rbd: move rbd_dev_refresh() definition
[platform/kernel/linux-rpi.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49
50 #include "rbd_types.h"
51
52 #define RBD_DEBUG       /* Activate rbd_assert() calls */
53
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62         unsigned int counter;
63
64         counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65         if (counter <= (unsigned int)INT_MAX)
66                 return (int)counter;
67
68         atomic_dec(v);
69
70         return -EINVAL;
71 }
72
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76         int counter;
77
78         counter = atomic_dec_return(v);
79         if (counter >= 0)
80                 return counter;
81
82         atomic_inc(v);
83
84         return -EINVAL;
85 }
86
87 #define RBD_DRV_NAME "rbd"
88
89 #define RBD_MINORS_PER_MAJOR            256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
91
92 #define RBD_MAX_PARENT_CHAIN_LEN        16
93
94 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN   \
96                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
99
100 #define RBD_SNAP_HEAD_NAME      "-"
101
102 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
103
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX    64
107
108 #define RBD_OBJ_PREFIX_LEN_MAX  64
109
110 #define RBD_NOTIFY_TIMEOUT      5       /* seconds */
111 #define RBD_RETRY_DELAY         msecs_to_jiffies(1000)
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING            (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2          (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK      (1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP          (1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF           (1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN        (1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL           (1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS          (1ULL<<8)
123
124 #define RBD_FEATURES_ALL        (RBD_FEATURE_LAYERING |         \
125                                  RBD_FEATURE_STRIPINGV2 |       \
126                                  RBD_FEATURE_EXCLUSIVE_LOCK |   \
127                                  RBD_FEATURE_OBJECT_MAP |       \
128                                  RBD_FEATURE_FAST_DIFF |        \
129                                  RBD_FEATURE_DEEP_FLATTEN |     \
130                                  RBD_FEATURE_DATA_POOL |        \
131                                  RBD_FEATURE_OPERATIONS)
132
133 /* Features supported by this (client software) implementation. */
134
135 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
136
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN            32
142
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147         /* These six fields never change for a given rbd image */
148         char *object_prefix;
149         __u8 obj_order;
150         u64 stripe_unit;
151         u64 stripe_count;
152         s64 data_pool_id;
153         u64 features;           /* Might be changeable someday? */
154
155         /* The remaining fields need to be updated occasionally */
156         u64 image_size;
157         struct ceph_snap_context *snapc;
158         char *snap_names;       /* format 1 only */
159         u64 *snap_sizes;        /* format 1 only */
160 };
161
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188         u64             pool_id;
189         const char      *pool_name;
190         const char      *pool_ns;       /* NULL if default, never "" */
191
192         const char      *image_id;
193         const char      *image_name;
194
195         u64             snap_id;
196         const char      *snap_name;
197
198         struct kref     kref;
199 };
200
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205         struct ceph_client      *client;
206         struct kref             kref;
207         struct list_head        node;
208 };
209
210 struct pending_result {
211         int                     result;         /* first nonzero result */
212         int                     num_pending;
213 };
214
215 struct rbd_img_request;
216
217 enum obj_request_type {
218         OBJ_REQUEST_NODATA = 1,
219         OBJ_REQUEST_BIO,        /* pointer into provided bio (list) */
220         OBJ_REQUEST_BVECS,      /* pointer into provided bio_vec array */
221         OBJ_REQUEST_OWN_BVECS,  /* private bio_vec array, doesn't own pages */
222 };
223
224 enum obj_operation_type {
225         OBJ_OP_READ = 1,
226         OBJ_OP_WRITE,
227         OBJ_OP_DISCARD,
228         OBJ_OP_ZEROOUT,
229 };
230
231 #define RBD_OBJ_FLAG_DELETION                   (1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED             (1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS               (1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST                  (1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT       (1U << 4)
236
237 enum rbd_obj_read_state {
238         RBD_OBJ_READ_START = 1,
239         RBD_OBJ_READ_OBJECT,
240         RBD_OBJ_READ_PARENT,
241 };
242
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269         RBD_OBJ_WRITE_START = 1,
270         RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271         RBD_OBJ_WRITE_OBJECT,
272         __RBD_OBJ_WRITE_COPYUP,
273         RBD_OBJ_WRITE_COPYUP,
274         RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276
277 enum rbd_obj_copyup_state {
278         RBD_OBJ_COPYUP_START = 1,
279         RBD_OBJ_COPYUP_READ_PARENT,
280         __RBD_OBJ_COPYUP_OBJECT_MAPS,
281         RBD_OBJ_COPYUP_OBJECT_MAPS,
282         __RBD_OBJ_COPYUP_WRITE_OBJECT,
283         RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285
286 struct rbd_obj_request {
287         struct ceph_object_extent ex;
288         unsigned int            flags;  /* RBD_OBJ_FLAG_* */
289         union {
290                 enum rbd_obj_read_state  read_state;    /* for reads */
291                 enum rbd_obj_write_state write_state;   /* for writes */
292         };
293
294         struct rbd_img_request  *img_request;
295         struct ceph_file_extent *img_extents;
296         u32                     num_img_extents;
297
298         union {
299                 struct ceph_bio_iter    bio_pos;
300                 struct {
301                         struct ceph_bvec_iter   bvec_pos;
302                         u32                     bvec_count;
303                         u32                     bvec_idx;
304                 };
305         };
306
307         enum rbd_obj_copyup_state copyup_state;
308         struct bio_vec          *copyup_bvecs;
309         u32                     copyup_bvec_count;
310
311         struct list_head        osd_reqs;       /* w/ r_private_item */
312
313         struct mutex            state_mutex;
314         struct pending_result   pending;
315         struct kref             kref;
316 };
317
318 enum img_req_flags {
319         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
320         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
321 };
322
323 enum rbd_img_state {
324         RBD_IMG_START = 1,
325         RBD_IMG_EXCLUSIVE_LOCK,
326         __RBD_IMG_OBJECT_REQUESTS,
327         RBD_IMG_OBJECT_REQUESTS,
328 };
329
330 struct rbd_img_request {
331         struct rbd_device       *rbd_dev;
332         enum obj_operation_type op_type;
333         enum obj_request_type   data_type;
334         unsigned long           flags;
335         enum rbd_img_state      state;
336         union {
337                 u64                     snap_id;        /* for reads */
338                 struct ceph_snap_context *snapc;        /* for writes */
339         };
340         struct rbd_obj_request  *obj_request;   /* obj req initiator */
341
342         struct list_head        lock_item;
343         struct list_head        object_extents; /* obj_req.ex structs */
344
345         struct mutex            state_mutex;
346         struct pending_result   pending;
347         struct work_struct      work;
348         int                     work_result;
349 };
350
351 #define for_each_obj_request(ireq, oreq) \
352         list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354         list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355
356 enum rbd_watch_state {
357         RBD_WATCH_STATE_UNREGISTERED,
358         RBD_WATCH_STATE_REGISTERED,
359         RBD_WATCH_STATE_ERROR,
360 };
361
362 enum rbd_lock_state {
363         RBD_LOCK_STATE_UNLOCKED,
364         RBD_LOCK_STATE_LOCKED,
365         RBD_LOCK_STATE_RELEASING,
366 };
367
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370         u64 gid;
371         u64 handle;
372 };
373
374 struct rbd_mapping {
375         u64                     size;
376 };
377
378 /*
379  * a single device
380  */
381 struct rbd_device {
382         int                     dev_id;         /* blkdev unique id */
383
384         int                     major;          /* blkdev assigned major */
385         int                     minor;
386         struct gendisk          *disk;          /* blkdev's gendisk and rq */
387
388         u32                     image_format;   /* Either 1 or 2 */
389         struct rbd_client       *rbd_client;
390
391         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392
393         spinlock_t              lock;           /* queue, flags, open_count */
394
395         struct rbd_image_header header;
396         unsigned long           flags;          /* possibly lock protected */
397         struct rbd_spec         *spec;
398         struct rbd_options      *opts;
399         char                    *config_info;   /* add{,_single_major} string */
400
401         struct ceph_object_id   header_oid;
402         struct ceph_object_locator header_oloc;
403
404         struct ceph_file_layout layout;         /* used for all rbd requests */
405
406         struct mutex            watch_mutex;
407         enum rbd_watch_state    watch_state;
408         struct ceph_osd_linger_request *watch_handle;
409         u64                     watch_cookie;
410         struct delayed_work     watch_dwork;
411
412         struct rw_semaphore     lock_rwsem;
413         enum rbd_lock_state     lock_state;
414         char                    lock_cookie[32];
415         struct rbd_client_id    owner_cid;
416         struct work_struct      acquired_lock_work;
417         struct work_struct      released_lock_work;
418         struct delayed_work     lock_dwork;
419         struct work_struct      unlock_work;
420         spinlock_t              lock_lists_lock;
421         struct list_head        acquiring_list;
422         struct list_head        running_list;
423         struct completion       acquire_wait;
424         int                     acquire_err;
425         struct completion       releasing_wait;
426
427         spinlock_t              object_map_lock;
428         u8                      *object_map;
429         u64                     object_map_size;        /* in objects */
430         u64                     object_map_flags;
431
432         struct workqueue_struct *task_wq;
433
434         struct rbd_spec         *parent_spec;
435         u64                     parent_overlap;
436         atomic_t                parent_ref;
437         struct rbd_device       *parent;
438
439         /* Block layer tags. */
440         struct blk_mq_tag_set   tag_set;
441
442         /* protects updating the header */
443         struct rw_semaphore     header_rwsem;
444
445         struct rbd_mapping      mapping;
446
447         struct list_head        node;
448
449         /* sysfs related */
450         struct device           dev;
451         unsigned long           open_count;     /* protected by lock */
452 };
453
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460         RBD_DEV_FLAG_EXISTS,    /* rbd_dev_device_setup() ran */
461         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
462         RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464
465 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
466
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469
470 static LIST_HEAD(rbd_client_list);              /* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472
473 /* Slab caches for frequently-allocated structures */
474
475 static struct kmem_cache        *rbd_img_request_cache;
476 static struct kmem_cache        *rbd_obj_request_cache;
477
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480
481 static struct workqueue_struct *rbd_wq;
482
483 static struct ceph_snap_context rbd_empty_snapc = {
484         .nref = REFCOUNT_INIT(1),
485 };
486
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493
494 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(const struct bus_type *bus, const char *buf,
496                             size_t count);
497 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
498                                       size_t count);
499 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
500                                          size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507
508 static int minor_to_rbd_dev_id(int minor)
509 {
510         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515         return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520         return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525         lockdep_assert_held(&rbd_dev->lock_rwsem);
526
527         return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528                rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533         bool is_lock_owner;
534
535         down_read(&rbd_dev->lock_rwsem);
536         is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537         up_read(&rbd_dev->lock_rwsem);
538         return is_lock_owner;
539 }
540
541 static ssize_t supported_features_show(const struct bus_type *bus, char *buf)
542 {
543         return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551
552 static struct attribute *rbd_bus_attrs[] = {
553         &bus_attr_add.attr,
554         &bus_attr_remove.attr,
555         &bus_attr_add_single_major.attr,
556         &bus_attr_remove_single_major.attr,
557         &bus_attr_supported_features.attr,
558         NULL,
559 };
560
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562                                   struct attribute *attr, int index)
563 {
564         if (!single_major &&
565             (attr == &bus_attr_add_single_major.attr ||
566              attr == &bus_attr_remove_single_major.attr))
567                 return 0;
568
569         return attr->mode;
570 }
571
572 static const struct attribute_group rbd_bus_group = {
573         .attrs = rbd_bus_attrs,
574         .is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577
578 static struct bus_type rbd_bus_type = {
579         .name           = "rbd",
580         .bus_groups     = rbd_bus_groups,
581 };
582
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586
587 static struct device rbd_root_dev = {
588         .init_name =    "rbd",
589         .release =      rbd_root_dev_release,
590 };
591
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595         struct va_format vaf;
596         va_list args;
597
598         va_start(args, fmt);
599         vaf.fmt = fmt;
600         vaf.va = &args;
601
602         if (!rbd_dev)
603                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604         else if (rbd_dev->disk)
605                 printk(KERN_WARNING "%s: %s: %pV\n",
606                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607         else if (rbd_dev->spec && rbd_dev->spec->image_name)
608                 printk(KERN_WARNING "%s: image %s: %pV\n",
609                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610         else if (rbd_dev->spec && rbd_dev->spec->image_id)
611                 printk(KERN_WARNING "%s: id %s: %pV\n",
612                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613         else    /* punt */
614                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615                         RBD_DRV_NAME, rbd_dev, &vaf);
616         va_end(args);
617 }
618
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)                                                \
621                 if (unlikely(!(expr))) {                                \
622                         printk(KERN_ERR "\nAssertion failure in %s() "  \
623                                                 "at line %d:\n\n"       \
624                                         "\trbd_assert(%s);\n\n",        \
625                                         __func__, __LINE__, #expr);     \
626                         BUG();                                          \
627                 }
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)      ((void) 0)
630 #endif /* !RBD_DEBUG */
631
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
637                                         u64 snap_id);
638 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
639                                 u8 *order, u64 *snap_size);
640 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
641
642 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
643 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
644
645 /*
646  * Return true if nothing else is pending.
