Merge branch 'integrity-check-patch-v2' of git://btrfs.giantdisaster.de/git/btrfs...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / block / umem.c
1 /*
2  * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
3  *
4  * (C) 2001 San Mehat <nettwerk@valinux.com>
5  * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6  * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
7  *
8  * This driver for the Micro Memory PCI Memory Module with Battery Backup
9  * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
10  *
11  * This driver is released to the public under the terms of the
12  *  GNU GENERAL PUBLIC LICENSE version 2
13  * See the file COPYING for details.
14  *
15  * This driver provides a standard block device interface for Micro Memory(tm)
16  * PCI based RAM boards.
17  * 10/05/01: Phap Nguyen - Rebuilt the driver
18  * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19  * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
20  *                       - use stand disk partitioning (so fdisk works).
21  * 08nov2001:NeilBrown   - change driver name from "mm" to "umem"
22  *                       - incorporate into main kernel
23  * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
24  *                       - use spin_lock_bh instead of _irq
25  *                       - Never block on make_request.  queue
26  *                         bh's instead.
27  *                       - unregister umem from devfs at mod unload
28  *                       - Change version to 2.3
29  * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30  * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
31  * 15May2002:NeilBrown   - convert to bio for 2.5
32  * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
33  *                       - a sequence of writes that cover the card, and
34  *                       - set initialised bit then.
35  */
36
37 #undef DEBUG    /* #define DEBUG if you want debugging info (pr_debug) */
38 #include <linux/fs.h>
39 #include <linux/bio.h>
40 #include <linux/kernel.h>
41 #include <linux/mm.h>
42 #include <linux/mman.h>
43 #include <linux/gfp.h>
44 #include <linux/ioctl.h>
45 #include <linux/module.h>
46 #include <linux/init.h>
47 #include <linux/interrupt.h>
48 #include <linux/timer.h>
49 #include <linux/pci.h>
50 #include <linux/dma-mapping.h>
51
52 #include <linux/fcntl.h>        /* O_ACCMODE */
53 #include <linux/hdreg.h>  /* HDIO_GETGEO */
54
55 #include "umem.h"
56
57 #include <asm/uaccess.h>
58 #include <asm/io.h>
59
60 #define MM_MAXCARDS 4
61 #define MM_RAHEAD 2      /* two sectors */
62 #define MM_BLKSIZE 1024  /* 1k blocks */
63 #define MM_HARDSECT 512  /* 512-byte hardware sectors */
64 #define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
65
66 /*
67  * Version Information
68  */
69
70 #define DRIVER_NAME     "umem"
71 #define DRIVER_VERSION  "v2.3"
72 #define DRIVER_AUTHOR   "San Mehat, Johannes Erdfelt, NeilBrown"
73 #define DRIVER_DESC     "Micro Memory(tm) PCI memory board block driver"
74
75 static int debug;
76 /* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
77 #define HW_TRACE(x)
78
79 #define DEBUG_LED_ON_TRANSFER   0x01
80 #define DEBUG_BATTERY_POLLING   0x02
81
82 module_param(debug, int, 0644);
83 MODULE_PARM_DESC(debug, "Debug bitmask");
84
85 static int pci_read_cmd = 0x0C;         /* Read Multiple */
86 module_param(pci_read_cmd, int, 0);
87 MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
88
89 static int pci_write_cmd = 0x0F;        /* Write and Invalidate */
90 module_param(pci_write_cmd, int, 0);
91 MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
92
93 static int pci_cmds;
94
95 static int major_nr;
96
97 #include <linux/blkdev.h>
98 #include <linux/blkpg.h>
99
100 struct cardinfo {
101         struct pci_dev  *dev;
102
103         unsigned char   __iomem *csr_remap;
104         unsigned int    mm_size;  /* size in kbytes */
105
106         unsigned int    init_size; /* initial segment, in sectors,
107                                     * that we know to
108                                     * have been written
109                                     */
110         struct bio      *bio, *currentbio, **biotail;
111         int             current_idx;
112         sector_t        current_sector;
113
114         struct request_queue *queue;
115
116         struct mm_page {
117                 dma_addr_t              page_dma;
118                 struct mm_dma_desc      *desc;
