Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[platform/kernel/linux-rpi.git] / drivers / bluetooth / hci_intel.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth HCI UART driver for Intel devices
5  *
6  *  Copyright (C) 2015  Intel Corporation
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/skbuff.h>
12 #include <linux/firmware.h>
13 #include <linux/module.h>
14 #include <linux/wait.h>
15 #include <linux/tty.h>
16 #include <linux/platform_device.h>
17 #include <linux/gpio/consumer.h>
18 #include <linux/acpi.h>
19 #include <linux/interrupt.h>
20 #include <linux/pm_runtime.h>
21
22 #include <net/bluetooth/bluetooth.h>
23 #include <net/bluetooth/hci_core.h>
24
25 #include "hci_uart.h"
26 #include "btintel.h"
27
28 #define STATE_BOOTLOADER        0
29 #define STATE_DOWNLOADING       1
30 #define STATE_FIRMWARE_LOADED   2
31 #define STATE_FIRMWARE_FAILED   3
32 #define STATE_BOOTING           4
33 #define STATE_LPM_ENABLED       5
34 #define STATE_TX_ACTIVE         6
35 #define STATE_SUSPENDED         7
36 #define STATE_LPM_TRANSACTION   8
37
38 #define HCI_LPM_WAKE_PKT 0xf0
39 #define HCI_LPM_PKT 0xf1
40 #define HCI_LPM_MAX_SIZE 10
41 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
42
43 #define LPM_OP_TX_NOTIFY 0x00
44 #define LPM_OP_SUSPEND_ACK 0x02
45 #define LPM_OP_RESUME_ACK 0x03
46
47 #define LPM_SUSPEND_DELAY_MS 1000
48
49 struct hci_lpm_pkt {
50         __u8 opcode;
51         __u8 dlen;
52         __u8 data[];
53 } __packed;
54
55 struct intel_device {
56         struct list_head list;
57         struct platform_device *pdev;
58         struct gpio_desc *reset;
59         struct hci_uart *hu;
60         struct mutex hu_lock;
61         int irq;
62 };
63
64 static LIST_HEAD(intel_device_list);
65 static DEFINE_MUTEX(intel_device_list_lock);
66
67 struct intel_data {
68         struct sk_buff *rx_skb;
69         struct sk_buff_head txq;
70         struct work_struct busy_work;
71         struct hci_uart *hu;
72         unsigned long flags;
73 };
74
75 static u8 intel_convert_speed(unsigned int speed)
76 {
77         switch (speed) {
78         case 9600:
79                 return 0x00;
80         case 19200:
81                 return 0x01;
82         case 38400:
83                 return 0x02;
84         case 57600:
85                 return 0x03;
86         case 115200:
87                 return 0x04;
88         case 230400:
89                 return 0x05;
90         case 460800:
91                 return 0x06;
92         case 921600:
93                 return 0x07;
94         case 1843200:
95                 return 0x08;
96         case 3250000:
97                 return 0x09;
98         case 2000000:
99                 return 0x0a;
100         case 3000000:
101                 return 0x0b;
102         default:
103                 return 0xff;
104         }
105 }
106
107 static int intel_wait_booting(struct hci_uart *hu)
108 {
109         struct intel_data *intel = hu->priv;
110         int err;
111
112         err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
113                                   TASK_INTERRUPTIBLE,
114                                   msecs_to_jiffies(1000));
115
116         if (err == -EINTR) {
117                 bt_dev_err(hu->hdev, "Device boot interrupted");
118                 return -EINTR;
119         }
120
121         if (err) {
122                 bt_dev_err(hu->hdev, "Device boot timeout");
123                 return -ETIMEDOUT;
124         }
125
126         return err;
127 }
128
129 #ifdef CONFIG_PM
130 static int intel_wait_lpm_transaction(struct hci_uart *hu)
131 {
132         struct intel_data *intel = hu->priv;
133         int err;
134
135         err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
136                                   TASK_INTERRUPTIBLE,
137                                   msecs_to_jiffies(1000));
138
139         if (err == -EINTR) {
140                 bt_dev_err(hu->hdev, "LPM transaction interrupted");
141                 return -EINTR;
142         }
143
144         if (err) {
145                 bt_dev_err(hu->hdev, "LPM transaction timeout");
146                 return -ETIMEDOUT;
147         }
148
149         return err;
150 }
151
152 static int intel_lpm_suspend(struct hci_uart *hu)
153 {
154         static const u8 suspend[] = { 0x01, 0x01, 0x01 };
155         struct intel_data *intel = hu->priv;
156         struct sk_buff *skb;
157
158         if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
159             test_bit(STATE_SUSPENDED, &intel->flags))
160                 return 0;
161
162         if (test_bit(STATE_TX_ACTIVE, &intel->flags))
163                 return -EAGAIN;
164
165         bt_dev_dbg(hu->hdev, "Suspending");
166
167         skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
168         if (!skb) {
169                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
170                 return -ENOMEM;
