Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-rpi.git] / drivers / bluetooth / hci_qca.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Bluetooth Software UART Qualcomm protocol
4  *
5  *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6  *  protocol extension to H4.
7  *
8  *  Copyright (C) 2007 Texas Instruments, Inc.
9  *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10  *
11  *  Acknowledgements:
12  *  This file is based on hci_ll.c, which was...
13  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
14  *  which was in turn based on hci_h4.c, which was written
15  *  by Maxim Krasnyansky and Marcel Holtmann.
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/acpi.h>
30 #include <linux/platform_device.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/serdev.h>
33 #include <linux/mutex.h>
34 #include <asm/unaligned.h>
35
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38
39 #include "hci_uart.h"
40 #include "btqca.h"
41
42 /* HCI_IBS protocol messages */
43 #define HCI_IBS_SLEEP_IND       0xFE
44 #define HCI_IBS_WAKE_IND        0xFD
45 #define HCI_IBS_WAKE_ACK        0xFC
46 #define HCI_MAX_IBS_SIZE        10
47
48 #define IBS_WAKE_RETRANS_TIMEOUT_MS     100
49 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS    200
50 #define IBS_HOST_TX_IDLE_TIMEOUT_MS     2000
51 #define CMD_TRANS_TIMEOUT_MS            100
52 #define MEMDUMP_TIMEOUT_MS              8000
53 #define IBS_DISABLE_SSR_TIMEOUT_MS \
54         (MEMDUMP_TIMEOUT_MS + FW_DOWNLOAD_TIMEOUT_MS)
55 #define FW_DOWNLOAD_TIMEOUT_MS          3000
56
57 /* susclk rate */
58 #define SUSCLK_RATE_32KHZ       32768
59
60 /* Controller debug log header */
61 #define QCA_DEBUG_HANDLE        0x2EDC
62
63 /* max retry count when init fails */
64 #define MAX_INIT_RETRIES 3
65
66 /* Controller dump header */
67 #define QCA_SSR_DUMP_HANDLE             0x0108
68 #define QCA_DUMP_PACKET_SIZE            255
69 #define QCA_LAST_SEQUENCE_NUM           0xFFFF
70 #define QCA_CRASHBYTE_PACKET_LEN        1096
71 #define QCA_MEMDUMP_BYTE                0xFB
72
73 enum qca_flags {
74         QCA_IBS_DISABLED,
75         QCA_DROP_VENDOR_EVENT,
76         QCA_SUSPENDING,
77         QCA_MEMDUMP_COLLECTION,
78         QCA_HW_ERROR_EVENT,
79         QCA_SSR_TRIGGERED,
80         QCA_BT_OFF,
81         QCA_ROM_FW,
82         QCA_DEBUGFS_CREATED,
83 };
84
85 enum qca_capabilities {
86         QCA_CAP_WIDEBAND_SPEECH = BIT(0),
87         QCA_CAP_VALID_LE_STATES = BIT(1),
88 };
89
90 /* HCI_IBS transmit side sleep protocol states */
91 enum tx_ibs_states {
92         HCI_IBS_TX_ASLEEP,
93         HCI_IBS_TX_WAKING,
94         HCI_IBS_TX_AWAKE,
95 };
96
97 /* HCI_IBS receive side sleep protocol states */
98 enum rx_states {
99         HCI_IBS_RX_ASLEEP,
100         HCI_IBS_RX_AWAKE,
101 };
102
103 /* HCI_IBS transmit and receive side clock state vote */
104 enum hci_ibs_clock_state_vote {
105         HCI_IBS_VOTE_STATS_UPDATE,
106         HCI_IBS_TX_VOTE_CLOCK_ON,
107         HCI_IBS_TX_VOTE_CLOCK_OFF,
108         HCI_IBS_RX_VOTE_CLOCK_ON,
109         HCI_IBS_RX_VOTE_CLOCK_OFF,
110 };
111
112 /* Controller memory dump states */
113 enum qca_memdump_states {
114         QCA_MEMDUMP_IDLE,
115         QCA_MEMDUMP_COLLECTING,
116         QCA_MEMDUMP_COLLECTED,
117         QCA_MEMDUMP_TIMEOUT,
118 };
119
120 struct qca_memdump_info {
121         u32 current_seq_no;
122         u32 received_dump;
123         u32 ram_dump_size;
124 };
125
126 struct qca_memdump_event_hdr {
127         __u8    evt;
128         __u8    plen;
129         __u16   opcode;
130         __le16   seq_no;
131         __u8    reserved;
132 } __packed;
133
134
135 struct qca_dump_size {
136         __le32 dump_size;
137 } __packed;
138
139 struct qca_data {
140         struct hci_uart *hu;
141         struct sk_buff *rx_skb;
142         struct sk_buff_head txq;
143         struct sk_buff_head tx_wait_q;  /* HCI_IBS wait queue   */
144         struct sk_buff_head rx_memdump_q;       /* Memdump wait queue   */
145         spinlock_t hci_ibs_lock;        /* HCI_IBS state lock   */
146         u8 tx_ibs_state;        /* HCI_IBS transmit side power state*/
147         u8 rx_ibs_state;        /* HCI_IBS receive side power state */
148         bool tx_vote;           /* Clock must be on for TX */
149         bool rx_vote;           /* Clock must be on for RX */
150         struct timer_list tx_idle_timer;
151         u32 tx_idle_delay;
152         struct timer_list wake_retrans_timer;
153         u32 wake_retrans;
154         struct workqueue_struct *workqueue;
155         struct work_struct ws_awake_rx;
156         struct work_struct ws_awake_device;
157         struct work_struct ws_rx_vote_off;
158         struct work_struct ws_tx_vote_off;
159         struct work_struct ctrl_memdump_evt;
160         struct delayed_work ctrl_memdump_timeout;
161         struct qca_memdump_info *qca_memdump;
162         unsigned long flags;
163         struct completion drop_ev_comp;
164         wait_queue_head_t suspend_wait_q;
165         enum qca_memdump_states memdump_state;
166         struct mutex hci_memdump_lock;
167
168         u16 fw_version;
169         u16 controller_id;
170         /* For debugging purpose */
171         u64 ibs_sent_wacks;
172         u64 ibs_sent_slps;
173         u64 ibs_sent_wakes;
174         u64 ibs_recv_wacks;
175         u64 ibs_recv_slps;
176         u64 ibs_recv_wakes;
177         u64 vote_last_jif;
178         u32 vote_on_ms;
179         u32 vote_off_ms;
180         u64 tx_votes_on;
181         u64 rx_votes_on;
182         u64 tx_votes_off;
183         u64 rx_votes_off;
184         u64 votes_on;
185         u64 votes_off;
186 };
187
188 enum qca_speed_type {
189         QCA_INIT_SPEED = 1,
190         QCA_OPER_SPEED
191 };
192
193 /*
194  * Voltage regulator information required for configuring the
195  * QCA Bluetooth chipset
196  */
197 struct qca_vreg {
198         const char *name;
199         unsigned int load_uA;
200 };
201
202 struct qca_device_data {
203         enum qca_btsoc_type soc_type;
204         struct qca_vreg *vregs;
205         size_t num_vregs;
206         uint32_t capabilities;
207 };
208
209 /*
210  * Platform data for the QCA Bluetooth power driver.
211  */
212 struct qca_power {
213         struct device *dev;
214         struct regulator_bulk_data *vreg_bulk;
215         int num_vregs;
216         bool vregs_on;
217 };
218
219 struct qca_serdev {
220         struct hci_uart  serdev_hu;
221         struct gpio_desc *bt_en;
222         struct gpio_desc *sw_ctrl;
223         struct clk       *susclk;
224         enum qca_btsoc_type btsoc_type;
225         struct qca_power *bt_power;
226         u32 init_speed;
227         u32 oper_speed;
228         const char *firmware_name;
229 };
230
231 static int qca_regulator_enable(struct qca_serdev *qcadev);
232 static void qca_regulator_disable(struct qca_serdev *qcadev);
233 static void qca_power_shutdown(struct hci_uart *hu);
234 static int qca_power_off(struct hci_dev *hdev);
235 static void qca_controller_memdump(struct work_struct *work);
236 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb);
237
238 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
239 {
240         enum qca_btsoc_type soc_type;
241
242         if (hu->serdev) {
243                 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
244
245                 soc_type = qsd->btsoc_type;
246         } else {
247                 soc_type = QCA_ROME;
248         }
249
250         return soc_type;
251 }
252
253 static const char *qca_get_firmware_name(struct hci_uart *hu)
254 {
255         if (hu->serdev) {
256                 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
257
258                 return qsd->firmware_name;
259         } else {
260                 return NULL;
261         }
262 }
263
264 static void __serial_clock_on(struct tty_struct *tty)
265 {
266         /* TODO: Some chipset requires to enable UART clock on client
267          * side to save power consumption or manual work is required.
268          * Please put your code to control UART clock here if needed
269          */
270 }
271
272 static void __serial_clock_off(struct tty_struct *tty)
273 {
274         /* TODO: Some chipset requires to disable UART clock on client
275          * side to save power consumption or manual work is required.
276          * Please put your code to control UART clock off here if needed
277          */
278 }
279
280 /* serial_clock_vote needs to be called with the ibs lock held */
281 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
282 {
283         struct qca_data *qca = hu->priv;
284         unsigned int diff;
285
286         bool old_vote = (qca->tx_vote | qca->rx_vote);
287         bool new_vote;
288
289         switch (vote) {
290         case HCI_IBS_VOTE_STATS_UPDATE:
291                 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
292
293                 if (old_vote)
294                         qca->vote_off_ms += diff;
295                 else
296                         qca->vote_on_ms += diff;
297                 return;
298
299         case HCI_IBS_TX_VOTE_CLOCK_ON:
300                 qca->tx_vote = true;
301                 qca->tx_votes_on++;
302                 break;
303
304         case HCI_IBS_RX_VOTE_CLOCK_ON:
305                 qca->rx_vote = true;
306                 qca->rx_votes_on++;
307                 break;
308
309         case HCI_IBS_TX_VOTE_CLOCK_OFF:
310                 qca->tx_vote = false;
311                 qca->tx_votes_off++;
312                 break;
313
314         case HCI_IBS_RX_VOTE_CLOCK_OFF:
315                 qca->rx_vote = false;
316                 qca->rx_votes_off++;
317                 break;
318
319         default:
320                 BT_ERR("Voting irregularity");
321                 return;
322         }
323
324         new_vote = qca->rx_vote | qca->tx_vote;
325
326         if (new_vote != old_vote) {
327                 if (new_vote)
328                         __serial_clock_on(hu->tty);
329                 else
330                         __serial_clock_off(hu->tty);
331
332                 BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
333                        vote ? "true" : "false");
334
335                 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
336
337                 if (new_vote) {
338                         qca->votes_on++;
339                         qca->vote_off_ms += diff;
340                 } else {
341                         qca->votes_off++;
342                         qca->vote_on_ms += diff;
343                 }
344                 qca->vote_last_jif = jiffies;
345         }
346 }
347
348 /* Builds and sends an HCI_IBS command packet.