647  */
648 static bool pending_result_dec(struct pending_result *pending, int *result)
649 {
650         rbd_assert(pending->num_pending > 0);
651
652         if (*result && !pending->result)
653                 pending->result = *result;
654         if (--pending->num_pending)
655                 return false;
656
657         *result = pending->result;
658         return true;
659 }
660
661 static int rbd_open(struct gendisk *disk, blk_mode_t mode)
662 {
663         struct rbd_device *rbd_dev = disk->private_data;
664         bool removing = false;
665
666         spin_lock_irq(&rbd_dev->lock);
667         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
668                 removing = true;
669         else
670                 rbd_dev->open_count++;
671         spin_unlock_irq(&rbd_dev->lock);
672         if (removing)
673                 return -ENOENT;
674
675         (void) get_device(&rbd_dev->dev);
676
677         return 0;
678 }
679
680 static void rbd_release(struct gendisk *disk)
681 {
682         struct rbd_device *rbd_dev = disk->private_data;
683         unsigned long open_count_before;
684
685         spin_lock_irq(&rbd_dev->lock);
686         open_count_before = rbd_dev->open_count--;
687         spin_unlock_irq(&rbd_dev->lock);
688         rbd_assert(open_count_before > 0);
689
690         put_device(&rbd_dev->dev);
691 }
692
693 static const struct block_device_operations rbd_bd_ops = {
694         .owner                  = THIS_MODULE,
695         .open                   = rbd_open,
696         .release                = rbd_release,
697 };
698
699 /*
700  * Initialize an rbd client instance.  Success or not, this function
701  * consumes ceph_opts.  Caller holds client_mutex.
702  */
703 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
704 {
705         struct rbd_client *rbdc;
706         int ret = -ENOMEM;
707
708         dout("%s:\n", __func__);
709         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
710         if (!rbdc)
711                 goto out_opt;
712
713         kref_init(&rbdc->kref);
714         INIT_LIST_HEAD(&rbdc->node);
715
716         rbdc->client = ceph_create_client(ceph_opts, rbdc);
717         if (IS_ERR(rbdc->client))
718                 goto out_rbdc;
719         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
720
721         ret = ceph_open_session(rbdc->client);
722         if (ret < 0)
723                 goto out_client;
724
725         spin_lock(&rbd_client_list_lock);
726         list_add_tail(&rbdc->node, &rbd_client_list);
727         spin_unlock(&rbd_client_list_lock);
728
729         dout("%s: rbdc %p\n", __func__, rbdc);
730
731         return rbdc;
732 out_client:
733         ceph_destroy_client(rbdc->client);
734 out_rbdc:
735         kfree(rbdc);
736 out_opt:
737         if (ceph_opts)
738                 ceph_destroy_options(ceph_opts);
739         dout("%s: error %d\n", __func__, ret);
740
741         return ERR_PTR(ret);
742 }
743
744 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
745 {
746         kref_get(&rbdc->kref);
747
748         return rbdc;
749 }
750
751 /*
752  * Find a ceph client with specific addr and configuration.  If
753  * found, bump its reference count.
754  */
755 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
756 {
757         struct rbd_client *rbdc = NULL, *iter;
758
759         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
760                 return NULL;
761
762         spin_lock(&rbd_client_list_lock);
763         list_for_each_entry(iter, &rbd_client_list, node) {
764                 if (!ceph_compare_options(ceph_opts, iter->client)) {
765                         __rbd_get_client(iter);
766
767                         rbdc = iter;
768                         break;
769                 }
770         }
771         spin_unlock(&rbd_client_list_lock);
772
773         return rbdc;
774 }
775
776 /*
777  * (Per device) rbd map options
778  */
779 enum {
780         Opt_queue_depth,
781         Opt_alloc_size,
782         Opt_lock_timeout,
783         /* int args above */
784         Opt_pool_ns,
785         Opt_compression_hint,
786         /* string args above */
787         Opt_read_only,
788         Opt_read_write,
789         Opt_lock_on_read,
790         Opt_exclusive,
791         Opt_notrim,
792 };
793
794 enum {
795         Opt_compression_hint_none,
796         Opt_compression_hint_compressible,
797         Opt_compression_hint_incompressible,
798 };
799
800 static const struct constant_table rbd_param_compression_hint[] = {
801         {"none",                Opt_compression_hint_none},
802         {"compressible",        Opt_compression_hint_compressible},
803         {"incompressible",      Opt_compression_hint_incompressible},
804         {}
805 };
806
807 static const struct fs_parameter_spec rbd_parameters[] = {
808         fsparam_u32     ("alloc_size",                  Opt_alloc_size),
809         fsparam_enum    ("compression_hint",            Opt_compression_hint,
810                          rbd_param_compression_hint),
811         fsparam_flag    ("exclusive",                   Opt_exclusive),
812         fsparam_flag    ("lock_on_read",                Opt_lock_on_read),
813         fsparam_u32     ("lock_timeout",                Opt_lock_timeout),
814         fsparam_flag    ("notrim",                      Opt_notrim),
815         fsparam_string  ("_pool_ns",                    Opt_pool_ns),
816         fsparam_u32     ("queue_depth",                 Opt_queue_depth),
817         fsparam_flag    ("read_only",                   Opt_read_only),
818         fsparam_flag    ("read_write",                  Opt_read_write),
819         fsparam_flag    ("ro",                          Opt_read_only),
820         fsparam_flag    ("rw",                          Opt_read_write),
821         {}
822 };
823
824 struct rbd_options {
825         int     queue_depth;
826         int     alloc_size;
827         unsigned long   lock_timeout;
828         bool    read_only;
829         bool    lock_on_read;
830         bool    exclusive;
831         bool    trim;
832
833         u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
834 };
835
836 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_DEFAULT_RQ
837 #define RBD_ALLOC_SIZE_DEFAULT  (64 * 1024)
838 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
839 #define RBD_READ_ONLY_DEFAULT   false
840 #define RBD_LOCK_ON_READ_DEFAULT false
841 #define RBD_EXCLUSIVE_DEFAULT   false
842 #define RBD_TRIM_DEFAULT        true
843
844 struct rbd_parse_opts_ctx {
845         struct rbd_spec         *spec;
846         struct ceph_options     *copts;
847         struct rbd_options      *opts;
848 };
849
850 static char* obj_op_name(enum obj_operation_type op_type)
851 {
852         switch (op_type) {
853         case OBJ_OP_READ:
854                 return "read";
855         case OBJ_OP_WRITE:
856                 return "write";
857         case OBJ_OP_DISCARD:
858                 return "discard";
859         case OBJ_OP_ZEROOUT:
860                 return "zeroout";
861         default:
862                 return "???";
863         }
864 }
865
866 /*
867  * Destroy ceph client
868  *
869  * Caller must hold rbd_client_list_lock.
870  */
871 static void rbd_client_release(struct kref *kref)
872 {
873         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
874
875         dout("%s: rbdc %p\n", __func__, rbdc);
876         spin_lock(&rbd_client_list_lock);
877         list_del(&rbdc->node);
878         spin_unlock(&rbd_client_list_lock);
879
880         ceph_destroy_client(rbdc->client);
881         kfree(rbdc);
882 }
883
884 /*
885  * Drop reference to ceph client node. If it's not referenced anymore, release
886  * it.
887  */
888 static void rbd_put_client(struct rbd_client *rbdc)
889 {
890         if (rbdc)
891                 kref_put(&rbdc->kref, rbd_client_release);
892 }
893
894 /*
895  * Get a ceph client with specific addr and configuration, if one does
896  * not exist create it.  Either way, ceph_opts is consumed by this
897  * function.
898  */
899 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
900 {
901         struct rbd_client *rbdc;
902         int ret;
903
904         mutex_lock(&client_mutex);
905         rbdc = rbd_client_find(ceph_opts);
906         if (rbdc) {
907                 ceph_destroy_options(ceph_opts);
908
909                 /*
910                  * Using an existing client.  Make sure ->pg_pools is up to
911                  * date before we look up the pool id in do_rbd_add().
912                  */
913                 ret = ceph_wait_for_latest_osdmap(rbdc->client,
914                                         rbdc->client->options->mount_timeout);
915                 if (ret) {
916                         rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
917                         rbd_put_client(rbdc);
918                         rbdc = ERR_PTR(ret);
919                 }
920         } else {
921                 rbdc = rbd_client_create(ceph_opts);
922         }
923         mutex_unlock(&client_mutex);
924
925         return rbdc;
926 }
927
928 static bool rbd_image_format_valid(u32 image_format)
929 {
930         return image_format == 1 || image_format == 2;
931 }
932
933 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
934 {
935         size_t size;
936         u32 snap_count;
937
938         /* The header has to start with the magic rbd header text */
939         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
940                 return false;
941
942         /* The bio layer requires at least sector-sized I/O */
943
944         if (ondisk->options.order < SECTOR_SHIFT)
945                 return false;
946
947         /* If we use u64 in a few spots we may be able to loosen this */
948
949         if (ondisk->options.order > 8 * sizeof (int) - 1)
950                 return false;
951
952         /*
953          * The size of a snapshot header has to fit in a size_t, and
954          * that limits the number of snapshots.
955          */
956         snap_count = le32_to_cpu(ondisk->snap_count);
957         size = SIZE_MAX - sizeof (struct ceph_snap_context);
958         if (snap_count > size / sizeof (__le64))
959                 return false;
960
961         /*
962          * Not only that, but the size of the entire the snapshot
963          * header must also be representable in a size_t.
964          */
965         size -= snap_count * sizeof (__le64);
966         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
967                 return false;
968
969         return true;
970 }
971
972 /*
973  * returns the size of an object in the image
974  */
975 static u32 rbd_obj_bytes(struct rbd_image_header *header)
976 {
977         return 1U << header->obj_order;
978 }
979
980 static void rbd_init_layout(struct rbd_device *rbd_dev)
981 {
982         if (rbd_dev->header.stripe_unit == 0 ||
983             rbd_dev->header.stripe_count == 0) {
984                 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
985                 rbd_dev->header.stripe_count = 1;
986         }
987
988         rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
989         rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
990         rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
991         rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
992                           rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
993         RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
994 }
995
996 /*
997  * Fill an rbd image header with information from the given format 1
998  * on-disk header.
999  */
1000 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1001                                  struct rbd_image_header_ondisk *ondisk)
1002 {
1003         struct rbd_image_header *header = &rbd_dev->header;
1004         bool first_time = header->object_prefix == NULL;
1005         struct ceph_snap_context *snapc;
1006         char *object_prefix = NULL;
1007         char *snap_names = NULL;
1008         u64 *snap_sizes = NULL;
1009         u32 snap_count;
1010         int ret = -ENOMEM;
1011         u32 i;
1012
1013         /* Allocate this now to avoid having to handle failure below */
1014
1015         if (first_time) {
1016                 object_prefix = kstrndup(ondisk->object_prefix,
1017                                          sizeof(ondisk->object_prefix),
1018                                          GFP_KERNEL);
1019                 if (!object_prefix)
1020                         return -ENOMEM;
1021         }
1022
1023         /* Allocate the snapshot context and fill it in */
1024
1025         snap_count = le32_to_cpu(ondisk->snap_count);
1026         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1027         if (!snapc)
1028                 goto out_err;
1029         snapc->seq = le64_to_cpu(ondisk->snap_seq);
1030         if (snap_count) {
1031                 struct rbd_image_snap_ondisk *snaps;
1032                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1033
1034                 /* We'll keep a copy of the snapshot names... */
1035
1036                 if (snap_names_len > (u64)SIZE_MAX)
1037                         goto out_2big;
1038                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1039                 if (!snap_names)
1040                         goto out_err;
1041
1042                 /* ...as well as the array of their sizes. */
1043                 snap_sizes = kmalloc_array(snap_count,
1044                                            sizeof(*header->snap_sizes),
1045                                            GFP_KERNEL);
1046                 if (!snap_sizes)
1047                         goto out_err;
1048
1049                 /*
1050                  * Copy the names, and fill in each snapshot's id
1051                  * and size.
1052                  *
1053                  * Note that rbd_dev_v1_header_info() guarantees the
1054                  * ondisk buffer we're working with has
1055                  * snap_names_len bytes beyond the end of the
1056                  * snapshot id array, this memcpy() is safe.
1057                  */
1058                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1059                 snaps = ondisk->snaps;
1060                 for (i = 0; i < snap_count; i++) {
1061                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1062                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1063                 }
1064         }
1065
1066         /* We won't fail any more, fill in the header */
1067
1068         if (first_time) {
1069                 header->object_prefix = object_prefix;
1070                 header->obj_order = ondisk->options.order;
1071                 rbd_init_layout(rbd_dev);
1072         } else {
1073                 ceph_put_snap_context(header->snapc);
1074                 kfree(header->snap_names);
1075                 kfree(header->snap_sizes);
1076         }
1077
1078         /* The remaining fields always get updated (when we refresh) */
1079
1080         header->image_size = le64_to_cpu(ondisk->image_size);
1081         header->snapc = snapc;
1082         header->snap_names = snap_names;
1083         header->snap_sizes = snap_sizes;
1084
1085         return 0;
1086 out_2big:
1087         ret = -EIO;
1088 out_err:
1089         kfree(snap_sizes);
1090         kfree(snap_names);
1091         ceph_put_snap_context(snapc);
1092         kfree(object_prefix);
1093
1094         return ret;
1095 }
1096
1097 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1098 {
1099         const char *snap_name;
1100
1101         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1102
1103         /* Skip over names until we find the one we are looking for */
1104
1105         snap_name = rbd_dev->header.snap_names;
1106         while (which--)
1107                 snap_name += strlen(snap_name) + 1;
1108
1109         return kstrdup(snap_name, GFP_KERNEL);
1110 }
1111
1112 /*
1113  * Snapshot id comparison function for use with qsort()/bsearch().
1114  * Note that result is for snapshots in *descending* order.
