869 #ifdef CONFIG_PROC_FS
2870         mutex_init(&intf->proc_entry_lock);
2871 #endif
2872         spin_lock_init(&intf->waiting_msgs_lock);
2873         INIT_LIST_HEAD(&intf->waiting_msgs);
2874         tasklet_init(&intf->recv_tasklet,
2875                      smi_recv_tasklet,
2876                      (unsigned long) intf);
2877         atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
2878         spin_lock_init(&intf->events_lock);
2879         INIT_LIST_HEAD(&intf->waiting_events);
2880         intf->waiting_events_count = 0;
2881         mutex_init(&intf->cmd_rcvrs_mutex);
2882         spin_lock_init(&intf->maintenance_mode_lock);
2883         INIT_LIST_HEAD(&intf->cmd_rcvrs);
2884         init_waitqueue_head(&intf->waitq);
2885         for (i = 0; i < IPMI_NUM_STATS; i++)
2886                 atomic_set(&intf->stats[i], 0);
2887
2888         intf->proc_dir = NULL;
2889
2890         mutex_lock(&smi_watchers_mutex);
2891         mutex_lock(&ipmi_interfaces_mutex);
2892         /* Look for a hole in the numbers. */
2893         i = 0;
2894         link = &ipmi_interfaces;
2895         list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2896                 if (tintf->intf_num != i) {
2897                         link = &tintf->link;
2898                         break;
2899                 }
2900                 i++;
2901         }
2902         /* Add the new interface in numeric order. */
2903         if (i == 0)
2904                 list_add_rcu(&intf->link, &ipmi_interfaces);
2905         else
2906                 list_add_tail_rcu(&intf->link, link);
2907
2908         rv = handlers->start_processing(send_info, intf);
2909         if (rv)
2910                 goto out;
2911
2912         get_guid(intf);
2913
2914         if ((intf->ipmi_version_major > 1)
2915                         || ((intf->ipmi_version_major == 1)
2916                             && (intf->ipmi_version_minor >= 5))) {
2917                 /*
2918                  * Start scanning the channels to see what is
2919                  * available.
2920                  */
2921                 intf->null_user_handler = channel_handler;
2922                 intf->curr_channel = 0;
2923                 rv = send_channel_info_cmd(intf, 0);
2924                 if (rv)
2925                         goto out;
2926
2927                 /* Wait for the channel info to be read. */
2928                 wait_event(intf->waitq,
2929                            intf->curr_channel >= IPMI_MAX_CHANNELS);
2930                 intf->null_user_handler = NULL;
2931         } else {
2932                 /* Assume a single IPMB channel at zero. */
2933                 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2934                 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2935                 intf->curr_channel = IPMI_MAX_CHANNELS;
2936         }
2937
2938         if (rv == 0)
2939                 rv = add_proc_entries(intf, i);
2940
2941         rv = ipmi_bmc_register(intf, i, sysfs_name);
2942
2943  out:
2944         if (rv) {
2945                 if (intf->proc_dir)
2946                         remove_proc_entries(intf);
2947                 intf->handlers = NULL;
2948                 list_del_rcu(&intf->link);
2949                 mutex_unlock(&ipmi_interfaces_mutex);
2950                 mutex_unlock(&smi_watchers_mutex);
2951                 synchronize_rcu();
2952                 kref_put(&intf->refcount, intf_free);
2953         } else {
2954                 /*
2955                  * Keep memory order straight for RCU readers.  Make
2956                  * sure everything else is committed to memory before
2957                  * setting intf_num to mark the interface valid.
2958                  */
2959                 smp_wmb();
2960                 intf->intf_num = i;
2961                 mutex_unlock(&ipmi_interfaces_mutex);
2962                 /* After this point the interface is legal to use. */
2963                 call_smi_watchers(i, intf->si_dev);
2964                 mutex_unlock(&smi_watchers_mutex);
2965         }
2966
2967         return rv;
2968 }
2969 EXPORT_SYMBOL(ipmi_register_smi);
2970
2971 static void cleanup_smi_msgs(ipmi_smi_t intf)
2972 {
2973         int              i;
2974         struct seq_table *ent;
2975
2976         /* No need for locks, the interface is down. */
2977         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2978                 ent = &(intf->seq_table[i]);
2979                 if (!ent->inuse)
2980                         continue;
2981                 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2982         }
2983 }
2984
2985 int ipmi_unregister_smi(ipmi_smi_t intf)
2986 {
2987         struct ipmi_smi_watcher *w;
2988         int    intf_num = intf->intf_num;
2989
2990         ipmi_bmc_unregister(intf);
2991
2992         mutex_lock(&smi_watchers_mutex);
2993         mutex_lock(&ipmi_interfaces_mutex);
2994         intf->intf_num = -1;
2995         intf->handlers = NULL;
2996         list_del_rcu(&intf->link);
2997         mutex_unlock(&ipmi_interfaces_mutex);
2998         synchronize_rcu();
2999
3000         cleanup_smi_msgs(intf);
3001
3002         remove_proc_entries(intf);
3003
3004         /*
3005          * Call all the watcher interfaces to tell them that
3006          * an interface is gone.
3007          */
3008         list_for_each_entry(w, &smi_watchers, link)
3009                 w->smi_gone(intf_num);
3010         mutex_unlock(&smi_watchers_mutex);
3011
3012         kref_put(&intf->refcount, intf_free);
3013         return 0;
3014 }
3015 EXPORT_SYMBOL(ipmi_unregister_smi);
3016
3017 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
3018                                    struct ipmi_smi_msg *msg)
3019 {
3020         struct ipmi_ipmb_addr ipmb_addr;
3021         struct ipmi_recv_msg  *recv_msg;
3022
3023         /*
3024          * This is 11, not 10, because the response must contain a
3025          * completion code.
3026          */
3027         if (msg->rsp_size < 11) {
3028                 /* Message not big enough, just ignore it. */
3029                 ipmi_inc_stat(intf, invalid_ipmb_responses);
3030                 return 0;
3031         }
3032
3033         if (msg->rsp[2] != 0) {
3034                 /* An error getting the response, just ignore it. */
3035                 return 0;
3036         }
3037
3038         ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3039         ipmb_addr.slave_addr = msg->rsp[6];
3040         ipmb_addr.channel = msg->rsp[3] & 0x0f;
3041         ipmb_addr.lun = msg->rsp[7] & 3;
3042
3043         /*
3044          * It's a response from a remote entity.  Look up the sequence
3045          * number and handle the response.
3046          */
3047         if (intf_find_seq(intf,
3048                           msg->rsp[7] >> 2,
3049                           msg->rsp[3] & 0x0f,
3050                           msg->rsp[8],
3051                           (msg->rsp[4] >> 2) & (~1),
3052                           (struct ipmi_addr *) &(ipmb_addr),
3053                           &recv_msg)) {
3054                 /*
3055                  * We were unable to find the sequence number,
3056                  * so just nuke the message.
3057                  */
3058                 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3059                 return 0;
3060         }
3061
3062         memcpy(recv_msg->msg_data,
3063                &(msg->rsp[9]),
3064                msg->rsp_size - 9);
3065         /*
3066          * The other fields matched, so no need to set them, except
3067          * for netfn, which needs to be the response that was
3068          * returned, not the request value.
