2 * Compressed RAM block device
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
36 static DEFINE_IDR(zram_index_idr);
37 /* idr index must be protected */
38 static DEFINE_MUTEX(zram_index_mutex);
40 static int zram_major;
41 static const char *default_compressor = "lzo";
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
46 static inline void deprecated_attr_warn(const char *name)
48 pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
52 "See zram documentation.");
55 #define ZRAM_ATTR_RO(name) \
56 static ssize_t name##_show(struct device *d, \
57 struct device_attribute *attr, char *b) \
59 struct zram *zram = dev_to_zram(d); \
61 deprecated_attr_warn(__stringify(name)); \
62 return scnprintf(b, PAGE_SIZE, "%llu\n", \
63 (u64)atomic64_read(&zram->stats.name)); \
65 static DEVICE_ATTR_RO(name);
67 static inline bool init_done(struct zram *zram)
69 return zram->disksize;
72 static inline struct zram *dev_to_zram(struct device *dev)
74 return (struct zram *)dev_to_disk(dev)->private_data;
77 /* flag operations require table entry bit_spin_lock() being held */
78 static int zram_test_flag(struct zram_meta *meta, u32 index,
79 enum zram_pageflags flag)
81 return meta->table[index].value & BIT(flag);
84 static void zram_set_flag(struct zram_meta *meta, u32 index,
85 enum zram_pageflags flag)
87 meta->table[index].value |= BIT(flag);
90 static void zram_clear_flag(struct zram_meta *meta, u32 index,
91 enum zram_pageflags flag)
93 meta->table[index].value &= ~BIT(flag);
96 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
98 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
101 static void zram_set_obj_size(struct zram_meta *meta,
102 u32 index, size_t size)
104 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
106 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
109 static inline int is_partial_io(struct bio_vec *bvec)
111 return bvec->bv_len != PAGE_SIZE;
115 * Check if request is within bounds and aligned on zram logical blocks.
117 static inline int valid_io_request(struct zram *zram,
118 sector_t start, unsigned int size)
122 /* unaligned request */
123 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
125 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
128 end = start + (size >> SECTOR_SHIFT);
129 bound = zram->disksize >> SECTOR_SHIFT;
130 /* out of range range */
131 if (unlikely(start >= bound || end > bound || start > end))
134 /* I/O request is valid */
138 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
140 if (*offset + bvec->bv_len >= PAGE_SIZE)
142 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
145 static inline void update_used_max(struct zram *zram,
146 const unsigned long pages)
148 unsigned long old_max, cur_max;
150 old_max = atomic_long_read(&zram->stats.max_used_pages);
155 old_max = atomic_long_cmpxchg(
156 &zram->stats.max_used_pages, cur_max, pages);
157 } while (old_max != cur_max);
160 static int page_zero_filled(void *ptr)
165 page = (unsigned long *)ptr;
167 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
175 static void handle_zero_page(struct bio_vec *bvec)
177 struct page *page = bvec->bv_page;
180 user_mem = kmap_atomic(page);
181 if (is_partial_io(bvec))
182 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
184 clear_page(user_mem);
185 kunmap_atomic(user_mem);
187 flush_dcache_page(page);
190 static ssize_t initstate_show(struct device *dev,
191 struct device_attribute *attr, char *buf)
194 struct zram *zram = dev_to_zram(dev);
196 down_read(&zram->init_lock);
197 val = init_done(zram);
198 up_read(&zram->init_lock);
200 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