1115  */
1116 static int snapid_compare_reverse(const void *s1, const void *s2)
1117 {
1118         u64 snap_id1 = *(u64 *)s1;
1119         u64 snap_id2 = *(u64 *)s2;
1120
1121         if (snap_id1 < snap_id2)
1122                 return 1;
1123         return snap_id1 == snap_id2 ? 0 : -1;
1124 }
1125
1126 /*
1127  * Search a snapshot context to see if the given snapshot id is
1128  * present.
1129  *
1130  * Returns the position of the snapshot id in the array if it's found,
1131  * or BAD_SNAP_INDEX otherwise.
1132  *
1133  * Note: The snapshot array is in kept sorted (by the osd) in
1134  * reverse order, highest snapshot id first.
1135  */
1136 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1137 {
1138         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1139         u64 *found;
1140
1141         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1142                                 sizeof (snap_id), snapid_compare_reverse);
1143
1144         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1145 }
1146
1147 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1148                                         u64 snap_id)
1149 {
1150         u32 which;
1151         const char *snap_name;
1152
1153         which = rbd_dev_snap_index(rbd_dev, snap_id);
1154         if (which == BAD_SNAP_INDEX)
1155                 return ERR_PTR(-ENOENT);
1156
1157         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1158         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1159 }
1160
1161 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1162 {
1163         if (snap_id == CEPH_NOSNAP)
1164                 return RBD_SNAP_HEAD_NAME;
1165
1166         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1167         if (rbd_dev->image_format == 1)
1168                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1169
1170         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1171 }
1172
1173 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1174                                 u64 *snap_size)
1175 {
1176         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1177         if (snap_id == CEPH_NOSNAP) {
1178                 *snap_size = rbd_dev->header.image_size;
1179         } else if (rbd_dev->image_format == 1) {
1180                 u32 which;
1181
1182                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1183                 if (which == BAD_SNAP_INDEX)
1184                         return -ENOENT;
1185
1186                 *snap_size = rbd_dev->header.snap_sizes[which];
1187         } else {
1188                 u64 size = 0;
1189                 int ret;
1190
1191                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1192                 if (ret)
1193                         return ret;
1194
1195                 *snap_size = size;
1196         }
1197         return 0;
1198 }
1199
1200 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1201 {
1202         u64 snap_id = rbd_dev->spec->snap_id;
1203         u64 size = 0;
1204         int ret;
1205
1206         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1207         if (ret)
1208                 return ret;
1209
1210         rbd_dev->mapping.size = size;
1211         return 0;
1212 }
1213
1214 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1215 {
1216         rbd_dev->mapping.size = 0;
1217 }
1218
1219 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1220 {
1221         struct ceph_bio_iter it = *bio_pos;
1222
1223         ceph_bio_iter_advance(&it, off);
1224         ceph_bio_iter_advance_step(&it, bytes, ({
1225                 memzero_bvec(&bv);
1226         }));
1227 }
1228
1229 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1230 {
1231         struct ceph_bvec_iter it = *bvec_pos;
1232
1233         ceph_bvec_iter_advance(&it, off);
1234         ceph_bvec_iter_advance_step(&it, bytes, ({
1235                 memzero_bvec(&bv);
1236         }));
1237 }
1238
1239 /*
1240  * Zero a range in @obj_req data buffer defined by a bio (list) or
1241  * (private) bio_vec array.
1242  *
1243  * @off is relative to the start of the data buffer.
1244  */
1245 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1246                                u32 bytes)
1247 {
1248         dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1249
1250         switch (obj_req->img_request->data_type) {
1251         case OBJ_REQUEST_BIO:
1252                 zero_bios(&obj_req->bio_pos, off, bytes);
1253                 break;
1254         case OBJ_REQUEST_BVECS:
1255         case OBJ_REQUEST_OWN_BVECS:
1256                 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1257                 break;
1258         default:
1259                 BUG();
1260         }
1261 }
1262
1263 static void rbd_obj_request_destroy(struct kref *kref);
1264 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1265 {
1266         rbd_assert(obj_request != NULL);
1267         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1268                 kref_read(&obj_request->kref));
1269         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1270 }
1271
1272 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1273                                         struct rbd_obj_request *obj_request)
1274 {
1275         rbd_assert(obj_request->img_request == NULL);
1276
1277         /* Image request now owns object's original reference */
1278         obj_request->img_request = img_request;
1279         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1280 }
1281
1282 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1283                                         struct rbd_obj_request *obj_request)
1284 {
1285         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1286         list_del(&obj_request->ex.oe_item);
1287         rbd_assert(obj_request->img_request == img_request);
1288         rbd_obj_request_put(obj_request);
1289 }
1290
1291 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1292 {
1293         struct rbd_obj_request *obj_req = osd_req->r_priv;
1294
1295         dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1296              __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1297              obj_req->ex.oe_off, obj_req->ex.oe_len);
1298         ceph_osdc_start_request(osd_req->r_osdc, osd_req);
1299 }
1300
1301 /*
1302  * The default/initial value for all image request flags is 0.  Each
1303  * is conditionally set to 1 at image request initialization time
1304  * and currently never change thereafter.
1305  */
1306 static void img_request_layered_set(struct rbd_img_request *img_request)
1307 {
1308         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1309 }
1310
1311 static bool img_request_layered_test(struct rbd_img_request *img_request)
1312 {
1313         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1314 }
1315
1316 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1317 {
1318         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1319
1320         return !obj_req->ex.oe_off &&
1321                obj_req->ex.oe_len == rbd_dev->layout.object_size;
1322 }
1323
1324 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1325 {
1326         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1327
1328         return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1329                                         rbd_dev->layout.object_size;
1330 }
1331
1332 /*
1333  * Must be called after rbd_obj_calc_img_extents().
1334  */
1335 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1336 {
1337         rbd_assert(obj_req->img_request->snapc);
1338
1339         if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1340                 dout("%s %p objno %llu discard\n", __func__, obj_req,
1341                      obj_req->ex.oe_objno);
1342                 return;
1343         }
1344
1345         if (!obj_req->num_img_extents) {
1346                 dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1347                      obj_req->ex.oe_objno);
1348                 return;
1349         }
1350
1351         if (rbd_obj_is_entire(obj_req) &&
1352             !obj_req->img_request->snapc->num_snaps) {
1353                 dout("%s %p objno %llu entire\n", __func__, obj_req,
1354                      obj_req->ex.oe_objno);
1355                 return;
1356         }
1357
1358         obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1359 }
1360
1361 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1362 {
1363         return ceph_file_extents_bytes(obj_req->img_extents,
1364                                        obj_req->num_img_extents);
1365 }
1366
1367 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1368 {
1369         switch (img_req->op_type) {
1370         case OBJ_OP_READ:
1371                 return false;
1372         case OBJ_OP_WRITE:
1373         case OBJ_OP_DISCARD:
1374         case OBJ_OP_ZEROOUT:
1375                 return true;
1376         default:
1377                 BUG();
1378         }
1379 }
1380
1381 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1382 {
1383         struct rbd_obj_request *obj_req = osd_req->r_priv;
1384         int result;
1385
1386         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1387              osd_req->r_result, obj_req);
1388
1389         /*
1390          * Writes aren't allowed to return a data payload.  In some
1391          * guarded write cases (e.g. stat + zero on an empty object)
1392          * a stat response makes it through, but we don't care.
1393          */
1394         if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1395                 result = 0;
1396         else
1397                 result = osd_req->r_result;
1398
1399         rbd_obj_handle_request(obj_req, result);
1400 }
1401
1402 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1403 {
1404         struct rbd_obj_request *obj_request = osd_req->r_priv;
1405         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1406         struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1407
1408         osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1409         osd_req->r_snapid = obj_request->img_request->snap_id;
1410 }
1411
1412 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1413 {
1414         struct rbd_obj_request *obj_request = osd_req->r_priv;
1415
1416         osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1417         ktime_get_real_ts64(&osd_req->r_mtime);
1418         osd_req->r_data_offset = obj_request->ex.oe_off;
1419 }
1420
1421 static struct ceph_osd_request *
1422 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1423                           struct ceph_snap_context *snapc, int num_ops)
1424 {
1425         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1426         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1427         struct ceph_osd_request *req;
1428         const char *name_format = rbd_dev->image_format == 1 ?
1429                                       RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1430         int ret;
1431
1432         req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1433         if (!req)
1434                 return ERR_PTR(-ENOMEM);
1435
1436         list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1437         req->r_callback = rbd_osd_req_callback;
1438         req->r_priv = obj_req;
1439
1440         /*
1441          * Data objects may be stored in a separate pool, but always in
1442          * the same namespace in that pool as the header in its pool.
1443          */
1444         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1445         req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1446
1447         ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1448                                rbd_dev->header.object_prefix,
1449                                obj_req->ex.oe_objno);
1450         if (ret)
1451                 return ERR_PTR(ret);
1452
1453         return req;
1454 }
1455
1456 static struct ceph_osd_request *
1457 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1458 {
1459         rbd_assert(obj_req->img_request->snapc);
1460         return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1461                                          num_ops);
1462 }
1463
1464 static struct rbd_obj_request *rbd_obj_request_create(void)
1465 {
1466         struct rbd_obj_request *obj_request;
1467
1468         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1469         if (!obj_request)
1470                 return NULL;
1471
1472         ceph_object_extent_init(&obj_request->ex);
1473         INIT_LIST_HEAD(&obj_request->osd_reqs);
1474         mutex_init(&obj_request->state_mutex);
1475         kref_init(&obj_request->kref);
1476
1477         dout("%s %p\n", __func__, obj_request);
1478         return obj_request;
1479 }
1480
1481 static void rbd_obj_request_destroy(struct kref *kref)
1482 {
1483         struct rbd_obj_request *obj_request;
1484         struct ceph_osd_request *osd_req;
1485         u32 i;
1486
1487         obj_request = container_of(kref, struct rbd_obj_request, kref);
1488
1489         dout("%s: obj %p\n", __func__, obj_request);
1490
1491         while (!list_empty(&obj_request->osd_reqs)) {
1492                 osd_req = list_first_entry(&obj_request->osd_reqs,
1493                                     struct ceph_osd_request, r_private_item);
1494                 list_del_init(&osd_req->r_private_item);
1495                 ceph_osdc_put_request(osd_req);
1496         }
1497
1498         switch (obj_request->img_request->data_type) {
1499         case OBJ_REQUEST_NODATA:
1500         case OBJ_REQUEST_BIO:
1501         case OBJ_REQUEST_BVECS:
1502                 break;          /* Nothing to do */
1503         case OBJ_REQUEST_OWN_BVECS:
1504                 kfree(obj_request->bvec_pos.bvecs);
1505                 break;
1506         default:
1507                 BUG();
1508         }
1509
1510         kfree(obj_request->img_extents);
1511         if (obj_request->copyup_bvecs) {
1512                 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1513                         if (obj_request->copyup_bvecs[i].bv_page)
1514                                 __free_page(obj_request->copyup_bvecs[i].bv_page);
1515                 }
1516                 kfree(obj_request->copyup_bvecs);
1517         }
1518
1519         kmem_cache_free(rbd_obj_request_cache, obj_request);
1520 }
1521
1522 /* It's OK to call this for a device with no parent */
1523
1524 static void rbd_spec_put(struct rbd_spec *spec);
1525 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1526 {
1527         rbd_dev_remove_parent(rbd_dev);
1528         rbd_spec_put(rbd_dev->parent_spec);
1529         rbd_dev->parent_spec = NULL;
1530         rbd_dev->parent_overlap = 0;
1531 }
1532
1533 /*
1534  * Parent image reference counting is used to determine when an
1535  * image's parent fields can be safely torn down--after there are no
1536  * more in-flight requests to the parent image.  When the last
1537  * reference is dropped, cleaning them up is safe.
1538  */
1539 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1540 {
1541         int counter;
1542
1543         if (!rbd_dev->parent_spec)
1544                 return;
1545
1546         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1547         if (counter > 0)
1548                 return;
1549
1550         /* Last reference; clean up parent data structures */
1551
1552         if (!counter)
1553                 rbd_dev_unparent(rbd_dev);
1554         else
1555                 rbd_warn(rbd_dev, "parent reference underflow");
1556 }
1557
1558 /*
1559  * If an image has a non-zero parent overlap, get a reference to its
1560  * parent.
1561  *
1562  * Returns true if the rbd device has a parent with a non-zero
1563  * overlap and a reference for it was successfully taken, or
1564  * false otherwise.
1565  */
1566 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1567 {
1568         int counter = 0;
1569
1570         if (!rbd_dev->parent_spec)
1571                 return false;
1572
1573         if (rbd_dev->parent_overlap)
1574                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1575
1576         if (counter < 0)
1577                 rbd_warn(rbd_dev, "parent reference overflow");
1578
1579         return counter > 0;
1580 }
1581
1582 static void rbd_img_request_init(struct rbd_img_request *img_request,
1583                                  struct rbd_device *rbd_dev,
1584                                  enum obj_operation_type op_type)
1585 {
1586         memset(img_request, 0, sizeof(*img_request));
1587
1588         img_request->rbd_dev = rbd_dev;
1589         img_request->op_type = op_type;
1590
1591         INIT_LIST_HEAD(&img_request->lock_item);
1592         INIT_LIST_HEAD(&img_request->object_extents);
1593         mutex_init(&img_request->state_mutex);
1594 }
1595
1596 /*
1597  * Only snap_id is captured here, for reads.  For writes, snapshot
1598  * context is captured in rbd_img_object_requests() after exclusive
1599  * lock is ensured to be held.