3069          */
3070         recv_msg->msg.netfn = msg->rsp[4] >> 2;
3071         recv_msg->msg.data = recv_msg->msg_data;
3072         recv_msg->msg.data_len = msg->rsp_size - 10;
3073         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3074         ipmi_inc_stat(intf, handled_ipmb_responses);
3075         deliver_response(recv_msg);
3076
3077         return 0;
3078 }
3079
3080 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3081                                    struct ipmi_smi_msg *msg)
3082 {
3083         struct cmd_rcvr          *rcvr;
3084         int                      rv = 0;
3085         unsigned char            netfn;
3086         unsigned char            cmd;
3087         unsigned char            chan;
3088         ipmi_user_t              user = NULL;
3089         struct ipmi_ipmb_addr    *ipmb_addr;
3090         struct ipmi_recv_msg     *recv_msg;
3091         struct ipmi_smi_handlers *handlers;
3092
3093         if (msg->rsp_size < 10) {
3094                 /* Message not big enough, just ignore it. */
3095                 ipmi_inc_stat(intf, invalid_commands);
3096                 return 0;
3097         }
3098
3099         if (msg->rsp[2] != 0) {
3100                 /* An error getting the response, just ignore it. */
3101                 return 0;
3102         }
3103
3104         netfn = msg->rsp[4] >> 2;
3105         cmd = msg->rsp[8];
3106         chan = msg->rsp[3] & 0xf;
3107
3108         rcu_read_lock();
3109         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3110         if (rcvr) {
3111                 user = rcvr->user;
3112                 kref_get(&user->refcount);
3113         } else
3114                 user = NULL;
3115         rcu_read_unlock();
3116
3117         if (user == NULL) {
3118                 /* We didn't find a user, deliver an error response. */
3119                 ipmi_inc_stat(intf, unhandled_commands);
3120
3121                 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3122                 msg->data[1] = IPMI_SEND_MSG_CMD;
3123                 msg->data[2] = msg->rsp[3];
3124                 msg->data[3] = msg->rsp[6];
3125                 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3126                 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3127                 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3128                 /* rqseq/lun */
3129                 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3130                 msg->data[8] = msg->rsp[8]; /* cmd */
3131                 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3132                 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3133                 msg->data_size = 11;
3134
3135 #ifdef DEBUG_MSGING
3136         {
3137                 int m;
3138                 printk("Invalid command:");
3139                 for (m = 0; m < msg->data_size; m++)
3140                         printk(" %2.2x", msg->data[m]);
3141                 printk("\n");
3142         }
3143 #endif
3144                 rcu_read_lock();
3145                 handlers = intf->handlers;
3146                 if (handlers) {
3147                         handlers->sender(intf->send_info, msg, 0);
3148                         /*
3149                          * We used the message, so return the value
3150                          * that causes it to not be freed or
3151                          * queued.
3152                          */
3153                         rv = -1;
3154                 }
3155                 rcu_read_unlock();
3156         } else {
3157                 /* Deliver the message to the user. */
3158                 ipmi_inc_stat(intf, handled_commands);
3159
3160                 recv_msg = ipmi_alloc_recv_msg();
3161                 if (!recv_msg) {
3162                         /*
3163                          * We couldn't allocate memory for the
3164                          * message, so requeue it for handling
3165                          * later.
3166                          */
3167                         rv = 1;
3168                         kref_put(&user->refcount, free_user);
3169                 } else {
3170                         /* Extract the source address from the data. */
3171                         ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3172                         ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3173                         ipmb_addr->slave_addr = msg->rsp[6];
3174                         ipmb_addr->lun = msg->rsp[7] & 3;
3175                         ipmb_addr->channel = msg->rsp[3] & 0xf;
3176
3177                         /*
3178                          * Extract the rest of the message information
3179                          * from the IPMB header.
3180                          */
3181                         recv_msg->user = user;
3182                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3183                         recv_msg->msgid = msg->rsp[7] >> 2;
3184                         recv_msg->msg.netfn = msg->rsp[4] >> 2;
3185                         recv_msg->msg.cmd = msg->rsp[8];
3186                         recv_msg->msg.data = recv_msg->msg_data;
3187
3188                         /*
3189                          * We chop off 10, not 9 bytes because the checksum
3190                          * at the end also needs to be removed.
3191                          */
3192                         recv_msg->msg.data_len = msg->rsp_size - 10;
3193                         memcpy(recv_msg->msg_data,
3194                                &(msg->rsp[9]),
3195                                msg->rsp_size - 10);
3196                         deliver_response(recv_msg);
3197                 }
3198         }
3199
3200         return rv;
3201 }
3202
3203 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3204                                   struct ipmi_smi_msg *msg)
3205 {
3206         struct ipmi_lan_addr  lan_addr;
3207         struct ipmi_recv_msg  *recv_msg;
3208
3209
3210         /*
3211          * This is 13, not 12, because the response must contain a
3212          * completion code.
3213          */
3214         if (msg->rsp_size < 13) {
3215                 /* Message not big enough, just ignore it. */
3216                 ipmi_inc_stat(intf, invalid_lan_responses);
3217                 return 0;
3218         }
3219
3220         if (msg->rsp[2] != 0) {
3221                 /* An error getting the response, just ignore it. */
3222                 return 0;
3223         }
3224
3225         lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3226         lan_addr.session_handle = msg->rsp[4];
3227         lan_addr.remote_SWID = msg->rsp[8];
3228         lan_addr.local_SWID = msg->rsp[5];
3229         lan_addr.channel = msg->rsp[3] & 0x0f;
3230         lan_addr.privilege = msg->rsp[3] >> 4;
3231         lan_addr.lun = msg->rsp[9] & 3;
3232
3233         /*
3234          * It's a response from a remote entity.  Look up the sequence
3235          * number and handle the response.
3236          */
3237         if (intf_find_seq(intf,
3238                           msg->rsp[9] >> 2,
3239                           msg->rsp[3] & 0x0f,
3240                           msg->rsp[10],
3241                           (msg->rsp[6] >> 2) & (~1),
3242                           (struct ipmi_addr *) &(lan_addr),
3243                           &recv_msg)) {
3244                 /*
3245                  * We were unable to find the sequence number,
3246                  * so just nuke the message.
3247                  */
3248                 ipmi_inc_stat(intf, unhandled_lan_responses);
3249                 return 0;
3250         }
3251
3252         memcpy(recv_msg->msg_data,
3253                &(msg->rsp[11]),
3254                msg->rsp_size - 11);
3255         /*
3256          * The other fields matched, so no need to set them, except
3257          * for netfn, which needs to be the response that was
3258          * returned, not the request value.
