Merge tag 'backport/v3.14.24-ltsi-rc1/phy-rcar-gen2-usb-to-v3.15' into backport/v3...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / block / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/lzo.h>
33 #include <linux/string.h>
34 #include <linux/vmalloc.h>
35
36 #include "zram_drv.h"
37
38 /* Globals */
39 static int zram_major;
40 static struct zram *zram_devices;
41
42 /* Module params (documentation at end) */
43 static unsigned int num_devices = 1;
44
45 static inline struct zram *dev_to_zram(struct device *dev)
46 {
47         return (struct zram *)dev_to_disk(dev)->private_data;
48 }
49
50 static ssize_t disksize_show(struct device *dev,
51                 struct device_attribute *attr, char *buf)
52 {
53         struct zram *zram = dev_to_zram(dev);
54
55         return sprintf(buf, "%llu\n", zram->disksize);
56 }
57
58 static ssize_t initstate_show(struct device *dev,
59                 struct device_attribute *attr, char *buf)
60 {
61         struct zram *zram = dev_to_zram(dev);
62
63         return sprintf(buf, "%u\n", zram->init_done);
64 }
65
66 static ssize_t num_reads_show(struct device *dev,
67                 struct device_attribute *attr, char *buf)
68 {
69         struct zram *zram = dev_to_zram(dev);
70
71         return sprintf(buf, "%llu\n",
72                         (u64)atomic64_read(&zram->stats.num_reads));
73 }
74
75 static ssize_t num_writes_show(struct device *dev,
76                 struct device_attribute *attr, char *buf)
77 {
78         struct zram *zram = dev_to_zram(dev);
79
80         return sprintf(buf, "%llu\n",
81                         (u64)atomic64_read(&zram->stats.num_writes));
82 }
83
84 static ssize_t invalid_io_show(struct device *dev,
85                 struct device_attribute *attr, char *buf)
86 {
87         struct zram *zram = dev_to_zram(dev);
88
89         return sprintf(buf, "%llu\n",
90                         (u64)atomic64_read(&zram->stats.invalid_io));
91 }
92
93 static ssize_t notify_free_show(struct device *dev,
94                 struct device_attribute *attr, char *buf)
95 {
96         struct zram *zram = dev_to_zram(dev);
97
98         return sprintf(buf, "%llu\n",
99                         (u64)atomic64_read(&zram->stats.notify_free));
100 }
101
102 static ssize_t zero_pages_show(struct device *dev,
103                 struct device_attribute *attr, char *buf)
104 {
105         struct zram *zram = dev_to_zram(dev);
106
107         return sprintf(buf, "%u\n", atomic_read(&zram->stats.pages_zero));
108 }
109
110 static ssize_t orig_data_size_show(struct device *dev,
111                 struct device_attribute *attr, char *buf)
112 {
113         struct zram *zram = dev_to_zram(dev);
114
115         return sprintf(buf, "%llu\n",
116                 (u64)(atomic_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
117 }
118
119 static ssize_t compr_data_size_show(struct device *dev,
120                 struct device_attribute *attr, char *buf)
121 {
122         struct zram *zram = dev_to_zram(dev);
123
124         return sprintf(buf, "%llu\n",
125                         (u64)atomic64_read(&zram->stats.compr_size));
126 }
127
128 static ssize_t mem_used_total_show(struct device *dev,
129                 struct device_attribute *attr, char *buf)
130 {
131         u64 val = 0;
132         struct zram *zram = dev_to_zram(dev);
133         struct zram_meta *meta = zram->meta;
134
135         down_read(&zram->init_lock);
136         if (zram->init_done)
137                 val = zs_get_total_size_bytes(meta->mem_pool);
138         up_read(&zram->init_lock);
139
140         return sprintf(buf, "%llu\n", val);
141 }
142
143 /* flag operations needs meta->tb_lock */
144 static int zram_test_flag(struct zram_meta *meta, u32 index,
145                         enum zram_pageflags flag)
146 {
147         return meta->table[index].flags & BIT(flag);
148 }
149
150 static void zram_set_flag(struct zram_meta *meta, u32 index,
151                         enum zram_pageflags flag)
152 {
153         meta->table[index].flags |= BIT(flag);
154 }
155
156 static void zram_clear_flag(struct zram_meta *meta, u32 index,
157                         enum zram_pageflags flag)
158 {
159         meta->table[index].flags &= ~BIT(flag);
160 }
161
162 static inline int is_partial_io(struct bio_vec *bvec)
163 {
164         return bvec->bv_len != PAGE_SIZE;
165 }
166
167 /*
168  * Check if request is within bounds and aligned on zram logical blocks.
