1 // SPDX-License-Identifier: GPL-2.0-or-later
4 * Bluetooth HCI UART driver for Intel devices
6 * Copyright (C) 2015 Intel Corporation
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/skbuff.h>
12 #include <linux/firmware.h>
13 #include <linux/module.h>
14 #include <linux/wait.h>
15 #include <linux/tty.h>
16 #include <linux/platform_device.h>
17 #include <linux/gpio/consumer.h>
18 #include <linux/acpi.h>
19 #include <linux/interrupt.h>
20 #include <linux/pm_runtime.h>
22 #include <net/bluetooth/bluetooth.h>
23 #include <net/bluetooth/hci_core.h>
28 #define STATE_BOOTLOADER 0
29 #define STATE_DOWNLOADING 1
30 #define STATE_FIRMWARE_LOADED 2
31 #define STATE_FIRMWARE_FAILED 3
32 #define STATE_BOOTING 4
33 #define STATE_LPM_ENABLED 5
34 #define STATE_TX_ACTIVE 6
35 #define STATE_SUSPENDED 7
36 #define STATE_LPM_TRANSACTION 8
38 #define HCI_LPM_WAKE_PKT 0xf0
39 #define HCI_LPM_PKT 0xf1
40 #define HCI_LPM_MAX_SIZE 10
41 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
43 #define LPM_OP_TX_NOTIFY 0x00
44 #define LPM_OP_SUSPEND_ACK 0x02
45 #define LPM_OP_RESUME_ACK 0x03
47 #define LPM_SUSPEND_DELAY_MS 1000
56 struct list_head list;
57 struct platform_device *pdev;
58 struct gpio_desc *reset;
64 static LIST_HEAD(intel_device_list);
65 static DEFINE_MUTEX(intel_device_list_lock);
68 struct sk_buff *rx_skb;
69 struct sk_buff_head txq;
70 struct work_struct busy_work;
75 static u8 intel_convert_speed(unsigned int speed)
107 static int intel_wait_booting(struct hci_uart *hu)
109 struct intel_data *intel = hu->priv;
112 err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
114 msecs_to_jiffies(1000));
117 bt_dev_err(hu->hdev, "Device boot interrupted");
122 bt_dev_err(hu->hdev, "Device boot timeout");
130 static int intel_wait_lpm_transaction(struct hci_uart *hu)
132 struct intel_data *intel = hu->priv;
135 err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
137 msecs_to_jiffies(1000));
140 bt_dev_err(hu->hdev, "LPM transaction interrupted");
145 bt_dev_err(hu->hdev, "LPM transaction timeout");
152 static int intel_lpm_suspend(struct hci_uart *hu)
154 static const u8 suspend[] = { 0x01, 0x01, 0x01 };
155 struct intel_data *intel = hu->priv;
158 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
159 test_bit(STATE_SUSPENDED, &intel->flags))
162 if (test_bit(STATE_TX_ACTIVE, &intel->flags))
165 bt_dev_dbg(hu->hdev, "Suspending");
167 skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
169 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
173 skb_put_data(skb, suspend, sizeof(suspend));
174 hci_skb_pkt_type(skb) = HCI_LPM_PKT;
176 set_bit(STATE_LPM_TRANSACTION, &intel->flags);
178 /* LPM flow is a priority, enqueue packet at list head */
179 skb_queue_head(&intel->txq, skb);
180 hci_uart_tx_wakeup(hu);
182 intel_wait_lpm_transaction(hu);
183 /* Even in case of failure, continue and test the suspended flag */
185 clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
187 if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
188 bt_dev_err(hu->hdev, "Device suspend error");
192 bt_dev_dbg(hu->hdev, "Suspended");
194 hci_uart_set_flow_control(hu, true);
199 static int intel_lpm_resume(struct hci_uart *hu)
201 struct intel_data *intel = hu->priv;
204 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
205 !test_bit(STATE_SUSPENDED, &intel->flags))
208 bt_dev_dbg(hu->hdev, "Resuming");
210 hci_uart_set_flow_control(hu, false);
212 skb = bt_skb_alloc(0, GFP_KERNEL);
214 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
