2 * Intel & MS High Precision Event Timer Implementation.
4 * Copyright (C) 2003 Intel Corporation
6 * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
7 * Bob Picco <robert.picco@hp.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/miscdevice.h>
19 #include <linux/major.h>
20 #include <linux/ioport.h>
21 #include <linux/fcntl.h>
22 #include <linux/init.h>
23 #include <linux/poll.h>
25 #include <linux/proc_fs.h>
26 #include <linux/spinlock.h>
27 #include <linux/sysctl.h>
28 #include <linux/wait.h>
29 #include <linux/bcd.h>
30 #include <linux/seq_file.h>
31 #include <linux/bitops.h>
32 #include <linux/compat.h>
33 #include <linux/clocksource.h>
34 #include <linux/uaccess.h>
35 #include <linux/slab.h>
38 #include <asm/current.h>
40 #include <asm/div64.h>
42 #include <linux/acpi.h>
43 #include <acpi/acpi_bus.h>
44 #include <linux/hpet.h>
47 * The High Precision Event Timer driver.
48 * This driver is closely modelled after the rtc.c driver.
49 * http://www.intel.com/hardwaredesign/hpetspec_1.pdf
51 #define HPET_USER_FREQ (64)
52 #define HPET_DRIFT (500)
54 #define HPET_RANGE_SIZE 1024 /* from HPET spec */
57 /* WARNING -- don't get confused. These macros are never used
58 * to write the (single) counter, and rarely to read it.
59 * They're badly named; to fix, someday.
61 #if BITS_PER_LONG == 64
62 #define write_counter(V, MC) writeq(V, MC)
63 #define read_counter(MC) readq(MC)
65 #define write_counter(V, MC) writel(V, MC)
66 #define read_counter(MC) readl(MC)
69 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
70 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
72 /* This clocksource driver currently only works on ia64 */
74 static void __iomem *hpet_mctr;
76 static cycle_t read_hpet(struct clocksource *cs)
78 return (cycle_t)read_counter((void __iomem *)hpet_mctr);
81 static struct clocksource clocksource_hpet = {
85 .mask = CLOCKSOURCE_MASK(64),
86 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
88 static struct clocksource *hpet_clocksource;
91 /* A lock for concurrent access by app and isr hpet activity. */
92 static DEFINE_SPINLOCK(hpet_lock);
94 #define HPET_DEV_NAME (7)
97 struct hpets *hd_hpets;
98 struct hpet __iomem *hd_hpet;
99 struct hpet_timer __iomem *hd_timer;
100 unsigned long hd_ireqfreq;
101 unsigned long hd_irqdata;
102 wait_queue_head_t hd_waitqueue;
103 struct fasync_struct *hd_async_queue;
104 unsigned int hd_flags;
106 unsigned int hd_hdwirq;
107 char hd_name[HPET_DEV_NAME];
111 struct hpets *hp_next;
112 struct hpet __iomem *hp_hpet;
113 unsigned long hp_hpet_phys;
114 struct clocksource *hp_clocksource;
115 unsigned long long hp_tick_freq;
116 unsigned long hp_delta;
117 unsigned int hp_ntimer;
118 unsigned int hp_which;
119 struct hpet_dev hp_dev[1];
122 static struct hpets *hpets;
124 #define HPET_OPEN 0x0001
125 #define HPET_IE 0x0002 /* interrupt enabled */
126 #define HPET_PERIODIC 0x0004
127 #define HPET_SHARED_IRQ 0x0008
131 static inline unsigned long long readq(void __iomem *addr)
133 return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
138 static inline void writeq(unsigned long long v, void __iomem *addr)
140 writel(v & 0xffffffff, addr);
141 writel(v >> 32, addr + 4);
145 static irqreturn_t hpet_interrupt(int irq, void *data)
147 struct hpet_dev *devp;
151 isr = 1 << (devp - devp->hd_hpets->hp_dev);
153 if ((devp->hd_flags & HPET_SHARED_IRQ) &&
154 !(isr & readl(&devp->hd_hpet->hpet_isr)))
157 spin_lock(&hpet_lock);
161 * For non-periodic timers, increment the accumulator.