349  * These are very simple packets with only 1 cmd byte.
350  */
351 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
352 {
353         int err = 0;
354         struct sk_buff *skb = NULL;
355         struct qca_data *qca = hu->priv;
356
357         BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
358
359         skb = bt_skb_alloc(1, GFP_ATOMIC);
360         if (!skb) {
361                 BT_ERR("Failed to allocate memory for HCI_IBS packet");
362                 return -ENOMEM;
363         }
364
365         /* Assign HCI_IBS type */
366         skb_put_u8(skb, cmd);
367
368         skb_queue_tail(&qca->txq, skb);
369
370         return err;
371 }
372
373 static void qca_wq_awake_device(struct work_struct *work)
374 {
375         struct qca_data *qca = container_of(work, struct qca_data,
376                                             ws_awake_device);
377         struct hci_uart *hu = qca->hu;
378         unsigned long retrans_delay;
379         unsigned long flags;
380
381         BT_DBG("hu %p wq awake device", hu);
382
383         /* Vote for serial clock */
384         serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
385
386         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
387
388         /* Send wake indication to device */
389         if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
390                 BT_ERR("Failed to send WAKE to device");
391
392         qca->ibs_sent_wakes++;
393
394         /* Start retransmit timer */
395         retrans_delay = msecs_to_jiffies(qca->wake_retrans);
396         mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
397
398         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
399
400         /* Actually send the packets */
401         hci_uart_tx_wakeup(hu);
402 }
403
404 static void qca_wq_awake_rx(struct work_struct *work)
405 {
406         struct qca_data *qca = container_of(work, struct qca_data,
407                                             ws_awake_rx);
408         struct hci_uart *hu = qca->hu;
409         unsigned long flags;
410
411         BT_DBG("hu %p wq awake rx", hu);
412
413         serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
414
415         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
416         qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
417
418         /* Always acknowledge device wake up,
419          * sending IBS message doesn't count as TX ON.
420          */
421         if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
422                 BT_ERR("Failed to acknowledge device wake up");
423
424         qca->ibs_sent_wacks++;
425
426         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
427
428         /* Actually send the packets */
429         hci_uart_tx_wakeup(hu);
430 }
431
432 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
433 {
434         struct qca_data *qca = container_of(work, struct qca_data,
435                                             ws_rx_vote_off);
436         struct hci_uart *hu = qca->hu;
437
438         BT_DBG("hu %p rx clock vote off", hu);
439
440         serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
441 }
442
443 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
444 {
445         struct qca_data *qca = container_of(work, struct qca_data,
446                                             ws_tx_vote_off);
447         struct hci_uart *hu = qca->hu;
448
449         BT_DBG("hu %p tx clock vote off", hu);
450
451         /* Run HCI tx handling unlocked */
452         hci_uart_tx_wakeup(hu);
453
454         /* Now that message queued to tty driver, vote for tty clocks off.
455          * It is up to the tty driver to pend the clocks off until tx done.
456          */
457         serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
458 }
459
460 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
461 {
462         struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
463         struct hci_uart *hu = qca->hu;
464         unsigned long flags;
465
466         BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
467
468         spin_lock_irqsave_nested(&qca->hci_ibs_lock,
469                                  flags, SINGLE_DEPTH_NESTING);
470
471         switch (qca->tx_ibs_state) {
472         case HCI_IBS_TX_AWAKE:
473                 /* TX_IDLE, go to SLEEP */
474                 if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
475                         BT_ERR("Failed to send SLEEP to device");
476                         break;
477                 }
478                 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
479                 qca->ibs_sent_slps++;
480                 queue_work(qca->workqueue, &qca->ws_tx_vote_off);
481                 break;
482
483         case HCI_IBS_TX_ASLEEP:
484         case HCI_IBS_TX_WAKING:
485         default:
486                 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
487                 break;
488         }
489
490         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
491 }
492
493 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
494 {
495         struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
496         struct hci_uart *hu = qca->hu;
497         unsigned long flags, retrans_delay;
498         bool retransmit = false;
499
500         BT_DBG("hu %p wake retransmit timeout in %d state",
501                 hu, qca->tx_ibs_state);
502
503         spin_lock_irqsave_nested(&qca->hci_ibs_lock,
504                                  flags, SINGLE_DEPTH_NESTING);
505
506         /* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
507         if (test_bit(QCA_SUSPENDING, &qca->flags)) {
508                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
509                 return;
510         }
511
512         switch (qca->tx_ibs_state) {
513         case HCI_IBS_TX_WAKING:
514                 /* No WAKE_ACK, retransmit WAKE */
515                 retransmit = true;
516                 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
517                         BT_ERR("Failed to acknowledge device wake up");
518                         break;
519                 }
520                 qca->ibs_sent_wakes++;
521                 retrans_delay = msecs_to_jiffies(qca->wake_retrans);
522                 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
523                 break;
524
525         case HCI_IBS_TX_ASLEEP:
526         case HCI_IBS_TX_AWAKE:
527         default:
528                 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
529                 break;
530         }
531
532         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
533
534         if (retransmit)
535                 hci_uart_tx_wakeup(hu);
536 }
537
538
539 static void qca_controller_memdump_timeout(struct work_struct *work)
540 {
541         struct qca_data *qca = container_of(work, struct qca_data,
542                                         ctrl_memdump_timeout.work);
543         struct hci_uart *hu = qca->hu;
544
545         mutex_lock(&qca->hci_memdump_lock);
546         if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
547                 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
548                 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
549                         /* Inject hw error event to reset the device
550                          * and driver.
551                          */
552                         hci_reset_dev(hu->hdev);
553                 }
554         }
555
556         mutex_unlock(&qca->hci_memdump_lock);
557 }
558
559
560 /* Initialize protocol */
561 static int qca_open(struct hci_uart *hu)
562 {
563         struct qca_serdev *qcadev;
564         struct qca_data *qca;
565
566         BT_DBG("hu %p qca_open", hu);
567
568         if (!hci_uart_has_flow_control(hu))
569                 return -EOPNOTSUPP;
570
571         qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
572         if (!qca)
573                 return -ENOMEM;
574
575         skb_queue_head_init(&qca->txq);
576         skb_queue_head_init(&qca->tx_wait_q);
577         skb_queue_head_init(&qca->rx_memdump_q);
578         spin_lock_init(&qca->hci_ibs_lock);
579         mutex_init(&qca->hci_memdump_lock);
580         qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
581         if (!qca->workqueue) {
582                 BT_ERR("QCA Workqueue not initialized properly");
583                 kfree(qca);
584                 return -ENOMEM;
585         }
586
587         INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
588         INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
589         INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
590         INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
591         INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
592         INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
593                           qca_controller_memdump_timeout);
594         init_waitqueue_head(&qca->suspend_wait_q);
595
596         qca->hu = hu;
597         init_completion(&qca->drop_ev_comp);
598
599         /* Assume we start with both sides asleep -- extra wakes OK */
600         qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
601         qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
602
603         qca->vote_last_jif = jiffies;
604
605         hu->priv = qca;
606
607         if (hu->serdev) {
608                 qcadev = serdev_device_get_drvdata(hu->serdev);
609
610                 switch (qcadev->btsoc_type) {
611                 case QCA_WCN3988:
612                 case QCA_WCN3990:
613                 case QCA_WCN3991:
614                 case QCA_WCN3998:
615                 case QCA_WCN6750:
616                         hu->init_speed = qcadev->init_speed;
617                         break;
618
619                 default:
620                         break;
621                 }
622
623                 if (qcadev->oper_speed)
624                         hu->oper_speed = qcadev->oper_speed;
625         }
626
627         timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
628         qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
629
630         timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
631         qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
632
633         BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
634                qca->tx_idle_delay, qca->wake_retrans);
635
636         return 0;
637 }
638
639 static void qca_debugfs_init(struct hci_dev *hdev)
640 {
641         struct hci_uart *hu = hci_get_drvdata(hdev);
642         struct qca_data *qca = hu->priv;
643         struct dentry *ibs_dir;
644         umode_t mode;
645
646         if (!hdev->debugfs)
647                 return;
648
649         if (test_and_set_bit(QCA_DEBUGFS_CREATED, &qca->flags))
650                 return;
651
652         ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
653
654         /* read only */
655         mode = 0444;
656         debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
657         debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
658         debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
659                            &qca->ibs_sent_slps);
660         debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
661                            &qca->ibs_sent_wakes);
662         debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
663                            &qca->ibs_sent_wacks);
664         debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
665                            &qca->ibs_recv_slps);
666         debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
667                            &qca->ibs_recv_wakes);
668         debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
669                            &qca->ibs_recv_wacks);
670         debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
671         debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
672         debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
673         debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
674         debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
675         debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
676         debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
677         debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
678         debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
679         debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
680
681         /* read/write */
682         mode = 0644;
683         debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
684         debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
685                            &qca->tx_idle_delay);
686 }
687
688 /* Flush protocol data */
689 static int qca_flush(struct hci_uart *hu)
690 {
691         struct qca_data *qca = hu->priv;
692
693         BT_DBG("hu %p qca flush", hu);
694
695         skb_queue_purge(&qca->tx_wait_q);
696         skb_queue_purge(&qca->txq);
697
698         return 0;
699 }
700
701 /* Close protocol */
702 static int qca_close(struct hci_uart *hu)
703 {
704         struct qca_data *qca = hu->priv;
705
706         BT_DBG("hu %p qca close", hu);
707
708         serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
709
710         skb_queue_purge(&qca->tx_wait_q);
711         skb_queue_purge(&qca->txq);
712         skb_queue_purge(&qca->rx_memdump_q);
713         /*
714          * Shut the timers down so they can't be rearmed when
715          * destroy_workqueue() drains pending work which in turn might try
716          * to arm a timer.  After shutdown rearm attempts are silently
717          * ignored by the timer core code.