3259          */
3260         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3261         recv_msg->msg.data = recv_msg->msg_data;
3262         recv_msg->msg.data_len = msg->rsp_size - 12;
3263         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3264         ipmi_inc_stat(intf, handled_lan_responses);
3265         deliver_response(recv_msg);
3266
3267         return 0;
3268 }
3269
3270 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3271                                   struct ipmi_smi_msg *msg)
3272 {
3273         struct cmd_rcvr          *rcvr;
3274         int                      rv = 0;
3275         unsigned char            netfn;
3276         unsigned char            cmd;
3277         unsigned char            chan;
3278         ipmi_user_t              user = NULL;
3279         struct ipmi_lan_addr     *lan_addr;
3280         struct ipmi_recv_msg     *recv_msg;
3281
3282         if (msg->rsp_size < 12) {
3283                 /* Message not big enough, just ignore it. */
3284                 ipmi_inc_stat(intf, invalid_commands);
3285                 return 0;
3286         }
3287
3288         if (msg->rsp[2] != 0) {
3289                 /* An error getting the response, just ignore it. */
3290                 return 0;
3291         }
3292
3293         netfn = msg->rsp[6] >> 2;
3294         cmd = msg->rsp[10];
3295         chan = msg->rsp[3] & 0xf;
3296
3297         rcu_read_lock();
3298         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3299         if (rcvr) {
3300                 user = rcvr->user;
3301                 kref_get(&user->refcount);
3302         } else
3303                 user = NULL;
3304         rcu_read_unlock();
3305
3306         if (user == NULL) {
3307                 /* We didn't find a user, just give up. */
3308                 ipmi_inc_stat(intf, unhandled_commands);
3309
3310                 /*
3311                  * Don't do anything with these messages, just allow
3312                  * them to be freed.
3313                  */
3314                 rv = 0;
3315         } else {
3316                 /* Deliver the message to the user. */
3317                 ipmi_inc_stat(intf, handled_commands);
3318
3319                 recv_msg = ipmi_alloc_recv_msg();
3320                 if (!recv_msg) {
3321                         /*
3322                          * We couldn't allocate memory for the
3323                          * message, so requeue it for handling later.
3324                          */
3325                         rv = 1;
3326                         kref_put(&user->refcount, free_user);
3327                 } else {
3328                         /* Extract the source address from the data. */
3329                         lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3330                         lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3331                         lan_addr->session_handle = msg->rsp[4];
3332                         lan_addr->remote_SWID = msg->rsp[8];
3333                         lan_addr->local_SWID = msg->rsp[5];
3334                         lan_addr->lun = msg->rsp[9] & 3;
3335                         lan_addr->channel = msg->rsp[3] & 0xf;
3336                         lan_addr->privilege = msg->rsp[3] >> 4;
3337
3338                         /*
3339                          * Extract the rest of the message information
3340                          * from the IPMB header.
3341                          */
3342                         recv_msg->user = user;
3343                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3344                         recv_msg->msgid = msg->rsp[9] >> 2;
3345                         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3346                         recv_msg->msg.cmd = msg->rsp[10];
3347                         recv_msg->msg.data = recv_msg->msg_data;
3348
3349                         /*
3350                          * We chop off 12, not 11 bytes because the checksum
3351                          * at the end also needs to be removed.
3352                          */
3353                         recv_msg->msg.data_len = msg->rsp_size - 12;
3354                         memcpy(recv_msg->msg_data,
3355                                &(msg->rsp[11]),
3356                                msg->rsp_size - 12);
3357                         deliver_response(recv_msg);
3358                 }
3359         }
3360
3361         return rv;
3362 }
3363
3364 /*
3365  * This routine will handle "Get Message" command responses with
3366  * channels that use an OEM Medium. The message format belongs to
3367  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3368  * Chapter 22, sections 22.6 and 22.24 for more details.
3369  */
3370 static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3371                                   struct ipmi_smi_msg *msg)
3372 {
3373         struct cmd_rcvr       *rcvr;
3374         int                   rv = 0;
3375         unsigned char         netfn;
3376         unsigned char         cmd;
3377         unsigned char         chan;
3378         ipmi_user_t           user = NULL;
3379         struct ipmi_system_interface_addr *smi_addr;
3380         struct ipmi_recv_msg  *recv_msg;
3381
3382         /*
3383          * We expect the OEM SW to perform error checking
3384          * so we just do some basic sanity checks
3385          */
3386         if (msg->rsp_size < 4) {
3387                 /* Message not big enough, just ignore it. */
3388                 ipmi_inc_stat(intf, invalid_commands);
3389                 return 0;
3390         }
3391
3392         if (msg->rsp[2] != 0) {
3393                 /* An error getting the response, just ignore it. */
3394                 return 0;
3395         }
3396
3397         /*
3398          * This is an OEM Message so the OEM needs to know how
3399          * handle the message. We do no interpretation.
3400          */
3401         netfn = msg->rsp[0] >> 2;
3402         cmd = msg->rsp[1];
3403         chan = msg->rsp[3] & 0xf;
3404
3405         rcu_read_lock();
3406         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3407         if (rcvr) {
3408                 user = rcvr->user;
3409                 kref_get(&user->refcount);
3410         } else
3411                 user = NULL;
3412         rcu_read_unlock();
3413
3414         if (user == NULL) {
3415                 /* We didn't find a user, just give up. */
3416                 ipmi_inc_stat(intf, unhandled_commands);
3417
3418                 /*
3419                  * Don't do anything with these messages, just allow
3420                  * them to be freed.
3421                  */
3422
3423                 rv = 0;
3424         } else {
3425                 /* Deliver the message to the user. */
3426                 ipmi_inc_stat(intf, handled_commands);
3427
3428                 recv_msg = ipmi_alloc_recv_msg();
3429                 if (!recv_msg) {
3430                         /*
3431                          * We couldn't allocate memory for the
3432                          * message, so requeue it for handling
3433                          * later.
3434                          */
3435                         rv = 1;
3436                         kref_put(&user->refcount, free_user);
3437                 } else {
3438                         /*
3439                          * OEM Messages are expected to be delivered via
3440                          * the system interface to SMS software.  We might
3441                          * need to visit this again depending on OEM
3442                          * requirements
3443                          */
3444                         smi_addr = ((struct ipmi_system_interface_addr *)
3445                                     &(recv_msg->addr));
3446                         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3447                         smi_addr->channel = IPMI_BMC_CHANNEL;
3448                         smi_addr->lun = msg->rsp[0] & 3;
3449
3450                         recv_msg->user = user;
3451                         recv_msg->user_msg_data = NULL;
3452                         recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3453                         recv_msg->msg.netfn = msg->rsp[0] >> 2;
3454                         recv_msg->msg.cmd = msg->rsp[1];
3455                         recv_msg->msg.data = recv_msg->msg_data;
3456
3457                         /*
3458                          * The message starts at byte 4 which follows the
3459                          * the Channel Byte in the "GET MESSAGE" command
3460                          */
3461                         recv_msg->msg.data_len = msg->rsp_size - 4;
3462                         memcpy(recv_msg->msg_data,
3463                                &(msg->rsp[4]),
3464                                msg->rsp_size - 4);
3465                         deliver_response(recv_msg);
3466                 }
3467         }
3468
3469         return rv;
3470 }
3471
3472 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3473                                      struct ipmi_smi_msg  *msg)
3474 {
3475         struct ipmi_system_interface_addr *smi_addr;
3476
3477         recv_msg->msgid = 0;
3478         smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3479         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3480         smi_addr->channel = IPMI_BMC_CHANNEL;
3481         smi_addr->lun = msg->rsp[0] & 3;
3482         recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3483         recv_msg->msg.netfn = msg->rsp[0] >> 2;
3484         recv_msg->msg.cmd = msg->rsp[1];
3485         memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3486         recv_msg->msg.data = recv_msg->msg_data;
3487         recv_msg->msg.data_len = msg->rsp_size - 3;
3488 }
3489
3490 static int handle_read_event_rsp(ipmi_smi_t          intf,
3491                                  struct ipmi_smi_msg *msg)
3492 {
3493         struct ipmi_recv_msg *recv_msg, *recv_msg2;
3494         struct list_head     msgs;
3495         ipmi_user_t          user;
3496         int                  rv = 0;
3497         int                  deliver_count = 0;
3498         unsigned long        flags;
3499
3500         if (msg->rsp_size < 19) {
3501                 /* Message is too small to be an IPMB event. */
3502                 ipmi_inc_stat(intf, invalid_events);
3503                 return 0;
3504         }
3505
3506         if (msg->rsp[2] != 0) {
3507                 /* An error getting the event, just ignore it. */
3508                 return 0;
3509         }
3510
3511         INIT_LIST_HEAD(&msgs);
3512
3513         spin_lock_irqsave(&intf->events_lock, flags);
3514
3515         ipmi_inc_stat(intf, events);
3516
3517         /*
3518          * Allocate and fill in one message for every user that is
3519          * getting events.