162 * This has the effect of treating non-periodic like periodic.
164 if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
165 unsigned long m, t, mc, base, k;
166 struct hpet __iomem *hpet = devp->hd_hpet;
167 struct hpets *hpetp = devp->hd_hpets;
169 t = devp->hd_ireqfreq;
170 m = read_counter(&devp->hd_timer->hpet_compare);
171 mc = read_counter(&hpet->hpet_mc);
172 /* The time for the next interrupt would logically be t + m,
173 * however, if we are very unlucky and the interrupt is delayed
174 * for longer than t then we will completely miss the next
175 * interrupt if we set t + m and an application will hang.
176 * Therefore we need to make a more complex computation assuming
177 * that there exists a k for which the following is true:
178 * k * t + base < mc + delta
179 * (k + 1) * t + base > mc + delta
180 * where t is the interval in hpet ticks for the given freq,
181 * base is the theoretical start value 0 < base < t,
182 * mc is the main counter value at the time of the interrupt,
183 * delta is the time it takes to write the a value to the
185 * k may then be computed as (mc - base + delta) / t .
188 k = (mc - base + hpetp->hp_delta) / t;
189 write_counter(t * (k + 1) + base,
190 &devp->hd_timer->hpet_compare);
193 if (devp->hd_flags & HPET_SHARED_IRQ)
194 writel(isr, &devp->hd_hpet->hpet_isr);
195 spin_unlock(&hpet_lock);
197 wake_up_interruptible(&devp->hd_waitqueue);
199 kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
204 static void hpet_timer_set_irq(struct hpet_dev *devp)
208 struct hpet_timer __iomem *timer;
210 spin_lock_irq(&hpet_lock);
211 if (devp->hd_hdwirq) {
212 spin_unlock_irq(&hpet_lock);
216 timer = devp->hd_timer;
218 /* we prefer level triggered mode */
219 v = readl(&timer->hpet_config);
220 if (!(v & Tn_INT_TYPE_CNF_MASK)) {
221 v |= Tn_INT_TYPE_CNF_MASK;
222 writel(v, &timer->hpet_config);
224 spin_unlock_irq(&hpet_lock);
226 v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
227 Tn_INT_ROUTE_CAP_SHIFT;
230 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
231 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
233 if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
238 for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
239 if (irq >= nr_irqs) {
244 gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
249 /* FIXME: Setup interrupt source table */
252 if (irq < HPET_MAX_IRQ) {
253 spin_lock_irq(&hpet_lock);
254 v = readl(&timer->hpet_config);
255 v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
256 writel(v, &timer->hpet_config);
257 devp->hd_hdwirq = gsi;
258 spin_unlock_irq(&hpet_lock);
263 static int hpet_open(struct inode *inode, struct file *file)
265 struct hpet_dev *devp;
269 if (file->f_mode & FMODE_WRITE)
272 mutex_lock(&hpet_mutex);
273 spin_lock_irq(&hpet_lock);
275 for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
276 for (i = 0; i < hpetp->hp_ntimer; i++)
277 if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
280 devp = &hpetp->hp_dev[i];
285 spin_unlock_irq(&hpet_lock);
286 mutex_unlock(&hpet_mutex);
290 file->private_data = devp;
291 devp->hd_irqdata = 0;
292 devp->hd_flags |= HPET_OPEN;
293 spin_unlock_irq(&hpet_lock);
294 mutex_unlock(&hpet_mutex);
296 hpet_timer_set_irq(devp);
302 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
304 DECLARE_WAITQUEUE(wait, current);
307 struct hpet_dev *devp;
309 devp = file->private_data;
310 if (!devp->hd_ireqfreq)
313 if (count < sizeof(unsigned long))
316 add_wait_queue(&devp->hd_waitqueue, &wait);
319 set_current_state(TASK_INTERRUPTIBLE);
321 spin_lock_irq(&hpet_lock);
322 data = devp->hd_irqdata;
323 devp->hd_irqdata = 0;
324 spin_unlock_irq(&hpet_lock);
328 else if (file->f_flags & O_NONBLOCK) {
331 } else if (signal_pending(current)) {