218 hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
220 set_bit(STATE_LPM_TRANSACTION, &intel->flags);
222 /* LPM flow is a priority, enqueue packet at list head */
223 skb_queue_head(&intel->txq, skb);
224 hci_uart_tx_wakeup(hu);
226 intel_wait_lpm_transaction(hu);
227 /* Even in case of failure, continue and test the suspended flag */
229 clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
231 if (test_bit(STATE_SUSPENDED, &intel->flags)) {
232 bt_dev_err(hu->hdev, "Device resume error");
236 bt_dev_dbg(hu->hdev, "Resumed");
240 #endif /* CONFIG_PM */
242 static int intel_lpm_host_wake(struct hci_uart *hu)
244 static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
245 struct intel_data *intel = hu->priv;
248 hci_uart_set_flow_control(hu, false);
250 clear_bit(STATE_SUSPENDED, &intel->flags);
252 skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
254 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
258 skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack));
259 hci_skb_pkt_type(skb) = HCI_LPM_PKT;
261 /* LPM flow is a priority, enqueue packet at list head */
262 skb_queue_head(&intel->txq, skb);
263 hci_uart_tx_wakeup(hu);
265 bt_dev_dbg(hu->hdev, "Resumed by controller");
270 static irqreturn_t intel_irq(int irq, void *dev_id)
272 struct intel_device *idev = dev_id;
274 dev_info(&idev->pdev->dev, "hci_intel irq\n");
276 mutex_lock(&idev->hu_lock);
278 intel_lpm_host_wake(idev->hu);
279 mutex_unlock(&idev->hu_lock);
281 /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
282 pm_runtime_get(&idev->pdev->dev);
283 pm_runtime_mark_last_busy(&idev->pdev->dev);
284 pm_runtime_put_autosuspend(&idev->pdev->dev);
289 static int intel_set_power(struct hci_uart *hu, bool powered)
291 struct intel_device *idev;
297 mutex_lock(&intel_device_list_lock);
299 list_for_each_entry(idev, &intel_device_list, list) {
300 /* tty device and pdev device should share the same parent
301 * which is the UART port.
303 if (hu->tty->dev->parent != idev->pdev->dev.parent)
311 BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
312 hu, dev_name(&idev->pdev->dev), powered);
314 gpiod_set_value(idev->reset, powered);
316 /* Provide to idev a hu reference which is used to run LPM
317 * transactions (lpm suspend/resume) from PM callbacks.
318 * hu needs to be protected against concurrent removing during
321 mutex_lock(&idev->hu_lock);
322 idev->hu = powered ? hu : NULL;
323 mutex_unlock(&idev->hu_lock);
328 if (powered && device_can_wakeup(&idev->pdev->dev)) {
329 err = devm_request_threaded_irq(&idev->pdev->dev,
333 "bt-host-wake", idev);
335 BT_ERR("hu %p, unable to allocate irq-%d",
340 device_wakeup_enable(&idev->pdev->dev);
342 pm_runtime_set_active(&idev->pdev->dev);
343 pm_runtime_use_autosuspend(&idev->pdev->dev);
344 pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
345 LPM_SUSPEND_DELAY_MS);
346 pm_runtime_enable(&idev->pdev->dev);
347 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
348 devm_free_irq(&idev->pdev->dev, idev->irq, idev);
349 device_wakeup_disable(&idev->pdev->dev);
351 pm_runtime_disable(&idev->pdev->dev);
355 mutex_unlock(&intel_device_list_lock);
360 static void intel_busy_work(struct work_struct *work)
362 struct intel_data *intel = container_of(work, struct intel_data,
364 struct intel_device *idev;
366 if (!intel->hu->tty->dev)
369 /* Link is busy, delay the suspend */
370 mutex_lock(&intel_device_list_lock);
371 list_for_each_entry(idev, &intel_device_list, list) {