119                 int                     cnt, headcnt;
120                 struct bio              *bio, **biotail;
121                 int                     idx;
122         } mm_pages[2];
123 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
124
125         int  Active, Ready;
126
127         struct tasklet_struct   tasklet;
128         unsigned int dma_status;
129
130         struct {
131                 int             good;
132                 int             warned;
133                 unsigned long   last_change;
134         } battery[2];
135
136         spinlock_t      lock;
137         int             check_batteries;
138
139         int             flags;
140 };
141
142 static struct cardinfo cards[MM_MAXCARDS];
143 static struct timer_list battery_timer;
144
145 static int num_cards;
146
147 static struct gendisk *mm_gendisk[MM_MAXCARDS];
148
149 static void check_batteries(struct cardinfo *card);
150
151 static int get_userbit(struct cardinfo *card, int bit)
152 {
153         unsigned char led;
154
155         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
156         return led & bit;
157 }
158
159 static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
160 {
161         unsigned char led;
162
163         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
164         if (state)
165                 led |= bit;
166         else
167                 led &= ~bit;
168         writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
169
170         return 0;
171 }
172
173 /*
174  * NOTE: For the power LED, use the LED_POWER_* macros since they differ
175  */
176 static void set_led(struct cardinfo *card, int shift, unsigned char state)
177 {
178         unsigned char led;
179
180         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
181         if (state == LED_FLIP)
182                 led ^= (1<<shift);
183         else {
184                 led &= ~(0x03 << shift);
185                 led |= (state << shift);
186         }
187         writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
188
189 }
190
191 #ifdef MM_DIAG
192 static void dump_regs(struct cardinfo *card)
193 {
194         unsigned char *p;
195         int i, i1;
196
197         p = card->csr_remap;
198         for (i = 0; i < 8; i++) {
199                 printk(KERN_DEBUG "%p   ", p);
200
201                 for (i1 = 0; i1 < 16; i1++)
202                         printk("%02x ", *p++);
203
204                 printk("\n");
205         }
206 }
207 #endif
208
209 static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
210 {
211         dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
212         if (dmastat & DMASCR_ANY_ERR)
213                 printk(KERN_CONT "ANY_ERR ");
214         if (dmastat & DMASCR_MBE_ERR)
215                 printk(KERN_CONT "MBE_ERR ");
216         if (dmastat & DMASCR_PARITY_ERR_REP)
217                 printk(KERN_CONT "PARITY_ERR_REP ");
218         if (dmastat & DMASCR_PARITY_ERR_DET)
219                 printk(KERN_CONT "PARITY_ERR_DET ");
220         if (dmastat & DMASCR_SYSTEM_ERR_SIG)
221                 printk(KERN_CONT "SYSTEM_ERR_SIG ");
222         if (dmastat & DMASCR_TARGET_ABT)
223                 printk(KERN_CONT "TARGET_ABT ");
224         if (dmastat & DMASCR_MASTER_ABT)
225                 printk(KERN_CONT "MASTER_ABT ");
226         if (dmastat & DMASCR_CHAIN_COMPLETE)
227                 printk(KERN_CONT "CHAIN_COMPLETE ");
228         if (dmastat & DMASCR_DMA_COMPLETE)
229                 printk(KERN_CONT "DMA_COMPLETE ");
230         printk("\n");
231 }
232
233 /*
234  * Theory of request handling
235  *
236  * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
237  * We have two pages of mm_dma_desc, holding about 64 descriptors
238  * each.  These are allocated at init time.
239  * One page is "Ready" and is either full, or can have request added.
240  * The other page might be "Active", which DMA is happening on it.
241  *
242  * Whenever IO on the active page completes, the Ready page is activated
243  * and the ex-Active page is clean out and made Ready.
244  * Otherwise the Ready page is only activated when it becomes full.
245  *
246  * If a request arrives while both pages a full, it is queued, and b_rdev is
247  * overloaded to record whether it was a read or a write.
248  *
249  * The interrupt handler only polls the device to clear the interrupt.
250  * The processing of the result is done in a tasklet.