1600  */
1601 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1602 {
1603         struct rbd_device *rbd_dev = img_req->rbd_dev;
1604
1605         lockdep_assert_held(&rbd_dev->header_rwsem);
1606
1607         if (!rbd_img_is_write(img_req))
1608                 img_req->snap_id = rbd_dev->spec->snap_id;
1609
1610         if (rbd_dev_parent_get(rbd_dev))
1611                 img_request_layered_set(img_req);
1612 }
1613
1614 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1615 {
1616         struct rbd_obj_request *obj_request;
1617         struct rbd_obj_request *next_obj_request;
1618
1619         dout("%s: img %p\n", __func__, img_request);
1620
1621         WARN_ON(!list_empty(&img_request->lock_item));
1622         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1623                 rbd_img_obj_request_del(img_request, obj_request);
1624
1625         if (img_request_layered_test(img_request))
1626                 rbd_dev_parent_put(img_request->rbd_dev);
1627
1628         if (rbd_img_is_write(img_request))
1629                 ceph_put_snap_context(img_request->snapc);
1630
1631         if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1632                 kmem_cache_free(rbd_img_request_cache, img_request);
1633 }
1634
1635 #define BITS_PER_OBJ    2
1636 #define OBJS_PER_BYTE   (BITS_PER_BYTE / BITS_PER_OBJ)
1637 #define OBJ_MASK        ((1 << BITS_PER_OBJ) - 1)
1638
1639 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1640                                    u64 *index, u8 *shift)
1641 {
1642         u32 off;
1643
1644         rbd_assert(objno < rbd_dev->object_map_size);
1645         *index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1646         *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1647 }
1648
1649 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1650 {
1651         u64 index;
1652         u8 shift;
1653
1654         lockdep_assert_held(&rbd_dev->object_map_lock);
1655         __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1656         return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1657 }
1658
1659 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1660 {
1661         u64 index;
1662         u8 shift;
1663         u8 *p;
1664
1665         lockdep_assert_held(&rbd_dev->object_map_lock);
1666         rbd_assert(!(val & ~OBJ_MASK));
1667
1668         __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1669         p = &rbd_dev->object_map[index];
1670         *p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1671 }
1672
1673 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1674 {
1675         u8 state;
1676
1677         spin_lock(&rbd_dev->object_map_lock);
1678         state = __rbd_object_map_get(rbd_dev, objno);
1679         spin_unlock(&rbd_dev->object_map_lock);
1680         return state;
1681 }
1682
1683 static bool use_object_map(struct rbd_device *rbd_dev)
1684 {
1685         /*
1686          * An image mapped read-only can't use the object map -- it isn't
1687          * loaded because the header lock isn't acquired.  Someone else can
1688          * write to the image and update the object map behind our back.
1689          *
1690          * A snapshot can't be written to, so using the object map is always
1691          * safe.
1692          */
1693         if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1694                 return false;
1695
1696         return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1697                 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1698 }
1699
1700 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1701 {
1702         u8 state;
1703
1704         /* fall back to default logic if object map is disabled or invalid */
1705         if (!use_object_map(rbd_dev))
1706                 return true;
1707
1708         state = rbd_object_map_get(rbd_dev, objno);
1709         return state != OBJECT_NONEXISTENT;
1710 }
1711
1712 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1713                                 struct ceph_object_id *oid)
1714 {
1715         if (snap_id == CEPH_NOSNAP)
1716                 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1717                                 rbd_dev->spec->image_id);
1718         else
1719                 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1720                                 rbd_dev->spec->image_id, snap_id);
1721 }
1722
1723 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1724 {
1725         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1726         CEPH_DEFINE_OID_ONSTACK(oid);
1727         u8 lock_type;
1728         char *lock_tag;
1729         struct ceph_locker *lockers;
1730         u32 num_lockers;
1731         bool broke_lock = false;
1732         int ret;
1733
1734         rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1735
1736 again:
1737         ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1738                             CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1739         if (ret != -EBUSY || broke_lock) {
1740                 if (ret == -EEXIST)
1741                         ret = 0; /* already locked by myself */
1742                 if (ret)
1743                         rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1744                 return ret;
1745         }
1746
1747         ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1748                                  RBD_LOCK_NAME, &lock_type, &lock_tag,
1749                                  &lockers, &num_lockers);
1750         if (ret) {
1751                 if (ret == -ENOENT)
1752                         goto again;
1753
1754                 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1755                 return ret;
1756         }
1757
1758         kfree(lock_tag);
1759         if (num_lockers == 0)
1760                 goto again;
1761
1762         rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1763                  ENTITY_NAME(lockers[0].id.name));
1764
1765         ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1766                                   RBD_LOCK_NAME, lockers[0].id.cookie,
1767                                   &lockers[0].id.name);
1768         ceph_free_lockers(lockers, num_lockers);
1769         if (ret) {
1770                 if (ret == -ENOENT)
1771                         goto again;
1772
1773                 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1774                 return ret;
1775         }
1776
1777         broke_lock = true;
1778         goto again;
1779 }
1780
1781 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1782 {
1783         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1784         CEPH_DEFINE_OID_ONSTACK(oid);
1785         int ret;
1786
1787         rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1788
1789         ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1790                               "");
1791         if (ret && ret != -ENOENT)
1792                 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1793 }
1794
1795 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1796 {
1797         u8 struct_v;
1798         u32 struct_len;
1799         u32 header_len;
1800         void *header_end;
1801         int ret;
1802
1803         ceph_decode_32_safe(p, end, header_len, e_inval);
1804         header_end = *p + header_len;
1805
1806         ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1807                                   &struct_len);
1808         if (ret)
1809                 return ret;
1810
1811         ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1812
1813         *p = header_end;
1814         return 0;
1815
1816 e_inval:
1817         return -EINVAL;
1818 }
1819
1820 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1821 {
1822         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1823         CEPH_DEFINE_OID_ONSTACK(oid);
1824         struct page **pages;
1825         void *p, *end;
1826         size_t reply_len;
1827         u64 num_objects;
1828         u64 object_map_bytes;
1829         u64 object_map_size;
1830         int num_pages;
1831         int ret;
1832
1833         rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1834
1835         num_objects = ceph_get_num_objects(&rbd_dev->layout,
1836                                            rbd_dev->mapping.size);
1837         object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1838                                             BITS_PER_BYTE);
1839         num_pages = calc_pages_for(0, object_map_bytes) + 1;
1840         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1841         if (IS_ERR(pages))
1842                 return PTR_ERR(pages);
1843
1844         reply_len = num_pages * PAGE_SIZE;
1845         rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1846         ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1847                              "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1848                              NULL, 0, pages, &reply_len);
1849         if (ret)
1850                 goto out;
1851
1852         p = page_address(pages[0]);
1853         end = p + min(reply_len, (size_t)PAGE_SIZE);
1854         ret = decode_object_map_header(&p, end, &object_map_size);
1855         if (ret)
1856                 goto out;
1857
1858         if (object_map_size != num_objects) {
1859                 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1860                          object_map_size, num_objects);
1861                 ret = -EINVAL;
1862                 goto out;
1863         }
1864
1865         if (offset_in_page(p) + object_map_bytes > reply_len) {
1866                 ret = -EINVAL;
1867                 goto out;
1868         }
1869
1870         rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1871         if (!rbd_dev->object_map) {
1872                 ret = -ENOMEM;
1873                 goto out;
1874         }
1875
1876         rbd_dev->object_map_size = object_map_size;
1877         ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1878                                    offset_in_page(p), object_map_bytes);
1879
1880 out:
1881         ceph_release_page_vector(pages, num_pages);
1882         return ret;
1883 }
1884
1885 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1886 {
1887         kvfree(rbd_dev->object_map);
1888         rbd_dev->object_map = NULL;
1889         rbd_dev->object_map_size = 0;
1890 }
1891
1892 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1893 {
1894         int ret;
1895
1896         ret = __rbd_object_map_load(rbd_dev);
1897         if (ret)
1898                 return ret;
1899
1900         ret = rbd_dev_v2_get_flags(rbd_dev);
1901         if (ret) {
1902                 rbd_object_map_free(rbd_dev);
1903                 return ret;
1904         }
1905
1906         if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1907                 rbd_warn(rbd_dev, "object map is invalid");
1908
1909         return 0;
1910 }
1911
1912 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1913 {
1914         int ret;
1915
1916         ret = rbd_object_map_lock(rbd_dev);
1917         if (ret)
1918                 return ret;
1919
1920         ret = rbd_object_map_load(rbd_dev);
1921         if (ret) {
1922                 rbd_object_map_unlock(rbd_dev);
1923                 return ret;
1924         }
1925
1926         return 0;
1927 }
1928
1929 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1930 {
1931         rbd_object_map_free(rbd_dev);
1932         rbd_object_map_unlock(rbd_dev);
1933 }
1934
1935 /*
1936  * This function needs snap_id (or more precisely just something to
1937  * distinguish between HEAD and snapshot object maps), new_state and
1938  * current_state that were passed to rbd_object_map_update().
1939  *
1940  * To avoid allocating and stashing a context we piggyback on the OSD
1941  * request.  A HEAD update has two ops (assert_locked).  For new_state
1942  * and current_state we decode our own object_map_update op, encoded in
1943  * rbd_cls_object_map_update().
1944  */
1945 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1946                                         struct ceph_osd_request *osd_req)
1947 {
1948         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1949         struct ceph_osd_data *osd_data;
1950         u64 objno;
1951         u8 state, new_state, current_state;
1952         bool has_current_state;
1953         void *p;
1954
1955         if (osd_req->r_result)
1956                 return osd_req->r_result;
1957
1958         /*
1959          * Nothing to do for a snapshot object map.
1960          */
1961         if (osd_req->r_num_ops == 1)
1962                 return 0;
1963
1964         /*
1965          * Update in-memory HEAD object map.
1966          */
1967         rbd_assert(osd_req->r_num_ops == 2);
1968         osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1969         rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1970
1971         p = page_address(osd_data->pages[0]);
1972         objno = ceph_decode_64(&p);
1973         rbd_assert(objno == obj_req->ex.oe_objno);
1974         rbd_assert(ceph_decode_64(&p) == objno + 1);
1975         new_state = ceph_decode_8(&p);
1976         has_current_state = ceph_decode_8(&p);
1977         if (has_current_state)
1978                 current_state = ceph_decode_8(&p);
1979
1980         spin_lock(&rbd_dev->object_map_lock);
1981         state = __rbd_object_map_get(rbd_dev, objno);
1982         if (!has_current_state || current_state == state ||
1983             (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1984                 __rbd_object_map_set(rbd_dev, objno, new_state);
1985         spin_unlock(&rbd_dev->object_map_lock);
1986
1987         return 0;
1988 }
1989
1990 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1991 {
1992         struct rbd_obj_request *obj_req = osd_req->r_priv;
1993         int result;
1994
1995         dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1996              osd_req->r_result, obj_req);
1997
1998         result = rbd_object_map_update_finish(obj_req, osd_req);
1999         rbd_obj_handle_request(obj_req, result);
2000 }
2001
2002 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2003 {
2004         u8 state = rbd_object_map_get(rbd_dev, objno);
2005
2006         if (state == new_state ||
2007             (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2008             (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2009                 return false;
2010
2011         return true;
2012 }
2013
2014 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2015                                      int which, u64 objno, u8 new_state,
2016                                      const u8 *current_state)
2017 {
2018         struct page **pages;
2019         void *p, *start;
2020         int ret;
2021
2022         ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2023         if (ret)
2024                 return ret;
2025
2026         pages = ceph_alloc_page_vector(1, GFP_NOIO);
2027         if (IS_ERR(pages))
2028                 return PTR_ERR(pages);
2029
2030         p = start = page_address(pages[0]);
2031         ceph_encode_64(&p, objno);
2032         ceph_encode_64(&p, objno + 1);
2033         ceph_encode_8(&p, new_state);
2034         if (current_state) {
2035                 ceph_encode_8(&p, 1);
2036                 ceph_encode_8(&p, *current_state);
2037         } else {
2038                 ceph_encode_8(&p, 0);
2039         }
2040
2041         osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2042                                           false, true);
2043         return 0;
2044 }
2045
2046 /*
2047  * Return:
2048  *   0 - object map update sent
2049  *   1 - object map update isn't needed
2050  *  <0 - error
2051  */
2052 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2053                                  u8 new_state, const u8 *current_state)
2054 {
2055         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2056         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2057         struct ceph_osd_request *req;
2058         int num_ops = 1;
2059         int which = 0;
2060         int ret;
2061
2062         if (snap_id == CEPH_NOSNAP) {
2063                 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2064                         return 1;
2065
2066                 num_ops++; /* assert_locked */
2067         }
2068
2069         req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2070         if (!req)
2071                 return -ENOMEM;
2072
2073         list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2074         req->r_callback = rbd_object_map_callback;
2075         req->r_priv = obj_req;
2076
2077         rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2078         ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2079         req->r_flags = CEPH_OSD_FLAG_WRITE;
2080         ktime_get_real_ts64(&req->r_mtime);
2081
2082         if (snap_id == CEPH_NOSNAP) {
2083                 /*
2084                  * Protect against possible race conditions during lock
2085                  * ownership transitions.