203 static ssize_t disksize_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
206 struct zram *zram = dev_to_zram(dev);
208 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
211 static ssize_t orig_data_size_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
214 struct zram *zram = dev_to_zram(dev);
216 deprecated_attr_warn("orig_data_size");
217 return scnprintf(buf, PAGE_SIZE, "%llu\n",
218 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
221 static ssize_t mem_used_total_show(struct device *dev,
222 struct device_attribute *attr, char *buf)
225 struct zram *zram = dev_to_zram(dev);
227 deprecated_attr_warn("mem_used_total");
228 down_read(&zram->init_lock);
229 if (init_done(zram)) {
230 struct zram_meta *meta = zram->meta;
231 val = zs_get_total_pages(meta->mem_pool);
233 up_read(&zram->init_lock);
235 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
238 static ssize_t mem_limit_show(struct device *dev,
239 struct device_attribute *attr, char *buf)
242 struct zram *zram = dev_to_zram(dev);
244 deprecated_attr_warn("mem_limit");
245 down_read(&zram->init_lock);
246 val = zram->limit_pages;
247 up_read(&zram->init_lock);
249 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
252 static ssize_t mem_limit_store(struct device *dev,
253 struct device_attribute *attr, const char *buf, size_t len)
257 struct zram *zram = dev_to_zram(dev);
259 limit = memparse(buf, &tmp);
260 if (buf == tmp) /* no chars parsed, invalid input */
263 down_write(&zram->init_lock);
264 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
265 up_write(&zram->init_lock);
270 static ssize_t mem_used_max_show(struct device *dev,
271 struct device_attribute *attr, char *buf)
274 struct zram *zram = dev_to_zram(dev);
276 deprecated_attr_warn("mem_used_max");
277 down_read(&zram->init_lock);
279 val = atomic_long_read(&zram->stats.max_used_pages);
280 up_read(&zram->init_lock);
282 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
285 static ssize_t mem_used_max_store(struct device *dev,
286 struct device_attribute *attr, const char *buf, size_t len)
290 struct zram *zram = dev_to_zram(dev);
292 err = kstrtoul(buf, 10, &val);
296 down_read(&zram->init_lock);
297 if (init_done(zram)) {
298 struct zram_meta *meta = zram->meta;
299 atomic_long_set(&zram->stats.max_used_pages,
300 zs_get_total_pages(meta->mem_pool));
302 up_read(&zram->init_lock);
307 static ssize_t max_comp_streams_show(struct device *dev,
308 struct device_attribute *attr, char *buf)
311 struct zram *zram = dev_to_zram(dev);
313 down_read(&zram->init_lock);
314 val = zram->max_comp_streams;
315 up_read(&zram->init_lock);
317 return scnprintf(buf, PAGE_SIZE, "%d\n", val);
320 static ssize_t max_comp_streams_store(struct device *dev,
321 struct device_attribute *attr, const char *buf, size_t len)
324 struct zram *zram = dev_to_zram(dev);
327 ret = kstrtoint(buf, 0, &num);
333 down_write(&zram->init_lock);
334 if (init_done(zram)) {
335 if (!zcomp_set_max_streams(zram->comp, num)) {
336 pr_info("Cannot change max compression streams\n");
342 zram->max_comp_streams = num;
345 up_write(&zram->init_lock);
349 static ssize_t comp_algorithm_show(struct device *dev,
350 struct device_attribute *attr, char *buf)
353 struct zram *zram = dev_to_zram(dev);
355 down_read(&zram->init_lock);
356 sz = zcomp_available_show(zram->compressor, buf);
357 up_read(&zram->init_lock);
362 static ssize_t comp_algorithm_store(struct device *dev,
363 struct device_attribute *attr, const char *buf, size_t len)
365 struct zram *zram = dev_to_zram(dev);
366 down_write(&zram->init_lock);
367 if (init_done(zram)) {