372 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
373 pm_runtime_get(&idev->pdev->dev);
374 pm_runtime_mark_last_busy(&idev->pdev->dev);
375 pm_runtime_put_autosuspend(&idev->pdev->dev);
379 mutex_unlock(&intel_device_list_lock);
382 static int intel_open(struct hci_uart *hu)
384 struct intel_data *intel;
388 if (!hci_uart_has_flow_control(hu))
391 intel = kzalloc(sizeof(*intel), GFP_KERNEL);
395 skb_queue_head_init(&intel->txq);
396 INIT_WORK(&intel->busy_work, intel_busy_work);
402 if (!intel_set_power(hu, true))
403 set_bit(STATE_BOOTING, &intel->flags);
408 static int intel_close(struct hci_uart *hu)
410 struct intel_data *intel = hu->priv;
414 cancel_work_sync(&intel->busy_work);
416 intel_set_power(hu, false);
418 skb_queue_purge(&intel->txq);
419 kfree_skb(intel->rx_skb);
426 static int intel_flush(struct hci_uart *hu)
428 struct intel_data *intel = hu->priv;
432 skb_queue_purge(&intel->txq);
437 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
440 struct hci_event_hdr *hdr;
441 struct hci_ev_cmd_complete *evt;
443 skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
447 hdr = skb_put(skb, sizeof(*hdr));
448 hdr->evt = HCI_EV_CMD_COMPLETE;
449 hdr->plen = sizeof(*evt) + 1;
451 evt = skb_put(skb, sizeof(*evt));
453 evt->opcode = cpu_to_le16(opcode);
455 skb_put_u8(skb, 0x00);
457 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
459 return hci_recv_frame(hdev, skb);
462 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
464 struct intel_data *intel = hu->priv;
465 struct hci_dev *hdev = hu->hdev;
466 u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
470 /* This can be the first command sent to the chip, check
471 * that the controller is ready.
473 err = intel_wait_booting(hu);
475 clear_bit(STATE_BOOTING, &intel->flags);
477 /* In case of timeout, try to continue anyway */
478 if (err && err != -ETIMEDOUT)
481 bt_dev_info(hdev, "Change controller speed to %d", speed);
483 speed_cmd[3] = intel_convert_speed(speed);
484 if (speed_cmd[3] == 0xff) {
485 bt_dev_err(hdev, "Unsupported speed");
489 /* Device will not accept speed change if Intel version has not been
490 * previously requested.
492 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
494 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
500 skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
502 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
506 skb_put_data(skb, speed_cmd, sizeof(speed_cmd));
507 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
509 hci_uart_set_flow_control(hu, true);
511 skb_queue_tail(&intel->txq, skb);
512 hci_uart_tx_wakeup(hu);
514 /* wait 100ms to change baudrate on controller side */
517 hci_uart_set_baudrate(hu, speed);
518 hci_uart_set_flow_control(hu, false);
523 static int intel_setup(struct hci_uart *hu)
525 struct intel_data *intel = hu->priv;
526 struct hci_dev *hdev = hu->hdev;
528 struct intel_version ver;
529 struct intel_boot_params params;
530 struct intel_device *idev;
531 const struct firmware *fw;
534 ktime_t calltime, delta, rettime;
535 unsigned long long duration;
536 unsigned int init_speed, oper_speed;
537 int speed_change = 0;
540 bt_dev_dbg(hdev, "start intel_setup");
542 hu->hdev->set_diag = btintel_set_diag;
543 hu->hdev->set_bdaddr = btintel_set_bdaddr;
545 /* Set the default boot parameter to 0x0 and it is updated to
546 * SKU specific boot parameter after reading Intel_Write_Boot_Params
547 * command while downloading the firmware.