332 retval = -ERESTARTSYS;
338 retval = put_user(data, (unsigned long __user *)buf);
340 retval = sizeof(unsigned long);
342 __set_current_state(TASK_RUNNING);
343 remove_wait_queue(&devp->hd_waitqueue, &wait);
348 static unsigned int hpet_poll(struct file *file, poll_table * wait)
351 struct hpet_dev *devp;
353 devp = file->private_data;
355 if (!devp->hd_ireqfreq)
358 poll_wait(file, &devp->hd_waitqueue, wait);
360 spin_lock_irq(&hpet_lock);
361 v = devp->hd_irqdata;
362 spin_unlock_irq(&hpet_lock);
365 return POLLIN | POLLRDNORM;
370 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
372 #ifdef CONFIG_HPET_MMAP
373 struct hpet_dev *devp;
376 devp = file->private_data;
377 addr = devp->hd_hpets->hp_hpet_phys;
379 if (addr & (PAGE_SIZE - 1))
382 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
383 return vm_iomap_memory(vma, addr, PAGE_SIZE);
389 static int hpet_fasync(int fd, struct file *file, int on)
391 struct hpet_dev *devp;
393 devp = file->private_data;
395 if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
401 static int hpet_release(struct inode *inode, struct file *file)
403 struct hpet_dev *devp;
404 struct hpet_timer __iomem *timer;
407 devp = file->private_data;
408 timer = devp->hd_timer;
410 spin_lock_irq(&hpet_lock);
412 writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
413 &timer->hpet_config);
418 devp->hd_ireqfreq = 0;
420 if (devp->hd_flags & HPET_PERIODIC
421 && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
424 v = readq(&timer->hpet_config);
425 v ^= Tn_TYPE_CNF_MASK;
426 writeq(v, &timer->hpet_config);
429 devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
430 spin_unlock_irq(&hpet_lock);
435 file->private_data = NULL;
439 static int hpet_ioctl_ieon(struct hpet_dev *devp)
441 struct hpet_timer __iomem *timer;
442 struct hpet __iomem *hpet;
445 unsigned long g, v, t, m;
446 unsigned long flags, isr;
448 timer = devp->hd_timer;
449 hpet = devp->hd_hpet;
450 hpetp = devp->hd_hpets;
452 if (!devp->hd_ireqfreq)
455 spin_lock_irq(&hpet_lock);
457 if (devp->hd_flags & HPET_IE) {
458 spin_unlock_irq(&hpet_lock);
462 devp->hd_flags |= HPET_IE;
464 if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
465 devp->hd_flags |= HPET_SHARED_IRQ;
466 spin_unlock_irq(&hpet_lock);
468 irq = devp->hd_hdwirq;
471 unsigned long irq_flags;
473 if (devp->hd_flags & HPET_SHARED_IRQ) {
475 * To prevent the interrupt handler from seeing an
476 * unwanted interrupt status bit, program the timer
477 * so that it will not fire in the near future ...
479 writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
480 &timer->hpet_config);
481 write_counter(read_counter(&hpet->hpet_mc),
482 &timer->hpet_compare);
483 /* ... and clear any left-over status. */
484 isr = 1 << (devp - devp->hd_hpets->hp_dev);
485 writel(isr, &hpet->hpet_isr);
488 sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
489 irq_flags = devp->hd_flags & HPET_SHARED_IRQ
490 ? IRQF_SHARED : IRQF_DISABLED;
491 if (request_irq(irq, hpet_interrupt, irq_flags,
492 devp->hd_name, (void *)devp)) {
493 printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
499 spin_lock_irq(&hpet_lock);
500 devp->hd_flags ^= HPET_IE;
501 spin_unlock_irq(&hpet_lock);
506 t = devp->hd_ireqfreq;
507 v = readq(&timer->hpet_config);
509 /* 64-bit comparators are not yet supported through the ioctls,
510 * so force this into 32-bit mode if it supports both modes
512 g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
514 if (devp->hd_flags & HPET_PERIODIC) {
515 g |= Tn_TYPE_CNF_MASK;
516 v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
517 writeq(v, &timer->hpet_config);
518 local_irq_save(flags);
521 * NOTE: First we modify the hidden accumulator
522 * register supported by periodic-capable comparators.