169  */
170 static inline int valid_io_request(struct zram *zram, struct bio *bio)
171 {
172         u64 start, end, bound;
173
174         /* unaligned request */
175         if (unlikely(bio->bi_iter.bi_sector &
176                      (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
177                 return 0;
178         if (unlikely(bio->bi_iter.bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
179                 return 0;
180
181         start = bio->bi_iter.bi_sector;
182         end = start + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
183         bound = zram->disksize >> SECTOR_SHIFT;
184         /* out of range range */
185         if (unlikely(start >= bound || end > bound || start > end))
186                 return 0;
187
188         /* I/O request is valid */
189         return 1;
190 }
191
192 static void zram_meta_free(struct zram_meta *meta)
193 {
194         zs_destroy_pool(meta->mem_pool);
195         kfree(meta->compress_workmem);
196         free_pages((unsigned long)meta->compress_buffer, 1);
197         vfree(meta->table);
198         kfree(meta);
199 }
200
201 static struct zram_meta *zram_meta_alloc(u64 disksize)
202 {
203         size_t num_pages;
204         struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
205         if (!meta)
206                 goto out;
207
208         meta->compress_workmem = kzalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
209         if (!meta->compress_workmem)
210                 goto free_meta;
211
212         meta->compress_buffer =
213                 (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
214         if (!meta->compress_buffer) {
215                 pr_err("Error allocating compressor buffer space\n");
216                 goto free_workmem;
217         }
218
219         num_pages = disksize >> PAGE_SHIFT;
220         meta->table = vzalloc(num_pages * sizeof(*meta->table));
221         if (!meta->table) {
222                 pr_err("Error allocating zram address table\n");
223                 goto free_buffer;
224         }
225
226         meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM);
227         if (!meta->mem_pool) {
228                 pr_err("Error creating memory pool\n");
229                 goto free_table;
230         }
231
232         rwlock_init(&meta->tb_lock);
233         mutex_init(&meta->buffer_lock);
234         return meta;
235
236 free_table:
237         vfree(meta->table);
238 free_buffer:
239         free_pages((unsigned long)meta->compress_buffer, 1);
240 free_workmem:
241         kfree(meta->compress_workmem);
242 free_meta:
243         kfree(meta);
244         meta = NULL;
245 out:
246         return meta;
247 }
248
249 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
250 {
251         if (*offset + bvec->bv_len >= PAGE_SIZE)
252                 (*index)++;
253         *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
254 }
255
256 static int page_zero_filled(void *ptr)
257 {
258         unsigned int pos;
259         unsigned long *page;
260
261         page = (unsigned long *)ptr;
262
263         for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
264                 if (page[pos])
265                         return 0;
266         }
267
268         return 1;
269 }
270
271 static void handle_zero_page(struct bio_vec *bvec)
272 {
273         struct page *page = bvec->bv_page;
274         void *user_mem;
275
276         user_mem = kmap_atomic(page);
277         if (is_partial_io(bvec))
278                 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
279         else
280                 clear_page(user_mem);
281         kunmap_atomic(user_mem);
282
283         flush_dcache_page(page);
284 }
285
286 /* NOTE: caller should hold meta->tb_lock with write-side */
287 static void zram_free_page(struct zram *zram, size_t index)
288 {
289         struct zram_meta *meta = zram->meta;
290         unsigned long handle = meta->table[index].handle;
291         u16 size = meta->table[index].size;
292
293         if (unlikely(!handle)) {
294                 /*
295                  * No memory is allocated for zero filled pages.