171         }
172
173         skb_put_data(skb, suspend, sizeof(suspend));
174         hci_skb_pkt_type(skb) = HCI_LPM_PKT;
175
176         set_bit(STATE_LPM_TRANSACTION, &intel->flags);
177
178         /* LPM flow is a priority, enqueue packet at list head */
179         skb_queue_head(&intel->txq, skb);
180         hci_uart_tx_wakeup(hu);
181
182         intel_wait_lpm_transaction(hu);
183         /* Even in case of failure, continue and test the suspended flag */
184
185         clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
186
187         if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
188                 bt_dev_err(hu->hdev, "Device suspend error");
189                 return -EINVAL;
190         }
191
192         bt_dev_dbg(hu->hdev, "Suspended");
193
194         hci_uart_set_flow_control(hu, true);
195
196         return 0;
197 }
198
199 static int intel_lpm_resume(struct hci_uart *hu)
200 {
201         struct intel_data *intel = hu->priv;
202         struct sk_buff *skb;
203
204         if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
205             !test_bit(STATE_SUSPENDED, &intel->flags))
206                 return 0;
207
208         bt_dev_dbg(hu->hdev, "Resuming");
209
210         hci_uart_set_flow_control(hu, false);
211
212         skb = bt_skb_alloc(0, GFP_KERNEL);
213         if (!skb) {
214                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
215                 return -ENOMEM;
216         }
217
218         hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
219
220         set_bit(STATE_LPM_TRANSACTION, &intel->flags);
221
222         /* LPM flow is a priority, enqueue packet at list head */
223         skb_queue_head(&intel->txq, skb);
224         hci_uart_tx_wakeup(hu);
225
226         intel_wait_lpm_transaction(hu);
227         /* Even in case of failure, continue and test the suspended flag */
228
229         clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
230
231         if (test_bit(STATE_SUSPENDED, &intel->flags)) {
232                 bt_dev_err(hu->hdev, "Device resume error");
233                 return -EINVAL;
234         }
235
236         bt_dev_dbg(hu->hdev, "Resumed");
237
238         return 0;
239 }
240 #endif /* CONFIG_PM */
241
242 static int intel_lpm_host_wake(struct hci_uart *hu)
243 {
244         static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
245         struct intel_data *intel = hu->priv;
246         struct sk_buff *skb;
247
248         hci_uart_set_flow_control(hu, false);
249
250         clear_bit(STATE_SUSPENDED, &intel->flags);
251
252         skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
253         if (!skb) {
254                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
255                 return -ENOMEM;
256         }
257
258         skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack));
259         hci_skb_pkt_type(skb) = HCI_LPM_PKT;
260
261         /* LPM flow is a priority, enqueue packet at list head */
262         skb_queue_head(&intel->txq, skb);
263         hci_uart_tx_wakeup(hu);
264
265         bt_dev_dbg(hu->hdev, "Resumed by controller");
266
267         return 0;
268 }
269
270 static irqreturn_t intel_irq(int irq, void *dev_id)
271 {
272         struct intel_device *idev = dev_id;
273
274         dev_info(&idev->pdev->dev, "hci_intel irq\n");
275
276         mutex_lock(&idev->hu_lock);
277         if (idev->hu)
278                 intel_lpm_host_wake(idev->hu);
279         mutex_unlock(&idev->hu_lock);
280
281         /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
282         pm_runtime_get(&idev->pdev->dev);
283         pm_runtime_mark_last_busy(&idev->pdev->dev);
284         pm_runtime_put_autosuspend(&idev->pdev->dev);
285
286         return IRQ_HANDLED;
287 }
288
289 static int intel_set_power(struct hci_uart *hu, bool powered)
290 {
291         struct intel_device *idev;
292         int err = -ENODEV;
293
294         if (!hu->tty->dev)
295                 return err;
296
297         mutex_lock(&intel_device_list_lock);
298
299         list_for_each_entry(idev, &intel_device_list, list) {
300                 /* tty device and pdev device should share the same parent
301                  * which is the UART port.
302                  */
303                 if (hu->tty->dev->parent != idev->pdev->dev.parent)
304                         continue;
305
306                 if (!idev->reset) {
307                         err = -ENOTSUPP;
308                         break;
309                 }
310
311                 BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
312                         hu, dev_name(&idev->pdev->dev), powered);
313
314                 gpiod_set_value(idev->reset, powered);
315
316                 /* Provide to idev a hu reference which is used to run LPM
317                  * transactions (lpm suspend/resume) from PM callbacks.