251  */
252
253 static void mm_start_io(struct cardinfo *card)
254 {
255         /* we have the lock, we know there is
256          * no IO active, and we know that card->Active
257          * is set
258          */
259         struct mm_dma_desc *desc;
260         struct mm_page *page;
261         int offset;
262
263         /* make the last descriptor end the chain */
264         page = &card->mm_pages[card->Active];
265         pr_debug("start_io: %d %d->%d\n",
266                 card->Active, page->headcnt, page->cnt - 1);
267         desc = &page->desc[page->cnt-1];
268
269         desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
270         desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
271         desc->sem_control_bits = desc->control_bits;
272
273
274         if (debug & DEBUG_LED_ON_TRANSFER)
275                 set_led(card, LED_REMOVE, LED_ON);
276
277         desc = &page->desc[page->headcnt];
278         writel(0, card->csr_remap + DMA_PCI_ADDR);
279         writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
280
281         writel(0, card->csr_remap + DMA_LOCAL_ADDR);
282         writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
283
284         writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
285         writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
286
287         writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
288         writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
289
290         offset = ((char *)desc) - ((char *)page->desc);
291         writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
292                card->csr_remap + DMA_DESCRIPTOR_ADDR);
293         /* Force the value to u64 before shifting otherwise >> 32 is undefined C
294          * and on some ports will do nothing ! */
295         writel(cpu_to_le32(((u64)page->page_dma)>>32),
296                card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
297
298         /* Go, go, go */
299         writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
300                card->csr_remap + DMA_STATUS_CTRL);
301 }
302
303 static int add_bio(struct cardinfo *card);
304
305 static void activate(struct cardinfo *card)
306 {
307         /* if No page is Active, and Ready is
308          * not empty, then switch Ready page
309          * to active and start IO.
310          * Then add any bh's that are available to Ready
311          */
312
313         do {
314                 while (add_bio(card))
315                         ;
316
317                 if (card->Active == -1 &&
318                     card->mm_pages[card->Ready].cnt > 0) {
319                         card->Active = card->Ready;
320                         card->Ready = 1-card->Ready;
321                         mm_start_io(card);
322                 }
323
324         } while (card->Active == -1 && add_bio(card));
325 }
326
327 static inline void reset_page(struct mm_page *page)
328 {
329         page->cnt = 0;
330         page->headcnt = 0;
331         page->bio = NULL;
332         page->biotail = &page->bio;
333 }
334
335 /*
336  * If there is room on Ready page, take
337  * one bh off list and add it.
338  * return 1 if there was room, else 0.
339  */
340 static int add_bio(struct cardinfo *card)
341 {
342         struct mm_page *p;
343         struct mm_dma_desc *desc;
344         dma_addr_t dma_handle;
345         int offset;
346         struct bio *bio;
347         struct bio_vec *vec;
348         int idx;
349         int rw;
350         int len;
351
352         bio = card->currentbio;
353         if (!bio && card->bio) {
354                 card->currentbio = card->bio;
355                 card->current_idx = card->bio->bi_idx;
356                 card->current_sector = card->bio->bi_sector;
357                 card->bio = card->bio->bi_next;
358                 if (card->bio == NULL)
359                         card->biotail = &card->bio;
360                 card->currentbio->bi_next = NULL;
361                 return 1;
362         }
363         if (!bio)
364                 return 0;
365         idx = card->current_idx;
366
367         rw = bio_rw(bio);
368         if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
369                 return 0;
370
371         vec = bio_iovec_idx(bio, idx);
372         len = vec->bv_len;
373         dma_handle = pci_map_page(card->dev,
374                                   vec->bv_page,
375                                   vec->bv_offset,
376                                   len,
377                                   (rw == READ) ?
378                                   PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
379
380         p = &card->mm_pages[card->Ready];
381         desc = &p->desc[p->cnt];
382         p->cnt++;
383         if (p->bio == NULL)
384                 p->idx = idx;
385         if ((p->biotail) != &bio->bi_next) {
386                 *(p->biotail) = bio;
387                 p->biotail = &(bio->bi_next);
388                 bio->bi_next = NULL;
389         }
390
391         desc->data_dma_handle = dma_handle;
392
393         desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
394         desc->local_addr = cpu_to_le64(card->current_sector << 9);
395         desc->transfer_size = cpu_to_le32(len);
396         offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
397         desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
398         desc->zero1 = desc->zero2 = 0;
399         offset = (((char *)(desc+1)) - ((char *)p->desc));
400         desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
401         desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
402                                          DMASCR_PARITY_INT_EN|
403                                          DMASCR_CHAIN_EN |
404                                          DMASCR_SEM_EN |
405                                          pci_cmds);
406         if (rw == WRITE)
407                 desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
408         desc->sem_control_bits = desc->control_bits;
409
410         card->current_sector += (len >> 9);
411         idx++;
412         card->current_idx = idx;
413         if (idx >= bio->bi_vcnt)
414                 card->currentbio = NULL;
415
416         return 1;
417 }
418
419 static void process_page(unsigned long data)
420 {
421         /* check if any of the requests in the page are DMA_COMPLETE,
422          * and deal with them appropriately.
423          * If we find a descriptor without DMA_COMPLETE in the semaphore, then
424          * dma must have hit an error on that descriptor, so use dma_status
425          * instead and assume that all following descriptors must be re-tried.