3520          */
3521         rcu_read_lock();
3522         list_for_each_entry_rcu(user, &intf->users, link) {
3523                 if (!user->gets_events)
3524                         continue;
3525
3526                 recv_msg = ipmi_alloc_recv_msg();
3527                 if (!recv_msg) {
3528                         rcu_read_unlock();
3529                         list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3530                                                  link) {
3531                                 list_del(&recv_msg->link);
3532                                 ipmi_free_recv_msg(recv_msg);
3533                         }
3534                         /*
3535                          * We couldn't allocate memory for the
3536                          * message, so requeue it for handling
3537                          * later.
3538                          */
3539                         rv = 1;
3540                         goto out;
3541                 }
3542
3543                 deliver_count++;
3544
3545                 copy_event_into_recv_msg(recv_msg, msg);
3546                 recv_msg->user = user;
3547                 kref_get(&user->refcount);
3548                 list_add_tail(&(recv_msg->link), &msgs);
3549         }
3550         rcu_read_unlock();
3551
3552         if (deliver_count) {
3553                 /* Now deliver all the messages. */
3554                 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3555                         list_del(&recv_msg->link);
3556                         deliver_response(recv_msg);
3557                 }
3558         } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3559                 /*
3560                  * No one to receive the message, put it in queue if there's
3561                  * not already too many things in the queue.
3562                  */
3563                 recv_msg = ipmi_alloc_recv_msg();
3564                 if (!recv_msg) {
3565                         /*
3566                          * We couldn't allocate memory for the
3567                          * message, so requeue it for handling
3568                          * later.
3569                          */
3570                         rv = 1;
3571                         goto out;
3572                 }
3573
3574                 copy_event_into_recv_msg(recv_msg, msg);
3575                 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3576                 intf->waiting_events_count++;
3577         } else if (!intf->event_msg_printed) {
3578                 /*
3579                  * There's too many things in the queue, discard this
3580                  * message.
3581                  */
3582                 printk(KERN_WARNING PFX "Event queue full, discarding"
3583                        " incoming events\n");
3584                 intf->event_msg_printed = 1;
3585         }
3586
3587  out:
3588         spin_unlock_irqrestore(&(intf->events_lock), flags);
3589
3590         return rv;
3591 }
3592
3593 static int handle_bmc_rsp(ipmi_smi_t          intf,
3594                           struct ipmi_smi_msg *msg)
3595 {
3596         struct ipmi_recv_msg *recv_msg;
3597         struct ipmi_user     *user;
3598
3599         recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3600         if (recv_msg == NULL) {
3601                 printk(KERN_WARNING
3602                        "IPMI message received with no owner. This\n"
3603                        "could be because of a malformed message, or\n"
3604                        "because of a hardware error.  Contact your\n"
3605                        "hardware vender for assistance\n");
3606                 return 0;
3607         }
3608
3609         user = recv_msg->user;
3610         /* Make sure the user still exists. */
3611         if (user && !user->valid) {
3612                 /* The user for the message went away, so give up. */
3613                 ipmi_inc_stat(intf, unhandled_local_responses);
3614                 ipmi_free_recv_msg(recv_msg);
3615         } else {
3616                 struct ipmi_system_interface_addr *smi_addr;
3617
3618                 ipmi_inc_stat(intf, handled_local_responses);
3619                 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3620                 recv_msg->msgid = msg->msgid;
3621                 smi_addr = ((struct ipmi_system_interface_addr *)
3622                             &(recv_msg->addr));
3623                 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3624                 smi_addr->channel = IPMI_BMC_CHANNEL;
3625                 smi_addr->lun = msg->rsp[0] & 3;
3626                 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3627                 recv_msg->msg.cmd = msg->rsp[1];
3628                 memcpy(recv_msg->msg_data,
3629                        &(msg->rsp[2]),
3630                        msg->rsp_size - 2);
3631                 recv_msg->msg.data = recv_msg->msg_data;
3632                 recv_msg->msg.data_len = msg->rsp_size - 2;
3633                 deliver_response(recv_msg);
3634         }
3635
3636         return 0;
3637 }
3638
3639 /*
3640  * Handle a received message.  Return 1 if the message should be requeued,
3641  * 0 if the message should be freed, or -1 if the message should not
3642  * be freed or requeued.
3643  */
3644 static int handle_one_recv_msg(ipmi_smi_t          intf,
3645                                struct ipmi_smi_msg *msg)
3646 {
3647         int requeue;
3648         int chan;
3649
3650 #ifdef DEBUG_MSGING
3651         int m;
3652         printk("Recv:");
3653         for (m = 0; m < msg->rsp_size; m++)
3654                 printk(" %2.2x", msg->rsp[m]);
3655         printk("\n");
3656 #endif
3657         if (msg->rsp_size < 2) {
3658                 /* Message is too small to be correct. */
3659                 printk(KERN_WARNING PFX "BMC returned to small a message"
3660                        " for netfn %x cmd %x, got %d bytes\n",
3661                        (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3662
3663                 /* Generate an error response for the message. */
3664                 msg->rsp[0] = msg->data[0] | (1 << 2);
3665                 msg->rsp[1] = msg->data[1];
3666                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3667                 msg->rsp_size = 3;
3668         } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3669                    || (msg->rsp[1] != msg->data[1])) {
3670                 /*
3671                  * The NetFN and Command in the response is not even
3672                  * marginally correct.
3673                  */
3674                 printk(KERN_WARNING PFX "BMC returned incorrect response,"
3675                        " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3676                        (msg->data[0] >> 2) | 1, msg->data[1],
3677                        msg->rsp[0] >> 2, msg->rsp[1]);
3678
3679                 /* Generate an error response for the message. */
3680                 msg->rsp[0] = msg->data[0] | (1 << 2);
3681                 msg->rsp[1] = msg->data[1];
3682                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3683                 msg->rsp_size = 3;
3684         }
3685
3686         if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3687             && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3688             && (msg->user_data != NULL)) {
3689                 /*
3690                  * It's a response to a response we sent.  For this we
3691                  * deliver a send message response to the user.