318                  * hu needs to be protected against concurrent removing during
319                  * these PM ops.
320                  */
321                 mutex_lock(&idev->hu_lock);
322                 idev->hu = powered ? hu : NULL;
323                 mutex_unlock(&idev->hu_lock);
324
325                 if (idev->irq < 0)
326                         break;
327
328                 if (powered && device_can_wakeup(&idev->pdev->dev)) {
329                         err = devm_request_threaded_irq(&idev->pdev->dev,
330                                                         idev->irq, NULL,
331                                                         intel_irq,
332                                                         IRQF_ONESHOT,
333                                                         "bt-host-wake", idev);
334                         if (err) {
335                                 BT_ERR("hu %p, unable to allocate irq-%d",
336                                        hu, idev->irq);
337                                 break;
338                         }
339
340                         device_wakeup_enable(&idev->pdev->dev);
341
342                         pm_runtime_set_active(&idev->pdev->dev);
343                         pm_runtime_use_autosuspend(&idev->pdev->dev);
344                         pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
345                                                          LPM_SUSPEND_DELAY_MS);
346                         pm_runtime_enable(&idev->pdev->dev);
347                 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
348                         devm_free_irq(&idev->pdev->dev, idev->irq, idev);
349                         device_wakeup_disable(&idev->pdev->dev);
350
351                         pm_runtime_disable(&idev->pdev->dev);
352                 }
353         }
354
355         mutex_unlock(&intel_device_list_lock);
356
357         return err;
358 }
359
360 static void intel_busy_work(struct work_struct *work)
361 {
362         struct intel_data *intel = container_of(work, struct intel_data,
363                                                 busy_work);
364         struct intel_device *idev;
365
366         if (!intel->hu->tty->dev)
367                 return;
368
369         /* Link is busy, delay the suspend */
370         mutex_lock(&intel_device_list_lock);
371         list_for_each_entry(idev, &intel_device_list, list) {
372                 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
373                         pm_runtime_get(&idev->pdev->dev);
374                         pm_runtime_mark_last_busy(&idev->pdev->dev);
375                         pm_runtime_put_autosuspend(&idev->pdev->dev);
376                         break;
377                 }
378         }
379         mutex_unlock(&intel_device_list_lock);
380 }
381
382 static int intel_open(struct hci_uart *hu)
383 {
384         struct intel_data *intel;
385
386         BT_DBG("hu %p", hu);
387
388         if (!hci_uart_has_flow_control(hu))
389                 return -EOPNOTSUPP;
390
391         intel = kzalloc(sizeof(*intel), GFP_KERNEL);
392         if (!intel)
393                 return -ENOMEM;
394
395         skb_queue_head_init(&intel->txq);
396         INIT_WORK(&intel->busy_work, intel_busy_work);
397
398         intel->hu = hu;
399
400         hu->priv = intel;
401
402         if (!intel_set_power(hu, true))
403                 set_bit(STATE_BOOTING, &intel->flags);
404
405         return 0;
406 }
407
408 static int intel_close(struct hci_uart *hu)
409 {
410         struct intel_data *intel = hu->priv;
411
412         BT_DBG("hu %p", hu);
413
414         cancel_work_sync(&intel->busy_work);
415
416         intel_set_power(hu, false);
417
418         skb_queue_purge(&intel->txq);
419         kfree_skb(intel->rx_skb);
420         kfree(intel);
421
422         hu->priv = NULL;
423         return 0;
424 }
425
426 static int intel_flush(struct hci_uart *hu)
427 {
428         struct intel_data *intel = hu->priv;
429
430         BT_DBG("hu %p", hu);
431
432         skb_queue_purge(&intel->txq);
433
434         return 0;
435 }
436
437 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
438 {
439         struct sk_buff *skb;
440         struct hci_event_hdr *hdr;
441         struct hci_ev_cmd_complete *evt;
442
443         skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
444         if (!skb)
445                 return -ENOMEM;
446
447         hdr = skb_put(skb, sizeof(*hdr));
448         hdr->evt = HCI_EV_CMD_COMPLETE;
449         hdr->plen = sizeof(*evt) + 1;
450
451         evt = skb_put(skb, sizeof(*evt));
452         evt->ncmd = 0x01;
453         evt->opcode = cpu_to_le16(opcode);
454
455         skb_put_u8(skb, 0x00);
456
457         hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
458
459         return hci_recv_frame(hdev, skb);
460 }
461
462 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
463 {
464         struct intel_data *intel = hu->priv;
465         struct hci_dev *hdev = hu->hdev;
466         u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
467         struct sk_buff *skb;
468         int err;
469
470         /* This can be the first command sent to the chip, check
471          * that the controller is ready.