426          */
427         struct mm_page *page;
428         struct bio *return_bio = NULL;
429         struct cardinfo *card = (struct cardinfo *)data;
430         unsigned int dma_status = card->dma_status;
431
432         spin_lock_bh(&card->lock);
433         if (card->Active < 0)
434                 goto out_unlock;
435         page = &card->mm_pages[card->Active];
436
437         while (page->headcnt < page->cnt) {
438                 struct bio *bio = page->bio;
439                 struct mm_dma_desc *desc = &page->desc[page->headcnt];
440                 int control = le32_to_cpu(desc->sem_control_bits);
441                 int last = 0;
442                 int idx;
443
444                 if (!(control & DMASCR_DMA_COMPLETE)) {
445                         control = dma_status;
446                         last = 1;
447                 }
448                 page->headcnt++;
449                 idx = page->idx;
450                 page->idx++;
451                 if (page->idx >= bio->bi_vcnt) {
452                         page->bio = bio->bi_next;
453                         if (page->bio)
454                                 page->idx = page->bio->bi_idx;
455                 }
456
457                 pci_unmap_page(card->dev, desc->data_dma_handle,
458                                bio_iovec_idx(bio, idx)->bv_len,
459                                  (control & DMASCR_TRANSFER_READ) ?
460                                 PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
461                 if (control & DMASCR_HARD_ERROR) {
462                         /* error */
463                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
464                         dev_printk(KERN_WARNING, &card->dev->dev,
465                                 "I/O error on sector %d/%d\n",
466                                 le32_to_cpu(desc->local_addr)>>9,
467                                 le32_to_cpu(desc->transfer_size));
468                         dump_dmastat(card, control);
469                 } else if ((bio->bi_rw & REQ_WRITE) &&
470                            le32_to_cpu(desc->local_addr) >> 9 ==
471                                 card->init_size) {
472                         card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
473                         if (card->init_size >> 1 >= card->mm_size) {
474                                 dev_printk(KERN_INFO, &card->dev->dev,
475                                         "memory now initialised\n");
476                                 set_userbit(card, MEMORY_INITIALIZED, 1);
477                         }
478                 }
479                 if (bio != page->bio) {
480                         bio->bi_next = return_bio;
481                         return_bio = bio;
482                 }
483
484                 if (last)
485                         break;
486         }
487
488         if (debug & DEBUG_LED_ON_TRANSFER)
489                 set_led(card, LED_REMOVE, LED_OFF);
490
491         if (card->check_batteries) {
492                 card->check_batteries = 0;
493                 check_batteries(card);
494         }
495         if (page->headcnt >= page->cnt) {
496                 reset_page(page);
497                 card->Active = -1;
498                 activate(card);
499         } else {
500                 /* haven't finished with this one yet */
501                 pr_debug("do some more\n");
502                 mm_start_io(card);
503         }
504  out_unlock:
505         spin_unlock_bh(&card->lock);
506
507         while (return_bio) {
508                 struct bio *bio = return_bio;
509
510                 return_bio = bio->bi_next;
511                 bio->bi_next = NULL;
512                 bio_endio(bio, 0);
513         }
514 }
515
516 static void mm_make_request(struct request_queue *q, struct bio *bio)
517 {
518         struct cardinfo *card = q->queuedata;
519         pr_debug("mm_make_request %llu %u\n",
520                  (unsigned long long)bio->bi_sector, bio->bi_size);
521
522         spin_lock_irq(&card->lock);
523         *card->biotail = bio;
524         bio->bi_next = NULL;
525         card->biotail = &bio->bi_next;
526         spin_unlock_irq(&card->lock);
527
528         return;
529 }
530
531 static irqreturn_t mm_interrupt(int irq, void *__card)
532 {
533         struct cardinfo *card = (struct cardinfo *) __card;
534         unsigned int dma_status;
535         unsigned short cfg_status;
536
537 HW_TRACE(0x30);
538
539         dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
540
541         if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
542                 /* interrupt wasn't for me ... */
543                 return IRQ_NONE;
544         }
545
546         /* clear COMPLETION interrupts */
547         if (card->flags & UM_FLAG_NO_BYTE_STATUS)
548                 writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
549                        card->csr_remap + DMA_STATUS_CTRL);
550         else
551                 writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
552                        card->csr_remap + DMA_STATUS_CTRL + 2);
553
554         /* log errors and clear interrupt status */
555         if (dma_status & DMASCR_ANY_ERR) {
556                 unsigned int    data_log1, data_log2;
557                 unsigned int    addr_log1, addr_log2;
558                 unsigned char   stat, count, syndrome, check;
559
560                 stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