296                  * Simply clear zero page flag.
297                  */
298                 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
299                         zram_clear_flag(meta, index, ZRAM_ZERO);
300                         atomic_dec(&zram->stats.pages_zero);
301                 }
302                 return;
303         }
304
305         if (unlikely(size > max_zpage_size))
306                 atomic_dec(&zram->stats.bad_compress);
307
308         zs_free(meta->mem_pool, handle);
309
310         if (size <= PAGE_SIZE / 2)
311                 atomic_dec(&zram->stats.good_compress);
312
313         atomic64_sub(meta->table[index].size, &zram->stats.compr_size);
314         atomic_dec(&zram->stats.pages_stored);
315
316         meta->table[index].handle = 0;
317         meta->table[index].size = 0;
318 }
319
320 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
321 {
322         int ret = LZO_E_OK;
323         size_t clen = PAGE_SIZE;
324         unsigned char *cmem;
325         struct zram_meta *meta = zram->meta;
326         unsigned long handle;
327         u16 size;
328
329         read_lock(&meta->tb_lock);
330         handle = meta->table[index].handle;
331         size = meta->table[index].size;
332
333         if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
334                 read_unlock(&meta->tb_lock);
335                 clear_page(mem);
336                 return 0;
337         }
338
339         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
340         if (size == PAGE_SIZE)
341                 copy_page(mem, cmem);
342         else
343                 ret = lzo1x_decompress_safe(cmem, size, mem, &clen);
344         zs_unmap_object(meta->mem_pool, handle);
345         read_unlock(&meta->tb_lock);
346
347         /* Should NEVER happen. Return bio error if it does. */
348         if (unlikely(ret != LZO_E_OK)) {
349                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
350                 atomic64_inc(&zram->stats.failed_reads);
351                 return ret;
352         }
353
354         return 0;
355 }
356
357 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
358                           u32 index, int offset, struct bio *bio)
359 {
360         int ret;
361         struct page *page;
362         unsigned char *user_mem, *uncmem = NULL;
363         struct zram_meta *meta = zram->meta;
364         page = bvec->bv_page;
365
366         read_lock(&meta->tb_lock);
367         if (unlikely(!meta->table[index].handle) ||
368                         zram_test_flag(meta, index, ZRAM_ZERO)) {
369                 read_unlock(&meta->tb_lock);
370                 handle_zero_page(bvec);
371                 return 0;
372         }
373         read_unlock(&meta->tb_lock);
374
375         if (is_partial_io(bvec))
376                 /* Use  a temporary buffer to decompress the page */
377                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
378
379         user_mem = kmap_atomic(page);
380         if (!is_partial_io(bvec))
381                 uncmem = user_mem;
382
383         if (!uncmem) {
384                 pr_info("Unable to allocate temp memory\n");
385                 ret = -ENOMEM;
386                 goto out_cleanup;
387         }
388
389         ret = zram_decompress_page(zram, uncmem, index);
390         /* Should NEVER happen. Return bio error if it does. */
391         if (unlikely(ret != LZO_E_OK))
392                 goto out_cleanup;
393
394         if (is_partial_io(bvec))
395                 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
396                                 bvec->bv_len);
397
398         flush_dcache_page(page);
399         ret = 0;
400 out_cleanup:
401         kunmap_atomic(user_mem);
402         if (is_partial_io(bvec))
403                 kfree(uncmem);
404         return ret;
405 }
406
407 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
408                            int offset)
409 {
410         int ret = 0;
411         size_t clen;
412         unsigned long handle;
413         struct page *page;
414         unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
415         struct zram_meta *meta = zram->meta;
416         bool locked = false;
417
418         page = bvec->bv_page;
419         src = meta->compress_buffer;
420
421         if (is_partial_io(bvec)) {
422                 /*
423                  * This is a partial IO. We need to read the full page
424                  * before to write the changes.