472          */
473         err = intel_wait_booting(hu);
474
475         clear_bit(STATE_BOOTING, &intel->flags);
476
477         /* In case of timeout, try to continue anyway */
478         if (err && err != -ETIMEDOUT)
479                 return err;
480
481         bt_dev_info(hdev, "Change controller speed to %d", speed);
482
483         speed_cmd[3] = intel_convert_speed(speed);
484         if (speed_cmd[3] == 0xff) {
485                 bt_dev_err(hdev, "Unsupported speed");
486                 return -EINVAL;
487         }
488
489         /* Device will not accept speed change if Intel version has not been
490          * previously requested.
491          */
492         skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
493         if (IS_ERR(skb)) {
494                 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
495                            PTR_ERR(skb));
496                 return PTR_ERR(skb);
497         }
498         kfree_skb(skb);
499
500         skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
501         if (!skb) {
502                 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
503                 return -ENOMEM;
504         }
505
506         skb_put_data(skb, speed_cmd, sizeof(speed_cmd));
507         hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
508
509         hci_uart_set_flow_control(hu, true);
510
511         skb_queue_tail(&intel->txq, skb);
512         hci_uart_tx_wakeup(hu);
513
514         /* wait 100ms to change baudrate on controller side */
515         msleep(100);
516
517         hci_uart_set_baudrate(hu, speed);
518         hci_uart_set_flow_control(hu, false);
519
520         return 0;
521 }
522
523 static int intel_setup(struct hci_uart *hu)
524 {
525         struct intel_data *intel = hu->priv;
526         struct hci_dev *hdev = hu->hdev;
527         struct sk_buff *skb;
528         struct intel_version ver;
529         struct intel_boot_params params;
530         struct intel_device *idev;
531         const struct firmware *fw;
532         char fwname[64];
533         u32 boot_param;
534         ktime_t calltime, delta, rettime;
535         unsigned long long duration;
536         unsigned int init_speed, oper_speed;
537         int speed_change = 0;
538         int err;
539
540         bt_dev_dbg(hdev, "start intel_setup");
541
542         hu->hdev->set_diag = btintel_set_diag;
543         hu->hdev->set_bdaddr = btintel_set_bdaddr;
544
545         /* Set the default boot parameter to 0x0 and it is updated to
546          * SKU specific boot parameter after reading Intel_Write_Boot_Params
547          * command while downloading the firmware.
548          */
549         boot_param = 0x00000000;
550
551         calltime = ktime_get();
552
553         if (hu->init_speed)
554                 init_speed = hu->init_speed;
555         else
556                 init_speed = hu->proto->init_speed;
557
558         if (hu->oper_speed)
559                 oper_speed = hu->oper_speed;
560         else
561                 oper_speed = hu->proto->oper_speed;
562
563         if (oper_speed && init_speed && oper_speed != init_speed)
564                 speed_change = 1;
565
566         /* Check that the controller is ready */
567         err = intel_wait_booting(hu);
568
569         clear_bit(STATE_BOOTING, &intel->flags);
570
571         /* In case of timeout, try to continue anyway */
572         if (err && err != -ETIMEDOUT)
573                 return err;
574
575         set_bit(STATE_BOOTLOADER, &intel->flags);
576
577         /* Read the Intel version information to determine if the device
578          * is in bootloader mode or if it already has operational firmware
579          * loaded.
580          */
581         err = btintel_read_version(hdev, &ver);
582         if (err)
583                 return err;
584
585         /* The hardware platform number has a fixed value of 0x37 and
586          * for now only accept this single value.
587          */
588         if (ver.hw_platform != 0x37) {
589                 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
590                            ver.hw_platform);
591                 return -EINVAL;
592         }
593
594         /* Check for supported iBT hardware variants of this firmware
595          * loading method.
596          *
597          * This check has been put in place to ensure correct forward
598          * compatibility options when newer hardware variants come along.
599          */
600         switch (ver.hw_variant) {
601         case 0x0b:      /* LnP */
602         case 0x0c:      /* WsP */
603         case 0x12:      /* ThP */
604                 break;
605         default:
606                 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
607                            ver.hw_variant);
608                 return -EINVAL;
609         }
610
611         btintel_version_info(hdev, &ver);
612
613         /* The firmware variant determines if the device is in bootloader
614          * mode or is running operational firmware. The value 0x06 identifies
615          * the bootloader and the value 0x23 identifies the operational
616          * firmware.
617          *
618          * When the operational firmware is already present, then only
619          * the check for valid Bluetooth device address is needed. This
620          * determines if the device will be added as configured or
621          * unconfigured controller.
622          *
623          * It is not possible to use the Secure Boot Parameters in this
624          * case since that command is only available in bootloader mode.