718          */
719         timer_shutdown_sync(&qca->tx_idle_timer);
720         timer_shutdown_sync(&qca->wake_retrans_timer);
721         destroy_workqueue(qca->workqueue);
722         qca->hu = NULL;
723
724         kfree_skb(qca->rx_skb);
725
726         hu->priv = NULL;
727
728         kfree(qca);
729
730         return 0;
731 }
732
733 /* Called upon a wake-up-indication from the device.
734  */
735 static void device_want_to_wakeup(struct hci_uart *hu)
736 {
737         unsigned long flags;
738         struct qca_data *qca = hu->priv;
739
740         BT_DBG("hu %p want to wake up", hu);
741
742         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
743
744         qca->ibs_recv_wakes++;
745
746         /* Don't wake the rx up when suspending. */
747         if (test_bit(QCA_SUSPENDING, &qca->flags)) {
748                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
749                 return;
750         }
751
752         switch (qca->rx_ibs_state) {
753         case HCI_IBS_RX_ASLEEP:
754                 /* Make sure clock is on - we may have turned clock off since
755                  * receiving the wake up indicator awake rx clock.
756                  */
757                 queue_work(qca->workqueue, &qca->ws_awake_rx);
758                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
759                 return;
760
761         case HCI_IBS_RX_AWAKE:
762                 /* Always acknowledge device wake up,
763                  * sending IBS message doesn't count as TX ON.
764                  */
765                 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
766                         BT_ERR("Failed to acknowledge device wake up");
767                         break;
768                 }
769                 qca->ibs_sent_wacks++;
770                 break;
771
772         default:
773                 /* Any other state is illegal */
774                 BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
775                        qca->rx_ibs_state);
776                 break;
777         }
778
779         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
780
781         /* Actually send the packets */
782         hci_uart_tx_wakeup(hu);
783 }
784
785 /* Called upon a sleep-indication from the device.
786  */
787 static void device_want_to_sleep(struct hci_uart *hu)
788 {
789         unsigned long flags;
790         struct qca_data *qca = hu->priv;
791
792         BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
793
794         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
795
796         qca->ibs_recv_slps++;
797
798         switch (qca->rx_ibs_state) {
799         case HCI_IBS_RX_AWAKE:
800                 /* Update state */
801                 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
802                 /* Vote off rx clock under workqueue */
803                 queue_work(qca->workqueue, &qca->ws_rx_vote_off);
804                 break;
805
806         case HCI_IBS_RX_ASLEEP:
807                 break;
808
809         default:
810                 /* Any other state is illegal */
811                 BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
812                        qca->rx_ibs_state);
813                 break;
814         }
815
816         wake_up_interruptible(&qca->suspend_wait_q);
817
818         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
819 }
820
821 /* Called upon wake-up-acknowledgement from the device
822  */
823 static void device_woke_up(struct hci_uart *hu)
824 {
825         unsigned long flags, idle_delay;
826         struct qca_data *qca = hu->priv;
827         struct sk_buff *skb = NULL;
828
829         BT_DBG("hu %p woke up", hu);
830
831         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
832
833         qca->ibs_recv_wacks++;
834
835         /* Don't react to the wake-up-acknowledgment when suspending. */
836         if (test_bit(QCA_SUSPENDING, &qca->flags)) {
837                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
838                 return;
839         }
840
841         switch (qca->tx_ibs_state) {
842         case HCI_IBS_TX_AWAKE:
843                 /* Expect one if we send 2 WAKEs */
844                 BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
845                        qca->tx_ibs_state);
846                 break;
847
848         case HCI_IBS_TX_WAKING:
849                 /* Send pending packets */
850                 while ((skb = skb_dequeue(&qca->tx_wait_q)))
851                         skb_queue_tail(&qca->txq, skb);
852
853                 /* Switch timers and change state to HCI_IBS_TX_AWAKE */
854                 del_timer(&qca->wake_retrans_timer);
855                 idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
856                 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
857                 qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
858                 break;
859
860         case HCI_IBS_TX_ASLEEP:
861         default:
862                 BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
863                        qca->tx_ibs_state);
864                 break;
865         }
866
867         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
868
869         /* Actually send the packets */
870         hci_uart_tx_wakeup(hu);
871 }
872
873 /* Enqueue frame for transmittion (padding, crc, etc) may be called from
874  * two simultaneous tasklets.
875  */
876 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
877 {
878         unsigned long flags = 0, idle_delay;
879         struct qca_data *qca = hu->priv;
880
881         BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
882                qca->tx_ibs_state);
883
884         if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
885                 /* As SSR is in progress, ignore the packets */
886                 bt_dev_dbg(hu->hdev, "SSR is in progress");
887                 kfree_skb(skb);
888                 return 0;
889         }
890
891         /* Prepend skb with frame type */
892         memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
893
894         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
895
896         /* Don't go to sleep in middle of patch download or
897          * Out-Of-Band(GPIOs control) sleep is selected.
898          * Don't wake the device up when suspending.
899          */
900         if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
901             test_bit(QCA_SUSPENDING, &qca->flags)) {
902                 skb_queue_tail(&qca->txq, skb);
903                 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
904                 return 0;
905         }
906
907         /* Act according to current state */
908         switch (qca->tx_ibs_state) {
909         case HCI_IBS_TX_AWAKE:
910                 BT_DBG("Device awake, sending normally");
911                 skb_queue_tail(&qca->txq, skb);
912                 idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
913                 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
914                 break;
915
916         case HCI_IBS_TX_ASLEEP:
917                 BT_DBG("Device asleep, waking up and queueing packet");
918                 /* Save packet for later */
919                 skb_queue_tail(&qca->tx_wait_q, skb);
920
921                 qca->tx_ibs_state = HCI_IBS_TX_WAKING;
922                 /* Schedule a work queue to wake up device */
923                 queue_work(qca->workqueue, &qca->ws_awake_device);
924                 break;
925
926         case HCI_IBS_TX_WAKING:
927                 BT_DBG("Device waking up, queueing packet");
928                 /* Transient state; just keep packet for later */
929                 skb_queue_tail(&qca->tx_wait_q, skb);
930                 break;
931
932         default:
933                 BT_ERR("Illegal tx state: %d (losing packet)",
934                        qca->tx_ibs_state);
935                 dev_kfree_skb_irq(skb);
936                 break;
937         }
938
939         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
940
941         return 0;
942 }
943
944 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
945 {
946         struct hci_uart *hu = hci_get_drvdata(hdev);
947
948         BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
949
950         device_want_to_sleep(hu);
951
952         kfree_skb(skb);
953         return 0;
954 }
955
956 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
957 {
958         struct hci_uart *hu = hci_get_drvdata(hdev);
959
960         BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
961
962         device_want_to_wakeup(hu);
963
964         kfree_skb(skb);
965         return 0;
966 }
967
968 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
969 {
970         struct hci_uart *hu = hci_get_drvdata(hdev);
971
972         BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
973
974         device_woke_up(hu);
975
976         kfree_skb(skb);
977         return 0;
978 }
979
980 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
981 {
982         /* We receive debug logs from chip as an ACL packets.
983          * Instead of sending the data to ACL to decode the
984          * received data, we are pushing them to the above layers
985          * as a diagnostic packet.
986          */
987         if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
988                 return hci_recv_diag(hdev, skb);
989
990         return hci_recv_frame(hdev, skb);
991 }
992
993 static void qca_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb)
994 {
995         struct hci_uart *hu = hci_get_drvdata(hdev);
996         struct qca_data *qca = hu->priv;
997         char buf[80];
998
999         snprintf(buf, sizeof(buf), "Controller Name: 0x%x\n",
1000                 qca->controller_id);
1001         skb_put_data(skb, buf, strlen(buf));
1002
1003         snprintf(buf, sizeof(buf), "Firmware Version: 0x%x\n",
1004                 qca->fw_version);
1005         skb_put_data(skb, buf, strlen(buf));
1006
1007         snprintf(buf, sizeof(buf), "Vendor:Qualcomm\n");
1008         skb_put_data(skb, buf, strlen(buf));
1009
1010         snprintf(buf, sizeof(buf), "Driver: %s\n",
1011                 hu->serdev->dev.driver->name);
1012         skb_put_data(skb, buf, strlen(buf));
1013 }
1014
1015 static void qca_controller_memdump(struct work_struct *work)
1016 {
1017         struct qca_data *qca = container_of(work, struct qca_data,
1018                                             ctrl_memdump_evt);
1019         struct hci_uart *hu = qca->hu;
1020         struct sk_buff *skb;
1021         struct qca_memdump_event_hdr *cmd_hdr;
1022         struct qca_memdump_info *qca_memdump = qca->qca_memdump;
1023         struct qca_dump_size *dump;
1024         u16 seq_no;
1025         u32 rx_size;
1026         int ret = 0;
1027         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1028
1029         while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
1030
1031                 mutex_lock(&qca->hci_memdump_lock);
1032                 /* Skip processing the received packets if timeout detected
1033                  * or memdump collection completed.
1034                  */
1035                 if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1036                     qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1037                         mutex_unlock(&qca->hci_memdump_lock);
1038                         return;
1039                 }
1040
1041                 if (!qca_memdump) {
1042                         qca_memdump = kzalloc(sizeof(struct qca_memdump_info),
1043                                               GFP_ATOMIC);
1044                         if (!qca_memdump) {
1045                                 mutex_unlock(&qca->hci_memdump_lock);
1046                                 return;
1047                         }
1048
1049                         qca->qca_memdump = qca_memdump;
1050                 }
1051
1052                 qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1053                 cmd_hdr = (void *) skb->data;
1054                 seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1055                 skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1056
1057                 if (!seq_no) {
1058
1059                         /* This is the first frame of memdump packet from
1060                          * the controller, Disable IBS to recevie dump
1061                          * with out any interruption, ideally time required for
1062                          * the controller to send the dump is 8 seconds. let us
1063                          * start timer to handle this asynchronous activity.