368 up_write(&zram->init_lock);
369 pr_info("Can't change algorithm for initialized device\n");
372 strlcpy(zram->compressor, buf, sizeof(zram->compressor));
373 up_write(&zram->init_lock);
377 static ssize_t compact_store(struct device *dev,
378 struct device_attribute *attr, const char *buf, size_t len)
380 unsigned long nr_migrated;
381 struct zram *zram = dev_to_zram(dev);
382 struct zram_meta *meta;
384 down_read(&zram->init_lock);
385 if (!init_done(zram)) {
386 up_read(&zram->init_lock);
391 nr_migrated = zs_compact(meta->mem_pool);
392 atomic64_add(nr_migrated, &zram->stats.num_migrated);
393 up_read(&zram->init_lock);
398 static ssize_t io_stat_show(struct device *dev,
399 struct device_attribute *attr, char *buf)
401 struct zram *zram = dev_to_zram(dev);
404 down_read(&zram->init_lock);
405 ret = scnprintf(buf, PAGE_SIZE,
406 "%8llu %8llu %8llu %8llu\n",
407 (u64)atomic64_read(&zram->stats.failed_reads),
408 (u64)atomic64_read(&zram->stats.failed_writes),
409 (u64)atomic64_read(&zram->stats.invalid_io),
410 (u64)atomic64_read(&zram->stats.notify_free));
411 up_read(&zram->init_lock);
416 static ssize_t mm_stat_show(struct device *dev,
417 struct device_attribute *attr, char *buf)
419 struct zram *zram = dev_to_zram(dev);
420 u64 orig_size, mem_used = 0;
424 down_read(&zram->init_lock);
426 mem_used = zs_get_total_pages(zram->meta->mem_pool);
428 orig_size = atomic64_read(&zram->stats.pages_stored);
429 max_used = atomic_long_read(&zram->stats.max_used_pages);
431 ret = scnprintf(buf, PAGE_SIZE,
432 "%8llu %8llu %8llu %8lu %8ld %8llu %8llu\n",
433 orig_size << PAGE_SHIFT,
434 (u64)atomic64_read(&zram->stats.compr_data_size),
435 mem_used << PAGE_SHIFT,
436 zram->limit_pages << PAGE_SHIFT,
437 max_used << PAGE_SHIFT,
438 (u64)atomic64_read(&zram->stats.zero_pages),
439 (u64)atomic64_read(&zram->stats.num_migrated));
440 up_read(&zram->init_lock);
445 static DEVICE_ATTR_RO(io_stat);
446 static DEVICE_ATTR_RO(mm_stat);
447 ZRAM_ATTR_RO(num_reads);
448 ZRAM_ATTR_RO(num_writes);
449 ZRAM_ATTR_RO(failed_reads);
450 ZRAM_ATTR_RO(failed_writes);
451 ZRAM_ATTR_RO(invalid_io);
452 ZRAM_ATTR_RO(notify_free);
453 ZRAM_ATTR_RO(zero_pages);
454 ZRAM_ATTR_RO(compr_data_size);
456 static inline bool zram_meta_get(struct zram *zram)
458 if (atomic_inc_not_zero(&zram->refcount))
463 static inline void zram_meta_put(struct zram *zram)
465 atomic_dec(&zram->refcount);
468 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
470 size_t num_pages = disksize >> PAGE_SHIFT;
473 /* Free all pages that are still in this zram device */
474 for (index = 0; index < num_pages; index++) {
475 unsigned long handle = meta->table[index].handle;
480 zs_free(meta->mem_pool, handle);
483 zs_destroy_pool(meta->mem_pool);
488 static struct zram_meta *zram_meta_alloc(int device_id, u64 disksize)
492 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
497 num_pages = disksize >> PAGE_SHIFT;
498 meta->table = vzalloc(num_pages * sizeof(*meta->table));
500 pr_err("Error allocating zram address table\n");
504 snprintf(pool_name, sizeof(pool_name), "zram%d", device_id);
505 meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
506 if (!meta->mem_pool) {
507 pr_err("Error creating memory pool\n");
520 * To protect concurrent access to the same index entry,
521 * caller should hold this table index entry's bit_spinlock to
522 * indicate this index entry is accessing.
524 static void zram_free_page(struct zram *zram, size_t index)
526 struct zram_meta *meta = zram->meta;
527 unsigned long handle = meta->table[index].handle;
529 if (unlikely(!handle)) {
531 * No memory is allocated for zero filled pages.