625          */
626         if (ver.fw_variant == 0x23) {
627                 clear_bit(STATE_BOOTLOADER, &intel->flags);
628                 btintel_check_bdaddr(hdev);
629                 return 0;
630         }
631
632         /* If the device is not in bootloader mode, then the only possible
633          * choice is to return an error and abort the device initialization.
634          */
635         if (ver.fw_variant != 0x06) {
636                 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
637                            ver.fw_variant);
638                 return -ENODEV;
639         }
640
641         /* Read the secure boot parameters to identify the operating
642          * details of the bootloader.
643          */
644         err = btintel_read_boot_params(hdev, &params);
645         if (err)
646                 return err;
647
648         /* It is required that every single firmware fragment is acknowledged
649          * with a command complete event. If the boot parameters indicate
650          * that this bootloader does not send them, then abort the setup.
651          */
652         if (params.limited_cce != 0x00) {
653                 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
654                            params.limited_cce);
655                 return -EINVAL;
656         }
657
658         /* If the OTP has no valid Bluetooth device address, then there will
659          * also be no valid address for the operational firmware.
660          */
661         if (!bacmp(&params.otp_bdaddr, BDADDR_ANY)) {
662                 bt_dev_info(hdev, "No device address configured");
663                 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
664         }
665
666         /* With this Intel bootloader only the hardware variant and device
667          * revision information are used to select the right firmware for SfP
668          * and WsP.
669          *
670          * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
671          *
672          * Currently the supported hardware variants are:
673          *   11 (0x0b) for iBT 3.0 (LnP/SfP)
674          *   12 (0x0c) for iBT 3.5 (WsP)
675          *
676          * For ThP/JfP and for future SKU's, the FW name varies based on HW
677          * variant, HW revision and FW revision, as these are dependent on CNVi
678          * and RF Combination.
679          *
680          *   18 (0x12) for iBT3.5 (ThP/JfP)
681          *
682          * The firmware file name for these will be
683          * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
684          *
685          */
686         switch (ver.hw_variant) {
687         case 0x0b:      /* SfP */
688         case 0x0c:      /* WsP */
689                 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
690                          ver.hw_variant, le16_to_cpu(params.dev_revid));
691                 break;
692         case 0x12:      /* ThP */
693                 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.sfi",
694                          ver.hw_variant, ver.hw_revision, ver.fw_revision);
695                 break;
696         default:
697                 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
698                            ver.hw_variant);
699                 return -EINVAL;
700         }
701
702         err = request_firmware(&fw, fwname, &hdev->dev);
703         if (err < 0) {
704                 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
705                            err);
706                 return err;
707         }
708
709         bt_dev_info(hdev, "Found device firmware: %s", fwname);
710
711         /* Save the DDC file name for later */
712         switch (ver.hw_variant) {
713         case 0x0b:      /* SfP */
714         case 0x0c:      /* WsP */
715                 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
716                          ver.hw_variant, le16_to_cpu(params.dev_revid));
717                 break;
718         case 0x12:      /* ThP */
719                 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.ddc",
720                          ver.hw_variant, ver.hw_revision, ver.fw_revision);
721                 break;
722         default:
723                 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
724                            ver.hw_variant);
725                 return -EINVAL;
726         }
727
728         if (fw->size < 644) {
729                 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
730                            fw->size);
731                 err = -EBADF;
732                 goto done;
733         }
734
735         set_bit(STATE_DOWNLOADING, &intel->flags);
736
737         /* Start firmware downloading and get boot parameter */
738         err = btintel_download_firmware(hdev, &ver, fw, &boot_param);
739         if (err < 0)
740                 goto done;
741
742         set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
743
744         bt_dev_info(hdev, "Waiting for firmware download to complete");
745
746         /* Before switching the device into operational mode and with that
747          * booting the loaded firmware, wait for the bootloader notification
748          * that all fragments have been successfully received.
749          *
750          * When the event processing receives the notification, then the
751          * STATE_DOWNLOADING flag will be cleared.
752          *
753          * The firmware loading should not take longer than 5 seconds
754          * and thus just timeout if that happens and fail the setup
755          * of this device.
756          */
757         err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
758                                   TASK_INTERRUPTIBLE,
759                                   msecs_to_jiffies(5000));
760         if (err == -EINTR) {
761                 bt_dev_err(hdev, "Firmware loading interrupted");
762                 err = -EINTR;
763                 goto done;
764         }
765
766         if (err) {
767                 bt_dev_err(hdev, "Firmware loading timeout");
768                 err = -ETIMEDOUT;
769                 goto done;
770         }
771
772         if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
773                 bt_dev_err(hdev, "Firmware loading failed");
774                 err = -ENOEXEC;
775                 goto done;
776         }
777
778         rettime = ktime_get();
779         delta = ktime_sub(rettime, calltime);
780         duration = (unsigned long long) ktime_to_ns(delta) >> 10;
781
782         bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
783
784 done:
785         release_firmware(fw);
786
787         /* Check if there was an error and if is not -EALREADY which means the
788          * firmware has already been loaded.