549 boot_param = 0x00000000;
551 calltime = ktime_get();
554 init_speed = hu->init_speed;
556 init_speed = hu->proto->init_speed;
559 oper_speed = hu->oper_speed;
561 oper_speed = hu->proto->oper_speed;
563 if (oper_speed && init_speed && oper_speed != init_speed)
566 /* Check that the controller is ready */
567 err = intel_wait_booting(hu);
569 clear_bit(STATE_BOOTING, &intel->flags);
571 /* In case of timeout, try to continue anyway */
572 if (err && err != -ETIMEDOUT)
575 set_bit(STATE_BOOTLOADER, &intel->flags);
577 /* Read the Intel version information to determine if the device
578 * is in bootloader mode or if it already has operational firmware
581 err = btintel_read_version(hdev, &ver);
585 /* The hardware platform number has a fixed value of 0x37 and
586 * for now only accept this single value.
588 if (ver.hw_platform != 0x37) {
589 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
594 /* Check for supported iBT hardware variants of this firmware
597 * This check has been put in place to ensure correct forward
598 * compatibility options when newer hardware variants come along.
600 switch (ver.hw_variant) {
606 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
611 btintel_version_info(hdev, &ver);
613 /* The firmware variant determines if the device is in bootloader
614 * mode or is running operational firmware. The value 0x06 identifies
615 * the bootloader and the value 0x23 identifies the operational
618 * When the operational firmware is already present, then only
619 * the check for valid Bluetooth device address is needed. This
620 * determines if the device will be added as configured or
621 * unconfigured controller.
623 * It is not possible to use the Secure Boot Parameters in this
624 * case since that command is only available in bootloader mode.
626 if (ver.fw_variant == 0x23) {
627 clear_bit(STATE_BOOTLOADER, &intel->flags);
628 btintel_check_bdaddr(hdev);
632 /* If the device is not in bootloader mode, then the only possible
633 * choice is to return an error and abort the device initialization.
635 if (ver.fw_variant != 0x06) {
636 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
641 /* Read the secure boot parameters to identify the operating
642 * details of the bootloader.
644 err = btintel_read_boot_params(hdev, ¶ms);
648 /* It is required that every single firmware fragment is acknowledged
649 * with a command complete event. If the boot parameters indicate
650 * that this bootloader does not send them, then abort the setup.
652 if (params.limited_cce != 0x00) {
653 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
658 /* If the OTP has no valid Bluetooth device address, then there will
659 * also be no valid address for the operational firmware.
661 if (!bacmp(¶ms.otp_bdaddr, BDADDR_ANY)) {
662 bt_dev_info(hdev, "No device address configured");
663 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
666 /* With this Intel bootloader only the hardware variant and device
667 * revision information are used to select the right firmware for SfP
670 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
672 * Currently the supported hardware variants are:
673 * 11 (0x0b) for iBT 3.0 (LnP/SfP)
674 * 12 (0x0c) for iBT 3.5 (WsP)
676 * For ThP/JfP and for future SKU's, the FW name varies based on HW
677 * variant, HW revision and FW revision, as these are dependent on CNVi
678 * and RF Combination.
680 * 18 (0x12) for iBT3.5 (ThP/JfP)
682 * The firmware file name for these will be
683 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
686 switch (ver.hw_variant) {
689 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
690 ver.hw_variant, le16_to_cpu(params.dev_revid));
693 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.sfi",
694 ver.hw_variant, ver.hw_revision, ver.fw_revision);
697 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
702 err = request_firmware(&fw, fwname, &hdev->dev);
704 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
709 bt_dev_info(hdev, "Found device firmware: %s", fwname);
711 /* Save the DDC file name for later */
712 switch (ver.hw_variant) {
715 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
716 ver.hw_variant, le16_to_cpu(params.dev_revid));
719 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.ddc",
720 ver.hw_variant, ver.hw_revision, ver.fw_revision);
723 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
728 if (fw->size < 644) {
729 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
735 set_bit(STATE_DOWNLOADING, &intel->flags);
737 /* Start firmware downloading and get boot parameter */
738 err = btintel_download_firmware(hdev, &ver, fw, &boot_param);
742 set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
744 bt_dev_info(hdev, "Waiting for firmware download to complete");
746 /* Before switching the device into operational mode and with that
747 * booting the loaded firmware, wait for the bootloader notification
748 * that all fragments have been successfully received.