2086                  */
2087                 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2088                                              CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2089                 if (ret)
2090                         return ret;
2091         }
2092
2093         ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2094                                         new_state, current_state);
2095         if (ret)
2096                 return ret;
2097
2098         ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2099         if (ret)
2100                 return ret;
2101
2102         ceph_osdc_start_request(osdc, req);
2103         return 0;
2104 }
2105
2106 static void prune_extents(struct ceph_file_extent *img_extents,
2107                           u32 *num_img_extents, u64 overlap)
2108 {
2109         u32 cnt = *num_img_extents;
2110
2111         /* drop extents completely beyond the overlap */
2112         while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2113                 cnt--;
2114
2115         if (cnt) {
2116                 struct ceph_file_extent *ex = &img_extents[cnt - 1];
2117
2118                 /* trim final overlapping extent */
2119                 if (ex->fe_off + ex->fe_len > overlap)
2120                         ex->fe_len = overlap - ex->fe_off;
2121         }
2122
2123         *num_img_extents = cnt;
2124 }
2125
2126 /*
2127  * Determine the byte range(s) covered by either just the object extent
2128  * or the entire object in the parent image.
2129  */
2130 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2131                                     bool entire)
2132 {
2133         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2134         int ret;
2135
2136         if (!rbd_dev->parent_overlap)
2137                 return 0;
2138
2139         ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2140                                   entire ? 0 : obj_req->ex.oe_off,
2141                                   entire ? rbd_dev->layout.object_size :
2142                                                         obj_req->ex.oe_len,
2143                                   &obj_req->img_extents,
2144                                   &obj_req->num_img_extents);
2145         if (ret)
2146                 return ret;
2147
2148         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2149                       rbd_dev->parent_overlap);
2150         return 0;
2151 }
2152
2153 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2154 {
2155         struct rbd_obj_request *obj_req = osd_req->r_priv;
2156
2157         switch (obj_req->img_request->data_type) {
2158         case OBJ_REQUEST_BIO:
2159                 osd_req_op_extent_osd_data_bio(osd_req, which,
2160                                                &obj_req->bio_pos,
2161                                                obj_req->ex.oe_len);
2162                 break;
2163         case OBJ_REQUEST_BVECS:
2164         case OBJ_REQUEST_OWN_BVECS:
2165                 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2166                                                         obj_req->ex.oe_len);
2167                 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2168                 osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2169                                                     &obj_req->bvec_pos);
2170                 break;
2171         default:
2172                 BUG();
2173         }
2174 }
2175
2176 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2177 {
2178         struct page **pages;
2179
2180         /*
2181          * The response data for a STAT call consists of:
2182          *     le64 length;
2183          *     struct {
2184          *         le32 tv_sec;
2185          *         le32 tv_nsec;
2186          *     } mtime;
2187          */
2188         pages = ceph_alloc_page_vector(1, GFP_NOIO);
2189         if (IS_ERR(pages))
2190                 return PTR_ERR(pages);
2191
2192         osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2193         osd_req_op_raw_data_in_pages(osd_req, which, pages,
2194                                      8 + sizeof(struct ceph_timespec),
2195                                      0, false, true);
2196         return 0;
2197 }
2198
2199 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2200                                 u32 bytes)
2201 {
2202         struct rbd_obj_request *obj_req = osd_req->r_priv;
2203         int ret;
2204
2205         ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2206         if (ret)
2207                 return ret;
2208
2209         osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2210                                           obj_req->copyup_bvec_count, bytes);
2211         return 0;
2212 }
2213
2214 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2215 {
2216         obj_req->read_state = RBD_OBJ_READ_START;
2217         return 0;
2218 }
2219
2220 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2221                                       int which)
2222 {
2223         struct rbd_obj_request *obj_req = osd_req->r_priv;
2224         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2225         u16 opcode;
2226
2227         if (!use_object_map(rbd_dev) ||
2228             !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2229                 osd_req_op_alloc_hint_init(osd_req, which++,
2230                                            rbd_dev->layout.object_size,
2231                                            rbd_dev->layout.object_size,
2232                                            rbd_dev->opts->alloc_hint_flags);
2233         }
2234
2235         if (rbd_obj_is_entire(obj_req))
2236                 opcode = CEPH_OSD_OP_WRITEFULL;
2237         else
2238                 opcode = CEPH_OSD_OP_WRITE;
2239
2240         osd_req_op_extent_init(osd_req, which, opcode,
2241                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2242         rbd_osd_setup_data(osd_req, which);
2243 }
2244
2245 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2246 {
2247         int ret;
2248
2249         /* reverse map the entire object onto the parent */
2250         ret = rbd_obj_calc_img_extents(obj_req, true);
2251         if (ret)
2252                 return ret;
2253
2254         obj_req->write_state = RBD_OBJ_WRITE_START;
2255         return 0;
2256 }
2257
2258 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2259 {
2260         return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2261                                           CEPH_OSD_OP_ZERO;
2262 }
2263
2264 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2265                                         int which)
2266 {
2267         struct rbd_obj_request *obj_req = osd_req->r_priv;
2268
2269         if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2270                 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2271                 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2272         } else {
2273                 osd_req_op_extent_init(osd_req, which,
2274                                        truncate_or_zero_opcode(obj_req),
2275                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
2276                                        0, 0);
2277         }
2278 }
2279
2280 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2281 {
2282         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2283         u64 off, next_off;
2284         int ret;
2285
2286         /*
2287          * Align the range to alloc_size boundary and punt on discards
2288          * that are too small to free up any space.
2289          *
2290          * alloc_size == object_size && is_tail() is a special case for
2291          * filestore with filestore_punch_hole = false, needed to allow
2292          * truncate (in addition to delete).
2293          */
2294         if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2295             !rbd_obj_is_tail(obj_req)) {
2296                 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2297                 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2298                                       rbd_dev->opts->alloc_size);
2299                 if (off >= next_off)
2300                         return 1;
2301
2302                 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2303                      obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2304                      off, next_off - off);
2305                 obj_req->ex.oe_off = off;
2306                 obj_req->ex.oe_len = next_off - off;
2307         }
2308
2309         /* reverse map the entire object onto the parent */
2310         ret = rbd_obj_calc_img_extents(obj_req, true);
2311         if (ret)
2312                 return ret;
2313
2314         obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2315         if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2316                 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2317
2318         obj_req->write_state = RBD_OBJ_WRITE_START;
2319         return 0;
2320 }
2321
2322 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2323                                         int which)
2324 {
2325         struct rbd_obj_request *obj_req = osd_req->r_priv;
2326         u16 opcode;
2327
2328         if (rbd_obj_is_entire(obj_req)) {
2329                 if (obj_req->num_img_extents) {
2330                         if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2331                                 osd_req_op_init(osd_req, which++,
2332                                                 CEPH_OSD_OP_CREATE, 0);
2333                         opcode = CEPH_OSD_OP_TRUNCATE;
2334                 } else {
2335                         rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2336                         osd_req_op_init(osd_req, which++,
2337                                         CEPH_OSD_OP_DELETE, 0);
2338                         opcode = 0;
2339                 }
2340         } else {
2341                 opcode = truncate_or_zero_opcode(obj_req);
2342         }
2343
2344         if (opcode)
2345                 osd_req_op_extent_init(osd_req, which, opcode,
2346                                        obj_req->ex.oe_off, obj_req->ex.oe_len,
2347                                        0, 0);
2348 }
2349
2350 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2351 {
2352         int ret;
2353
2354         /* reverse map the entire object onto the parent */
2355         ret = rbd_obj_calc_img_extents(obj_req, true);
2356         if (ret)
2357                 return ret;
2358
2359         if (!obj_req->num_img_extents) {
2360                 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2361                 if (rbd_obj_is_entire(obj_req))
2362                         obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2363         }
2364
2365         obj_req->write_state = RBD_OBJ_WRITE_START;
2366         return 0;
2367 }
2368
2369 static int count_write_ops(struct rbd_obj_request *obj_req)
2370 {
2371         struct rbd_img_request *img_req = obj_req->img_request;
2372
2373         switch (img_req->op_type) {
2374         case OBJ_OP_WRITE:
2375                 if (!use_object_map(img_req->rbd_dev) ||
2376                     !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2377                         return 2; /* setallochint + write/writefull */
2378
2379                 return 1; /* write/writefull */
2380         case OBJ_OP_DISCARD:
2381                 return 1; /* delete/truncate/zero */
2382         case OBJ_OP_ZEROOUT:
2383                 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2384                     !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2385                         return 2; /* create + truncate */
2386
2387                 return 1; /* delete/truncate/zero */
2388         default:
2389                 BUG();
2390         }
2391 }
2392
2393 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2394                                     int which)
2395 {
2396         struct rbd_obj_request *obj_req = osd_req->r_priv;
2397
2398         switch (obj_req->img_request->op_type) {
2399         case OBJ_OP_WRITE:
2400                 __rbd_osd_setup_write_ops(osd_req, which);
2401                 break;
2402         case OBJ_OP_DISCARD:
2403                 __rbd_osd_setup_discard_ops(osd_req, which);
2404                 break;
2405         case OBJ_OP_ZEROOUT:
2406                 __rbd_osd_setup_zeroout_ops(osd_req, which);
2407                 break;
2408         default:
2409                 BUG();
2410         }
2411 }
2412
2413 /*
2414  * Prune the list of object requests (adjust offset and/or length, drop
2415  * redundant requests).  Prepare object request state machines and image
2416  * request state machine for execution.
2417  */
2418 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2419 {
2420         struct rbd_obj_request *obj_req, *next_obj_req;
2421         int ret;
2422
2423         for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2424                 switch (img_req->op_type) {
2425                 case OBJ_OP_READ:
2426                         ret = rbd_obj_init_read(obj_req);
2427                         break;
2428                 case OBJ_OP_WRITE:
2429                         ret = rbd_obj_init_write(obj_req);
2430                         break;
2431                 case OBJ_OP_DISCARD:
2432                         ret = rbd_obj_init_discard(obj_req);
2433                         break;
2434                 case OBJ_OP_ZEROOUT:
2435                         ret = rbd_obj_init_zeroout(obj_req);
2436                         break;
2437                 default:
2438                         BUG();
2439                 }
2440                 if (ret < 0)
2441                         return ret;
2442                 if (ret > 0) {
2443                         rbd_img_obj_request_del(img_req, obj_req);
2444                         continue;
2445                 }
2446         }
2447
2448         img_req->state = RBD_IMG_START;
2449         return 0;
2450 }
2451
2452 union rbd_img_fill_iter {
2453         struct ceph_bio_iter    bio_iter;
2454         struct ceph_bvec_iter   bvec_iter;
2455 };
2456
2457 struct rbd_img_fill_ctx {
2458         enum obj_request_type   pos_type;
2459         union rbd_img_fill_iter *pos;
2460         union rbd_img_fill_iter iter;
2461         ceph_object_extent_fn_t set_pos_fn;
2462         ceph_object_extent_fn_t count_fn;
2463         ceph_object_extent_fn_t copy_fn;
2464 };
2465
2466 static struct ceph_object_extent *alloc_object_extent(void *arg)
2467 {
2468         struct rbd_img_request *img_req = arg;
2469         struct rbd_obj_request *obj_req;
2470
2471         obj_req = rbd_obj_request_create();
2472         if (!obj_req)
2473                 return NULL;
2474
2475         rbd_img_obj_request_add(img_req, obj_req);
2476         return &obj_req->ex;
2477 }
2478
2479 /*
2480  * While su != os && sc == 1 is technically not fancy (it's the same
2481  * layout as su == os && sc == 1), we can't use the nocopy path for it
2482  * because ->set_pos_fn() should be called only once per object.
2483  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2484  * treat su != os && sc == 1 as fancy.
2485  */
2486 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2487 {
2488         return l->stripe_unit != l->object_size;
2489 }
2490
2491 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2492                                        struct ceph_file_extent *img_extents,
2493                                        u32 num_img_extents,
2494                                        struct rbd_img_fill_ctx *fctx)
2495 {
2496         u32 i;
2497         int ret;
2498
2499         img_req->data_type = fctx->pos_type;
2500
2501         /*
2502          * Create object requests and set each object request's starting
2503          * position in the provided bio (list) or bio_vec array.
2504          */
2505         fctx->iter = *fctx->pos;
2506         for (i = 0; i < num_img_extents; i++) {
2507                 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2508                                            img_extents[i].fe_off,
2509                                            img_extents[i].fe_len,
2510                                            &img_req->object_extents,
2511                                            alloc_object_extent, img_req,
2512                                            fctx->set_pos_fn, &fctx->iter);
2513                 if (ret)
2514                         return ret;
2515         }
2516
2517         return __rbd_img_fill_request(img_req);
2518 }
2519
2520 /*
2521  * Map a list of image extents to a list of object extents, create the
2522  * corresponding object requests (normally each to a different object,
2523  * but not always) and add them to @img_req.  For each object request,
2524  * set up its data descriptor to point to the corresponding chunk(s) of
2525  * @fctx->pos data buffer.
2526  *
2527  * Because ceph_file_to_extents() will merge adjacent object extents
2528  * together, each object request's data descriptor may point to multiple
2529  * different chunks of @fctx->pos data buffer.
2530  *
2531  * @fctx->pos data buffer is assumed to be large enough.
2532  */
2533 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2534                                 struct ceph_file_extent *img_extents,
2535                                 u32 num_img_extents,
2536                                 struct rbd_img_fill_ctx *fctx)
2537 {
2538         struct rbd_device *rbd_dev = img_req->rbd_dev;
2539         struct rbd_obj_request *obj_req;
2540         u32 i;
2541         int ret;
2542
2543         if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2544             !rbd_layout_is_fancy(&rbd_dev->layout))
2545                 return rbd_img_fill_request_nocopy(img_req, img_extents,
2546                                                    num_img_extents, fctx);
2547
2548         img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2549
2550         /*
2551          * Create object requests and determine ->bvec_count for each object
2552          * request.  Note that ->bvec_count sum over all object requests may
2553          * be greater than the number of bio_vecs in the provided bio (list)
2554          * or bio_vec array because when mapped, those bio_vecs can straddle
2555          * stripe unit boundaries.