789          */
790         if (err < 0 && err != -EALREADY)
791                 return err;
792
793         /* We need to restore the default speed before Intel reset */
794         if (speed_change) {
795                 err = intel_set_baudrate(hu, init_speed);
796                 if (err)
797                         return err;
798         }
799
800         calltime = ktime_get();
801
802         set_bit(STATE_BOOTING, &intel->flags);
803
804         err = btintel_send_intel_reset(hdev, boot_param);
805         if (err)
806                 return err;
807
808         /* The bootloader will not indicate when the device is ready. This
809          * is done by the operational firmware sending bootup notification.
810          *
811          * Booting into operational firmware should not take longer than
812          * 1 second. However if that happens, then just fail the setup
813          * since something went wrong.
814          */
815         bt_dev_info(hdev, "Waiting for device to boot");
816
817         err = intel_wait_booting(hu);
818         if (err)
819                 return err;
820
821         clear_bit(STATE_BOOTING, &intel->flags);
822
823         rettime = ktime_get();
824         delta = ktime_sub(rettime, calltime);
825         duration = (unsigned long long) ktime_to_ns(delta) >> 10;
826
827         bt_dev_info(hdev, "Device booted in %llu usecs", duration);
828
829         /* Enable LPM if matching pdev with wakeup enabled, set TX active
830          * until further LPM TX notification.
831          */
832         mutex_lock(&intel_device_list_lock);
833         list_for_each_entry(idev, &intel_device_list, list) {
834                 if (!hu->tty->dev)
835                         break;
836                 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
837                         if (device_may_wakeup(&idev->pdev->dev)) {
838                                 set_bit(STATE_LPM_ENABLED, &intel->flags);
839                                 set_bit(STATE_TX_ACTIVE, &intel->flags);
840                         }
841                         break;
842                 }
843         }
844         mutex_unlock(&intel_device_list_lock);
845
846         /* Ignore errors, device can work without DDC parameters */
847         btintel_load_ddc_config(hdev, fwname);
848
849         skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
850         if (IS_ERR(skb))
851                 return PTR_ERR(skb);
852         kfree_skb(skb);
853
854         if (speed_change) {
855                 err = intel_set_baudrate(hu, oper_speed);
856                 if (err)
857                         return err;
858         }
859
860         bt_dev_info(hdev, "Setup complete");
861
862         clear_bit(STATE_BOOTLOADER, &intel->flags);
863
864         return 0;
865 }
866
867 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
868 {
869         struct hci_uart *hu = hci_get_drvdata(hdev);
870         struct intel_data *intel = hu->priv;
871         struct hci_event_hdr *hdr;
872
873         if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
874             !test_bit(STATE_BOOTING, &intel->flags))
875                 goto recv;
876
877         hdr = (void *)skb->data;
878
879         /* When the firmware loading completes the device sends
880          * out a vendor specific event indicating the result of
881          * the firmware loading.
882          */
883         if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
884             skb->data[2] == 0x06) {
885                 if (skb->data[3] != 0x00)
886                         set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
887
888                 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
889                     test_bit(STATE_FIRMWARE_LOADED, &intel->flags))
890                         wake_up_bit(&intel->flags, STATE_DOWNLOADING);
891
892         /* When switching to the operational firmware the device
893          * sends a vendor specific event indicating that the bootup
894          * completed.