425                  */
426                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
427                 if (!uncmem) {
428                         ret = -ENOMEM;
429                         goto out;
430                 }
431                 ret = zram_decompress_page(zram, uncmem, index);
432                 if (ret)
433                         goto out;
434         }
435
436         mutex_lock(&meta->buffer_lock);
437         locked = true;
438         user_mem = kmap_atomic(page);
439
440         if (is_partial_io(bvec)) {
441                 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
442                        bvec->bv_len);
443                 kunmap_atomic(user_mem);
444                 user_mem = NULL;
445         } else {
446                 uncmem = user_mem;
447         }
448
449         if (page_zero_filled(uncmem)) {
450                 if (user_mem)
451                         kunmap_atomic(user_mem);
452                 /* Free memory associated with this sector now. */
453                 write_lock(&zram->meta->tb_lock);
454                 zram_free_page(zram, index);
455                 zram_set_flag(meta, index, ZRAM_ZERO);
456                 write_unlock(&zram->meta->tb_lock);
457
458                 atomic_inc(&zram->stats.pages_zero);
459                 ret = 0;
460                 goto out;
461         }
462
463         ret = lzo1x_1_compress(uncmem, PAGE_SIZE, src, &clen,
464                                meta->compress_workmem);
465         if (!is_partial_io(bvec)) {
466                 kunmap_atomic(user_mem);
467                 user_mem = NULL;
468                 uncmem = NULL;
469         }
470
471         if (unlikely(ret != LZO_E_OK)) {
472                 pr_err("Compression failed! err=%d\n", ret);
473                 goto out;
474         }
475
476         if (unlikely(clen > max_zpage_size)) {
477                 atomic_inc(&zram->stats.bad_compress);
478                 clen = PAGE_SIZE;
479                 src = NULL;
480                 if (is_partial_io(bvec))
481                         src = uncmem;
482         }
483
484         handle = zs_malloc(meta->mem_pool, clen);
485         if (!handle) {
486                 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
487                         index, clen);
488                 ret = -ENOMEM;
489                 goto out;
490         }
491         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
492
493         if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
494                 src = kmap_atomic(page);
495                 copy_page(cmem, src);
496                 kunmap_atomic(src);
497         } else {
498                 memcpy(cmem, src, clen);
499         }
500
501         zs_unmap_object(meta->mem_pool, handle);
502
503         /*
504          * Free memory associated with this sector
505          * before overwriting unused sectors.
506          */
507         write_lock(&zram->meta->tb_lock);
508         zram_free_page(zram, index);
509
510         meta->table[index].handle = handle;
511         meta->table[index].size = clen;
512         write_unlock(&zram->meta->tb_lock);
513
514         /* Update stats */
515         atomic64_add(clen, &zram->stats.compr_size);
516         atomic_inc(&zram->stats.pages_stored);
517         if (clen <= PAGE_SIZE / 2)
518                 atomic_inc(&zram->stats.good_compress);
519
520 out:
521         if (locked)
522                 mutex_unlock(&meta->buffer_lock);
523         if (is_partial_io(bvec))
524                 kfree(uncmem);
525
526         if (ret)
527                 atomic64_inc(&zram->stats.failed_writes);
528         return ret;
529 }
530
531 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
532                         int offset, struct bio *bio, int rw)
533 {
534         int ret;
535
536         if (rw == READ)
537                 ret = zram_bvec_read(zram, bvec, index, offset, bio);
538         else
539                 ret = zram_bvec_write(zram, bvec, index, offset);
540
541         return ret;
542 }
543
544 static void zram_reset_device(struct zram *zram, bool reset_capacity)
545 {
546         size_t index;
547         struct zram_meta *meta;
548
549         down_write(&zram->init_lock);
550         if (!zram->init_done) {
551                 up_write(&zram->init_lock);
552                 return;
553         }
554
555         meta = zram->meta;
556         zram->init_done = 0;
557
558         /* Free all pages that are still in this zram device */
559         for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
560                 unsigned long handle = meta->table[index].handle;