532 * Simply clear zero page flag.
534 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
535 zram_clear_flag(meta, index, ZRAM_ZERO);
536 atomic64_dec(&zram->stats.zero_pages);
541 zs_free(meta->mem_pool, handle);
543 atomic64_sub(zram_get_obj_size(meta, index),
544 &zram->stats.compr_data_size);
545 atomic64_dec(&zram->stats.pages_stored);
547 meta->table[index].handle = 0;
548 zram_set_obj_size(meta, index, 0);
551 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
555 struct zram_meta *meta = zram->meta;
556 unsigned long handle;
559 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
560 handle = meta->table[index].handle;
561 size = zram_get_obj_size(meta, index);
563 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
564 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
569 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
570 if (size == PAGE_SIZE)
571 copy_page(mem, cmem);
573 ret = zcomp_decompress(zram->comp, cmem, size, mem);
574 zs_unmap_object(meta->mem_pool, handle);
575 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
577 /* Should NEVER happen. Return bio error if it does. */
579 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
586 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
587 u32 index, int offset)
591 unsigned char *user_mem, *uncmem = NULL;
592 struct zram_meta *meta = zram->meta;
593 page = bvec->bv_page;
595 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
596 if (unlikely(!meta->table[index].handle) ||
597 zram_test_flag(meta, index, ZRAM_ZERO)) {
598 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
599 handle_zero_page(bvec);
602 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
604 if (is_partial_io(bvec))
605 /* Use a temporary buffer to decompress the page */
606 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
608 user_mem = kmap_atomic(page);
609 if (!is_partial_io(bvec))
613 pr_info("Unable to allocate temp memory\n");
618 ret = zram_decompress_page(zram, uncmem, index);
619 /* Should NEVER happen. Return bio error if it does. */
623 if (is_partial_io(bvec))
624 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
627 flush_dcache_page(page);
630 kunmap_atomic(user_mem);
631 if (is_partial_io(bvec))
636 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
641 unsigned long handle;
643 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
644 struct zram_meta *meta = zram->meta;
645 struct zcomp_strm *zstrm = NULL;
646 unsigned long alloced_pages;
648 page = bvec->bv_page;
649 if (is_partial_io(bvec)) {
651 * This is a partial IO. We need to read the full page
652 * before to write the changes.
654 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
659 ret = zram_decompress_page(zram, uncmem, index);
664 zstrm = zcomp_strm_find(zram->comp);
665 user_mem = kmap_atomic(page);
667 if (is_partial_io(bvec)) {
668 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
670 kunmap_atomic(user_mem);
676 if (page_zero_filled(uncmem)) {
678 kunmap_atomic(user_mem);
679 /* Free memory associated with this sector now. */
680 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
681 zram_free_page(zram, index);
682 zram_set_flag(meta, index, ZRAM_ZERO);
683 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
685 atomic64_inc(&zram->stats.zero_pages);
690 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
691 if (!is_partial_io(bvec)) {
692 kunmap_atomic(user_mem);
698 pr_err("Compression failed! err=%d\n", ret);
702 if (unlikely(clen > max_zpage_size)) {
704 if (is_partial_io(bvec))
708 handle = zs_malloc(meta->mem_pool, clen);
710 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
716 alloced_pages = zs_get_total_pages(meta->mem_pool);
717 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
718 zs_free(meta->mem_pool, handle);
723 update_used_max(zram, alloced_pages);
725 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
727 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
728 src = kmap_atomic(page);
729 copy_page(cmem, src);
732 memcpy(cmem, src, clen);
735 zcomp_strm_release(zram->comp, zstrm);
737 zs_unmap_object(meta->mem_pool, handle);
740 * Free memory associated with this sector
741 * before overwriting unused sectors.