895          */
896         } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
897                    skb->data[2] == 0x02) {
898                 if (test_and_clear_bit(STATE_BOOTING, &intel->flags))
899                         wake_up_bit(&intel->flags, STATE_BOOTING);
900         }
901 recv:
902         return hci_recv_frame(hdev, skb);
903 }
904
905 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
906 {
907         struct hci_uart *hu = hci_get_drvdata(hdev);
908         struct intel_data *intel = hu->priv;
909
910         bt_dev_dbg(hdev, "TX idle notification (%d)", value);
911
912         if (value) {
913                 set_bit(STATE_TX_ACTIVE, &intel->flags);
914                 schedule_work(&intel->busy_work);
915         } else {
916                 clear_bit(STATE_TX_ACTIVE, &intel->flags);
917         }
918 }
919
920 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
921 {
922         struct hci_lpm_pkt *lpm = (void *)skb->data;
923         struct hci_uart *hu = hci_get_drvdata(hdev);
924         struct intel_data *intel = hu->priv;
925
926         switch (lpm->opcode) {
927         case LPM_OP_TX_NOTIFY:
928                 if (lpm->dlen < 1) {
929                         bt_dev_err(hu->hdev, "Invalid LPM notification packet");
930                         break;
931                 }
932                 intel_recv_lpm_notify(hdev, lpm->data[0]);
933                 break;
934         case LPM_OP_SUSPEND_ACK:
935                 set_bit(STATE_SUSPENDED, &intel->flags);
936                 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
937                         wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
938                 break;
939         case LPM_OP_RESUME_ACK:
940                 clear_bit(STATE_SUSPENDED, &intel->flags);
941                 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
942                         wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
943                 break;
944         default:
945                 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
946                 break;
947         }
948
949         kfree_skb(skb);
950
951         return 0;
952 }
953
954 #define INTEL_RECV_LPM \
955         .type = HCI_LPM_PKT, \
956         .hlen = HCI_LPM_HDR_SIZE, \
957         .loff = 1, \
958         .lsize = 1, \
959         .maxlen = HCI_LPM_MAX_SIZE
960
961 static const struct h4_recv_pkt intel_recv_pkts[] = {
962         { H4_RECV_ACL,    .recv = hci_recv_frame   },
963         { H4_RECV_SCO,    .recv = hci_recv_frame   },
964         { H4_RECV_EVENT,  .recv = intel_recv_event },
965         { INTEL_RECV_LPM, .recv = intel_recv_lpm   },
966 };
967
968 static int intel_recv(struct hci_uart *hu, const void *data, int count)
969 {
970         struct intel_data *intel = hu->priv;
971
972         if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
973                 return -EUNATCH;
974
975         intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
976                                     intel_recv_pkts,
977                                     ARRAY_SIZE(intel_recv_pkts));
978         if (IS_ERR(intel->rx_skb)) {
979                 int err = PTR_ERR(intel->rx_skb);
980                 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
981                 intel->rx_skb = NULL;
982                 return err;
983         }
984
985         return count;
986 }
987
988 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
989 {
990         struct intel_data *intel = hu->priv;
991         struct intel_device *idev;
992
993         BT_DBG("hu %p skb %p", hu, skb);
994
995         if (!hu->tty->dev)
996                 goto out_enqueue;
997
998         /* Be sure our controller is resumed and potential LPM transaction
999          * completed before enqueuing any packet.
1000          */
1001         mutex_lock(&intel_device_list_lock);
1002         list_for_each_entry(idev, &intel_device_list, list) {
1003                 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1004                         pm_runtime_get_sync(&idev->pdev->dev);
1005                         pm_runtime_mark_last_busy(&idev->pdev->dev);
1006                         pm_runtime_put_autosuspend(&idev->pdev->dev);
1007                         break;
1008                 }
1009         }
1010         mutex_unlock(&intel_device_list_lock);
1011 out_enqueue:
1012         skb_queue_tail(&intel->txq, skb);
1013
1014         return 0;
1015 }
1016
1017 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1018 {
1019         struct intel_data *intel = hu->priv;
1020         struct sk_buff *skb;
1021
1022         skb = skb_dequeue(&intel->txq);
1023         if (!skb)
1024                 return skb;
1025
1026         if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1027             (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1028                 struct hci_command_hdr *cmd = (void *)skb->data;
1029                 __u16 opcode = le16_to_cpu(cmd->opcode);
1030
1031                 /* When the 0xfc01 command is issued to boot into
1032                  * the operational firmware, it will actually not
1033                  * send a command complete event. To keep the flow
1034                  * control working inject that event here.