523 * We never want to modify the (single) counter; that
524 * would affect all the comparators. The value written
525 * is the counter value when the first interrupt is due.
527 m = read_counter(&hpet->hpet_mc);
528 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
530 * Then we modify the comparator, indicating the period
531 * for subsequent interrupt.
533 write_counter(t, &timer->hpet_compare);
535 local_irq_save(flags);
536 m = read_counter(&hpet->hpet_mc);
537 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
540 if (devp->hd_flags & HPET_SHARED_IRQ) {
541 isr = 1 << (devp - devp->hd_hpets->hp_dev);
542 writel(isr, &hpet->hpet_isr);
544 writeq(g, &timer->hpet_config);
545 local_irq_restore(flags);
550 /* converts Hz to number of timer ticks */
551 static inline unsigned long hpet_time_div(struct hpets *hpets,
554 unsigned long long m;
556 m = hpets->hp_tick_freq + (dis >> 1);
558 return (unsigned long)m;
562 hpet_ioctl_common(struct hpet_dev *devp, int cmd, unsigned long arg,
563 struct hpet_info *info)
565 struct hpet_timer __iomem *timer;
566 struct hpet __iomem *hpet;
577 timer = devp->hd_timer;
578 hpet = devp->hd_hpet;
579 hpetp = devp->hd_hpets;
582 return hpet_ioctl_ieon(devp);
591 if ((devp->hd_flags & HPET_IE) == 0)
593 v = readq(&timer->hpet_config);
594 v &= ~Tn_INT_ENB_CNF_MASK;
595 writeq(v, &timer->hpet_config);
597 free_irq(devp->hd_irq, devp);
600 devp->hd_flags ^= HPET_IE;
604 memset(info, 0, sizeof(*info));
605 if (devp->hd_ireqfreq)
607 hpet_time_div(hpetp, devp->hd_ireqfreq);
609 readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
610 info->hi_hpet = hpetp->hp_which;
611 info->hi_timer = devp - hpetp->hp_dev;
615 v = readq(&timer->hpet_config);
616 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
620 devp->hd_flags |= HPET_PERIODIC;
623 v = readq(&timer->hpet_config);
624 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
628 if (devp->hd_flags & HPET_PERIODIC &&
629 readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
630 v = readq(&timer->hpet_config);
631 v ^= Tn_TYPE_CNF_MASK;
632 writeq(v, &timer->hpet_config);
634 devp->hd_flags &= ~HPET_PERIODIC;
637 if ((arg > hpet_max_freq) &&
638 !capable(CAP_SYS_RESOURCE)) {
648 devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
655 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
657 struct hpet_info info;
660 mutex_lock(&hpet_mutex);
661 err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
662 mutex_unlock(&hpet_mutex);
664 if ((cmd == HPET_INFO) && !err &&
665 (copy_to_user((void __user *)arg, &info, sizeof(info))))
672 struct compat_hpet_info {
673 compat_ulong_t hi_ireqfreq; /* Hz */
674 compat_ulong_t hi_flags; /* information */
675 unsigned short hi_hpet;
676 unsigned short hi_timer;
680 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
682 struct hpet_info info;
685 mutex_lock(&hpet_mutex);
686 err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
687 mutex_unlock(&hpet_mutex);
689 if ((cmd == HPET_INFO) && !err) {
690 struct compat_hpet_info __user *u = compat_ptr(arg);
691 if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
692 put_user(info.hi_flags, &u->hi_flags) ||
693 put_user(info.hi_hpet, &u->hi_hpet) ||
694 put_user(info.hi_timer, &u->hi_timer))
702 static const struct file_operations hpet_fops = {
703 .owner = THIS_MODULE,
707 .unlocked_ioctl = hpet_ioctl,
709 .compat_ioctl = hpet_compat_ioctl,
712 .release = hpet_release,
713 .fasync = hpet_fasync,
717 static int hpet_is_known(struct hpet_data *hdp)
721 for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
722 if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
728 static struct ctl_table hpet_table[] = {
730 .procname = "max-user-freq",
731 .data = &hpet_max_freq,
732 .maxlen = sizeof(int),
734 .proc_handler = proc_dointvec,
739 static struct ctl_table hpet_root[] = {
749 static struct ctl_table dev_root[] = {
759 static struct ctl_table_header *sysctl_header;
762 * Adjustment for when arming the timer with
763 * initial conditions. That is, main counter
764 * ticks expired before interrupts are enabled.