743 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
744 zram_free_page(zram, index);
746 meta->table[index].handle = handle;
747 zram_set_obj_size(meta, index, clen);
748 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
751 atomic64_add(clen, &zram->stats.compr_data_size);
752 atomic64_inc(&zram->stats.pages_stored);
755 zcomp_strm_release(zram->comp, zstrm);
756 if (is_partial_io(bvec))
762 * zram_bio_discard - handler on discard request
763 * @index: physical block index in PAGE_SIZE units
764 * @offset: byte offset within physical block
766 static void zram_bio_discard(struct zram *zram, u32 index,
767 int offset, struct bio *bio)
769 size_t n = bio->bi_iter.bi_size;
770 struct zram_meta *meta = zram->meta;
773 * zram manages data in physical block size units. Because logical block
774 * size isn't identical with physical block size on some arch, we
775 * could get a discard request pointing to a specific offset within a
776 * certain physical block. Although we can handle this request by
777 * reading that physiclal block and decompressing and partially zeroing
778 * and re-compressing and then re-storing it, this isn't reasonable
779 * because our intent with a discard request is to save memory. So
780 * skipping this logical block is appropriate here.
783 if (n <= (PAGE_SIZE - offset))
786 n -= (PAGE_SIZE - offset);
790 while (n >= PAGE_SIZE) {
791 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
792 zram_free_page(zram, index);
793 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
794 atomic64_inc(&zram->stats.notify_free);
800 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
803 unsigned long start_time = jiffies;
806 generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
810 atomic64_inc(&zram->stats.num_reads);
811 ret = zram_bvec_read(zram, bvec, index, offset);
813 atomic64_inc(&zram->stats.num_writes);
814 ret = zram_bvec_write(zram, bvec, index, offset);
817 generic_end_io_acct(rw, &zram->disk->part0, start_time);
821 atomic64_inc(&zram->stats.failed_reads);
823 atomic64_inc(&zram->stats.failed_writes);
829 static void __zram_make_request(struct zram *zram, struct bio *bio)
834 struct bvec_iter iter;
836 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
837 offset = (bio->bi_iter.bi_sector &
838 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
840 if (unlikely(bio->bi_rw & REQ_DISCARD)) {
841 zram_bio_discard(zram, index, offset, bio);
846 rw = bio_data_dir(bio);
847 bio_for_each_segment(bvec, bio, iter) {
848 int max_transfer_size = PAGE_SIZE - offset;
850 if (bvec.bv_len > max_transfer_size) {
852 * zram_bvec_rw() can only make operation on a single
853 * zram page. Split the bio vector.
857 bv.bv_page = bvec.bv_page;
858 bv.bv_len = max_transfer_size;
859 bv.bv_offset = bvec.bv_offset;
861 if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
864 bv.bv_len = bvec.bv_len - max_transfer_size;
865 bv.bv_offset += max_transfer_size;
866 if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
869 if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
872 update_position(&index, &offset, &bvec);
875 set_bit(BIO_UPTODATE, &bio->bi_flags);
884 * Handler function for all zram I/O requests.
886 static void zram_make_request(struct request_queue *queue, struct bio *bio)
888 struct zram *zram = queue->queuedata;
890 if (unlikely(!zram_meta_get(zram)))
893 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
894 bio->bi_iter.bi_size)) {
895 atomic64_inc(&zram->stats.invalid_io);
899 __zram_make_request(zram, bio);
908 static void zram_slot_free_notify(struct block_device *bdev,
912 struct zram_meta *meta;
914 zram = bdev->bd_disk->private_data;
917 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
918 zram_free_page(zram, index);
919 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
920 atomic64_inc(&zram->stats.notify_free);
923 static int zram_rw_page(struct block_device *bdev, sector_t sector,
924 struct page *page, int rw)
926 int offset, err = -EIO;
931 zram = bdev->bd_disk->private_data;
932 if (unlikely(!zram_meta_get(zram)))
935 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
936 atomic64_inc(&zram->stats.invalid_io);
941 index = sector >> SECTORS_PER_PAGE_SHIFT;
942 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
945 bv.bv_len = PAGE_SIZE;
948 err = zram_bvec_rw(zram, &bv, index, offset, rw);
953 * If I/O fails, just return error(ie, non-zero) without
954 * calling page_endio.