2556          */
2557         fctx->iter = *fctx->pos;
2558         for (i = 0; i < num_img_extents; i++) {
2559                 ret = ceph_file_to_extents(&rbd_dev->layout,
2560                                            img_extents[i].fe_off,
2561                                            img_extents[i].fe_len,
2562                                            &img_req->object_extents,
2563                                            alloc_object_extent, img_req,
2564                                            fctx->count_fn, &fctx->iter);
2565                 if (ret)
2566                         return ret;
2567         }
2568
2569         for_each_obj_request(img_req, obj_req) {
2570                 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2571                                               sizeof(*obj_req->bvec_pos.bvecs),
2572                                               GFP_NOIO);
2573                 if (!obj_req->bvec_pos.bvecs)
2574                         return -ENOMEM;
2575         }
2576
2577         /*
2578          * Fill in each object request's private bio_vec array, splitting and
2579          * rearranging the provided bio_vecs in stripe unit chunks as needed.
2580          */
2581         fctx->iter = *fctx->pos;
2582         for (i = 0; i < num_img_extents; i++) {
2583                 ret = ceph_iterate_extents(&rbd_dev->layout,
2584                                            img_extents[i].fe_off,
2585                                            img_extents[i].fe_len,
2586                                            &img_req->object_extents,
2587                                            fctx->copy_fn, &fctx->iter);
2588                 if (ret)
2589                         return ret;
2590         }
2591
2592         return __rbd_img_fill_request(img_req);
2593 }
2594
2595 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2596                                u64 off, u64 len)
2597 {
2598         struct ceph_file_extent ex = { off, len };
2599         union rbd_img_fill_iter dummy = {};
2600         struct rbd_img_fill_ctx fctx = {
2601                 .pos_type = OBJ_REQUEST_NODATA,
2602                 .pos = &dummy,
2603         };
2604
2605         return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2606 }
2607
2608 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2609 {
2610         struct rbd_obj_request *obj_req =
2611             container_of(ex, struct rbd_obj_request, ex);
2612         struct ceph_bio_iter *it = arg;
2613
2614         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2615         obj_req->bio_pos = *it;
2616         ceph_bio_iter_advance(it, bytes);
2617 }
2618
2619 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2620 {
2621         struct rbd_obj_request *obj_req =
2622             container_of(ex, struct rbd_obj_request, ex);
2623         struct ceph_bio_iter *it = arg;
2624
2625         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2626         ceph_bio_iter_advance_step(it, bytes, ({
2627                 obj_req->bvec_count++;
2628         }));
2629
2630 }
2631
2632 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2633 {
2634         struct rbd_obj_request *obj_req =
2635             container_of(ex, struct rbd_obj_request, ex);
2636         struct ceph_bio_iter *it = arg;
2637
2638         dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2639         ceph_bio_iter_advance_step(it, bytes, ({
2640                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2641                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2642         }));
2643 }
2644
2645 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2646                                    struct ceph_file_extent *img_extents,
2647                                    u32 num_img_extents,
2648                                    struct ceph_bio_iter *bio_pos)
2649 {
2650         struct rbd_img_fill_ctx fctx = {
2651                 .pos_type = OBJ_REQUEST_BIO,
2652                 .pos = (union rbd_img_fill_iter *)bio_pos,
2653                 .set_pos_fn = set_bio_pos,
2654                 .count_fn = count_bio_bvecs,
2655                 .copy_fn = copy_bio_bvecs,
2656         };
2657
2658         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2659                                     &fctx);
2660 }
2661
2662 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2663                                  u64 off, u64 len, struct bio *bio)
2664 {
2665         struct ceph_file_extent ex = { off, len };
2666         struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2667
2668         return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2669 }
2670
2671 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2672 {
2673         struct rbd_obj_request *obj_req =
2674             container_of(ex, struct rbd_obj_request, ex);
2675         struct ceph_bvec_iter *it = arg;
2676
2677         obj_req->bvec_pos = *it;
2678         ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2679         ceph_bvec_iter_advance(it, bytes);
2680 }
2681
2682 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2683 {
2684         struct rbd_obj_request *obj_req =
2685             container_of(ex, struct rbd_obj_request, ex);
2686         struct ceph_bvec_iter *it = arg;
2687
2688         ceph_bvec_iter_advance_step(it, bytes, ({
2689                 obj_req->bvec_count++;
2690         }));
2691 }
2692
2693 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2694 {
2695         struct rbd_obj_request *obj_req =
2696             container_of(ex, struct rbd_obj_request, ex);
2697         struct ceph_bvec_iter *it = arg;
2698
2699         ceph_bvec_iter_advance_step(it, bytes, ({
2700                 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2701                 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2702         }));
2703 }
2704
2705 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2706                                      struct ceph_file_extent *img_extents,
2707                                      u32 num_img_extents,
2708                                      struct ceph_bvec_iter *bvec_pos)
2709 {
2710         struct rbd_img_fill_ctx fctx = {
2711                 .pos_type = OBJ_REQUEST_BVECS,
2712                 .pos = (union rbd_img_fill_iter *)bvec_pos,
2713                 .set_pos_fn = set_bvec_pos,
2714                 .count_fn = count_bvecs,
2715                 .copy_fn = copy_bvecs,
2716         };
2717
2718         return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2719                                     &fctx);
2720 }
2721
2722 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2723                                    struct ceph_file_extent *img_extents,
2724                                    u32 num_img_extents,
2725                                    struct bio_vec *bvecs)
2726 {
2727         struct ceph_bvec_iter it = {
2728                 .bvecs = bvecs,
2729                 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2730                                                              num_img_extents) },
2731         };
2732
2733         return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2734                                          &it);
2735 }
2736
2737 static void rbd_img_handle_request_work(struct work_struct *work)
2738 {
2739         struct rbd_img_request *img_req =
2740             container_of(work, struct rbd_img_request, work);
2741
2742         rbd_img_handle_request(img_req, img_req->work_result);
2743 }
2744
2745 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2746 {
2747         INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2748         img_req->work_result = result;
2749         queue_work(rbd_wq, &img_req->work);
2750 }
2751
2752 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2753 {
2754         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2755
2756         if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2757                 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2758                 return true;
2759         }
2760
2761         dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2762              obj_req->ex.oe_objno);
2763         return false;
2764 }
2765
2766 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2767 {
2768         struct ceph_osd_request *osd_req;
2769         int ret;
2770
2771         osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2772         if (IS_ERR(osd_req))
2773                 return PTR_ERR(osd_req);
2774
2775         osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2776                                obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2777         rbd_osd_setup_data(osd_req, 0);
2778         rbd_osd_format_read(osd_req);
2779
2780         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2781         if (ret)
2782                 return ret;
2783
2784         rbd_osd_submit(osd_req);
2785         return 0;
2786 }
2787
2788 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2789 {
2790         struct rbd_img_request *img_req = obj_req->img_request;
2791         struct rbd_device *parent = img_req->rbd_dev->parent;
2792         struct rbd_img_request *child_img_req;
2793         int ret;
2794
2795         child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2796         if (!child_img_req)
2797                 return -ENOMEM;
2798
2799         rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2800         __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2801         child_img_req->obj_request = obj_req;
2802
2803         down_read(&parent->header_rwsem);
2804         rbd_img_capture_header(child_img_req);
2805         up_read(&parent->header_rwsem);
2806
2807         dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2808              obj_req);
2809
2810         if (!rbd_img_is_write(img_req)) {
2811                 switch (img_req->data_type) {
2812                 case OBJ_REQUEST_BIO:
2813                         ret = __rbd_img_fill_from_bio(child_img_req,
2814                                                       obj_req->img_extents,
2815                                                       obj_req->num_img_extents,
2816                                                       &obj_req->bio_pos);
2817                         break;
2818                 case OBJ_REQUEST_BVECS:
2819                 case OBJ_REQUEST_OWN_BVECS:
2820                         ret = __rbd_img_fill_from_bvecs(child_img_req,
2821                                                       obj_req->img_extents,
2822                                                       obj_req->num_img_extents,
2823                                                       &obj_req->bvec_pos);
2824                         break;
2825                 default:
2826                         BUG();
2827                 }
2828         } else {
2829                 ret = rbd_img_fill_from_bvecs(child_img_req,
2830                                               obj_req->img_extents,
2831                                               obj_req->num_img_extents,
2832                                               obj_req->copyup_bvecs);
2833         }
2834         if (ret) {
2835                 rbd_img_request_destroy(child_img_req);
2836                 return ret;
2837         }
2838
2839         /* avoid parent chain recursion */
2840         rbd_img_schedule(child_img_req, 0);
2841         return 0;
2842 }
2843
2844 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2845 {
2846         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2847         int ret;
2848
2849 again:
2850         switch (obj_req->read_state) {
2851         case RBD_OBJ_READ_START:
2852                 rbd_assert(!*result);
2853
2854                 if (!rbd_obj_may_exist(obj_req)) {
2855                         *result = -ENOENT;
2856                         obj_req->read_state = RBD_OBJ_READ_OBJECT;
2857                         goto again;
2858                 }
2859
2860                 ret = rbd_obj_read_object(obj_req);
2861                 if (ret) {
2862                         *result = ret;
2863                         return true;
2864                 }
2865                 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2866                 return false;
2867         case RBD_OBJ_READ_OBJECT:
2868                 if (*result == -ENOENT && rbd_dev->parent_overlap) {
2869                         /* reverse map this object extent onto the parent */
2870                         ret = rbd_obj_calc_img_extents(obj_req, false);
2871                         if (ret) {
2872                                 *result = ret;
2873                                 return true;
2874                         }
2875                         if (obj_req->num_img_extents) {
2876                                 ret = rbd_obj_read_from_parent(obj_req);
2877                                 if (ret) {
2878                                         *result = ret;
2879                                         return true;
2880                                 }
2881                                 obj_req->read_state = RBD_OBJ_READ_PARENT;
2882                                 return false;
2883                         }
2884                 }
2885
2886                 /*
2887                  * -ENOENT means a hole in the image -- zero-fill the entire
2888                  * length of the request.  A short read also implies zero-fill
2889                  * to the end of the request.
2890                  */
2891                 if (*result == -ENOENT) {
2892                         rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2893                         *result = 0;
2894                 } else if (*result >= 0) {
2895                         if (*result < obj_req->ex.oe_len)
2896                                 rbd_obj_zero_range(obj_req, *result,
2897                                                 obj_req->ex.oe_len - *result);
2898                         else
2899                                 rbd_assert(*result == obj_req->ex.oe_len);
2900                         *result = 0;
2901                 }
2902                 return true;
2903         case RBD_OBJ_READ_PARENT:
2904                 /*
2905                  * The parent image is read only up to the overlap -- zero-fill
2906                  * from the overlap to the end of the request.
2907                  */
2908                 if (!*result) {
2909                         u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2910
2911                         if (obj_overlap < obj_req->ex.oe_len)
2912                                 rbd_obj_zero_range(obj_req, obj_overlap,
2913                                             obj_req->ex.oe_len - obj_overlap);
2914                 }
2915                 return true;
2916         default:
2917                 BUG();
2918         }
2919 }
2920
2921 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2922 {
2923         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2924
2925         if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2926                 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2927
2928         if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2929             (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2930                 dout("%s %p noop for nonexistent\n", __func__, obj_req);
2931                 return true;
2932         }
2933
2934         return false;
2935 }
2936
2937 /*
2938  * Return:
2939  *   0 - object map update sent
2940  *   1 - object map update isn't needed
2941  *  <0 - error
2942  */
2943 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2944 {
2945         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2946         u8 new_state;
2947
2948         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2949                 return 1;
2950
2951         if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2952                 new_state = OBJECT_PENDING;
2953         else
2954                 new_state = OBJECT_EXISTS;
2955
2956         return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2957 }
2958
2959 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2960 {
2961         struct ceph_osd_request *osd_req;
2962         int num_ops = count_write_ops(obj_req);
2963         int which = 0;
2964         int ret;
2965
2966         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2967                 num_ops++; /* stat */
2968
2969         osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2970         if (IS_ERR(osd_req))
2971                 return PTR_ERR(osd_req);
2972
2973         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2974                 ret = rbd_osd_setup_stat(osd_req, which++);
2975                 if (ret)
2976                         return ret;
2977         }
2978
2979         rbd_osd_setup_write_ops(osd_req, which);
2980         rbd_osd_format_write(osd_req);
2981
2982         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2983         if (ret)
2984                 return ret;
2985
2986         rbd_osd_submit(osd_req);
2987         return 0;
2988 }
2989
2990 /*
2991  * copyup_bvecs pages are never highmem pages
2992  */
2993 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2994 {
2995         struct ceph_bvec_iter it = {
2996                 .bvecs = bvecs,
2997                 .iter = { .bi_size = bytes },
2998         };
2999
3000         ceph_bvec_iter_advance_step(&it, bytes, ({
3001                 if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
3002                         return false;
3003         }));
3004         return true;
3005 }
3006
3007 #define MODS_ONLY       U32_MAX
3008
3009 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3010                                       u32 bytes)
3011 {
3012         struct ceph_osd_request *osd_req;
3013         int ret;
3014
3015         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3016         rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3017
3018         osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3019         if (IS_ERR(osd_req))
3020                 return PTR_ERR(osd_req);
3021
3022         ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3023         if (ret)
3024                 return ret;
3025
3026         rbd_osd_format_write(osd_req);
3027
3028         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3029         if (ret)
3030                 return ret;
3031
3032         rbd_osd_submit(osd_req);
3033         return 0;
3034 }
3035
3036 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3037                                         u32 bytes)
3038 {
3039         struct ceph_osd_request *osd_req;
3040         int num_ops = count_write_ops(obj_req);
3041         int which = 0;
3042         int ret;
3043
3044         dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3045
3046         if (bytes != MODS_ONLY)
3047                 num_ops++; /* copyup */
3048
3049         osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3050         if (IS_ERR(osd_req))
3051                 return PTR_ERR(osd_req);
3052
3053         if (bytes != MODS_ONLY) {
3054                 ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3055                 if (ret)
3056                         return ret;
3057         }
3058
3059         rbd_osd_setup_write_ops(osd_req, which);
3060         rbd_osd_format_write(osd_req);
3061
3062         ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3063         if (ret)
3064                 return ret;
3065
3066         rbd_osd_submit(osd_req);
3067         return 0;
3068 }
3069
3070 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3071 {
3072         u32 i;
3073
3074         rbd_assert(!obj_req->copyup_bvecs);
3075         obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3076         obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3077                                         sizeof(*obj_req->copyup_bvecs),
3078                                         GFP_NOIO);
3079         if (!obj_req->copyup_bvecs)
3080                 return -ENOMEM;
3081
3082         for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3083                 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3084                 struct page *page = alloc_page(GFP_NOIO);
3085
3086                 if (!page)
3087                         return -ENOMEM;
3088
3089                 bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0);
3090                 obj_overlap -= len;
3091         }
3092
3093         rbd_assert(!obj_overlap);
3094         return 0;
3095 }
3096
3097 /*
3098  * The target object doesn't exist.  Read the data for the entire
3099  * target object up to the overlap point (if any) from the parent,
3100  * so we can use it for a copyup.