561                 if (!handle)
562                         continue;
563
564                 zs_free(meta->mem_pool, handle);
565         }
566
567         zram_meta_free(zram->meta);
568         zram->meta = NULL;
569         /* Reset stats */
570         memset(&zram->stats, 0, sizeof(zram->stats));
571
572         zram->disksize = 0;
573         if (reset_capacity)
574                 set_capacity(zram->disk, 0);
575         up_write(&zram->init_lock);
576 }
577
578 static void zram_init_device(struct zram *zram, struct zram_meta *meta)
579 {
580         if (zram->disksize > 2 * (totalram_pages << PAGE_SHIFT)) {
581                 pr_info(
582                 "There is little point creating a zram of greater than "
583                 "twice the size of memory since we expect a 2:1 compression "
584                 "ratio. Note that zram uses about 0.1%% of the size of "
585                 "the disk when not in use so a huge zram is "
586                 "wasteful.\n"
587                 "\tMemory Size: %lu kB\n"
588                 "\tSize you selected: %llu kB\n"
589                 "Continuing anyway ...\n",
590                 (totalram_pages << PAGE_SHIFT) >> 10, zram->disksize >> 10
591                 );
592         }
593
594         /* zram devices sort of resembles non-rotational disks */
595         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
596
597         zram->meta = meta;
598         zram->init_done = 1;
599
600         pr_debug("Initialization done!\n");
601 }
602
603 static ssize_t disksize_store(struct device *dev,
604                 struct device_attribute *attr, const char *buf, size_t len)
605 {
606         u64 disksize;
607         struct zram_meta *meta;
608         struct zram *zram = dev_to_zram(dev);
609
610         disksize = memparse(buf, NULL);
611         if (!disksize)
612                 return -EINVAL;
613
614         disksize = PAGE_ALIGN(disksize);
615         meta = zram_meta_alloc(disksize);
616         if (!meta)
617                 return -ENOMEM;
618         down_write(&zram->init_lock);
619         if (zram->init_done) {
620                 up_write(&zram->init_lock);
621                 zram_meta_free(meta);
622                 pr_info("Cannot change disksize for initialized device\n");
623                 return -EBUSY;
624         }
625
626         zram->disksize = disksize;
627         set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
628         zram_init_device(zram, meta);
629         up_write(&zram->init_lock);
630
631         return len;
632 }
633
634 static ssize_t reset_store(struct device *dev,
635                 struct device_attribute *attr, const char *buf, size_t len)
636 {
637         int ret;
638         unsigned short do_reset;
639         struct zram *zram;
640         struct block_device *bdev;
641
642         zram = dev_to_zram(dev);
643         bdev = bdget_disk(zram->disk, 0);
644
645         if (!bdev)
646                 return -ENOMEM;
647
648         /* Do not reset an active device! */
649         if (bdev->bd_holders) {
650                 ret = -EBUSY;
651                 goto out;
652         }
653
654         ret = kstrtou16(buf, 10, &do_reset);
655         if (ret)
656                 goto out;
657
658         if (!do_reset) {
659                 ret = -EINVAL;
660                 goto out;
661         }
662
663         /* Make sure all pending I/O is finished */
664         fsync_bdev(bdev);
665         bdput(bdev);
666
667         zram_reset_device(zram, true);
668         return len;
669
670 out:
671         bdput(bdev);
672         return ret;
673 }
674
675 static void __zram_make_request(struct zram *zram, struct bio *bio, int rw)
676 {
677         int offset;
678         u32 index;
679         struct bio_vec bvec;
680         struct bvec_iter iter;
681
682         switch (rw) {
683         case READ:
684                 atomic64_inc(&zram->stats.num_reads);
685                 break;
686         case WRITE:
687                 atomic64_inc(&zram->stats.num_writes);
688                 break;
689         }
690
691         index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
692         offset = (bio->bi_iter.bi_sector &
693                   (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
694
695         bio_for_each_segment(bvec, bio, iter) {
696                 int max_transfer_size = PAGE_SIZE - offset;
697
698                 if (bvec.bv_len > max_transfer_size) {
699                         /*
700                          * zram_bvec_rw() can only make operation on a single
701                          * zram page. Split the bio vector.