1064                          */
1065                         set_bit(QCA_IBS_DISABLED, &qca->flags);
1066                         set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1067                         dump = (void *) skb->data;
1068                         qca_memdump->ram_dump_size = __le32_to_cpu(dump->dump_size);
1069                         if (!(qca_memdump->ram_dump_size)) {
1070                                 bt_dev_err(hu->hdev, "Rx invalid memdump size");
1071                                 kfree(qca_memdump);
1072                                 kfree_skb(skb);
1073                                 mutex_unlock(&qca->hci_memdump_lock);
1074                                 return;
1075                         }
1076
1077                         queue_delayed_work(qca->workqueue,
1078                                            &qca->ctrl_memdump_timeout,
1079                                            msecs_to_jiffies(MEMDUMP_TIMEOUT_MS));
1080                         skb_pull(skb, sizeof(qca_memdump->ram_dump_size));
1081                         qca_memdump->current_seq_no = 0;
1082                         qca_memdump->received_dump = 0;
1083                         ret = hci_devcd_init(hu->hdev, qca_memdump->ram_dump_size);
1084                         bt_dev_info(hu->hdev, "hci_devcd_init Return:%d",
1085                                     ret);
1086                         if (ret < 0) {
1087                                 kfree(qca->qca_memdump);
1088                                 qca->qca_memdump = NULL;
1089                                 qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1090                                 cancel_delayed_work(&qca->ctrl_memdump_timeout);
1091                                 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1092                                 mutex_unlock(&qca->hci_memdump_lock);
1093                                 return;
1094                         }
1095
1096                         bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1097                                     qca_memdump->ram_dump_size);
1098
1099                 }
1100
1101                 /* If sequence no 0 is missed then there is no point in
1102                  * accepting the other sequences.
1103                  */
1104                 if (!test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
1105                         bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1106                         kfree(qca_memdump);
1107                         kfree_skb(skb);
1108                         mutex_unlock(&qca->hci_memdump_lock);
1109                         return;
1110                 }
1111                 /* There could be chance of missing some packets from
1112                  * the controller. In such cases let us store the dummy
1113                  * packets in the buffer.
1114                  */
1115                 /* For QCA6390, controller does not lost packets but
1116                  * sequence number field of packet sometimes has error
1117                  * bits, so skip this checking for missing packet.
1118                  */
1119                 while ((seq_no > qca_memdump->current_seq_no + 1) &&
1120                         (soc_type != QCA_QCA6390) &&
1121                         seq_no != QCA_LAST_SEQUENCE_NUM) {
1122                         bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1123                                    qca_memdump->current_seq_no);
1124                         rx_size = qca_memdump->received_dump;
1125                         rx_size += QCA_DUMP_PACKET_SIZE;
1126                         if (rx_size > qca_memdump->ram_dump_size) {
1127                                 bt_dev_err(hu->hdev,
1128                                            "QCA memdump received %d, no space for missed packet",
1129                                            qca_memdump->received_dump);
1130                                 break;
1131                         }
1132                         hci_devcd_append_pattern(hu->hdev, 0x00,
1133                                 QCA_DUMP_PACKET_SIZE);
1134                         qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1135                         qca_memdump->current_seq_no++;
1136                 }
1137
1138                 rx_size = qca_memdump->received_dump  + skb->len;
1139                 if (rx_size <= qca_memdump->ram_dump_size) {
1140                         if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1141                             (seq_no != qca_memdump->current_seq_no)) {
1142                                 bt_dev_err(hu->hdev,
1143                                            "QCA memdump unexpected packet %d",
1144                                            seq_no);
1145                         }
1146                         bt_dev_dbg(hu->hdev,
1147                                    "QCA memdump packet %d with length %d",
1148                                    seq_no, skb->len);
1149                         hci_devcd_append(hu->hdev, skb);
1150                         qca_memdump->current_seq_no += 1;
1151                         qca_memdump->received_dump = rx_size;
1152                 } else {
1153                         bt_dev_err(hu->hdev,
1154                                    "QCA memdump received no space for packet %d",
1155                                     qca_memdump->current_seq_no);
1156                 }
1157
1158                 if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1159                         bt_dev_info(hu->hdev,
1160                                 "QCA memdump Done, received %d, total %d",
1161                                 qca_memdump->received_dump,
1162                                 qca_memdump->ram_dump_size);
1163                         hci_devcd_complete(hu->hdev);
1164                         cancel_delayed_work(&qca->ctrl_memdump_timeout);
1165                         kfree(qca->qca_memdump);
1166                         qca->qca_memdump = NULL;
1167                         qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1168                         clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1169                 }
1170
1171                 mutex_unlock(&qca->hci_memdump_lock);
1172         }
1173
1174 }
1175
1176 static int qca_controller_memdump_event(struct hci_dev *hdev,
1177                                         struct sk_buff *skb)
1178 {
1179         struct hci_uart *hu = hci_get_drvdata(hdev);
1180         struct qca_data *qca = hu->priv;
1181
1182         set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1183         skb_queue_tail(&qca->rx_memdump_q, skb);
1184         queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1185
1186         return 0;
1187 }
1188
1189 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1190 {
1191         struct hci_uart *hu = hci_get_drvdata(hdev);
1192         struct qca_data *qca = hu->priv;
1193
1194         if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1195                 struct hci_event_hdr *hdr = (void *)skb->data;
1196
1197                 /* For the WCN3990 the vendor command for a baudrate change
1198                  * isn't sent as synchronous HCI command, because the
1199                  * controller sends the corresponding vendor event with the
1200                  * new baudrate. The event is received and properly decoded
1201                  * after changing the baudrate of the host port. It needs to
1202                  * be dropped, otherwise it can be misinterpreted as
1203                  * response to a later firmware download command (also a
1204                  * vendor command).
1205                  */
1206
1207                 if (hdr->evt == HCI_EV_VENDOR)
1208                         complete(&qca->drop_ev_comp);
1209
1210                 kfree_skb(skb);
1211
1212                 return 0;
1213         }
1214         /* We receive chip memory dump as an event packet, With a dedicated
1215          * handler followed by a hardware error event. When this event is
1216          * received we store dump into a file before closing hci. This
1217          * dump will help in triaging the issues.
1218          */
1219         if ((skb->data[0] == HCI_VENDOR_PKT) &&
1220             (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1221                 return qca_controller_memdump_event(hdev, skb);
1222
1223         return hci_recv_frame(hdev, skb);
1224 }
1225
1226 #define QCA_IBS_SLEEP_IND_EVENT \
1227         .type = HCI_IBS_SLEEP_IND, \
1228         .hlen = 0, \
1229         .loff = 0, \
1230         .lsize = 0, \
1231         .maxlen = HCI_MAX_IBS_SIZE
1232
1233 #define QCA_IBS_WAKE_IND_EVENT \
1234         .type = HCI_IBS_WAKE_IND, \
1235         .hlen = 0, \
1236         .loff = 0, \
1237         .lsize = 0, \
1238         .maxlen = HCI_MAX_IBS_SIZE
1239
1240 #define QCA_IBS_WAKE_ACK_EVENT \
1241         .type = HCI_IBS_WAKE_ACK, \
1242         .hlen = 0, \
1243         .loff = 0, \
1244         .lsize = 0, \
1245         .maxlen = HCI_MAX_IBS_SIZE
1246
1247 static const struct h4_recv_pkt qca_recv_pkts[] = {
1248         { H4_RECV_ACL,             .recv = qca_recv_acl_data },
1249         { H4_RECV_SCO,             .recv = hci_recv_frame    },
1250         { H4_RECV_EVENT,           .recv = qca_recv_event    },
1251         { QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
1252         { QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
1253         { QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1254 };
1255
1256 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1257 {
1258         struct qca_data *qca = hu->priv;
1259
1260         if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1261                 return -EUNATCH;
1262
1263         qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1264                                   qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1265         if (IS_ERR(qca->rx_skb)) {
1266                 int err = PTR_ERR(qca->rx_skb);
1267                 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1268                 qca->rx_skb = NULL;
1269                 return err;
1270         }
1271
1272         return count;
1273 }
1274
1275 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1276 {
1277         struct qca_data *qca = hu->priv;
1278
1279         return skb_dequeue(&qca->txq);
1280 }
1281
1282 static uint8_t qca_get_baudrate_value(int speed)
1283 {
1284         switch (speed) {
1285         case 9600:
1286                 return QCA_BAUDRATE_9600;
1287         case 19200:
1288                 return QCA_BAUDRATE_19200;
1289         case 38400:
1290                 return QCA_BAUDRATE_38400;
1291         case 57600:
1292                 return QCA_BAUDRATE_57600;
1293         case 115200:
1294                 return QCA_BAUDRATE_115200;
1295         case 230400:
1296                 return QCA_BAUDRATE_230400;
1297         case 460800:
1298                 return QCA_BAUDRATE_460800;
1299         case 500000:
1300                 return QCA_BAUDRATE_500000;
1301         case 921600:
1302                 return QCA_BAUDRATE_921600;
1303         case 1000000:
1304                 return QCA_BAUDRATE_1000000;
1305         case 2000000:
1306                 return QCA_BAUDRATE_2000000;
1307         case 3000000:
1308                 return QCA_BAUDRATE_3000000;
1309         case 3200000:
1310                 return QCA_BAUDRATE_3200000;
1311         case 3500000:
1312                 return QCA_BAUDRATE_3500000;
1313         default:
1314                 return QCA_BAUDRATE_115200;
1315         }
1316 }
1317
1318 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1319 {
1320         struct hci_uart *hu = hci_get_drvdata(hdev);
1321         struct qca_data *qca = hu->priv;
1322         struct sk_buff *skb;
1323         u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1324
1325         if (baudrate > QCA_BAUDRATE_3200000)
1326                 return -EINVAL;
1327
1328         cmd[4] = baudrate;
1329
1330         skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1331         if (!skb) {
1332                 bt_dev_err(hdev, "Failed to allocate baudrate packet");
1333                 return -ENOMEM;
1334         }
1335
1336         /* Assign commands to change baudrate and packet type. */
1337         skb_put_data(skb, cmd, sizeof(cmd));
1338         hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1339
1340         skb_queue_tail(&qca->txq, skb);
1341         hci_uart_tx_wakeup(hu);
1342
1343         /* Wait for the baudrate change request to be sent */
1344
1345         while (!skb_queue_empty(&qca->txq))
1346                 usleep_range(100, 200);
1347
1348         if (hu->serdev)
1349                 serdev_device_wait_until_sent(hu->serdev,
1350                       msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1351
1352         /* Give the controller time to process the request */
1353         switch (qca_soc_type(hu)) {
1354         case QCA_WCN3988:
1355         case QCA_WCN3990:
1356         case QCA_WCN3991:
1357         case QCA_WCN3998:
1358         case QCA_WCN6750:
1359         case QCA_WCN6855:
1360         case QCA_WCN7850:
1361                 usleep_range(1000, 10000);
1362                 break;
1363
1364         default:
1365                 msleep(300);
1366         }
1367
1368         return 0;
1369 }
1370
1371 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1372 {
1373         if (hu->serdev)
1374                 serdev_device_set_baudrate(hu->serdev, speed);
1375         else
1376                 hci_uart_set_baudrate(hu, speed);
1377 }
1378
1379 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1380 {
1381         int ret;
1382         int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1383         u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1384
1385         /* These power pulses are single byte command which are sent
1386          * at required baudrate to wcn3990. On wcn3990, we have an external
1387          * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1388          * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1389          * and also we use the same power inputs to turn on and off for
1390          * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1391          * we send a power on pulse at 115200 bps. This algorithm will help to
1392          * save power. Disabling hardware flow control is mandatory while
1393          * sending power pulses to SoC.