766 #define TICK_CALIBRATE (1000UL)
768 static unsigned long __hpet_calibrate(struct hpets *hpetp)
770 struct hpet_timer __iomem *timer = NULL;
771 unsigned long t, m, count, i, flags, start;
772 struct hpet_dev *devp;
774 struct hpet __iomem *hpet;
776 for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
777 if ((devp->hd_flags & HPET_OPEN) == 0) {
778 timer = devp->hd_timer;
785 hpet = hpetp->hp_hpet;
786 t = read_counter(&timer->hpet_compare);
789 count = hpet_time_div(hpetp, TICK_CALIBRATE);
791 local_irq_save(flags);
793 start = read_counter(&hpet->hpet_mc);
796 m = read_counter(&hpet->hpet_mc);
797 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
798 } while (i++, (m - start) < count);
800 local_irq_restore(flags);
802 return (m - start) / i;
805 static unsigned long hpet_calibrate(struct hpets *hpetp)
807 unsigned long ret = ~0UL;
811 * Try to calibrate until return value becomes stable small value.
812 * If SMI interruption occurs in calibration loop, the return value
813 * will be big. This avoids its impact.
816 tmp = __hpet_calibrate(hpetp);
825 int hpet_alloc(struct hpet_data *hdp)
828 struct hpet_dev *devp;
832 struct hpet __iomem *hpet;
833 static struct hpets *last;
834 unsigned long period;
835 unsigned long long temp;
839 * hpet_alloc can be called by platform dependent code.
840 * If platform dependent code has allocated the hpet that
841 * ACPI has also reported, then we catch it here.
843 if (hpet_is_known(hdp)) {
844 printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
849 siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
850 sizeof(struct hpet_dev));
852 hpetp = kzalloc(siz, GFP_KERNEL);
857 hpetp->hp_which = hpet_nhpet++;
858 hpetp->hp_hpet = hdp->hd_address;
859 hpetp->hp_hpet_phys = hdp->hd_phys_address;
861 hpetp->hp_ntimer = hdp->hd_nirqs;
863 for (i = 0; i < hdp->hd_nirqs; i++)
864 hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
866 hpet = hpetp->hp_hpet;
868 cap = readq(&hpet->hpet_cap);
870 ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
872 if (hpetp->hp_ntimer != ntimer) {
873 printk(KERN_WARNING "hpet: number irqs doesn't agree"
874 " with number of timers\n");
880 last->hp_next = hpetp;
886 period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
887 HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
888 temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
889 temp += period >> 1; /* round */
890 do_div(temp, period);
891 hpetp->hp_tick_freq = temp; /* ticks per second */
893 printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
894 hpetp->hp_which, hdp->hd_phys_address,
895 hpetp->hp_ntimer > 1 ? "s" : "");
896 for (i = 0; i < hpetp->hp_ntimer; i++)
897 printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
898 printk(KERN_CONT "\n");
900 temp = hpetp->hp_tick_freq;
901 remainder = do_div(temp, 1000000);
903 "hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
904 hpetp->hp_which, hpetp->hp_ntimer,
905 cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
906 (unsigned) temp, remainder);
908 mcfg = readq(&hpet->hpet_config);
909 if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
910 write_counter(0L, &hpet->hpet_mc);
911 mcfg |= HPET_ENABLE_CNF_MASK;
912 writeq(mcfg, &hpet->hpet_config);
915 for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
916 struct hpet_timer __iomem *timer;
918 timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
920 devp->hd_hpets = hpetp;
921 devp->hd_hpet = hpet;
922 devp->hd_timer = timer;
925 * If the timer was reserved by platform code,
926 * then make timer unavailable for opens.