702                          */
703                         struct bio_vec bv;
704
705                         bv.bv_page = bvec.bv_page;
706                         bv.bv_len = max_transfer_size;
707                         bv.bv_offset = bvec.bv_offset;
708
709                         if (zram_bvec_rw(zram, &bv, index, offset, bio, rw) < 0)
710                                 goto out;
711
712                         bv.bv_len = bvec.bv_len - max_transfer_size;
713                         bv.bv_offset += max_transfer_size;
714                         if (zram_bvec_rw(zram, &bv, index+1, 0, bio, rw) < 0)
715                                 goto out;
716                 } else
717                         if (zram_bvec_rw(zram, &bvec, index, offset, bio, rw)
718                             < 0)
719                                 goto out;
720
721                 update_position(&index, &offset, &bvec);
722         }
723
724         set_bit(BIO_UPTODATE, &bio->bi_flags);
725         bio_endio(bio, 0);
726         return;
727
728 out:
729         bio_io_error(bio);
730 }
731
732 /*
733  * Handler function for all zram I/O requests.
734  */
735 static void zram_make_request(struct request_queue *queue, struct bio *bio)
736 {
737         struct zram *zram = queue->queuedata;
738
739         down_read(&zram->init_lock);
740         if (unlikely(!zram->init_done))
741                 goto error;
742
743         if (!valid_io_request(zram, bio)) {
744                 atomic64_inc(&zram->stats.invalid_io);
745                 goto error;
746         }
747
748         __zram_make_request(zram, bio, bio_data_dir(bio));
749         up_read(&zram->init_lock);
750
751         return;
752
753 error:
754         up_read(&zram->init_lock);
755         bio_io_error(bio);
756 }
757
758 static void zram_slot_free_notify(struct block_device *bdev,
759                                 unsigned long index)
760 {
761         struct zram *zram;
762         struct zram_meta *meta;
763
764         zram = bdev->bd_disk->private_data;
765         meta = zram->meta;
766
767         write_lock(&meta->tb_lock);
768         zram_free_page(zram, index);
769         write_unlock(&meta->tb_lock);
770         atomic64_inc(&zram->stats.notify_free);
771 }
772
773 static const struct block_device_operations zram_devops = {
774         .swap_slot_free_notify = zram_slot_free_notify,
775         .owner = THIS_MODULE
776 };
777
778 static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR,
779                 disksize_show, disksize_store);
780 static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL);
781 static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store);
782 static DEVICE_ATTR(num_reads, S_IRUGO, num_reads_show, NULL);
783 static DEVICE_ATTR(num_writes, S_IRUGO, num_writes_show, NULL);
784 static DEVICE_ATTR(invalid_io, S_IRUGO, invalid_io_show, NULL);
785 static DEVICE_ATTR(notify_free, S_IRUGO, notify_free_show, NULL);
786 static DEVICE_ATTR(zero_pages, S_IRUGO, zero_pages_show, NULL);
787 static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL);
788 static DEVICE_ATTR(compr_data_size, S_IRUGO, compr_data_size_show, NULL);
789 static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL);
790
791 static struct attribute *zram_disk_attrs[] = {
792         &dev_attr_disksize.attr,
793         &dev_attr_initstate.attr,
794         &dev_attr_reset.attr,
795         &dev_attr_num_reads.attr,
796         &dev_attr_num_writes.attr,
797         &dev_attr_invalid_io.attr,
798         &dev_attr_notify_free.attr,
799         &dev_attr_zero_pages.attr,
800         &dev_attr_orig_data_size.attr,
801         &dev_attr_compr_data_size.attr,
802         &dev_attr_mem_used_total.attr,
803         NULL,
804 };
805
806 static struct attribute_group zram_disk_attr_group = {
807         .attrs = zram_disk_attrs,
808 };
809
810 static int create_device(struct zram *zram, int device_id)
811 {
812         int ret = -ENOMEM;
813
814         init_rwsem(&zram->init_lock);
815
816         zram->queue = blk_alloc_queue(GFP_KERNEL);
817         if (!zram->queue) {
818                 pr_err("Error allocating disk queue for device %d\n",
819                         device_id);
820                 goto out;
821         }
822
823         blk_queue_make_request(zram->queue, zram_make_request);
824         zram->queue->queuedata = zram;
825
826          /* gendisk structure */
827         zram->disk = alloc_disk(1);
828         if (!zram->disk) {
829                 pr_warn("Error allocating disk structure for device %d\n",
830                         device_id);
831                 goto out_free_queue;
832         }
833
834         zram->disk->major = zram_major;
835         zram->disk->first_minor = device_id;
836         zram->disk->fops = &zram_devops;
837         zram->disk->queue = zram->queue;
838         zram->disk->private_data = zram;
839         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
840
841         /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
842         set_capacity(zram->disk, 0);
843
844         /*
845          * To ensure that we always get PAGE_SIZE aligned
846          * and n*PAGE_SIZED sized I/O requests.