1394          */
1395         bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1396
1397         serdev_device_write_flush(hu->serdev);
1398         hci_uart_set_flow_control(hu, true);
1399         ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1400         if (ret < 0) {
1401                 bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1402                 return ret;
1403         }
1404
1405         serdev_device_wait_until_sent(hu->serdev, timeout);
1406         hci_uart_set_flow_control(hu, false);
1407
1408         /* Give to controller time to boot/shutdown */
1409         if (on)
1410                 msleep(100);
1411         else
1412                 usleep_range(1000, 10000);
1413
1414         return 0;
1415 }
1416
1417 static unsigned int qca_get_speed(struct hci_uart *hu,
1418                                   enum qca_speed_type speed_type)
1419 {
1420         unsigned int speed = 0;
1421
1422         if (speed_type == QCA_INIT_SPEED) {
1423                 if (hu->init_speed)
1424                         speed = hu->init_speed;
1425                 else if (hu->proto->init_speed)
1426                         speed = hu->proto->init_speed;
1427         } else {
1428                 if (hu->oper_speed)
1429                         speed = hu->oper_speed;
1430                 else if (hu->proto->oper_speed)
1431                         speed = hu->proto->oper_speed;
1432         }
1433
1434         return speed;
1435 }
1436
1437 static int qca_check_speeds(struct hci_uart *hu)
1438 {
1439         switch (qca_soc_type(hu)) {
1440         case QCA_WCN3988:
1441         case QCA_WCN3990:
1442         case QCA_WCN3991:
1443         case QCA_WCN3998:
1444         case QCA_WCN6750:
1445         case QCA_WCN6855:
1446         case QCA_WCN7850:
1447                 if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1448                     !qca_get_speed(hu, QCA_OPER_SPEED))
1449                         return -EINVAL;
1450                 break;
1451
1452         default:
1453                 if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1454                     !qca_get_speed(hu, QCA_OPER_SPEED))
1455                         return -EINVAL;
1456         }
1457
1458         return 0;
1459 }
1460
1461 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1462 {
1463         unsigned int speed, qca_baudrate;
1464         struct qca_data *qca = hu->priv;
1465         int ret = 0;
1466
1467         if (speed_type == QCA_INIT_SPEED) {
1468                 speed = qca_get_speed(hu, QCA_INIT_SPEED);
1469                 if (speed)
1470                         host_set_baudrate(hu, speed);
1471         } else {
1472                 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1473
1474                 speed = qca_get_speed(hu, QCA_OPER_SPEED);
1475                 if (!speed)
1476                         return 0;
1477
1478                 /* Disable flow control for wcn3990 to deassert RTS while
1479                  * changing the baudrate of chip and host.
1480                  */
1481                 switch (soc_type) {
1482                 case QCA_WCN3988:
1483                 case QCA_WCN3990:
1484                 case QCA_WCN3991:
1485                 case QCA_WCN3998:
1486                 case QCA_WCN6750:
1487                 case QCA_WCN6855:
1488                 case QCA_WCN7850:
1489                         hci_uart_set_flow_control(hu, true);
1490                         break;
1491
1492                 default:
1493                         break;
1494                 }
1495
1496                 switch (soc_type) {
1497                 case QCA_WCN3990:
1498                         reinit_completion(&qca->drop_ev_comp);
1499                         set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1500                         break;
1501
1502                 default:
1503                         break;
1504                 }
1505
1506                 qca_baudrate = qca_get_baudrate_value(speed);
1507                 bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1508                 ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1509                 if (ret)
1510                         goto error;
1511
1512                 host_set_baudrate(hu, speed);
1513
1514 error:
1515                 switch (soc_type) {
1516                 case QCA_WCN3988:
1517                 case QCA_WCN3990:
1518                 case QCA_WCN3991:
1519                 case QCA_WCN3998:
1520                 case QCA_WCN6750:
1521                 case QCA_WCN6855:
1522                 case QCA_WCN7850:
1523                         hci_uart_set_flow_control(hu, false);
1524                         break;
1525
1526                 default:
1527                         break;
1528                 }
1529
1530                 switch (soc_type) {
1531                 case QCA_WCN3990:
1532                         /* Wait for the controller to send the vendor event
1533                          * for the baudrate change command.
1534                          */
1535                         if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1536                                                  msecs_to_jiffies(100))) {
1537                                 bt_dev_err(hu->hdev,
1538                                            "Failed to change controller baudrate\n");
1539                                 ret = -ETIMEDOUT;
1540                         }
1541
1542                         clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1543                         break;
1544
1545                 default:
1546                         break;
1547                 }
1548         }
1549
1550         return ret;
1551 }
1552
1553 static int qca_send_crashbuffer(struct hci_uart *hu)
1554 {
1555         struct qca_data *qca = hu->priv;
1556         struct sk_buff *skb;
1557
1558         skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1559         if (!skb) {
1560                 bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1561                 return -ENOMEM;
1562         }
1563
1564         /* We forcefully crash the controller, by sending 0xfb byte for
1565          * 1024 times. We also might have chance of losing data, To be
1566          * on safer side we send 1096 bytes to the SoC.
1567          */
1568         memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1569                QCA_CRASHBYTE_PACKET_LEN);
1570         hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1571         bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1572         skb_queue_tail(&qca->txq, skb);
1573         hci_uart_tx_wakeup(hu);
1574
1575         return 0;
1576 }
1577
1578 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1579 {
1580         struct hci_uart *hu = hci_get_drvdata(hdev);
1581         struct qca_data *qca = hu->priv;
1582
1583         wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1584                             TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1585
1586         clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1587 }
1588
1589 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1590 {
1591         struct hci_uart *hu = hci_get_drvdata(hdev);
1592         struct qca_data *qca = hu->priv;
1593
1594         set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1595         set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1596         bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1597
1598         if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1599                 /* If hardware error event received for other than QCA
1600                  * soc memory dump event, then we need to crash the SOC
1601                  * and wait here for 8 seconds to get the dump packets.
1602                  * This will block main thread to be on hold until we
1603                  * collect dump.
1604                  */
1605                 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1606                 qca_send_crashbuffer(hu);
1607                 qca_wait_for_dump_collection(hdev);
1608         } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1609                 /* Let us wait here until memory dump collected or
1610                  * memory dump timer expired.
1611                  */
1612                 bt_dev_info(hdev, "waiting for dump to complete");
1613                 qca_wait_for_dump_collection(hdev);
1614         }
1615
1616         mutex_lock(&qca->hci_memdump_lock);
1617         if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1618                 bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1619                 hci_devcd_abort(hu->hdev);
1620                 if (qca->qca_memdump) {
1621                         kfree(qca->qca_memdump);
1622                         qca->qca_memdump = NULL;
1623                 }
1624                 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1625                 cancel_delayed_work(&qca->ctrl_memdump_timeout);
1626         }
1627         mutex_unlock(&qca->hci_memdump_lock);
1628
1629         if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1630             qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1631                 cancel_work_sync(&qca->ctrl_memdump_evt);
1632                 skb_queue_purge(&qca->rx_memdump_q);
1633         }
1634
1635         clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1636 }
1637
1638 static void qca_cmd_timeout(struct hci_dev *hdev)
1639 {
1640         struct hci_uart *hu = hci_get_drvdata(hdev);
1641         struct qca_data *qca = hu->priv;
1642
1643         set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1644         if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1645                 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1646                 qca_send_crashbuffer(hu);
1647                 qca_wait_for_dump_collection(hdev);
1648         } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1649                 /* Let us wait here until memory dump collected or
1650                  * memory dump timer expired.
1651                  */
1652                 bt_dev_info(hdev, "waiting for dump to complete");
1653                 qca_wait_for_dump_collection(hdev);
1654         }
1655
1656         mutex_lock(&qca->hci_memdump_lock);
1657         if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1658                 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1659                 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1660                         /* Inject hw error event to reset the device
1661                          * and driver.
1662                          */
1663                         hci_reset_dev(hu->hdev);
1664                 }
1665         }
1666         mutex_unlock(&qca->hci_memdump_lock);
1667 }
1668
1669 static bool qca_wakeup(struct hci_dev *hdev)
1670 {
1671         struct hci_uart *hu = hci_get_drvdata(hdev);
1672         bool wakeup;
1673
1674         /* BT SoC attached through the serial bus is handled by the serdev driver.
1675          * So we need to use the device handle of the serdev driver to get the
1676          * status of device may wakeup.
1677          */
1678         wakeup = device_may_wakeup(&hu->serdev->ctrl->dev);
1679         bt_dev_dbg(hu->hdev, "wakeup status : %d", wakeup);
1680
1681         return wakeup;
1682 }
1683
1684 static int qca_regulator_init(struct hci_uart *hu)
1685 {
1686         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1687         struct qca_serdev *qcadev;
1688         int ret;
1689         bool sw_ctrl_state;
1690
1691         /* Check for vregs status, may be hci down has turned
1692          * off the voltage regulator.