561
562                 data_log1 = le32_to_cpu(readl(card->csr_remap +
563                                                 ERROR_DATA_LOG));
564                 data_log2 = le32_to_cpu(readl(card->csr_remap +
565                                                 ERROR_DATA_LOG + 4));
566                 addr_log1 = le32_to_cpu(readl(card->csr_remap +
567                                                 ERROR_ADDR_LOG));
568                 addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
569
570                 count = readb(card->csr_remap + ERROR_COUNT);
571                 syndrome = readb(card->csr_remap + ERROR_SYNDROME);
572                 check = readb(card->csr_remap + ERROR_CHECK);
573
574                 dump_dmastat(card, dma_status);
575
576                 if (stat & 0x01)
577                         dev_printk(KERN_ERR, &card->dev->dev,
578                                 "Memory access error detected (err count %d)\n",
579                                 count);
580                 if (stat & 0x02)
581                         dev_printk(KERN_ERR, &card->dev->dev,
582                                 "Multi-bit EDC error\n");
583
584                 dev_printk(KERN_ERR, &card->dev->dev,
585                         "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
586                         addr_log2, addr_log1, data_log2, data_log1);
587                 dev_printk(KERN_ERR, &card->dev->dev,
588                         "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
589                         check, syndrome);
590
591                 writeb(0, card->csr_remap + ERROR_COUNT);
592         }
593
594         if (dma_status & DMASCR_PARITY_ERR_REP) {
595                 dev_printk(KERN_ERR, &card->dev->dev,
596                         "PARITY ERROR REPORTED\n");
597                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
598                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
599         }
600
601         if (dma_status & DMASCR_PARITY_ERR_DET) {
602                 dev_printk(KERN_ERR, &card->dev->dev,
603                         "PARITY ERROR DETECTED\n");
604                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
605                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
606         }
607
608         if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
609                 dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
610                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
611                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
612         }
613
614         if (dma_status & DMASCR_TARGET_ABT) {
615                 dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
616                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
617                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
618         }
619
620         if (dma_status & DMASCR_MASTER_ABT) {
621                 dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
622                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
623                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
624         }
625
626         /* and process the DMA descriptors */
627         card->dma_status = dma_status;
628         tasklet_schedule(&card->tasklet);
629
630 HW_TRACE(0x36);
631
632         return IRQ_HANDLED;
633 }
634
635 /*
636  * If both batteries are good, no LED
637  * If either battery has been warned, solid LED
638  * If both batteries are bad, flash the LED quickly
639  * If either battery is bad, flash the LED semi quickly
640  */
641 static void set_fault_to_battery_status(struct cardinfo *card)
642 {
643         if (card->battery[0].good && card->battery[1].good)
644                 set_led(card, LED_FAULT, LED_OFF);
645         else if (card->battery[0].warned || card->battery[1].warned)
646                 set_led(card, LED_FAULT, LED_ON);
647         else if (!card->battery[0].good && !card->battery[1].good)
648                 set_led(card, LED_FAULT, LED_FLASH_7_0);
649         else
650                 set_led(card, LED_FAULT, LED_FLASH_3_5);
651 }
652
653 static void init_battery_timer(void);
654
655 static int check_battery(struct cardinfo *card, int battery, int status)
656 {
657         if (status != card->battery[battery].good) {
658                 card->battery[battery].good = !card->battery[battery].good;
659                 card->battery[battery].last_change = jiffies;
660
661                 if (card->battery[battery].good) {
662                         dev_printk(KERN_ERR, &card->dev->dev,
663                                 "Battery %d now good\n", battery + 1);
664                         card->battery[battery].warned = 0;
665                 } else
666                         dev_printk(KERN_ERR, &card->dev->dev,
667                                 "Battery %d now FAILED\n", battery + 1);
668
669                 return 1;
670         } else if (!card->battery[battery].good &&
671                    !card->battery[battery].warned &&
672                    time_after_eq(jiffies, card->battery[battery].last_change +
673                                  (HZ * 60 * 60 * 5))) {
674                 dev_printk(KERN_ERR, &card->dev->dev,
675                         "Battery %d still FAILED after 5 hours\n", battery + 1);
676                 card->battery[battery].warned = 1;
677
678                 return 1;
679         }
680