847          */
848         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
849         blk_queue_logical_block_size(zram->disk->queue,
850                                         ZRAM_LOGICAL_BLOCK_SIZE);
851         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
852         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
853
854         add_disk(zram->disk);
855
856         ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
857                                 &zram_disk_attr_group);
858         if (ret < 0) {
859                 pr_warn("Error creating sysfs group");
860                 goto out_free_disk;
861         }
862
863         zram->init_done = 0;
864         return 0;
865
866 out_free_disk:
867         del_gendisk(zram->disk);
868         put_disk(zram->disk);
869 out_free_queue:
870         blk_cleanup_queue(zram->queue);
871 out:
872         return ret;
873 }
874
875 static void destroy_device(struct zram *zram)
876 {
877         sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
878                         &zram_disk_attr_group);
879
880         del_gendisk(zram->disk);
881         put_disk(zram->disk);
882
883         blk_cleanup_queue(zram->queue);
884 }
885
886 static int __init zram_init(void)
887 {
888         int ret, dev_id;
889
890         if (num_devices > max_num_devices) {
891                 pr_warn("Invalid value for num_devices: %u\n",
892                                 num_devices);
893                 ret = -EINVAL;
894                 goto out;
895         }
896
897         zram_major = register_blkdev(0, "zram");
898         if (zram_major <= 0) {
899                 pr_warn("Unable to get major number\n");
900                 ret = -EBUSY;
901                 goto out;
902         }
903
904         /* Allocate the device array and initialize each one */
905         zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
906         if (!zram_devices) {
907                 ret = -ENOMEM;
908                 goto unregister;
909         }
910
911         for (dev_id = 0; dev_id < num_devices; dev_id++) {
912                 ret = create_device(&zram_devices[dev_id], dev_id);
913                 if (ret)
914                         goto free_devices;
915         }
916
917         pr_info("Created %u device(s) ...\n", num_devices);
918
919         return 0;
920
921 free_devices:
922         while (dev_id)
923                 destroy_device(&zram_devices[--dev_id]);
924         kfree(zram_devices);
925 unregister:
926         unregister_blkdev(zram_major, "zram");
927 out:
928         return ret;
929 }
930
931 static void __exit zram_exit(void)
932 {
933         int i;
934         struct zram *zram;
935
936         for (i = 0; i < num_devices; i++) {
937                 zram = &zram_devices[i];
938
939                 destroy_device(zram);
940                 /*
941                  * Shouldn't access zram->disk after destroy_device
942                  * because destroy_device already released zram->disk.
943                  */
944                 zram_reset_device(zram, false);
945         }
946
947         unregister_blkdev(zram_major, "zram");
948
949         kfree(zram_devices);
950         pr_debug("Cleanup done!\n");
951 }
952
953 module_init(zram_init);
954 module_exit(zram_exit);
955
956 module_param(num_devices, uint, 0);
957 MODULE_PARM_DESC(num_devices, "Number of zram devices");
958
959 MODULE_LICENSE("Dual BSD/GPL");
960 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
961 MODULE_DESCRIPTION("Compressed RAM Block Device");