3692                  */
3693                 struct ipmi_recv_msg     *recv_msg = msg->user_data;
3694
3695                 requeue = 0;
3696                 if (msg->rsp_size < 2)
3697                         /* Message is too small to be correct. */
3698                         goto out;
3699
3700                 chan = msg->data[2] & 0x0f;
3701                 if (chan >= IPMI_MAX_CHANNELS)
3702                         /* Invalid channel number */
3703                         goto out;
3704
3705                 if (!recv_msg)
3706                         goto out;
3707
3708                 /* Make sure the user still exists. */
3709                 if (!recv_msg->user || !recv_msg->user->valid)
3710                         goto out;
3711
3712                 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3713                 recv_msg->msg.data = recv_msg->msg_data;
3714                 recv_msg->msg.data_len = 1;
3715                 recv_msg->msg_data[0] = msg->rsp[2];
3716                 deliver_response(recv_msg);
3717         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3718                    && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3719                 /* It's from the receive queue. */
3720                 chan = msg->rsp[3] & 0xf;
3721                 if (chan >= IPMI_MAX_CHANNELS) {
3722                         /* Invalid channel number */
3723                         requeue = 0;
3724                         goto out;
3725                 }
3726
3727                 /*
3728                  * We need to make sure the channels have been initialized.
3729                  * The channel_handler routine will set the "curr_channel"
3730                  * equal to or greater than IPMI_MAX_CHANNELS when all the
3731                  * channels for this interface have been initialized.
3732                  */
3733                 if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3734                         requeue = 0; /* Throw the message away */
3735                         goto out;
3736                 }
3737
3738                 switch (intf->channels[chan].medium) {
3739                 case IPMI_CHANNEL_MEDIUM_IPMB:
3740                         if (msg->rsp[4] & 0x04) {
3741                                 /*
3742                                  * It's a response, so find the
3743                                  * requesting message and send it up.
3744                                  */
3745                                 requeue = handle_ipmb_get_msg_rsp(intf, msg);
3746                         } else {
3747                                 /*
3748                                  * It's a command to the SMS from some other
3749                                  * entity.  Handle that.
3750                                  */
3751                                 requeue = handle_ipmb_get_msg_cmd(intf, msg);
3752                         }
3753                         break;
3754
3755                 case IPMI_CHANNEL_MEDIUM_8023LAN:
3756                 case IPMI_CHANNEL_MEDIUM_ASYNC:
3757                         if (msg->rsp[6] & 0x04) {
3758                                 /*
3759                                  * It's a response, so find the
3760                                  * requesting message and send it up.
3761                                  */
3762                                 requeue = handle_lan_get_msg_rsp(intf, msg);
3763                         } else {
3764                                 /*
3765                                  * It's a command to the SMS from some other
3766                                  * entity.  Handle that.
3767                                  */
3768                                 requeue = handle_lan_get_msg_cmd(intf, msg);
3769                         }
3770                         break;
3771
3772                 default:
3773                         /* Check for OEM Channels.  Clients had better
3774                            register for these commands. */
3775                         if ((intf->channels[chan].medium
3776                              >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3777                             && (intf->channels[chan].medium
3778                                 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3779                                 requeue = handle_oem_get_msg_cmd(intf, msg);
3780                         } else {
3781                                 /*
3782                                  * We don't handle the channel type, so just
3783                                  * free the message.
3784                                  */
3785                                 requeue = 0;
3786                         }
3787                 }
3788
3789         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3790                    && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3791                 /* It's an asynchronous event. */
3792                 requeue = handle_read_event_rsp(intf, msg);
3793         } else {
3794                 /* It's a response from the local BMC. */
3795                 requeue = handle_bmc_rsp(intf, msg);
3796         }
3797
3798  out:
3799         return requeue;
3800 }
3801
3802 /*
3803  * If there are messages in the queue or pretimeouts, handle them.
3804  */
3805 static void handle_new_recv_msgs(ipmi_smi_t intf)
3806 {
3807         struct ipmi_smi_msg  *smi_msg;
3808         unsigned long        flags = 0;
3809         int                  rv;
3810         int                  run_to_completion = intf->run_to_completion;
3811
3812         /* See if any waiting messages need to be processed. */
3813         if (!run_to_completion)
3814                 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3815         while (!list_empty(&intf->waiting_msgs)) {
3816                 smi_msg = list_entry(intf->waiting_msgs.next,
3817                                      struct ipmi_smi_msg, link);
3818                 list_del(&smi_msg->link);
3819                 if (!run_to_completion)
3820                         spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3821                 rv = handle_one_recv_msg(intf, smi_msg);
3822                 if (!run_to_completion)
3823                         spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3824                 if (rv == 0) {
3825                         /* Message handled */
3826                         ipmi_free_smi_msg(smi_msg);
3827                 } else if (rv < 0) {
3828                         /* Fatal error on the message, del but don't free. */
3829                 } else {
3830                         /*
3831                          * To preserve message order, quit if we
3832                          * can't handle a message.
3833                          */
3834                         list_add(&smi_msg->link, &intf->waiting_msgs);
3835                         break;
3836                 }
3837         }
3838         if (!run_to_completion)
3839                 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3840
3841         /*
3842          * If the pretimout count is non-zero, decrement one from it and
3843          * deliver pretimeouts to all the users.
3844          */
3845         if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
3846                 ipmi_user_t user;
3847
3848                 rcu_read_lock();
3849                 list_for_each_entry_rcu(user, &intf->users, link) {
3850                         if (user->handler->ipmi_watchdog_pretimeout)
3851                                 user->handler->ipmi_watchdog_pretimeout(
3852                                         user->handler_data);
3853                 }
3854                 rcu_read_unlock();
3855         }
3856 }
3857
3858 static void smi_recv_tasklet(unsigned long val)
3859 {
3860         handle_new_recv_msgs((ipmi_smi_t) val);
3861 }
3862
3863 /* Handle a new message from the lower layer. */
3864 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3865                            struct ipmi_smi_msg *msg)
3866 {
3867         unsigned long flags = 0; /* keep us warning-free. */
3868         int           run_to_completion;
3869
3870
3871         if ((msg->data_size >= 2)
3872             && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3873             && (msg->data[1] == IPMI_SEND_MSG_CMD)
3874             && (msg->user_data == NULL)) {
3875                 /*
3876                  * This is the local response to a command send, start
3877                  * the timer for these.  The user_data will not be
3878                  * NULL if this is a response send, and we will let
3879                  * response sends just go through.
3880                  */
3881
3882                 /*
3883                  * Check for errors, if we get certain errors (ones
3884                  * that mean basically we can try again later), we
3885                  * ignore them and start the timer.  Otherwise we
3886                  * report the error immediately.