750 * When the event processing receives the notification, then the
751 * STATE_DOWNLOADING flag will be cleared.
753 * The firmware loading should not take longer than 5 seconds
754 * and thus just timeout if that happens and fail the setup
757 err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
759 msecs_to_jiffies(5000));
761 bt_dev_err(hdev, "Firmware loading interrupted");
767 bt_dev_err(hdev, "Firmware loading timeout");
772 if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
773 bt_dev_err(hdev, "Firmware loading failed");
778 rettime = ktime_get();
779 delta = ktime_sub(rettime, calltime);
780 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
782 bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
785 release_firmware(fw);
787 /* Check if there was an error and if is not -EALREADY which means the
788 * firmware has already been loaded.
790 if (err < 0 && err != -EALREADY)
793 /* We need to restore the default speed before Intel reset */
795 err = intel_set_baudrate(hu, init_speed);
800 calltime = ktime_get();
802 set_bit(STATE_BOOTING, &intel->flags);
804 err = btintel_send_intel_reset(hdev, boot_param);
808 /* The bootloader will not indicate when the device is ready. This
809 * is done by the operational firmware sending bootup notification.
811 * Booting into operational firmware should not take longer than
812 * 1 second. However if that happens, then just fail the setup
813 * since something went wrong.
815 bt_dev_info(hdev, "Waiting for device to boot");
817 err = intel_wait_booting(hu);
821 clear_bit(STATE_BOOTING, &intel->flags);
823 rettime = ktime_get();
824 delta = ktime_sub(rettime, calltime);
825 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
827 bt_dev_info(hdev, "Device booted in %llu usecs", duration);
829 /* Enable LPM if matching pdev with wakeup enabled, set TX active
830 * until further LPM TX notification.
832 mutex_lock(&intel_device_list_lock);
833 list_for_each_entry(idev, &intel_device_list, list) {
836 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
837 if (device_may_wakeup(&idev->pdev->dev)) {
838 set_bit(STATE_LPM_ENABLED, &intel->flags);
839 set_bit(STATE_TX_ACTIVE, &intel->flags);
844 mutex_unlock(&intel_device_list_lock);
846 /* Ignore errors, device can work without DDC parameters */
847 btintel_load_ddc_config(hdev, fwname);
849 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
855 err = intel_set_baudrate(hu, oper_speed);
860 bt_dev_info(hdev, "Setup complete");
862 clear_bit(STATE_BOOTLOADER, &intel->flags);
867 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
869 struct hci_uart *hu = hci_get_drvdata(hdev);
870 struct intel_data *intel = hu->priv;
871 struct hci_event_hdr *hdr;
873 if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
874 !test_bit(STATE_BOOTING, &intel->flags))
877 hdr = (void *)skb->data;
879 /* When the firmware loading completes the device sends
880 * out a vendor specific event indicating the result of
881 * the firmware loading.