1035                  */
1036                 if (opcode == 0xfc01)
1037                         inject_cmd_complete(hu->hdev, opcode);
1038         }
1039
1040         /* Prepend skb with frame type */
1041         memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1042
1043         return skb;
1044 }
1045
1046 static const struct hci_uart_proto intel_proto = {
1047         .id             = HCI_UART_INTEL,
1048         .name           = "Intel",
1049         .manufacturer   = 2,
1050         .init_speed     = 115200,
1051         .oper_speed     = 3000000,
1052         .open           = intel_open,
1053         .close          = intel_close,
1054         .flush          = intel_flush,
1055         .setup          = intel_setup,
1056         .set_baudrate   = intel_set_baudrate,
1057         .recv           = intel_recv,
1058         .enqueue        = intel_enqueue,
1059         .dequeue        = intel_dequeue,
1060 };
1061
1062 #ifdef CONFIG_ACPI
1063 static const struct acpi_device_id intel_acpi_match[] = {
1064         { "INT33E1", 0 },
1065         { "INT33E3", 0 },
1066         { }
1067 };
1068 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1069 #endif
1070
1071 #ifdef CONFIG_PM
1072 static int intel_suspend_device(struct device *dev)
1073 {
1074         struct intel_device *idev = dev_get_drvdata(dev);
1075
1076         mutex_lock(&idev->hu_lock);
1077         if (idev->hu)
1078                 intel_lpm_suspend(idev->hu);
1079         mutex_unlock(&idev->hu_lock);
1080
1081         return 0;
1082 }
1083
1084 static int intel_resume_device(struct device *dev)
1085 {
1086         struct intel_device *idev = dev_get_drvdata(dev);
1087
1088         mutex_lock(&idev->hu_lock);
1089         if (idev->hu)
1090                 intel_lpm_resume(idev->hu);
1091         mutex_unlock(&idev->hu_lock);
1092
1093         return 0;
1094 }
1095 #endif
1096
1097 #ifdef CONFIG_PM_SLEEP
1098 static int intel_suspend(struct device *dev)
1099 {
1100         struct intel_device *idev = dev_get_drvdata(dev);
1101
1102         if (device_may_wakeup(dev))
1103                 enable_irq_wake(idev->irq);
1104
1105         return intel_suspend_device(dev);
1106 }
1107
1108 static int intel_resume(struct device *dev)
1109 {
1110         struct intel_device *idev = dev_get_drvdata(dev);
1111
1112         if (device_may_wakeup(dev))
1113                 disable_irq_wake(idev->irq);
1114
1115         return intel_resume_device(dev);
1116 }
1117 #endif
1118
1119 static const struct dev_pm_ops intel_pm_ops = {
1120         SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1121         SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1122 };
1123
1124 static const struct acpi_gpio_params reset_gpios = { 0, 0, false };
1125 static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false };
1126
1127 static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = {
1128         { "reset-gpios", &reset_gpios, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO },
1129         { "host-wake-gpios", &host_wake_gpios, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO },
1130         { }
1131 };
1132
1133 static int intel_probe(struct platform_device *pdev)
1134 {
1135         struct intel_device *idev;
1136         int ret;
1137
1138         idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1139         if (!idev)
1140                 return -ENOMEM;
1141
1142         mutex_init(&idev->hu_lock);
1143
1144         idev->pdev = pdev;
1145
1146         ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios);
1147         if (ret)
1148                 dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n");
1149
1150         idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1151         if (IS_ERR(idev->reset)) {
1152                 dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1153                 return PTR_ERR(idev->reset);
1154         }
1155
1156         idev->irq = platform_get_irq(pdev, 0);
1157         if (idev->irq < 0) {
1158                 struct gpio_desc *host_wake;
1159
1160                 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1161
1162                 host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1163                 if (IS_ERR(host_wake)) {
1164                         dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1165                         goto no_irq;
1166                 }
1167
1168                 idev->irq = gpiod_to_irq(host_wake);
1169                 if (idev->irq < 0) {
1170                         dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1171                         goto no_irq;
1172                 }
1173         }
1174
1175         /* Only enable wake-up/irq when controller is powered */
1176         device_set_wakeup_capable(&pdev->dev, true);
1177         device_wakeup_disable(&pdev->dev);
1178
1179 no_irq:
1180         platform_set_drvdata(pdev, idev);
1181
1182         /* Place this instance on the device list */
1183         mutex_lock(&intel_device_list_lock);
1184         list_add_tail(&idev->list, &intel_device_list);
1185         mutex_unlock(&intel_device_list_lock);
1186
1187         dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1188                  desc_to_gpio(idev->reset), idev->irq);
1189
1190         return 0;
1191 }
1192
1193 static int intel_remove(struct platform_device *pdev)
1194 {
1195         struct intel_device *idev = platform_get_drvdata(pdev);
1196
1197         device_wakeup_disable(&pdev->dev);
1198
1199         mutex_lock(&intel_device_list_lock);
1200         list_del(&idev->list);
1201         mutex_unlock(&intel_device_list_lock);
1202
1203         dev_info(&pdev->dev, "unregistered.\n");
1204
1205         return 0;
1206 }
1207
1208 static struct platform_driver intel_driver = {
1209         .probe = intel_probe,
1210         .remove = intel_remove,
1211         .driver = {
1212                 .name = "hci_intel",
1213                 .acpi_match_table = ACPI_PTR(intel_acpi_match),
1214                 .pm = &intel_pm_ops,
1215         },
1216 };
1217
1218 int __init intel_init(void)
1219 {
1220         int err;
1221
1222         err = platform_driver_register(&intel_driver);
1223         if (err)
1224                 return err;
1225
1226         return hci_uart_register_proto(&intel_proto);
1227 }
1228
1229 int __exit intel_deinit(void)
1230 {
1231         platform_driver_unregister(&intel_driver);
1232
1233         return hci_uart_unregister_proto(&intel_proto);
1234 }