1693          */
1694         qcadev = serdev_device_get_drvdata(hu->serdev);
1695         if (!qcadev->bt_power->vregs_on) {
1696                 serdev_device_close(hu->serdev);
1697                 ret = qca_regulator_enable(qcadev);
1698                 if (ret)
1699                         return ret;
1700
1701                 ret = serdev_device_open(hu->serdev);
1702                 if (ret) {
1703                         bt_dev_err(hu->hdev, "failed to open port");
1704                         return ret;
1705                 }
1706         }
1707
1708         switch (soc_type) {
1709         case QCA_WCN3988:
1710         case QCA_WCN3990:
1711         case QCA_WCN3991:
1712         case QCA_WCN3998:
1713                 /* Forcefully enable wcn399x to enter in to boot mode. */
1714                 host_set_baudrate(hu, 2400);
1715                 ret = qca_send_power_pulse(hu, false);
1716                 if (ret)
1717                         return ret;
1718                 break;
1719
1720         default:
1721                 break;
1722         }
1723
1724         /* For wcn6750 need to enable gpio bt_en */
1725         if (qcadev->bt_en) {
1726                 gpiod_set_value_cansleep(qcadev->bt_en, 0);
1727                 msleep(50);
1728                 gpiod_set_value_cansleep(qcadev->bt_en, 1);
1729                 msleep(50);
1730                 if (qcadev->sw_ctrl) {
1731                         sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
1732                         bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
1733                 }
1734         }
1735
1736         qca_set_speed(hu, QCA_INIT_SPEED);
1737
1738         switch (soc_type) {
1739         case QCA_WCN3988:
1740         case QCA_WCN3990:
1741         case QCA_WCN3991:
1742         case QCA_WCN3998:
1743                 ret = qca_send_power_pulse(hu, true);
1744                 if (ret)
1745                         return ret;
1746                 break;
1747
1748         default:
1749                 break;
1750         }
1751
1752         /* Now the device is in ready state to communicate with host.
1753          * To sync host with device we need to reopen port.
1754          * Without this, we will have RTS and CTS synchronization
1755          * issues.
1756          */
1757         serdev_device_close(hu->serdev);
1758         ret = serdev_device_open(hu->serdev);
1759         if (ret) {
1760                 bt_dev_err(hu->hdev, "failed to open port");
1761                 return ret;
1762         }
1763
1764         hci_uart_set_flow_control(hu, false);
1765
1766         return 0;
1767 }
1768
1769 static int qca_power_on(struct hci_dev *hdev)
1770 {
1771         struct hci_uart *hu = hci_get_drvdata(hdev);
1772         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1773         struct qca_serdev *qcadev;
1774         struct qca_data *qca = hu->priv;
1775         int ret = 0;
1776
1777         /* Non-serdev device usually is powered by external power
1778          * and don't need additional action in driver for power on
1779          */
1780         if (!hu->serdev)
1781                 return 0;
1782
1783         switch (soc_type) {
1784         case QCA_WCN3988:
1785         case QCA_WCN3990:
1786         case QCA_WCN3991:
1787         case QCA_WCN3998:
1788         case QCA_WCN6750:
1789         case QCA_WCN6855:
1790         case QCA_WCN7850:
1791                 ret = qca_regulator_init(hu);
1792                 break;
1793
1794         default:
1795                 qcadev = serdev_device_get_drvdata(hu->serdev);
1796                 if (qcadev->bt_en) {
1797                         gpiod_set_value_cansleep(qcadev->bt_en, 1);
1798                         /* Controller needs time to bootup. */
1799                         msleep(150);
1800                 }
1801         }
1802
1803         clear_bit(QCA_BT_OFF, &qca->flags);
1804         return ret;
1805 }
1806
1807 static void hci_coredump_qca(struct hci_dev *hdev)
1808 {
1809         static const u8 param[] = { 0x26 };
1810         struct sk_buff *skb;
1811
1812         skb = __hci_cmd_sync(hdev, 0xfc0c, 1, param, HCI_CMD_TIMEOUT);
1813         if (IS_ERR(skb))
1814                 bt_dev_err(hdev, "%s: trigger crash failed (%ld)", __func__, PTR_ERR(skb));
1815         kfree_skb(skb);
1816 }
1817
1818 static int qca_setup(struct hci_uart *hu)
1819 {
1820         struct hci_dev *hdev = hu->hdev;
1821         struct qca_data *qca = hu->priv;
1822         unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1823         unsigned int retries = 0;
1824         enum qca_btsoc_type soc_type = qca_soc_type(hu);
1825         const char *firmware_name = qca_get_firmware_name(hu);
1826         int ret;
1827         struct qca_btsoc_version ver;
1828         const char *soc_name;
1829
1830         ret = qca_check_speeds(hu);
1831         if (ret)
1832                 return ret;
1833
1834         clear_bit(QCA_ROM_FW, &qca->flags);
1835         /* Patch downloading has to be done without IBS mode */
1836         set_bit(QCA_IBS_DISABLED, &qca->flags);
1837
1838         /* Enable controller to do both LE scan and BR/EDR inquiry
1839          * simultaneously.
1840          */
1841         set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1842
1843         switch (soc_type) {
1844         case QCA_WCN3988:
1845         case QCA_WCN3990:
1846         case QCA_WCN3991:
1847         case QCA_WCN3998:
1848                 soc_name = "wcn399x";
1849                 break;
1850
1851         case QCA_WCN6750:
1852                 soc_name = "wcn6750";
1853                 break;
1854
1855         case QCA_WCN6855:
1856                 soc_name = "wcn6855";
1857                 break;
1858
1859         case QCA_WCN7850:
1860                 soc_name = "wcn7850";
1861                 break;
1862
1863         default:
1864                 soc_name = "ROME/QCA6390";
1865         }
1866         bt_dev_info(hdev, "setting up %s", soc_name);
1867
1868         qca->memdump_state = QCA_MEMDUMP_IDLE;
1869
1870 retry:
1871         ret = qca_power_on(hdev);
1872         if (ret)
1873                 goto out;
1874
1875         clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1876
1877         switch (soc_type) {
1878         case QCA_WCN3988:
1879         case QCA_WCN3990:
1880         case QCA_WCN3991:
1881         case QCA_WCN3998:
1882         case QCA_WCN6750:
1883         case QCA_WCN6855:
1884         case QCA_WCN7850:
1885                 set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
1886                 hci_set_aosp_capable(hdev);
1887
1888                 ret = qca_read_soc_version(hdev, &ver, soc_type);
1889                 if (ret)
1890                         goto out;
1891                 break;
1892
1893         default:
1894                 qca_set_speed(hu, QCA_INIT_SPEED);
1895         }
1896
1897         /* Setup user speed if needed */
1898         speed = qca_get_speed(hu, QCA_OPER_SPEED);
1899         if (speed) {
1900                 ret = qca_set_speed(hu, QCA_OPER_SPEED);
1901                 if (ret)
1902                         goto out;
1903
1904                 qca_baudrate = qca_get_baudrate_value(speed);
1905         }
1906
1907         switch (soc_type) {
1908         case QCA_WCN3988:
1909         case QCA_WCN3990:
1910         case QCA_WCN3991:
1911         case QCA_WCN3998:
1912         case QCA_WCN6750:
1913         case QCA_WCN6855:
1914         case QCA_WCN7850:
1915                 break;
1916
1917         default:
1918                 /* Get QCA version information */
1919                 ret = qca_read_soc_version(hdev, &ver, soc_type);
1920                 if (ret)
1921                         goto out;
1922         }
1923
1924         /* Setup patch / NVM configurations */
1925         ret = qca_uart_setup(hdev, qca_baudrate, soc_type, ver,
1926                         firmware_name);
1927         if (!ret) {
1928                 clear_bit(QCA_IBS_DISABLED, &qca->flags);
1929                 qca_debugfs_init(hdev);
1930                 hu->hdev->hw_error = qca_hw_error;
1931                 hu->hdev->cmd_timeout = qca_cmd_timeout;
1932                 if (device_can_wakeup(hu->serdev->ctrl->dev.parent))
1933                         hu->hdev->wakeup = qca_wakeup;
1934         } else if (ret == -ENOENT) {
1935                 /* No patch/nvm-config found, run with original fw/config */
1936                 set_bit(QCA_ROM_FW, &qca->flags);
1937                 ret = 0;
1938         } else if (ret == -EAGAIN) {
1939                 /*
1940                  * Userspace firmware loader will return -EAGAIN in case no
1941                  * patch/nvm-config is found, so run with original fw/config.