883 if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
884 skb->data[2] == 0x06) {
885 if (skb->data[3] != 0x00)
886 set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
888 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
889 test_bit(STATE_FIRMWARE_LOADED, &intel->flags))
890 wake_up_bit(&intel->flags, STATE_DOWNLOADING);
892 /* When switching to the operational firmware the device
893 * sends a vendor specific event indicating that the bootup
896 } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
897 skb->data[2] == 0x02) {
898 if (test_and_clear_bit(STATE_BOOTING, &intel->flags))
899 wake_up_bit(&intel->flags, STATE_BOOTING);
902 return hci_recv_frame(hdev, skb);
905 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
907 struct hci_uart *hu = hci_get_drvdata(hdev);
908 struct intel_data *intel = hu->priv;
910 bt_dev_dbg(hdev, "TX idle notification (%d)", value);
913 set_bit(STATE_TX_ACTIVE, &intel->flags);
914 schedule_work(&intel->busy_work);
916 clear_bit(STATE_TX_ACTIVE, &intel->flags);
920 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
922 struct hci_lpm_pkt *lpm = (void *)skb->data;
923 struct hci_uart *hu = hci_get_drvdata(hdev);
924 struct intel_data *intel = hu->priv;
926 switch (lpm->opcode) {
927 case LPM_OP_TX_NOTIFY:
929 bt_dev_err(hu->hdev, "Invalid LPM notification packet");
932 intel_recv_lpm_notify(hdev, lpm->data[0]);
934 case LPM_OP_SUSPEND_ACK:
935 set_bit(STATE_SUSPENDED, &intel->flags);
936 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
937 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
939 case LPM_OP_RESUME_ACK:
940 clear_bit(STATE_SUSPENDED, &intel->flags);
941 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
942 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
945 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
954 #define INTEL_RECV_LPM \
955 .type = HCI_LPM_PKT, \
956 .hlen = HCI_LPM_HDR_SIZE, \
959 .maxlen = HCI_LPM_MAX_SIZE
961 static const struct h4_recv_pkt intel_recv_pkts[] = {
962 { H4_RECV_ACL, .recv = hci_recv_frame },
963 { H4_RECV_SCO, .recv = hci_recv_frame },
964 { H4_RECV_EVENT, .recv = intel_recv_event },
965 { INTEL_RECV_LPM, .recv = intel_recv_lpm },
968 static int intel_recv(struct hci_uart *hu, const void *data, int count)
970 struct intel_data *intel = hu->priv;
972 if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
975 intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
977 ARRAY_SIZE(intel_recv_pkts));
978 if (IS_ERR(intel->rx_skb)) {
979 int err = PTR_ERR(intel->rx_skb);
980 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
981 intel->rx_skb = NULL;
988 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
990 struct intel_data *intel = hu->priv;
991 struct intel_device *idev;
993 BT_DBG("hu %p skb %p", hu, skb);
998 /* Be sure our controller is resumed and potential LPM transaction
999 * completed before enqueuing any packet.
1001 mutex_lock(&intel_device_list_lock);
1002 list_for_each_entry(idev, &intel_device_list, list) {
1003 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1004 pm_runtime_get_sync(&idev->pdev->dev);
1005 pm_runtime_mark_last_busy(&idev->pdev->dev);
1006 pm_runtime_put_autosuspend(&idev->pdev->dev);
1010 mutex_unlock(&intel_device_list_lock);
1012 skb_queue_tail(&intel->txq, skb);
1017 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1019 struct intel_data *intel = hu->priv;
1020 struct sk_buff *skb;
1022 skb = skb_dequeue(&intel->txq);
1026 if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1027 (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1028 struct hci_command_hdr *cmd = (void *)skb->data;
1029 __u16 opcode = le16_to_cpu(cmd->opcode);
1031 /* When the 0xfc01 command is issued to boot into
1032 * the operational firmware, it will actually not
1033 * send a command complete event. To keep the flow
1034 * control working inject that event here.