3101  */
3102 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3103 {
3104         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3105         int ret;
3106
3107         rbd_assert(obj_req->num_img_extents);
3108         prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3109                       rbd_dev->parent_overlap);
3110         if (!obj_req->num_img_extents) {
3111                 /*
3112                  * The overlap has become 0 (most likely because the
3113                  * image has been flattened).  Re-submit the original write
3114                  * request -- pass MODS_ONLY since the copyup isn't needed
3115                  * anymore.
3116                  */
3117                 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3118         }
3119
3120         ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3121         if (ret)
3122                 return ret;
3123
3124         return rbd_obj_read_from_parent(obj_req);
3125 }
3126
3127 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3128 {
3129         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3130         struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3131         u8 new_state;
3132         u32 i;
3133         int ret;
3134
3135         rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3136
3137         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3138                 return;
3139
3140         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3141                 return;
3142
3143         for (i = 0; i < snapc->num_snaps; i++) {
3144                 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3145                     i + 1 < snapc->num_snaps)
3146                         new_state = OBJECT_EXISTS_CLEAN;
3147                 else
3148                         new_state = OBJECT_EXISTS;
3149
3150                 ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3151                                             new_state, NULL);
3152                 if (ret < 0) {
3153                         obj_req->pending.result = ret;
3154                         return;
3155                 }
3156
3157                 rbd_assert(!ret);
3158                 obj_req->pending.num_pending++;
3159         }
3160 }
3161
3162 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3163 {
3164         u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3165         int ret;
3166
3167         rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3168
3169         /*
3170          * Only send non-zero copyup data to save some I/O and network
3171          * bandwidth -- zero copyup data is equivalent to the object not
3172          * existing.
3173          */
3174         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3175                 bytes = 0;
3176
3177         if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3178                 /*
3179                  * Send a copyup request with an empty snapshot context to
3180                  * deep-copyup the object through all existing snapshots.
3181                  * A second request with the current snapshot context will be
3182                  * sent for the actual modification.
3183                  */
3184                 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3185                 if (ret) {
3186                         obj_req->pending.result = ret;
3187                         return;
3188                 }
3189
3190                 obj_req->pending.num_pending++;
3191                 bytes = MODS_ONLY;
3192         }
3193
3194         ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3195         if (ret) {
3196                 obj_req->pending.result = ret;
3197                 return;
3198         }
3199
3200         obj_req->pending.num_pending++;
3201 }
3202
3203 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3204 {
3205         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3206         int ret;
3207
3208 again:
3209         switch (obj_req->copyup_state) {
3210         case RBD_OBJ_COPYUP_START:
3211                 rbd_assert(!*result);
3212
3213                 ret = rbd_obj_copyup_read_parent(obj_req);
3214                 if (ret) {
3215                         *result = ret;
3216                         return true;
3217                 }
3218                 if (obj_req->num_img_extents)
3219                         obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3220                 else
3221                         obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3222                 return false;
3223         case RBD_OBJ_COPYUP_READ_PARENT:
3224                 if (*result)
3225                         return true;
3226
3227                 if (is_zero_bvecs(obj_req->copyup_bvecs,
3228                                   rbd_obj_img_extents_bytes(obj_req))) {
3229                         dout("%s %p detected zeros\n", __func__, obj_req);
3230                         obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3231                 }
3232
3233                 rbd_obj_copyup_object_maps(obj_req);
3234                 if (!obj_req->pending.num_pending) {
3235                         *result = obj_req->pending.result;
3236                         obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3237                         goto again;
3238                 }
3239                 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3240                 return false;
3241         case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3242                 if (!pending_result_dec(&obj_req->pending, result))
3243                         return false;
3244                 fallthrough;
3245         case RBD_OBJ_COPYUP_OBJECT_MAPS:
3246                 if (*result) {
3247                         rbd_warn(rbd_dev, "snap object map update failed: %d",
3248                                  *result);
3249                         return true;
3250                 }
3251
3252                 rbd_obj_copyup_write_object(obj_req);
3253                 if (!obj_req->pending.num_pending) {
3254                         *result = obj_req->pending.result;
3255                         obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3256                         goto again;
3257                 }
3258                 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3259                 return false;
3260         case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3261                 if (!pending_result_dec(&obj_req->pending, result))
3262                         return false;
3263                 fallthrough;
3264         case RBD_OBJ_COPYUP_WRITE_OBJECT:
3265                 return true;
3266         default:
3267                 BUG();
3268         }
3269 }
3270
3271 /*
3272  * Return:
3273  *   0 - object map update sent
3274  *   1 - object map update isn't needed
3275  *  <0 - error
3276  */
3277 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3278 {
3279         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3280         u8 current_state = OBJECT_PENDING;
3281
3282         if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3283                 return 1;
3284
3285         if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3286                 return 1;
3287
3288         return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3289                                      &current_state);
3290 }
3291
3292 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3293 {
3294         struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3295         int ret;
3296
3297 again:
3298         switch (obj_req->write_state) {
3299         case RBD_OBJ_WRITE_START:
3300                 rbd_assert(!*result);
3301
3302                 rbd_obj_set_copyup_enabled(obj_req);
3303                 if (rbd_obj_write_is_noop(obj_req))
3304                         return true;
3305
3306                 ret = rbd_obj_write_pre_object_map(obj_req);
3307                 if (ret < 0) {
3308                         *result = ret;
3309                         return true;
3310                 }
3311                 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3312                 if (ret > 0)
3313                         goto again;
3314                 return false;
3315         case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3316                 if (*result) {
3317                         rbd_warn(rbd_dev, "pre object map update failed: %d",
3318                                  *result);
3319                         return true;
3320                 }
3321                 ret = rbd_obj_write_object(obj_req);
3322                 if (ret) {
3323                         *result = ret;
3324                         return true;
3325                 }
3326                 obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3327                 return false;
3328         case RBD_OBJ_WRITE_OBJECT:
3329                 if (*result == -ENOENT) {
3330                         if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3331                                 *result = 0;
3332                                 obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3333                                 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3334                                 goto again;
3335                         }
3336                         /*
3337                          * On a non-existent object:
3338                          *   delete - -ENOENT, truncate/zero - 0
3339                          */
3340                         if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3341                                 *result = 0;
3342                 }
3343                 if (*result)
3344                         return true;
3345
3346                 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3347                 goto again;
3348         case __RBD_OBJ_WRITE_COPYUP:
3349                 if (!rbd_obj_advance_copyup(obj_req, result))
3350                         return false;
3351                 fallthrough;
3352         case RBD_OBJ_WRITE_COPYUP:
3353                 if (*result) {
3354                         rbd_warn(rbd_dev, "copyup failed: %d", *result);
3355                         return true;
3356                 }
3357                 ret = rbd_obj_write_post_object_map(obj_req);
3358                 if (ret < 0) {
3359                         *result = ret;
3360                         return true;
3361                 }
3362                 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3363                 if (ret > 0)
3364                         goto again;
3365                 return false;
3366         case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3367                 if (*result)
3368                         rbd_warn(rbd_dev, "post object map update failed: %d",
3369                                  *result);
3370                 return true;
3371         default:
3372                 BUG();
3373         }
3374 }
3375
3376 /*
3377  * Return true if @obj_req is completed.
3378  */
3379 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3380                                      int *result)
3381 {
3382         struct rbd_img_request *img_req = obj_req->img_request;
3383         struct rbd_device *rbd_dev = img_req->rbd_dev;
3384         bool done;
3385
3386         mutex_lock(&obj_req->state_mutex);
3387         if (!rbd_img_is_write(img_req))
3388                 done = rbd_obj_advance_read(obj_req, result);
3389         else
3390                 done = rbd_obj_advance_write(obj_req, result);
3391         mutex_unlock(&obj_req->state_mutex);
3392
3393         if (done && *result) {
3394                 rbd_assert(*result < 0);
3395                 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3396                          obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3397                          obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3398         }
3399         return done;
3400 }
3401
3402 /*
3403  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3404  * recursion.
3405  */
3406 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3407 {
3408         if (__rbd_obj_handle_request(obj_req, &result))
3409                 rbd_img_handle_request(obj_req->img_request, result);
3410 }
3411
3412 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3413 {
3414         struct rbd_device *rbd_dev = img_req->rbd_dev;
3415
3416         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3417                 return false;
3418
3419         if (rbd_is_ro(rbd_dev))
3420                 return false;
3421
3422         rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3423         if (rbd_dev->opts->lock_on_read ||
3424             (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3425                 return true;
3426
3427         return rbd_img_is_write(img_req);
3428 }
3429
3430 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3431 {
3432         struct rbd_device *rbd_dev = img_req->rbd_dev;
3433         bool locked;
3434
3435         lockdep_assert_held(&rbd_dev->lock_rwsem);
3436         locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3437         spin_lock(&rbd_dev->lock_lists_lock);
3438         rbd_assert(list_empty(&img_req->lock_item));
3439         if (!locked)
3440                 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3441         else
3442                 list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3443         spin_unlock(&rbd_dev->lock_lists_lock);
3444         return locked;
3445 }
3446
3447 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3448 {
3449         struct rbd_device *rbd_dev = img_req->rbd_dev;
3450         bool need_wakeup;
3451
3452         lockdep_assert_held(&rbd_dev->lock_rwsem);
3453         spin_lock(&rbd_dev->lock_lists_lock);
3454         rbd_assert(!list_empty(&img_req->lock_item));
3455         list_del_init(&img_req->lock_item);
3456         need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3457                        list_empty(&rbd_dev->running_list));
3458         spin_unlock(&rbd_dev->lock_lists_lock);
3459         if (need_wakeup)
3460                 complete(&rbd_dev->releasing_wait);
3461 }
3462
3463 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3464 {
3465         struct rbd_device *rbd_dev = img_req->rbd_dev;
3466
3467         if (!need_exclusive_lock(img_req))
3468                 return 1;
3469
3470         if (rbd_lock_add_request(img_req))
3471                 return 1;
3472
3473         if (rbd_dev->opts->exclusive) {
3474                 WARN_ON(1); /* lock got released? */
3475                 return -EROFS;
3476         }
3477
3478         /*
3479          * Note the use of mod_delayed_work() in rbd_acquire_lock()
3480          * and cancel_delayed_work() in wake_lock_waiters().
3481          */
3482         dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3483         queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3484         return 0;
3485 }
3486
3487 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3488 {
3489         struct rbd_device *rbd_dev = img_req->rbd_dev;
3490         struct rbd_obj_request *obj_req;
3491
3492         rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3493         rbd_assert(!need_exclusive_lock(img_req) ||
3494                    __rbd_is_lock_owner(rbd_dev));
3495
3496         if (rbd_img_is_write(img_req)) {
3497                 rbd_assert(!img_req->snapc);
3498                 down_read(&rbd_dev->header_rwsem);
3499                 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
3500                 up_read(&rbd_dev->header_rwsem);
3501         }
3502
3503         for_each_obj_request(img_req, obj_req) {
3504                 int result = 0;
3505
3506                 if (__rbd_obj_handle_request(obj_req, &result)) {
3507                         if (result) {
3508                                 img_req->pending.result = result;
3509                                 return;
3510                         }
3511                 } else {
3512                         img_req->pending.num_pending++;
3513                 }
3514         }
3515 }
3516
3517 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3518 {
3519         int ret;
3520
3521 again:
3522         switch (img_req->state) {
3523         case RBD_IMG_START:
3524                 rbd_assert(!*result);
3525
3526                 ret = rbd_img_exclusive_lock(img_req);
3527                 if (ret < 0) {
3528                         *result = ret;
3529                         return true;
3530                 }
3531                 img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3532                 if (ret > 0)
3533                         goto again;
3534                 return false;
3535         case RBD_IMG_EXCLUSIVE_LOCK:
3536                 if (*result)
3537                         return true;
3538
3539                 rbd_img_object_requests(img_req);
3540                 if (!img_req->pending.num_pending) {
3541                         *result = img_req->pending.result;
3542                         img_req->state = RBD_IMG_OBJECT_REQUESTS;
3543                         goto again;
3544                 }
3545                 img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3546                 return false;
3547         case __RBD_IMG_OBJECT_REQUESTS:
3548                 if (!pending_result_dec(&img_req->pending, result))
3549                         return false;
3550                 fallthrough;
3551         case RBD_IMG_OBJECT_REQUESTS:
3552                 return true;
3553         default:
3554                 BUG();
3555         }
3556 }
3557
3558 /*
3559  * Return true if @img_req is completed.