955 * It causes resubmit the I/O with bio request by upper functions
956 * of rw_page(e.g., swap_readpage, __swap_writepage) and
957 * bio->bi_end_io does things to handle the error
958 * (e.g., SetPageError, set_page_dirty and extra works).
961 page_endio(page, rw, 0);
965 static void zram_reset_device(struct zram *zram)
967 struct zram_meta *meta;
971 down_write(&zram->init_lock);
973 zram->limit_pages = 0;
975 if (!init_done(zram)) {
976 up_write(&zram->init_lock);
982 disksize = zram->disksize;
984 * Refcount will go down to 0 eventually and r/w handler
985 * cannot handle further I/O so it will bail out by
986 * check zram_meta_get.
990 * We want to free zram_meta in process context to avoid
991 * deadlock between reclaim path and any other locks.
993 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
996 memset(&zram->stats, 0, sizeof(zram->stats));
998 zram->max_comp_streams = 1;
1000 set_capacity(zram->disk, 0);
1001 part_stat_set_all(&zram->disk->part0, 0);
1003 up_write(&zram->init_lock);
1004 /* I/O operation under all of CPU are done so let's free */
1005 zram_meta_free(meta, disksize);
1006 zcomp_destroy(comp);
1009 static ssize_t disksize_store(struct device *dev,
1010 struct device_attribute *attr, const char *buf, size_t len)
1014 struct zram_meta *meta;
1015 struct zram *zram = dev_to_zram(dev);
1018 disksize = memparse(buf, NULL);
1022 disksize = PAGE_ALIGN(disksize);
1023 meta = zram_meta_alloc(zram->disk->first_minor, disksize);
1027 comp = zcomp_create(zram->compressor, zram->max_comp_streams);
1029 pr_info("Cannot initialise %s compressing backend\n",
1031 err = PTR_ERR(comp);
1035 down_write(&zram->init_lock);
1036 if (init_done(zram)) {
1037 pr_info("Cannot change disksize for initialized device\n");
1039 goto out_destroy_comp;
1042 init_waitqueue_head(&zram->io_done);
1043 atomic_set(&zram->refcount, 1);
1046 zram->disksize = disksize;
1047 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1048 up_write(&zram->init_lock);
1051 * Revalidate disk out of the init_lock to avoid lockdep splat.
1052 * It's okay because disk's capacity is protected by init_lock
1053 * so that revalidate_disk always sees up-to-date capacity.