928 if (hdp->hd_state & (1 << i)) {
929 devp->hd_flags = HPET_OPEN;
933 init_waitqueue_head(&devp->hd_waitqueue);
936 hpetp->hp_delta = hpet_calibrate(hpetp);
938 /* This clocksource driver currently only works on ia64 */
940 if (!hpet_clocksource) {
941 hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
942 clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
943 clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
944 hpetp->hp_clocksource = &clocksource_hpet;
945 hpet_clocksource = &clocksource_hpet;
952 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
954 struct hpet_data *hdp;
956 struct acpi_resource_address64 addr;
960 status = acpi_resource_to_address64(res, &addr);
962 if (ACPI_SUCCESS(status)) {
963 hdp->hd_phys_address = addr.minimum;
964 hdp->hd_address = ioremap(addr.minimum, addr.address_length);
966 if (hpet_is_known(hdp)) {
967 iounmap(hdp->hd_address);
968 return AE_ALREADY_EXISTS;
970 } else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
971 struct acpi_resource_fixed_memory32 *fixmem32;
973 fixmem32 = &res->data.fixed_memory32;
977 hdp->hd_phys_address = fixmem32->address;
978 hdp->hd_address = ioremap(fixmem32->address,
981 if (hpet_is_known(hdp)) {
982 iounmap(hdp->hd_address);
983 return AE_ALREADY_EXISTS;
985 } else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
986 struct acpi_resource_extended_irq *irqp;
989 irqp = &res->data.extended_irq;
991 for (i = 0; i < irqp->interrupt_count; i++) {
992 if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
995 irq = acpi_register_gsi(NULL, irqp->interrupts[i],
996 irqp->triggering, irqp->polarity);
1000 hdp->hd_irq[hdp->hd_nirqs] = irq;
1008 static int hpet_acpi_add(struct acpi_device *device)
1011 struct hpet_data data;
1013 memset(&data, 0, sizeof(data));
1016 acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1017 hpet_resources, &data);
1019 if (ACPI_FAILURE(result))
1022 if (!data.hd_address || !data.hd_nirqs) {
1023 if (data.hd_address)
1024 iounmap(data.hd_address);
1025 printk("%s: no address or irqs in _CRS\n", __func__);
1029 return hpet_alloc(&data);
1032 static int hpet_acpi_remove(struct acpi_device *device)
1034 /* XXX need to unregister clocksource, dealloc mem, etc */
1038 static const struct acpi_device_id hpet_device_ids[] = {
1042 MODULE_DEVICE_TABLE(acpi, hpet_device_ids);
1044 static struct acpi_driver hpet_acpi_driver = {
1046 .ids = hpet_device_ids,
1048 .add = hpet_acpi_add,
1049 .remove = hpet_acpi_remove,
1053 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1055 static int __init hpet_init(void)
1059 result = misc_register(&hpet_misc);
1063 sysctl_header = register_sysctl_table(dev_root);
1065 result = acpi_bus_register_driver(&hpet_acpi_driver);
1068 unregister_sysctl_table(sysctl_header);
1069 misc_deregister(&hpet_misc);
1076 static void __exit hpet_exit(void)
1078 acpi_bus_unregister_driver(&hpet_acpi_driver);
1081 unregister_sysctl_table(sysctl_header);
1082 misc_deregister(&hpet_misc);
1087 module_init(hpet_init);
1088 module_exit(hpet_exit);
1089 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1090 MODULE_LICENSE("GPL");