681         return 0;
682 }
683
684 static void check_batteries(struct cardinfo *card)
685 {
686         /* NOTE: this must *never* be called while the card
687          * is doing (bus-to-card) DMA, or you will need the
688          * reset switch
689          */
690         unsigned char status;
691         int ret1, ret2;
692
693         status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
694         if (debug & DEBUG_BATTERY_POLLING)
695                 dev_printk(KERN_DEBUG, &card->dev->dev,
696                         "checking battery status, 1 = %s, 2 = %s\n",
697                        (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
698                        (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
699
700         ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
701         ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
702
703         if (ret1 || ret2)
704                 set_fault_to_battery_status(card);
705 }
706
707 static void check_all_batteries(unsigned long ptr)
708 {
709         int i;
710
711         for (i = 0; i < num_cards; i++)
712                 if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
713                         struct cardinfo *card = &cards[i];
714                         spin_lock_bh(&card->lock);
715                         if (card->Active >= 0)
716                                 card->check_batteries = 1;
717                         else
718                                 check_batteries(card);
719                         spin_unlock_bh(&card->lock);
720                 }
721
722         init_battery_timer();
723 }
724
725 static void init_battery_timer(void)
726 {
727         init_timer(&battery_timer);
728         battery_timer.function = check_all_batteries;
729         battery_timer.expires = jiffies + (HZ * 60);
730         add_timer(&battery_timer);
731 }
732
733 static void del_battery_timer(void)
734 {
735         del_timer(&battery_timer);
736 }
737
738 /*
739  * Note no locks taken out here.  In a worst case scenario, we could drop
740  * a chunk of system memory.  But that should never happen, since validation
741  * happens at open or mount time, when locks are held.
742  *
743  *      That's crap, since doing that while some partitions are opened
744  * or mounted will give you really nasty results.
745  */
746 static int mm_revalidate(struct gendisk *disk)
747 {
748         struct cardinfo *card = disk->private_data;
749         set_capacity(disk, card->mm_size << 1);
750         return 0;
751 }
752
753 static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
754 {
755         struct cardinfo *card = bdev->bd_disk->private_data;
756         int size = card->mm_size * (1024 / MM_HARDSECT);
757
758         /*
759          * get geometry: we have to fake one...  trim the size to a
760          * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
761          * whatever cylinders.
762          */
763         geo->heads     = 64;
764         geo->sectors   = 32;
765         geo->cylinders = size / (geo->heads * geo->sectors);
766         return 0;
767 }
768
769 static const struct block_device_operations mm_fops = {
770         .owner          = THIS_MODULE,
771         .getgeo         = mm_getgeo,
772         .revalidate_disk = mm_revalidate,
773 };
774
775 static int __devinit mm_pci_probe(struct pci_dev *dev,
776                                 const struct pci_device_id *id)
777 {
778         int ret = -ENODEV;
779         struct cardinfo *card = &cards[num_cards];
780         unsigned char   mem_present;
781         unsigned char   batt_status;
782         unsigned int    saved_bar, data;
783         unsigned long   csr_base;
784         unsigned long   csr_len;
785         int             magic_number;
786         static int      printed_version;
787
788         if (!printed_version++)
789                 printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
790
791         ret = pci_enable_device(dev);
792         if (ret)
793                 return ret;
794
795         pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
796         pci_set_master(dev);
797
798         card->dev         = dev;
799
800         csr_base = pci_resource_start(dev, 0);
801         csr_len  = pci_resource_len(dev, 0);
802         if (!csr_base || !csr_len)
803                 return -ENODEV;
804
805         dev_printk(KERN_INFO, &dev->dev,
806           "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
807
808         if (pci_set_dma_mask(dev, DMA_BIT_MASK(64)) &&
809             pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
810                 dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
811                 return  -ENOMEM;
812         }
813
814         ret = pci_request_regions(dev, DRIVER_NAME);
815         if (ret) {
816                 dev_printk(KERN_ERR, &card->dev->dev,
817                         "Unable to request memory region\n");
818                 goto failed_req_csr;
819         }
820
821         card->csr_remap = ioremap_nocache(csr_base, csr_len);
822         if (!card->csr_remap) {
823                 dev_printk(KERN_ERR, &card->dev->dev,
824                         "Unable to remap memory region\n");
825                 ret = -ENOMEM;
826
827                 goto failed_remap_csr;
828         }
829
830         dev_printk(KERN_INFO, &card->dev->dev,
831                 "CSR 0x%08lx -> 0x%p (0x%lx)\n",
832                csr_base, card->csr_remap, csr_len);
833