3887                  */
3888                 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3889                     && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3890                     && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3891                     && (msg->rsp[2] != IPMI_BUS_ERR)
3892                     && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3893                         int chan = msg->rsp[3] & 0xf;
3894
3895                         /* Got an error sending the message, handle it. */
3896                         if (chan >= IPMI_MAX_CHANNELS)
3897                                 ; /* This shouldn't happen */
3898                         else if ((intf->channels[chan].medium
3899                                   == IPMI_CHANNEL_MEDIUM_8023LAN)
3900                                  || (intf->channels[chan].medium
3901                                      == IPMI_CHANNEL_MEDIUM_ASYNC))
3902                                 ipmi_inc_stat(intf, sent_lan_command_errs);
3903                         else
3904                                 ipmi_inc_stat(intf, sent_ipmb_command_errs);
3905                         intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3906                 } else
3907                         /* The message was sent, start the timer. */
3908                         intf_start_seq_timer(intf, msg->msgid);
3909
3910                 ipmi_free_smi_msg(msg);
3911                 goto out;
3912         }
3913
3914         /*
3915          * To preserve message order, if the list is not empty, we
3916          * tack this message onto the end of the list.
3917          */
3918         run_to_completion = intf->run_to_completion;
3919         if (!run_to_completion)
3920                 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3921         list_add_tail(&msg->link, &intf->waiting_msgs);
3922         if (!run_to_completion)
3923                 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3924
3925         tasklet_schedule(&intf->recv_tasklet);
3926  out:
3927         return;
3928 }
3929 EXPORT_SYMBOL(ipmi_smi_msg_received);
3930
3931 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3932 {
3933         atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
3934         tasklet_schedule(&intf->recv_tasklet);
3935 }
3936 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3937
3938 static struct ipmi_smi_msg *
3939 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3940                   unsigned char seq, long seqid)
3941 {
3942         struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3943         if (!smi_msg)
3944                 /*
3945                  * If we can't allocate the message, then just return, we
3946                  * get 4 retries, so this should be ok.
3947                  */
3948                 return NULL;
3949
3950         memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3951         smi_msg->data_size = recv_msg->msg.data_len;
3952         smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3953
3954 #ifdef DEBUG_MSGING
3955         {
3956                 int m;
3957                 printk("Resend: ");
3958                 for (m = 0; m < smi_msg->data_size; m++)
3959                         printk(" %2.2x", smi_msg->data[m]);
3960                 printk("\n");
3961         }
3962 #endif
3963         return smi_msg;
3964 }
3965
3966 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
3967                               struct list_head *timeouts, long timeout_period,
3968                               int slot, unsigned long *flags)
3969 {
3970         struct ipmi_recv_msg     *msg;
3971         struct ipmi_smi_handlers *handlers;
3972
3973         if (intf->intf_num == -1)
3974                 return;
3975
3976         if (!ent->inuse)
3977                 return;
3978
3979         ent->timeout -= timeout_period;
3980         if (ent->timeout > 0)
3981                 return;
3982
3983         if (ent->retries_left == 0) {
3984                 /* The message has used all its retries. */
3985                 ent->inuse = 0;
3986                 msg = ent->recv_msg;
3987                 list_add_tail(&msg->link, timeouts);
3988                 if (ent->broadcast)
3989                         ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
3990                 else if (is_lan_addr(&ent->recv_msg->addr))
3991                         ipmi_inc_stat(intf, timed_out_lan_commands);
3992                 else
3993                         ipmi_inc_stat(intf, timed_out_ipmb_commands);
3994         } else {
3995                 struct ipmi_smi_msg *smi_msg;
3996                 /* More retries, send again. */
3997
3998                 /*
3999                  * Start with the max timer, set to normal timer after
4000                  * the message is sent.
4001                  */
4002                 ent->timeout = MAX_MSG_TIMEOUT;
4003                 ent->retries_left--;
4004                 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4005                                             ent->seqid);
4006                 if (!smi_msg) {
4007                         if (is_lan_addr(&ent->recv_msg->addr))
4008                                 ipmi_inc_stat(intf,
4009                                               dropped_rexmit_lan_commands);
4010                         else
4011                                 ipmi_inc_stat(intf,
4012                                               dropped_rexmit_ipmb_commands);
4013                         return;
4014                 }
4015
4016                 spin_unlock_irqrestore(&intf->seq_lock, *flags);
4017
4018                 /*
4019                  * Send the new message.  We send with a zero
4020                  * priority.  It timed out, I doubt time is that
4021                  * critical now, and high priority messages are really
4022                  * only for messages to the local MC, which don't get
4023                  * resent.
4024                  */
4025                 handlers = intf->handlers;
4026                 if (handlers) {
4027                         if (is_lan_addr(&ent->recv_msg->addr))
4028                                 ipmi_inc_stat(intf,
4029                                               retransmitted_lan_commands);
4030                         else
4031                                 ipmi_inc_stat(intf,
4032                                               retransmitted_ipmb_commands);
4033
4034                         intf->handlers->sender(intf->send_info,
4035                                                smi_msg, 0);
4036                 } else
4037                         ipmi_free_smi_msg(smi_msg);
4038
4039                 spin_lock_irqsave(&intf->seq_lock, *flags);
4040         }
4041 }
4042
4043 static void ipmi_timeout_handler(long timeout_period)
4044 {
4045         ipmi_smi_t           intf;
4046         struct list_head     timeouts;
4047         struct ipmi_recv_msg *msg, *msg2;
4048         unsigned long        flags;
4049         int                  i;
4050
4051         rcu_read_lock();
4052         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4053                 tasklet_schedule(&intf->recv_tasklet);
4054
4055                 /*
4056                  * Go through the seq table and find any messages that
4057                  * have timed out, putting them in the timeouts
4058                  * list.
4059                  */
4060                 INIT_LIST_HEAD(&timeouts);
4061                 spin_lock_irqsave(&intf->seq_lock, flags);
4062                 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4063                         check_msg_timeout(intf, &(intf->seq_table[i]),
4064                                           &timeouts, timeout_period, i,
4065                                           &flags);
4066                 spin_unlock_irqrestore(&intf->seq_lock, flags);
4067
4068                 list_for_each_entry_safe(msg, msg2, &timeouts, link)
4069                         deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4070
4071                 /*
4072                  * Maintenance mode handling.  Check the timeout
4073                  * optimistically before we claim the lock.  It may
4074                  * mean a timeout gets missed occasionally, but that
4075                  * only means the timeout gets extended by one period
4076                  * in that case.  No big deal, and it avoids the lock
4077                  * most of the time.
4078                  */
4079                 if (intf->auto_maintenance_timeout > 0) {
4080                         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4081                         if (intf->auto_maintenance_timeout > 0) {
4082                                 intf->auto_maintenance_timeout
4083                                         -= timeout_period;
4084                                 if (!intf->maintenance_mode
4085                                     && (intf->auto_maintenance_timeout <= 0)) {
4086                                         intf->maintenance_mode_enable = 0;
4087                                         maintenance_mode_update(intf);
4088                                 }
4089                         }
4090                         spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4091                                                flags);
4092                 }
4093         }
4094         rcu_read_unlock();
4095 }
4096
4097 static void ipmi_request_event(void)
4098 {
4099         ipmi_smi_t               intf;
4100         struct ipmi_smi_handlers *handlers;
4101
4102         rcu_read_lock();
4103         /*
4104          * Called from the timer, no need to check if handlers is
4105          * valid.