1036 if (opcode == 0xfc01)
1037 inject_cmd_complete(hu->hdev, opcode);
1040 /* Prepend skb with frame type */
1041 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1046 static const struct hci_uart_proto intel_proto = {
1047 .id = HCI_UART_INTEL,
1050 .init_speed = 115200,
1051 .oper_speed = 3000000,
1053 .close = intel_close,
1054 .flush = intel_flush,
1055 .setup = intel_setup,
1056 .set_baudrate = intel_set_baudrate,
1058 .enqueue = intel_enqueue,
1059 .dequeue = intel_dequeue,
1063 static const struct acpi_device_id intel_acpi_match[] = {
1068 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1072 static int intel_suspend_device(struct device *dev)
1074 struct intel_device *idev = dev_get_drvdata(dev);
1076 mutex_lock(&idev->hu_lock);
1078 intel_lpm_suspend(idev->hu);
1079 mutex_unlock(&idev->hu_lock);
1084 static int intel_resume_device(struct device *dev)
1086 struct intel_device *idev = dev_get_drvdata(dev);
1088 mutex_lock(&idev->hu_lock);
1090 intel_lpm_resume(idev->hu);
1091 mutex_unlock(&idev->hu_lock);
1097 #ifdef CONFIG_PM_SLEEP
1098 static int intel_suspend(struct device *dev)
1100 struct intel_device *idev = dev_get_drvdata(dev);
1102 if (device_may_wakeup(dev))
1103 enable_irq_wake(idev->irq);
1105 return intel_suspend_device(dev);
1108 static int intel_resume(struct device *dev)
1110 struct intel_device *idev = dev_get_drvdata(dev);
1112 if (device_may_wakeup(dev))
1113 disable_irq_wake(idev->irq);
1115 return intel_resume_device(dev);
1119 static const struct dev_pm_ops intel_pm_ops = {
1120 SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1121 SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1124 static const struct acpi_gpio_params reset_gpios = { 0, 0, false };
1125 static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false };
1127 static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = {
1128 { "reset-gpios", &reset_gpios, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO },
1129 { "host-wake-gpios", &host_wake_gpios, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO },
1133 static int intel_probe(struct platform_device *pdev)
1135 struct intel_device *idev;
1138 idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1142 mutex_init(&idev->hu_lock);
1146 ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios);
1148 dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n");
1150 idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1151 if (IS_ERR(idev->reset)) {
1152 dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1153 return PTR_ERR(idev->reset);
1156 idev->irq = platform_get_irq(pdev, 0);
1157 if (idev->irq < 0) {
1158 struct gpio_desc *host_wake;
1160 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1162 host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1163 if (IS_ERR(host_wake)) {
1164 dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1168 idev->irq = gpiod_to_irq(host_wake);
1169 if (idev->irq < 0) {
1170 dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1175 /* Only enable wake-up/irq when controller is powered */
1176 device_set_wakeup_capable(&pdev->dev, true);
1177 device_wakeup_disable(&pdev->dev);
1180 platform_set_drvdata(pdev, idev);
1182 /* Place this instance on the device list */
1183 mutex_lock(&intel_device_list_lock);
1184 list_add_tail(&idev->list, &intel_device_list);
1185 mutex_unlock(&intel_device_list_lock);
1187 dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1188 desc_to_gpio(idev->reset), idev->irq);
1193 static int intel_remove(struct platform_device *pdev)
1195 struct intel_device *idev = platform_get_drvdata(pdev);
1197 device_wakeup_disable(&pdev->dev);
1199 mutex_lock(&intel_device_list_lock);
1200 list_del(&idev->list);
1201 mutex_unlock(&intel_device_list_lock);
1203 dev_info(&pdev->dev, "unregistered.\n");
1208 static struct platform_driver intel_driver = {
1209 .probe = intel_probe,
1210 .remove = intel_remove,
1212 .name = "hci_intel",
1213 .acpi_match_table = ACPI_PTR(intel_acpi_match),
1214 .pm = &intel_pm_ops,
1218 int __init intel_init(void)
1222 err = platform_driver_register(&intel_driver);
1226 return hci_uart_register_proto(&intel_proto);
1229 int __exit intel_deinit(void)
1231 platform_driver_unregister(&intel_driver);
1233 return hci_uart_unregister_proto(&intel_proto);