834         switch (card->dev->device) {
835         case 0x5415:
836                 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
837                 magic_number = 0x59;
838                 break;
839
840         case 0x5425:
841                 card->flags |= UM_FLAG_NO_BYTE_STATUS;
842                 magic_number = 0x5C;
843                 break;
844
845         case 0x6155:
846                 card->flags |= UM_FLAG_NO_BYTE_STATUS |
847                                 UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
848                 magic_number = 0x99;
849                 break;
850
851         default:
852                 magic_number = 0x100;
853                 break;
854         }
855
856         if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
857                 dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
858                 ret = -ENOMEM;
859                 goto failed_magic;
860         }
861
862         card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
863                                                 PAGE_SIZE * 2,
864                                                 &card->mm_pages[0].page_dma);
865         card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
866                                                 PAGE_SIZE * 2,
867                                                 &card->mm_pages[1].page_dma);
868         if (card->mm_pages[0].desc == NULL ||
869             card->mm_pages[1].desc == NULL) {
870                 dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
871                 goto failed_alloc;
872         }
873         reset_page(&card->mm_pages[0]);
874         reset_page(&card->mm_pages[1]);
875         card->Ready = 0;        /* page 0 is ready */
876         card->Active = -1;      /* no page is active */
877         card->bio = NULL;
878         card->biotail = &card->bio;
879
880         card->queue = blk_alloc_queue(GFP_KERNEL);
881         if (!card->queue)
882                 goto failed_alloc;
883
884         blk_queue_make_request(card->queue, mm_make_request);
885         card->queue->queue_lock = &card->lock;
886         card->queue->queuedata = card;
887
888         tasklet_init(&card->tasklet, process_page, (unsigned long)card);
889
890         card->check_batteries = 0;
891
892         mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
893         switch (mem_present) {
894         case MEM_128_MB:
895                 card->mm_size = 1024 * 128;
896                 break;
897         case MEM_256_MB:
898                 card->mm_size = 1024 * 256;
899                 break;
900         case MEM_512_MB:
901                 card->mm_size = 1024 * 512;
902                 break;
903         case MEM_1_GB:
904                 card->mm_size = 1024 * 1024;
905                 break;
906         case MEM_2_GB:
907                 card->mm_size = 1024 * 2048;
908                 break;
909         default:
910                 card->mm_size = 0;
911                 break;
912         }
913
914         /* Clear the LED's we control */
915         set_led(card, LED_REMOVE, LED_OFF);
916         set_led(card, LED_FAULT, LED_OFF);
917
918         batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
919
920         card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
921         card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
922         card->battery[0].last_change = card->battery[1].last_change = jiffies;
923
924         if (card->flags & UM_FLAG_NO_BATT)
925                 dev_printk(KERN_INFO, &card->dev->dev,
926                         "Size %d KB\n", card->mm_size);
927         else {
928                 dev_printk(KERN_INFO, &card->dev->dev,
929                         "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
930                        card->mm_size,
931                        batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
932                        card->battery[0].good ? "OK" : "FAILURE",
933                        batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
934                        card->battery[1].good ? "OK" : "FAILURE");
935
936                 set_fault_to_battery_status(card);
937         }
938
939         pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
940         data = 0xffffffff;
941         pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
942         pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
943         pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
944         data &= 0xfffffff0;
945         data = ~data;
946         data += 1;
947
948         if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
949                         card)) {
950                 dev_printk(KERN_ERR, &card->dev->dev,
951                         "Unable to allocate IRQ\n");
952                 ret = -ENODEV;
953                 goto failed_req_irq;
954         }
955
956         dev_printk(KERN_INFO, &card->dev->dev,
957                 "Window size %d bytes, IRQ %d\n", data, dev->irq);
958
959         spin_lock_init(&card->lock);
960
961         pci_set_drvdata(dev, card);
962
963         if (pci_write_cmd != 0x0F)      /* If not Memory Write & Invalidate */
964                 pci_write_cmd = 0x07;   /* then Memory Write command */
965
966         if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
967                 unsigned short cfg_command;
968                 pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