4106          */
4107         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4108                 /* No event requests when in maintenance mode. */
4109                 if (intf->maintenance_mode_enable)
4110                         continue;
4111
4112                 handlers = intf->handlers;
4113                 if (handlers)
4114                         handlers->request_events(intf->send_info);
4115         }
4116         rcu_read_unlock();
4117 }
4118
4119 static struct timer_list ipmi_timer;
4120
4121 /* Call every ~1000 ms. */
4122 #define IPMI_TIMEOUT_TIME       1000
4123
4124 /* How many jiffies does it take to get to the timeout time. */
4125 #define IPMI_TIMEOUT_JIFFIES    ((IPMI_TIMEOUT_TIME * HZ) / 1000)
4126
4127 /*
4128  * Request events from the queue every second (this is the number of
4129  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
4130  * future, IPMI will add a way to know immediately if an event is in
4131  * the queue and this silliness can go away.
4132  */
4133 #define IPMI_REQUEST_EV_TIME    (1000 / (IPMI_TIMEOUT_TIME))
4134
4135 static atomic_t stop_operation;
4136 static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4137
4138 static void ipmi_timeout(unsigned long data)
4139 {
4140         if (atomic_read(&stop_operation))
4141                 return;
4142
4143         ticks_to_req_ev--;
4144         if (ticks_to_req_ev == 0) {
4145                 ipmi_request_event();
4146                 ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4147         }
4148
4149         ipmi_timeout_handler(IPMI_TIMEOUT_TIME);
4150
4151         mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4152 }
4153
4154
4155 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4156 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4157
4158 /* FIXME - convert these to slabs. */
4159 static void free_smi_msg(struct ipmi_smi_msg *msg)
4160 {
4161         atomic_dec(&smi_msg_inuse_count);
4162         kfree(msg);
4163 }
4164
4165 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4166 {
4167         struct ipmi_smi_msg *rv;
4168         rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4169         if (rv) {
4170                 rv->done = free_smi_msg;
4171                 rv->user_data = NULL;
4172                 atomic_inc(&smi_msg_inuse_count);
4173         }
4174         return rv;
4175 }
4176 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4177
4178 static void free_recv_msg(struct ipmi_recv_msg *msg)
4179 {
4180         atomic_dec(&recv_msg_inuse_count);
4181         kfree(msg);
4182 }
4183
4184 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4185 {
4186         struct ipmi_recv_msg *rv;
4187
4188         rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4189         if (rv) {
4190                 rv->user = NULL;
4191                 rv->done = free_recv_msg;
4192                 atomic_inc(&recv_msg_inuse_count);
4193         }
4194         return rv;
4195 }
4196
4197 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4198 {
4199         if (msg->user)
4200                 kref_put(&msg->user->refcount, free_user);
4201         msg->done(msg);
4202 }
4203 EXPORT_SYMBOL(ipmi_free_recv_msg);
4204
4205 #ifdef CONFIG_IPMI_PANIC_EVENT
4206
4207 static atomic_t panic_done_count = ATOMIC_INIT(0);
4208
4209 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4210 {
4211         atomic_dec(&panic_done_count);
4212 }
4213
4214 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4215 {
4216         atomic_dec(&panic_done_count);
4217 }
4218
4219 /*
4220  * Inside a panic, send a message and wait for a response.
4221  */
4222 static void ipmi_panic_request_and_wait(ipmi_smi_t           intf,
4223                                         struct ipmi_addr     *addr,
4224                                         struct kernel_ipmi_msg *msg)
4225 {
4226         struct ipmi_smi_msg  smi_msg;
4227         struct ipmi_recv_msg recv_msg;
4228         int rv;
4229
4230         smi_msg.done = dummy_smi_done_handler;
4231         recv_msg.done = dummy_recv_done_handler;
4232         atomic_add(2, &panic_done_count);
4233         rv = i_ipmi_request(NULL,
4234                             intf,
4235                             addr,
4236                             0,
4237                             msg,
4238                             intf,
4239                             &smi_msg,
4240                             &recv_msg,
4241                             0,
4242                             intf->channels[0].address,
4243                             intf->channels[0].lun,
4244                             0, 1); /* Don't retry, and don't wait. */
4245         if (rv)
4246                 atomic_sub(2, &panic_done_count);
4247         while (atomic_read(&panic_done_count) != 0)
4248                 ipmi_poll(intf);
4249 }
4250
4251 #ifdef CONFIG_IPMI_PANIC_STRING
4252 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4253 {
4254         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4255             && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4256             && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4257             && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4258                 /* A get event receiver command, save it. */
4259                 intf->event_receiver = msg->msg.data[1];
4260                 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4261         }
4262 }
4263
4264 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4265 {
4266         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4267             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4268             && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4269             && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4270                 /*
4271                  * A get device id command, save if we are an event
4272                  * receiver or generator.
4273                  */
4274                 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4275                 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4276         }
4277 }
4278 #endif
4279
4280 static void send_panic_events(char *str)
4281 {
4282         struct kernel_ipmi_msg            msg;
4283         ipmi_smi_t                        intf;
4284         unsigned char                     data[16];
4285         struct ipmi_system_interface_addr *si;
4286         struct ipmi_addr                  addr;
4287
4288         si = (struct ipmi_system_interface_addr *) &addr;
4289         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4290         si->channel = IPMI_BMC_CHANNEL;
4291         si->lun = 0;
4292
4293         /* Fill in an event telling that we have failed. */
4294         msg.netfn = 0x04; /* Sensor or Event. */
4295         msg.cmd = 2; /* Platform event command. */
4296         msg.data = data;
4297         msg.data_len = 8;
4298         data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4299         data[1] = 0x03; /* This is for IPMI 1.0. */
4300         data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4301         data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4302         data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4303
4304         /*
4305          * Put a few breadcrumbs in.  Hopefully later we can add more things
4306          * to make the panic events more useful.
4307          */
4308         if (str) {
4309                 data[3] = str[0];
4310                 data[6] = str[1];
4311                 data[7] = str[2];
4312         }
4313
4314         /* For every registered interface, send the event. */
4315         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4316                 if (!intf->handlers)
4317                         /* Interface is not ready. */
4318                         continue;
4319
4320                 intf->run_to_completion = 1;
4321                 /* Send the event announcing the panic. */
4322                 intf->handlers->set_run_to_completion(intf->send_info, 1);
4323                 ipmi_panic_request_and_wait(intf, &addr, &msg);
4324         }
4325
4326 #ifdef CONFIG_IPMI_PANIC_STRING
4327         /*
4328          * On every interface, dump a bunch of OEM event holding the
4329          * string.
4330          */
4331         if (!str)
4332                 return;
4333
4334         /* For every registered interface, send the event. */
4335         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4336                 char                  *p = str;
4337                 struct ipmi_ipmb_addr *ipmb;
4338                 int                   j;
4339
4340                 if (intf->intf_num == -1)
4341                         /* Interface was not ready yet. */
4342                         continue;
4343
4344                 /*
4345                  * intf_num is used as an marker to tell if the
4346                  * interface is valid.  Thus we need a read barrier to
4347                  * make sure data fetched before checking intf_num
4348                  * won't be used.