1942                  */
1943                 set_bit(QCA_ROM_FW, &qca->flags);
1944                 ret = 0;
1945         }
1946
1947 out:
1948         if (ret && retries < MAX_INIT_RETRIES) {
1949                 bt_dev_warn(hdev, "Retry BT power ON:%d", retries);
1950                 qca_power_shutdown(hu);
1951                 if (hu->serdev) {
1952                         serdev_device_close(hu->serdev);
1953                         ret = serdev_device_open(hu->serdev);
1954                         if (ret) {
1955                                 bt_dev_err(hdev, "failed to open port");
1956                                 return ret;
1957                         }
1958                 }
1959                 retries++;
1960                 goto retry;
1961         }
1962
1963         /* Setup bdaddr */
1964         if (soc_type == QCA_ROME)
1965                 hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1966         else
1967                 hu->hdev->set_bdaddr = qca_set_bdaddr;
1968         qca->fw_version = le16_to_cpu(ver.patch_ver);
1969         qca->controller_id = le16_to_cpu(ver.rom_ver);
1970         hci_devcd_register(hdev, hci_coredump_qca, qca_dmp_hdr, NULL);
1971
1972         return ret;
1973 }
1974
1975 static const struct hci_uart_proto qca_proto = {
1976         .id             = HCI_UART_QCA,
1977         .name           = "QCA",
1978         .manufacturer   = 29,
1979         .init_speed     = 115200,
1980         .oper_speed     = 3000000,
1981         .open           = qca_open,
1982         .close          = qca_close,
1983         .flush          = qca_flush,
1984         .setup          = qca_setup,
1985         .recv           = qca_recv,
1986         .enqueue        = qca_enqueue,
1987         .dequeue        = qca_dequeue,
1988 };
1989
1990 static const struct qca_device_data qca_soc_data_wcn3988 __maybe_unused = {
1991         .soc_type = QCA_WCN3988,
1992         .vregs = (struct qca_vreg []) {
1993                 { "vddio", 15000  },
1994                 { "vddxo", 80000  },
1995                 { "vddrf", 300000 },
1996                 { "vddch0", 450000 },
1997         },
1998         .num_vregs = 4,
1999 };
2000
2001 static const struct qca_device_data qca_soc_data_wcn3990 __maybe_unused = {
2002         .soc_type = QCA_WCN3990,
2003         .vregs = (struct qca_vreg []) {
2004                 { "vddio", 15000  },
2005                 { "vddxo", 80000  },
2006                 { "vddrf", 300000 },
2007                 { "vddch0", 450000 },
2008         },
2009         .num_vregs = 4,
2010 };
2011
2012 static const struct qca_device_data qca_soc_data_wcn3991 __maybe_unused = {
2013         .soc_type = QCA_WCN3991,
2014         .vregs = (struct qca_vreg []) {
2015                 { "vddio", 15000  },
2016                 { "vddxo", 80000  },
2017                 { "vddrf", 300000 },
2018                 { "vddch0", 450000 },
2019         },
2020         .num_vregs = 4,
2021         .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2022 };
2023
2024 static const struct qca_device_data qca_soc_data_wcn3998 __maybe_unused = {
2025         .soc_type = QCA_WCN3998,
2026         .vregs = (struct qca_vreg []) {
2027                 { "vddio", 10000  },
2028                 { "vddxo", 80000  },
2029                 { "vddrf", 300000 },
2030                 { "vddch0", 450000 },
2031         },
2032         .num_vregs = 4,
2033 };
2034
2035 static const struct qca_device_data qca_soc_data_qca6390 __maybe_unused = {
2036         .soc_type = QCA_QCA6390,
2037         .num_vregs = 0,
2038 };
2039
2040 static const struct qca_device_data qca_soc_data_wcn6750 __maybe_unused = {
2041         .soc_type = QCA_WCN6750,
2042         .vregs = (struct qca_vreg []) {
2043                 { "vddio", 5000 },
2044                 { "vddaon", 26000 },
2045                 { "vddbtcxmx", 126000 },
2046                 { "vddrfacmn", 12500 },
2047                 { "vddrfa0p8", 102000 },
2048                 { "vddrfa1p7", 302000 },
2049                 { "vddrfa1p2", 257000 },
2050                 { "vddrfa2p2", 1700000 },
2051                 { "vddasd", 200 },
2052         },
2053         .num_vregs = 9,
2054         .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2055 };
2056
2057 static const struct qca_device_data qca_soc_data_wcn6855 __maybe_unused = {
2058         .soc_type = QCA_WCN6855,
2059         .vregs = (struct qca_vreg []) {
2060                 { "vddio", 5000 },
2061                 { "vddbtcxmx", 126000 },
2062                 { "vddrfacmn", 12500 },
2063                 { "vddrfa0p8", 102000 },
2064                 { "vddrfa1p7", 302000 },
2065                 { "vddrfa1p2", 257000 },
2066         },
2067         .num_vregs = 6,
2068         .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2069 };
2070
2071 static const struct qca_device_data qca_soc_data_wcn7850 __maybe_unused = {
2072         .soc_type = QCA_WCN7850,
2073         .vregs = (struct qca_vreg []) {
2074                 { "vddio", 5000 },
2075                 { "vddaon", 26000 },
2076                 { "vdddig", 126000 },
2077                 { "vddrfa0p8", 102000 },
2078                 { "vddrfa1p2", 257000 },
2079                 { "vddrfa1p9", 302000 },
2080         },
2081         .num_vregs = 6,
2082         .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
2083 };
2084
2085 static void qca_power_shutdown(struct hci_uart *hu)
2086 {
2087         struct qca_serdev *qcadev;
2088         struct qca_data *qca = hu->priv;
2089         unsigned long flags;
2090         enum qca_btsoc_type soc_type = qca_soc_type(hu);
2091         bool sw_ctrl_state;
2092
2093         /* From this point we go into power off state. But serial port is
2094          * still open, stop queueing the IBS data and flush all the buffered
2095          * data in skb's.
2096          */
2097         spin_lock_irqsave(&qca->hci_ibs_lock, flags);
2098         set_bit(QCA_IBS_DISABLED, &qca->flags);
2099         qca_flush(hu);
2100         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2101
2102         /* Non-serdev device usually is powered by external power
2103          * and don't need additional action in driver for power down
2104          */
2105         if (!hu->serdev)
2106                 return;
2107
2108         qcadev = serdev_device_get_drvdata(hu->serdev);
2109
2110         switch (soc_type) {
2111         case QCA_WCN3988:
2112         case QCA_WCN3990:
2113         case QCA_WCN3991:
2114         case QCA_WCN3998:
2115                 host_set_baudrate(hu, 2400);
2116                 qca_send_power_pulse(hu, false);
2117                 qca_regulator_disable(qcadev);
2118                 break;
2119
2120         case QCA_WCN6750:
2121         case QCA_WCN6855:
2122                 gpiod_set_value_cansleep(qcadev->bt_en, 0);
2123                 msleep(100);
2124                 qca_regulator_disable(qcadev);
2125                 if (qcadev->sw_ctrl) {
2126                         sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
2127                         bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
2128                 }
2129                 break;
2130
2131         default:
2132                 gpiod_set_value_cansleep(qcadev->bt_en, 0);
2133         }
2134
2135         set_bit(QCA_BT_OFF, &qca->flags);
2136 }
2137
2138 static int qca_power_off(struct hci_dev *hdev)
2139 {
2140         struct hci_uart *hu = hci_get_drvdata(hdev);
2141         struct qca_data *qca = hu->priv;
2142         enum qca_btsoc_type soc_type = qca_soc_type(hu);
2143
2144         hu->hdev->hw_error = NULL;
2145         hu->hdev->cmd_timeout = NULL;
2146
2147         del_timer_sync(&qca->wake_retrans_timer);
2148         del_timer_sync(&qca->tx_idle_timer);
2149
2150         /* Stop sending shutdown command if soc crashes. */
2151         if (soc_type != QCA_ROME
2152                 && qca->memdump_state == QCA_MEMDUMP_IDLE) {
2153                 qca_send_pre_shutdown_cmd(hdev);
2154                 usleep_range(8000, 10000);
2155         }
2156
2157         qca_power_shutdown(hu);
2158         return 0;
2159 }
2160
2161 static int qca_regulator_enable(struct qca_serdev *qcadev)
2162 {
2163         struct qca_power *power = qcadev->bt_power;
2164         int ret;
2165
2166         /* Already enabled */
2167         if (power->vregs_on)
2168                 return 0;
2169
2170         BT_DBG("enabling %d regulators)", power->num_vregs);
2171
2172         ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
2173         if (ret)
2174                 return ret;
2175
2176         power->vregs_on = true;
2177
2178         ret = clk_prepare_enable(qcadev->susclk);
2179         if (ret)
2180                 qca_regulator_disable(qcadev);
2181
2182         return ret;
2183 }
2184
2185 static void qca_regulator_disable(struct qca_serdev *qcadev)
2186 {
2187         struct qca_power *power;
2188
2189         if (!qcadev)
2190                 return;
2191
2192         power = qcadev->bt_power;
2193
2194         /* Already disabled? */
2195         if (!power->vregs_on)
2196                 return;
2197
2198         regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
2199         power->vregs_on = false;
2200
2201         clk_disable_unprepare(qcadev->susclk);
2202 }
2203
2204 static int qca_init_regulators(struct qca_power *qca,
2205                                 const struct qca_vreg *vregs, size_t num_vregs)
2206 {
2207         struct regulator_bulk_data *bulk;
2208         int ret;
2209         int i;
2210
2211         bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
2212         if (!bulk)
2213                 return -ENOMEM;
2214
2215         for (i = 0; i < num_vregs; i++)
2216                 bulk[i].supply = vregs[i].name;
2217
2218         ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
2219         if (ret < 0)
2220                 return ret;
2221
2222         for (i = 0; i < num_vregs; i++) {
2223                 ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
2224                 if (ret)
2225                         return ret;
2226         }
2227
2228         qca->vreg_bulk = bulk;
2229         qca->num_vregs = num_vregs;
2230
2231         return 0;
2232 }
2233
2234 static int qca_serdev_probe(struct serdev_device *serdev)
2235 {
2236         struct qca_serdev *qcadev;
2237         struct hci_dev *hdev;
2238         const struct qca_device_data *data;
2239         int err;
2240         bool power_ctrl_enabled = true;
2241
2242         qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
2243         if (!qcadev)
2244                 return -ENOMEM;
2245
2246         qcadev->serdev_hu.serdev = serdev;
2247         data = device_get_match_data(&serdev->dev);
2248         serdev_device_set_drvdata(serdev, qcadev);
2249         device_property_read_string(&serdev->dev, "firmware-name",
2250                                          &qcadev->firmware_name);
2251         device_property_read_u32(&serdev->dev, "max-speed",
2252                                  &qcadev->oper_speed);
2253         if (!qcadev->oper_speed)
2254                 BT_DBG("UART will pick default operating speed");
2255
2256         if (data)
2257                 qcadev->btsoc_type = data->soc_type;
2258         else
2259                 qcadev->btsoc_type = QCA_ROME;
2260
2261         switch (qcadev->btsoc_type) {
2262         case QCA_WCN3988:
2263         case QCA_WCN3990:
2264         case QCA_WCN3991:
2265         case QCA_WCN3998:
2266         case QCA_WCN6750:
2267         case QCA_WCN6855:
2268         case QCA_WCN7850:
2269                 qcadev->bt_power = devm_kzalloc(&serdev->dev,
2270                                                 sizeof(struct qca_power),
2271                                                 GFP_KERNEL);
2272                 if (!qcadev->bt_power)
2273                         return -ENOMEM;
2274
2275                 qcadev->bt_power->dev = &serdev->dev;
2276                 err = qca_init_regulators(qcadev->bt_power, data->vregs,
2277                                           data->num_vregs);
2278                 if (err) {
2279                         BT_ERR("Failed to init regulators:%d", err);
2280                         return err;
2281                 }
2282
2283                 qcadev->bt_power->vregs_on = false;
2284
2285                 qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2286                                                GPIOD_OUT_LOW);
2287                 if (IS_ERR_OR_NULL(qcadev->bt_en) &&
2288                     (data->soc_type == QCA_WCN6750 ||
2289                      data->soc_type == QCA_WCN6855)) {
2290                         dev_err(&serdev->dev, "failed to acquire BT_EN gpio\n");
2291                         power_ctrl_enabled = false;
2292                 }
2293
2294                 qcadev->sw_ctrl = devm_gpiod_get_optional(&serdev->dev, "swctrl",
2295                                                GPIOD_IN);
2296                 if (IS_ERR_OR_NULL(qcadev->sw_ctrl) &&
2297                     (data->soc_type == QCA_WCN6750 ||
2298                      data->soc_type == QCA_WCN6855 ||
2299                      data->soc_type == QCA_WCN7850))
2300                         dev_warn(&serdev->dev, "failed to acquire SW_CTRL gpio\n");
2301
2302                 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2303                 if (IS_ERR(qcadev->susclk)) {
2304                         dev_err(&serdev->dev, "failed to acquire clk\n");
2305                         return PTR_ERR(qcadev->susclk);
2306                 }
2307
2308                 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2309                 if (err) {
2310                         BT_ERR("wcn3990 serdev registration failed");
2311                         return err;
2312                 }
2313                 break;
2314
2315         default:
2316                 qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2317                                                GPIOD_OUT_LOW);
2318                 if (IS_ERR_OR_NULL(qcadev->bt_en)) {
2319                         dev_warn(&serdev->dev, "failed to acquire enable gpio\n");
2320                         power_ctrl_enabled = false;
2321                 }
2322
2323                 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2324                 if (IS_ERR(qcadev->susclk)) {
2325                         dev_warn(&serdev->dev, "failed to acquire clk\n");
2326                         return PTR_ERR(qcadev->susclk);
2327                 }
2328                 err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
2329                 if (err)
2330                         return err;
2331
2332                 err = clk_prepare_enable(qcadev->susclk);
2333                 if (err)
2334                         return err;
2335
2336                 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2337                 if (err) {
2338                         BT_ERR("Rome serdev registration failed");
2339                         clk_disable_unprepare(qcadev->susclk);
2340                         return err;
2341                 }
2342         }
2343
2344         hdev = qcadev->serdev_hu.hdev;
2345
2346         if (power_ctrl_enabled) {
2347                 set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2348                 hdev->shutdown = qca_power_off;
2349         }
2350
2351         if (data) {
2352                 /* Wideband speech support must be set per driver since it can't
2353                  * be queried via hci. Same with the valid le states quirk.