969                 cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
970                 pci_write_config_word(dev, PCI_COMMAND, cfg_command);
971         }
972         pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
973
974         num_cards++;
975
976         if (!get_userbit(card, MEMORY_INITIALIZED)) {
977                 dev_printk(KERN_INFO, &card->dev->dev,
978                   "memory NOT initialized. Consider over-writing whole device.\n");
979                 card->init_size = 0;
980         } else {
981                 dev_printk(KERN_INFO, &card->dev->dev,
982                         "memory already initialized\n");
983                 card->init_size = card->mm_size;
984         }
985
986         /* Enable ECC */
987         writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
988
989         return 0;
990
991  failed_req_irq:
992  failed_alloc:
993         if (card->mm_pages[0].desc)
994                 pci_free_consistent(card->dev, PAGE_SIZE*2,
995                                     card->mm_pages[0].desc,
996                                     card->mm_pages[0].page_dma);
997         if (card->mm_pages[1].desc)
998                 pci_free_consistent(card->dev, PAGE_SIZE*2,
999                                     card->mm_pages[1].desc,
1000                                     card->mm_pages[1].page_dma);
1001  failed_magic:
1002         iounmap(card->csr_remap);
1003  failed_remap_csr:
1004         pci_release_regions(dev);
1005  failed_req_csr:
1006
1007         return ret;
1008 }
1009
1010 static void mm_pci_remove(struct pci_dev *dev)
1011 {
1012         struct cardinfo *card = pci_get_drvdata(dev);
1013
1014         tasklet_kill(&card->tasklet);
1015         free_irq(dev->irq, card);
1016         iounmap(card->csr_remap);
1017
1018         if (card->mm_pages[0].desc)
1019                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1020                                     card->mm_pages[0].desc,
1021                                     card->mm_pages[0].page_dma);
1022         if (card->mm_pages[1].desc)
1023                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1024                                     card->mm_pages[1].desc,
1025                                     card->mm_pages[1].page_dma);
1026         blk_cleanup_queue(card->queue);
1027
1028         pci_release_regions(dev);
1029         pci_disable_device(dev);
1030 }
1031
1032 static const struct pci_device_id mm_pci_ids[] = {
1033     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1034     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1035     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1036     {
1037         .vendor =       0x8086,
1038         .device =       0xB555,
1039         .subvendor =    0x1332,
1040         .subdevice =    0x5460,
1041         .class =        0x050000,
1042         .class_mask =   0,
1043     }, { /* end: all zeroes */ }
1044 };
1045
1046 MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1047
1048 static struct pci_driver mm_pci_driver = {
1049         .name           = DRIVER_NAME,
1050         .id_table       = mm_pci_ids,
1051         .probe          = mm_pci_probe,
1052         .remove         = mm_pci_remove,
1053 };
1054
1055 static int __init mm_init(void)
1056 {
1057         int retval, i;
1058         int err;
1059
1060         retval = pci_register_driver(&mm_pci_driver);
1061         if (retval)
1062                 return -ENOMEM;
1063
1064         err = major_nr = register_blkdev(0, DRIVER_NAME);
1065         if (err < 0) {
1066                 pci_unregister_driver(&mm_pci_driver);
1067                 return -EIO;
1068         }
1069
1070         for (i = 0; i < num_cards; i++) {
1071                 mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1072                 if (!mm_gendisk[i])
1073                         goto out;
1074         }
1075
1076         for (i = 0; i < num_cards; i++) {
1077                 struct gendisk *disk = mm_gendisk[i];
1078                 sprintf(disk->disk_name, "umem%c", 'a'+i);
1079                 spin_lock_init(&cards[i].lock);
1080                 disk->major = major_nr;
1081                 disk->first_minor  = i << MM_SHIFT;
1082                 disk->fops = &mm_fops;
1083                 disk->private_data = &cards[i];
1084                 disk->queue = cards[i].queue;
1085                 set_capacity(disk, cards[i].mm_size << 1);
1086                 add_disk(disk);
1087         }
1088
1089         init_battery_timer();
1090         printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1091 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1092         return 0;
1093
1094 out:
1095         pci_unregister_driver(&mm_pci_driver);
1096         unregister_blkdev(major_nr, DRIVER_NAME);
1097         while (i--)
1098                 put_disk(mm_gendisk[i]);
1099         return -ENOMEM;
1100 }
1101
1102 static void __exit mm_cleanup(void)
1103 {
1104         int i;
1105
1106         del_battery_timer();
1107
1108         for (i = 0; i < num_cards ; i++) {
1109                 del_gendisk(mm_gendisk[i]);
1110                 put_disk(mm_gendisk[i]);
1111         }
1112
1113         pci_unregister_driver(&mm_pci_driver);
1114
1115         unregister_blkdev(major_nr, DRIVER_NAME);
1116 }
1117
1118 module_init(mm_init);
1119 module_exit(mm_cleanup);
1120
1121 MODULE_AUTHOR(DRIVER_AUTHOR);
1122 MODULE_DESCRIPTION(DRIVER_DESC);
1123 MODULE_LICENSE("GPL");