4349                  */
4350                 smp_rmb();
4351
4352                 /*
4353                  * First job here is to figure out where to send the
4354                  * OEM events.  There's no way in IPMI to send OEM
4355                  * events using an event send command, so we have to
4356                  * find the SEL to put them in and stick them in
4357                  * there.
4358                  */
4359
4360                 /* Get capabilities from the get device id. */
4361                 intf->local_sel_device = 0;
4362                 intf->local_event_generator = 0;
4363                 intf->event_receiver = 0;
4364
4365                 /* Request the device info from the local MC. */
4366                 msg.netfn = IPMI_NETFN_APP_REQUEST;
4367                 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4368                 msg.data = NULL;
4369                 msg.data_len = 0;
4370                 intf->null_user_handler = device_id_fetcher;
4371                 ipmi_panic_request_and_wait(intf, &addr, &msg);
4372
4373                 if (intf->local_event_generator) {
4374                         /* Request the event receiver from the local MC. */
4375                         msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4376                         msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4377                         msg.data = NULL;
4378                         msg.data_len = 0;
4379                         intf->null_user_handler = event_receiver_fetcher;
4380                         ipmi_panic_request_and_wait(intf, &addr, &msg);
4381                 }
4382                 intf->null_user_handler = NULL;
4383
4384                 /*
4385                  * Validate the event receiver.  The low bit must not
4386                  * be 1 (it must be a valid IPMB address), it cannot
4387                  * be zero, and it must not be my address.
4388                  */
4389                 if (((intf->event_receiver & 1) == 0)
4390                     && (intf->event_receiver != 0)
4391                     && (intf->event_receiver != intf->channels[0].address)) {
4392                         /*
4393                          * The event receiver is valid, send an IPMB
4394                          * message.
4395                          */
4396                         ipmb = (struct ipmi_ipmb_addr *) &addr;
4397                         ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4398                         ipmb->channel = 0; /* FIXME - is this right? */
4399                         ipmb->lun = intf->event_receiver_lun;
4400                         ipmb->slave_addr = intf->event_receiver;
4401                 } else if (intf->local_sel_device) {
4402                         /*
4403                          * The event receiver was not valid (or was
4404                          * me), but I am an SEL device, just dump it
4405                          * in my SEL.
4406                          */
4407                         si = (struct ipmi_system_interface_addr *) &addr;
4408                         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4409                         si->channel = IPMI_BMC_CHANNEL;
4410                         si->lun = 0;
4411                 } else
4412                         continue; /* No where to send the event. */
4413
4414                 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4415                 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4416                 msg.data = data;
4417                 msg.data_len = 16;
4418
4419                 j = 0;
4420                 while (*p) {
4421                         int size = strlen(p);
4422
4423                         if (size > 11)
4424                                 size = 11;
4425                         data[0] = 0;
4426                         data[1] = 0;
4427                         data[2] = 0xf0; /* OEM event without timestamp. */
4428                         data[3] = intf->channels[0].address;
4429                         data[4] = j++; /* sequence # */
4430                         /*
4431                          * Always give 11 bytes, so strncpy will fill
4432                          * it with zeroes for me.
4433                          */
4434                         strncpy(data+5, p, 11);
4435                         p += size;
4436
4437                         ipmi_panic_request_and_wait(intf, &addr, &msg);
4438                 }
4439         }
4440 #endif /* CONFIG_IPMI_PANIC_STRING */
4441 }
4442 #endif /* CONFIG_IPMI_PANIC_EVENT */
4443
4444 static int has_panicked;
4445
4446 static int panic_event(struct notifier_block *this,
4447                        unsigned long         event,
4448                        void                  *ptr)
4449 {
4450         ipmi_smi_t intf;
4451
4452         if (has_panicked)
4453                 return NOTIFY_DONE;
4454         has_panicked = 1;
4455
4456         /* For every registered interface, set it to run to completion. */
4457         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4458                 if (!intf->handlers)
4459                         /* Interface is not ready. */
4460                         continue;
4461
4462                 intf->run_to_completion = 1;
4463                 intf->handlers->set_run_to_completion(intf->send_info, 1);
4464         }
4465
4466 #ifdef CONFIG_IPMI_PANIC_EVENT
4467         send_panic_events(ptr);
4468 #endif
4469
4470         return NOTIFY_DONE;
4471 }
4472
4473 static struct notifier_block panic_block = {
4474         .notifier_call  = panic_event,
4475         .next           = NULL,
4476         .priority       = 200   /* priority: INT_MAX >= x >= 0 */
4477 };
4478
4479 static int ipmi_init_msghandler(void)
4480 {
4481         int rv;
4482
4483         if (initialized)
4484                 return 0;
4485
4486         rv = driver_register(&ipmidriver.driver);
4487         if (rv) {
4488                 printk(KERN_ERR PFX "Could not register IPMI driver\n");
4489                 return rv;
4490         }
4491
4492         printk(KERN_INFO "ipmi message handler version "
4493                IPMI_DRIVER_VERSION "\n");
4494
4495 #ifdef CONFIG_PROC_FS
4496         proc_ipmi_root = proc_mkdir("ipmi", NULL);
4497         if (!proc_ipmi_root) {
4498             printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4499             return -ENOMEM;
4500         }
4501
4502 #endif /* CONFIG_PROC_FS */
4503
4504         setup_timer(&ipmi_timer, ipmi_timeout, 0);
4505         mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4506
4507         atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4508
4509         initialized = 1;
4510
4511         return 0;
4512 }
4513
4514 static int __init ipmi_init_msghandler_mod(void)
4515 {
4516         ipmi_init_msghandler();
4517         return 0;
4518 }
4519
4520 static void __exit cleanup_ipmi(void)
4521 {
4522         int count;
4523
4524         if (!initialized)
4525                 return;
4526
4527         atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4528
4529         /*
4530          * This can't be called if any interfaces exist, so no worry
4531          * about shutting down the interfaces.
4532          */
4533
4534         /*
4535          * Tell the timer to stop, then wait for it to stop.  This
4536          * avoids problems with race conditions removing the timer
4537          * here.
4538          */
4539         atomic_inc(&stop_operation);
4540         del_timer_sync(&ipmi_timer);
4541
4542 #ifdef CONFIG_PROC_FS
4543         proc_remove(proc_ipmi_root);
4544 #endif /* CONFIG_PROC_FS */
4545
4546         driver_unregister(&ipmidriver.driver);
4547
4548         initialized = 0;
4549
4550         /* Check for buffer leaks. */
4551         count = atomic_read(&smi_msg_inuse_count);
4552         if (count != 0)
4553                 printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4554                        count);
4555         count = atomic_read(&recv_msg_inuse_count);
4556         if (count != 0)
4557                 printk(KERN_WARNING PFX "recv message count %d at exit\n",
4558                        count);
4559 }
4560 module_exit(cleanup_ipmi);
4561
4562 module_init(ipmi_init_msghandler_mod);
4563 MODULE_LICENSE("GPL");
4564 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4565 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4566                    " interface.");
4567 MODULE_VERSION(IPMI_DRIVER_VERSION);