2354                  */
2355                 if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH)
2356                         set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2357                                 &hdev->quirks);
2358
2359                 if (data->capabilities & QCA_CAP_VALID_LE_STATES)
2360                         set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2361         }
2362
2363         return 0;
2364 }
2365
2366 static void qca_serdev_remove(struct serdev_device *serdev)
2367 {
2368         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2369         struct qca_power *power = qcadev->bt_power;
2370
2371         switch (qcadev->btsoc_type) {
2372         case QCA_WCN3988:
2373         case QCA_WCN3990:
2374         case QCA_WCN3991:
2375         case QCA_WCN3998:
2376         case QCA_WCN6750:
2377         case QCA_WCN6855:
2378         case QCA_WCN7850:
2379                 if (power->vregs_on) {
2380                         qca_power_shutdown(&qcadev->serdev_hu);
2381                         break;
2382                 }
2383                 fallthrough;
2384
2385         default:
2386                 if (qcadev->susclk)
2387                         clk_disable_unprepare(qcadev->susclk);
2388         }
2389
2390         hci_uart_unregister_device(&qcadev->serdev_hu);
2391 }
2392
2393 static void qca_serdev_shutdown(struct device *dev)
2394 {
2395         int ret;
2396         int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2397         struct serdev_device *serdev = to_serdev_device(dev);
2398         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2399         struct hci_uart *hu = &qcadev->serdev_hu;
2400         struct hci_dev *hdev = hu->hdev;
2401         struct qca_data *qca = hu->priv;
2402         const u8 ibs_wake_cmd[] = { 0xFD };
2403         const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2404
2405         if (qcadev->btsoc_type == QCA_QCA6390) {
2406                 if (test_bit(QCA_BT_OFF, &qca->flags) ||
2407                     !test_bit(HCI_RUNNING, &hdev->flags))
2408                         return;
2409
2410                 serdev_device_write_flush(serdev);
2411                 ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2412                                               sizeof(ibs_wake_cmd));
2413                 if (ret < 0) {
2414                         BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2415                         return;
2416                 }
2417                 serdev_device_wait_until_sent(serdev, timeout);
2418                 usleep_range(8000, 10000);
2419
2420                 serdev_device_write_flush(serdev);
2421                 ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2422                                               sizeof(edl_reset_soc_cmd));
2423                 if (ret < 0) {
2424                         BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2425                         return;
2426                 }
2427                 serdev_device_wait_until_sent(serdev, timeout);
2428                 usleep_range(8000, 10000);
2429         }
2430 }
2431
2432 static int __maybe_unused qca_suspend(struct device *dev)
2433 {
2434         struct serdev_device *serdev = to_serdev_device(dev);
2435         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2436         struct hci_uart *hu = &qcadev->serdev_hu;
2437         struct qca_data *qca = hu->priv;
2438         unsigned long flags;
2439         bool tx_pending = false;
2440         int ret = 0;
2441         u8 cmd;
2442         u32 wait_timeout = 0;
2443
2444         set_bit(QCA_SUSPENDING, &qca->flags);
2445
2446         /* if BT SoC is running with default firmware then it does not
2447          * support in-band sleep
2448          */
2449         if (test_bit(QCA_ROM_FW, &qca->flags))
2450                 return 0;
2451
2452         /* During SSR after memory dump collection, controller will be
2453          * powered off and then powered on.If controller is powered off
2454          * during SSR then we should wait until SSR is completed.
2455          */
2456         if (test_bit(QCA_BT_OFF, &qca->flags) &&
2457             !test_bit(QCA_SSR_TRIGGERED, &qca->flags))
2458                 return 0;
2459
2460         if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
2461             test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
2462                 wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ?
2463                                         IBS_DISABLE_SSR_TIMEOUT_MS :
2464                                         FW_DOWNLOAD_TIMEOUT_MS;
2465
2466                 /* QCA_IBS_DISABLED flag is set to true, During FW download
2467                  * and during memory dump collection. It is reset to false,
2468                  * After FW download complete.
2469                  */
2470                 wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED,
2471                             TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout));
2472
2473                 if (test_bit(QCA_IBS_DISABLED, &qca->flags)) {
2474                         bt_dev_err(hu->hdev, "SSR or FW download time out");
2475                         ret = -ETIMEDOUT;
2476                         goto error;
2477                 }
2478         }
2479
2480         cancel_work_sync(&qca->ws_awake_device);
2481         cancel_work_sync(&qca->ws_awake_rx);
2482
2483         spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2484                                  flags, SINGLE_DEPTH_NESTING);
2485
2486         switch (qca->tx_ibs_state) {
2487         case HCI_IBS_TX_WAKING:
2488                 del_timer(&qca->wake_retrans_timer);
2489                 fallthrough;
2490         case HCI_IBS_TX_AWAKE:
2491                 del_timer(&qca->tx_idle_timer);
2492
2493                 serdev_device_write_flush(hu->serdev);
2494                 cmd = HCI_IBS_SLEEP_IND;
2495                 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2496
2497                 if (ret < 0) {
2498                         BT_ERR("Failed to send SLEEP to device");
2499                         break;
2500                 }
2501
2502                 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2503                 qca->ibs_sent_slps++;
2504                 tx_pending = true;
2505                 break;
2506
2507         case HCI_IBS_TX_ASLEEP:
2508                 break;
2509
2510         default:
2511                 BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2512                 ret = -EINVAL;
2513                 break;
2514         }
2515
2516         spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2517
2518         if (ret < 0)
2519                 goto error;
2520
2521         if (tx_pending) {
2522                 serdev_device_wait_until_sent(hu->serdev,
2523                                               msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2524                 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2525         }
2526
2527         /* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2528          * to sleep, so that the packet does not wake the system later.
2529          */
2530         ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2531                         qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2532                         msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2533         if (ret == 0) {
2534                 ret = -ETIMEDOUT;
2535                 goto error;
2536         }
2537
2538         return 0;
2539
2540 error:
2541         clear_bit(QCA_SUSPENDING, &qca->flags);
2542
2543         return ret;
2544 }
2545
2546 static int __maybe_unused qca_resume(struct device *dev)
2547 {
2548         struct serdev_device *serdev = to_serdev_device(dev);
2549         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2550         struct hci_uart *hu = &qcadev->serdev_hu;
2551         struct qca_data *qca = hu->priv;
2552
2553         clear_bit(QCA_SUSPENDING, &qca->flags);
2554
2555         return 0;
2556 }
2557
2558 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2559
2560 #ifdef CONFIG_OF
2561 static const struct of_device_id qca_bluetooth_of_match[] = {
2562         { .compatible = "qcom,qca6174-bt" },
2563         { .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2564         { .compatible = "qcom,qca9377-bt" },
2565         { .compatible = "qcom,wcn3988-bt", .data = &qca_soc_data_wcn3988},
2566         { .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2567         { .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2568         { .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2569         { .compatible = "qcom,wcn6750-bt", .data = &qca_soc_data_wcn6750},
2570         { .compatible = "qcom,wcn6855-bt", .data = &qca_soc_data_wcn6855},
2571         { .compatible = "qcom,wcn7850-bt", .data = &qca_soc_data_wcn7850},
2572         { /* sentinel */ }
2573 };
2574 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2575 #endif
2576
2577 #ifdef CONFIG_ACPI
2578 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2579         { "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2580         { "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2581         { "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2582         { "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2583         { },
2584 };
2585 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2586 #endif
2587
2588 #ifdef CONFIG_DEV_COREDUMP
2589 static void hciqca_coredump(struct device *dev)
2590 {
2591         struct serdev_device *serdev = to_serdev_device(dev);
2592         struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2593         struct hci_uart *hu = &qcadev->serdev_hu;
2594         struct hci_dev  *hdev = hu->hdev;
2595
2596         if (hdev->dump.coredump)
2597                 hdev->dump.coredump(hdev);
2598 }
2599 #endif
2600
2601 static struct serdev_device_driver qca_serdev_driver = {
2602         .probe = qca_serdev_probe,
2603         .remove = qca_serdev_remove,
2604         .driver = {
2605                 .name = "hci_uart_qca",
2606                 .of_match_table = of_match_ptr(qca_bluetooth_of_match),
2607                 .acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2608                 .shutdown = qca_serdev_shutdown,
2609                 .pm = &qca_pm_ops,
2610 #ifdef CONFIG_DEV_COREDUMP
2611                 .coredump = hciqca_coredump,
2612 #endif
2613         },
2614 };
2615
2616 int __init qca_init(void)
2617 {
2618         serdev_device_driver_register(&qca_serdev_driver);
2619
2620         return hci_uart_register_proto(&qca_proto);
2621 }
2622
2623 int __exit qca_deinit(void)
2624 {
2625         serdev_device_driver_unregister(&qca_serdev_driver);
2626
2627         return hci_uart_unregister_proto(&qca_proto);
2628 }