1055 revalidate_disk(zram->disk);
1060 up_write(&zram->init_lock);
1061 zcomp_destroy(comp);
1063 zram_meta_free(meta, disksize);
1067 static ssize_t reset_store(struct device *dev,
1068 struct device_attribute *attr, const char *buf, size_t len)
1071 unsigned short do_reset;
1073 struct block_device *bdev;
1075 ret = kstrtou16(buf, 10, &do_reset);
1082 zram = dev_to_zram(dev);
1083 bdev = bdget_disk(zram->disk, 0);
1087 mutex_lock(&bdev->bd_mutex);
1088 /* Do not reset an active device or claimed device */
1089 if (bdev->bd_openers || zram->claim) {
1090 mutex_unlock(&bdev->bd_mutex);
1095 /* From now on, anyone can't open /dev/zram[0-9] */
1097 mutex_unlock(&bdev->bd_mutex);
1099 /* Make sure all the pending I/O are finished */
1101 zram_reset_device(zram);
1102 revalidate_disk(zram->disk);
1105 mutex_lock(&bdev->bd_mutex);
1106 zram->claim = false;
1107 mutex_unlock(&bdev->bd_mutex);
1112 static int zram_open(struct block_device *bdev, fmode_t mode)
1117 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1119 zram = bdev->bd_disk->private_data;
1120 /* zram was claimed to reset so open request fails */
1127 static const struct block_device_operations zram_devops = {
1129 .swap_slot_free_notify = zram_slot_free_notify,
1130 .rw_page = zram_rw_page,
1131 .owner = THIS_MODULE
1134 static DEVICE_ATTR_WO(compact);
1135 static DEVICE_ATTR_RW(disksize);
1136 static DEVICE_ATTR_RO(initstate);
1137 static DEVICE_ATTR_WO(reset);
1138 static DEVICE_ATTR_RO(orig_data_size);
1139 static DEVICE_ATTR_RO(mem_used_total);
1140 static DEVICE_ATTR_RW(mem_limit);
1141 static DEVICE_ATTR_RW(mem_used_max);
1142 static DEVICE_ATTR_RW(max_comp_streams);
1143 static DEVICE_ATTR_RW(comp_algorithm);
1145 static struct attribute *zram_disk_attrs[] = {
1146 &dev_attr_disksize.attr,
1147 &dev_attr_initstate.attr,
1148 &dev_attr_reset.attr,
1149 &dev_attr_num_reads.attr,
1150 &dev_attr_num_writes.attr,
1151 &dev_attr_failed_reads.attr,
1152 &dev_attr_failed_writes.attr,
1153 &dev_attr_compact.attr,
1154 &dev_attr_invalid_io.attr,
1155 &dev_attr_notify_free.attr,
1156 &dev_attr_zero_pages.attr,
1157 &dev_attr_orig_data_size.attr,
1158 &dev_attr_compr_data_size.attr,
1159 &dev_attr_mem_used_total.attr,
1160 &dev_attr_mem_limit.attr,
1161 &dev_attr_mem_used_max.attr,
1162 &dev_attr_max_comp_streams.attr,
1163 &dev_attr_comp_algorithm.attr,
1164 &dev_attr_io_stat.attr,
1165 &dev_attr_mm_stat.attr,
1169 static struct attribute_group zram_disk_attr_group = {
1170 .attrs = zram_disk_attrs,
1174 * Allocate and initialize new zram device. the function returns
1175 * '>= 0' device_id upon success, and negative value otherwise.
1177 static int zram_add(void)
1180 struct request_queue *queue;
1183 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1187 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1192 init_rwsem(&zram->init_lock);
1194 queue = blk_alloc_queue(GFP_KERNEL);
1196 pr_err("Error allocating disk queue for device %d\n",
1202 blk_queue_make_request(queue, zram_make_request);
1204 /* gendisk structure */
1205 zram->disk = alloc_disk(1);
1207 pr_warn("Error allocating disk structure for device %d\n",
1210 goto out_free_queue;
1213 zram->disk->major = zram_major;
1214 zram->disk->first_minor = device_id;
1215 zram->disk->fops = &zram_devops;
1216 zram->disk->queue = queue;
1217 zram->disk->queue->queuedata = zram;
1218 zram->disk->private_data = zram;
1219 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1221 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1222 set_capacity(zram->disk, 0);
1223 /* zram devices sort of resembles non-rotational disks */
1224 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1225 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1227 * To ensure that we always get PAGE_SIZE aligned
1228 * and n*PAGE_SIZED sized I/O requests.
1230 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1231 blk_queue_logical_block_size(zram->disk->queue,
1232 ZRAM_LOGICAL_BLOCK_SIZE);
1233 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1234 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1235 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1236 zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1238 * zram_bio_discard() will clear all logical blocks if logical block
1239 * size is identical with physical block size(PAGE_SIZE). But if it is
1240 * different, we will skip discarding some parts of logical blocks in
1241 * the part of the request range which isn't aligned to physical block
1242 * size. So we can't ensure that all discarded logical blocks are
1245 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1246 zram->disk->queue->limits.discard_zeroes_data = 1;
1248 zram->disk->queue->limits.discard_zeroes_data = 0;
1249 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1251 add_disk(zram->disk);
1253 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1254 &zram_disk_attr_group);
1256 pr_warn("Error creating sysfs group");
1259 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1261 zram->max_comp_streams = 1;
1263 pr_info("Added device: %s\n", zram->disk->disk_name);
1267 del_gendisk(zram->disk);
1268 put_disk(zram->disk);
1270 blk_cleanup_queue(queue);
1272 idr_remove(&zram_index_idr, device_id);
1278 static int zram_remove(struct zram *zram)
1280 struct block_device *bdev;
1282 bdev = bdget_disk(zram->disk, 0);
1286 mutex_lock(&bdev->bd_mutex);
1287 if (bdev->bd_openers || zram->claim) {
1288 mutex_unlock(&bdev->bd_mutex);
1294 mutex_unlock(&bdev->bd_mutex);
1297 * Remove sysfs first, so no one will perform a disksize
1298 * store while we destroy the devices. This also helps during
1299 * hot_remove -- zram_reset_device() is the last holder of
1300 * ->init_lock, no later/concurrent disksize_store() or any
1301 * other sysfs handlers are possible.
1303 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1304 &zram_disk_attr_group);
1306 /* Make sure all the pending I/O are finished */
1308 zram_reset_device(zram);
1311 pr_info("Removed device: %s\n", zram->disk->disk_name);
1313 idr_remove(&zram_index_idr, zram->disk->first_minor);
1314 blk_cleanup_queue(zram->disk->queue);
1315 del_gendisk(zram->disk);
1316 put_disk(zram->disk);
1321 /* zram-control sysfs attributes */
1322 static ssize_t hot_add_show(struct class *class,
1323 struct class_attribute *attr,
1328 mutex_lock(&zram_index_mutex);
1330 mutex_unlock(&zram_index_mutex);
1334 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1337 static ssize_t hot_remove_store(struct class *class,
1338 struct class_attribute *attr,
1345 /* dev_id is gendisk->first_minor, which is `int' */
1346 ret = kstrtoint(buf, 10, &dev_id);
1352 mutex_lock(&zram_index_mutex);
1354 zram = idr_find(&zram_index_idr, dev_id);
1356 ret = zram_remove(zram);
1360 mutex_unlock(&zram_index_mutex);
1361 return ret ? ret : count;
1364 static struct class_attribute zram_control_class_attrs[] = {
1366 __ATTR_WO(hot_remove),
1370 static struct class zram_control_class = {
1371 .name = "zram-control",
1372 .owner = THIS_MODULE,
1373 .class_attrs = zram_control_class_attrs,
1376 static int zram_remove_cb(int id, void *ptr, void *data)
1382 static void destroy_devices(void)
1384 class_unregister(&zram_control_class);
1385 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1386 idr_destroy(&zram_index_idr);
1387 unregister_blkdev(zram_major, "zram");
1390 static int __init zram_init(void)
1394 ret = class_register(&zram_control_class);
1396 pr_warn("Unable to register zram-control class\n");
1400 zram_major = register_blkdev(0, "zram");
1401 if (zram_major <= 0) {
1402 pr_warn("Unable to get major number\n");
1403 class_unregister(&zram_control_class);
1407 while (num_devices != 0) {
1408 mutex_lock(&zram_index_mutex);
1410 mutex_unlock(&zram_index_mutex);
1423 static void __exit zram_exit(void)
1428 module_init(zram_init);
1429 module_exit(zram_exit);
1431 module_param(num_devices, uint, 0);
1432 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1434 MODULE_LICENSE("Dual BSD/GPL");
1435 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1436 MODULE_DESCRIPTION("Compressed RAM Block Device");