3560  */
3561 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3562                                      int *result)
3563 {
3564         struct rbd_device *rbd_dev = img_req->rbd_dev;
3565         bool done;
3566
3567         if (need_exclusive_lock(img_req)) {
3568                 down_read(&rbd_dev->lock_rwsem);
3569                 mutex_lock(&img_req->state_mutex);
3570                 done = rbd_img_advance(img_req, result);
3571                 if (done)
3572                         rbd_lock_del_request(img_req);
3573                 mutex_unlock(&img_req->state_mutex);
3574                 up_read(&rbd_dev->lock_rwsem);
3575         } else {
3576                 mutex_lock(&img_req->state_mutex);
3577                 done = rbd_img_advance(img_req, result);
3578                 mutex_unlock(&img_req->state_mutex);
3579         }
3580
3581         if (done && *result) {
3582                 rbd_assert(*result < 0);
3583                 rbd_warn(rbd_dev, "%s%s result %d",
3584                       test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3585                       obj_op_name(img_req->op_type), *result);
3586         }
3587         return done;
3588 }
3589
3590 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3591 {
3592 again:
3593         if (!__rbd_img_handle_request(img_req, &result))
3594                 return;
3595
3596         if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3597                 struct rbd_obj_request *obj_req = img_req->obj_request;
3598
3599                 rbd_img_request_destroy(img_req);
3600                 if (__rbd_obj_handle_request(obj_req, &result)) {
3601                         img_req = obj_req->img_request;
3602                         goto again;
3603                 }
3604         } else {
3605                 struct request *rq = blk_mq_rq_from_pdu(img_req);
3606
3607                 rbd_img_request_destroy(img_req);
3608                 blk_mq_end_request(rq, errno_to_blk_status(result));
3609         }
3610 }
3611
3612 static const struct rbd_client_id rbd_empty_cid;
3613
3614 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3615                           const struct rbd_client_id *rhs)
3616 {
3617         return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3618 }
3619
3620 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3621 {
3622         struct rbd_client_id cid;
3623
3624         mutex_lock(&rbd_dev->watch_mutex);
3625         cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3626         cid.handle = rbd_dev->watch_cookie;
3627         mutex_unlock(&rbd_dev->watch_mutex);
3628         return cid;
3629 }
3630
3631 /*
3632  * lock_rwsem must be held for write
3633  */
3634 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3635                               const struct rbd_client_id *cid)
3636 {
3637         dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3638              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3639              cid->gid, cid->handle);
3640         rbd_dev->owner_cid = *cid; /* struct */
3641 }
3642
3643 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3644 {
3645         mutex_lock(&rbd_dev->watch_mutex);
3646         sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3647         mutex_unlock(&rbd_dev->watch_mutex);
3648 }
3649
3650 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3651 {
3652         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3653
3654         rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3655         strcpy(rbd_dev->lock_cookie, cookie);
3656         rbd_set_owner_cid(rbd_dev, &cid);
3657         queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3658 }
3659
3660 /*
3661  * lock_rwsem must be held for write
3662  */
3663 static int rbd_lock(struct rbd_device *rbd_dev)
3664 {
3665         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3666         char cookie[32];
3667         int ret;
3668
3669         WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3670                 rbd_dev->lock_cookie[0] != '\0');
3671
3672         format_lock_cookie(rbd_dev, cookie);
3673         ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3674                             RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3675                             RBD_LOCK_TAG, "", 0);
3676         if (ret && ret != -EEXIST)
3677                 return ret;
3678
3679         __rbd_lock(rbd_dev, cookie);
3680         return 0;
3681 }
3682
3683 /*
3684  * lock_rwsem must be held for write
3685  */
3686 static void rbd_unlock(struct rbd_device *rbd_dev)
3687 {
3688         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3689         int ret;
3690
3691         WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3692                 rbd_dev->lock_cookie[0] == '\0');
3693
3694         ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3695                               RBD_LOCK_NAME, rbd_dev->lock_cookie);
3696         if (ret && ret != -ENOENT)
3697                 rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3698
3699         /* treat errors as the image is unlocked */
3700         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3701         rbd_dev->lock_cookie[0] = '\0';
3702         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3703         queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3704 }
3705
3706 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3707                                 enum rbd_notify_op notify_op,
3708                                 struct page ***preply_pages,
3709                                 size_t *preply_len)
3710 {
3711         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3712         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3713         char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3714         int buf_size = sizeof(buf);
3715         void *p = buf;
3716
3717         dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3718
3719         /* encode *LockPayload NotifyMessage (op + ClientId) */
3720         ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3721         ceph_encode_32(&p, notify_op);
3722         ceph_encode_64(&p, cid.gid);
3723         ceph_encode_64(&p, cid.handle);
3724
3725         return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3726                                 &rbd_dev->header_oloc, buf, buf_size,
3727                                 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3728 }
3729
3730 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3731                                enum rbd_notify_op notify_op)
3732 {
3733         __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3734 }
3735
3736 static void rbd_notify_acquired_lock(struct work_struct *work)
3737 {
3738         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3739                                                   acquired_lock_work);
3740
3741         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3742 }
3743
3744 static void rbd_notify_released_lock(struct work_struct *work)
3745 {
3746         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3747                                                   released_lock_work);
3748
3749         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3750 }
3751
3752 static int rbd_request_lock(struct rbd_device *rbd_dev)
3753 {
3754         struct page **reply_pages;
3755         size_t reply_len;
3756         bool lock_owner_responded = false;
3757         int ret;
3758
3759         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3760
3761         ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3762                                    &reply_pages, &reply_len);
3763         if (ret && ret != -ETIMEDOUT) {
3764                 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3765                 goto out;
3766         }
3767
3768         if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3769                 void *p = page_address(reply_pages[0]);
3770                 void *const end = p + reply_len;
3771                 u32 n;
3772
3773                 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3774                 while (n--) {
3775                         u8 struct_v;
3776                         u32 len;
3777
3778                         ceph_decode_need(&p, end, 8 + 8, e_inval);
3779                         p += 8 + 8; /* skip gid and cookie */
3780
3781                         ceph_decode_32_safe(&p, end, len, e_inval);
3782                         if (!len)
3783                                 continue;
3784
3785                         if (lock_owner_responded) {
3786                                 rbd_warn(rbd_dev,
3787                                          "duplicate lock owners detected");
3788                                 ret = -EIO;
3789                                 goto out;
3790                         }
3791
3792                         lock_owner_responded = true;
3793                         ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3794                                                   &struct_v, &len);
3795                         if (ret) {
3796                                 rbd_warn(rbd_dev,
3797                                          "failed to decode ResponseMessage: %d",
3798                                          ret);
3799                                 goto e_inval;
3800                         }
3801
3802                         ret = ceph_decode_32(&p);
3803                 }
3804         }
3805
3806         if (!lock_owner_responded) {
3807                 rbd_warn(rbd_dev, "no lock owners detected");
3808                 ret = -ETIMEDOUT;
3809         }
3810
3811 out:
3812         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3813         return ret;
3814
3815 e_inval:
3816         ret = -EINVAL;
3817         goto out;
3818 }
3819
3820 /*
3821  * Either image request state machine(s) or rbd_add_acquire_lock()
3822  * (i.e. "rbd map").
3823  */
3824 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3825 {
3826         struct rbd_img_request *img_req;
3827
3828         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3829         lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3830
3831         cancel_delayed_work(&rbd_dev->lock_dwork);
3832         if (!completion_done(&rbd_dev->acquire_wait)) {
3833                 rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3834                            list_empty(&rbd_dev->running_list));
3835                 rbd_dev->acquire_err = result;
3836                 complete_all(&rbd_dev->acquire_wait);
3837                 return;
3838         }
3839
3840         list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3841                 mutex_lock(&img_req->state_mutex);
3842                 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3843                 rbd_img_schedule(img_req, result);
3844                 mutex_unlock(&img_req->state_mutex);
3845         }
3846
3847         list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3848 }
3849
3850 static bool locker_equal(const struct ceph_locker *lhs,
3851                          const struct ceph_locker *rhs)
3852 {
3853         return lhs->id.name.type == rhs->id.name.type &&
3854                lhs->id.name.num == rhs->id.name.num &&
3855                !strcmp(lhs->id.cookie, rhs->id.cookie) &&
3856                ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr);
3857 }
3858
3859 static void free_locker(struct ceph_locker *locker)
3860 {
3861         if (locker)
3862                 ceph_free_lockers(locker, 1);
3863 }
3864
3865 static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev)
3866 {
3867         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3868         struct ceph_locker *lockers;
3869         u32 num_lockers;
3870         u8 lock_type;
3871         char *lock_tag;
3872         u64 handle;
3873         int ret;
3874
3875         ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3876                                  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3877                                  &lock_type, &lock_tag, &lockers, &num_lockers);
3878         if (ret) {
3879                 rbd_warn(rbd_dev, "failed to get header lockers: %d", ret);
3880                 return ERR_PTR(ret);
3881         }
3882
3883         if (num_lockers == 0) {
3884                 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3885                 lockers = NULL;
3886                 goto out;
3887         }
3888
3889         if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3890                 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3891                          lock_tag);
3892                 goto err_busy;
3893         }
3894
3895         if (lock_type != CEPH_CLS_LOCK_EXCLUSIVE) {
3896                 rbd_warn(rbd_dev, "incompatible lock type detected");
3897                 goto err_busy;
3898         }
3899
3900         WARN_ON(num_lockers != 1);
3901         ret = sscanf(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu",
3902                      &handle);
3903         if (ret != 1) {
3904                 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3905                          lockers[0].id.cookie);
3906                 goto err_busy;
3907         }
3908         if (ceph_addr_is_blank(&lockers[0].info.addr)) {
3909                 rbd_warn(rbd_dev, "locker has a blank address");
3910                 goto err_busy;
3911         }
3912
3913         dout("%s rbd_dev %p got locker %s%llu@%pISpc/%u handle %llu\n",
3914              __func__, rbd_dev, ENTITY_NAME(lockers[0].id.name),
3915              &lockers[0].info.addr.in_addr,
3916              le32_to_cpu(lockers[0].info.addr.nonce), handle);
3917
3918 out:
3919         kfree(lock_tag);
3920         return lockers;
3921
3922 err_busy:
3923         kfree(lock_tag);
3924         ceph_free_lockers(lockers, num_lockers);
3925         return ERR_PTR(-EBUSY);
3926 }
3927
3928 static int find_watcher(struct rbd_device *rbd_dev,
3929                         const struct ceph_locker *locker)
3930 {
3931         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3932         struct ceph_watch_item *watchers;
3933         u32 num_watchers;
3934         u64 cookie;
3935         int i;
3936         int ret;
3937
3938         ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3939                                       &rbd_dev->header_oloc, &watchers,
3940                                       &num_watchers);
3941         if (ret) {
3942                 rbd_warn(rbd_dev, "failed to get watchers: %d", ret);
3943                 return ret;
3944         }
3945
3946         sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3947         for (i = 0; i < num_watchers; i++) {
3948                 /*
3949                  * Ignore addr->type while comparing.  This mimics
3950                  * entity_addr_t::get_legacy_str() + strcmp().
3951                  */
3952                 if (ceph_addr_equal_no_type(&watchers[i].addr,
3953                                             &locker->info.addr) &&
3954                     watchers[i].cookie == cookie) {
3955                         struct rbd_client_id cid = {
3956                                 .gid = le64_to_cpu(watchers[i].name.num),
3957                                 .handle = cookie,
3958                         };
3959
3960                         dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3961                              rbd_dev, cid.gid, cid.handle);
3962                         rbd_set_owner_cid(rbd_dev, &cid);
3963                         ret = 1;
3964                         goto out;
3965                 }
3966         }
3967
3968         dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3969         ret = 0;
3970 out:
3971         kfree(watchers);
3972         return ret;
3973 }
3974
3975 /*
3976  * lock_rwsem must be held for write
3977  */
3978 static int rbd_try_lock(struct rbd_device *rbd_dev)
3979 {
3980         struct ceph_client *client = rbd_dev->rbd_client->client;
3981         struct ceph_locker *locker, *refreshed_locker;
3982         int ret;
3983
3984         for (;;) {
3985                 locker = refreshed_locker = NULL;
3986
3987                 ret = rbd_lock(rbd_dev);
3988                 if (!ret)
3989                         goto out;
3990                 if (ret != -EBUSY) {
3991                         rbd_warn(rbd_dev, "failed to lock header: %d", ret);
3992                         goto out;
3993                 }
3994
3995                 /* determine if the current lock holder is still alive */
3996                 locker = get_lock_owner_info(rbd_dev);
3997                 if (IS_ERR(locker)) {
3998                         ret = PTR_ERR(locker);
3999                         locker = NULL;
4000                         goto out;
4001                 }
4002                 if (!locker)
4003                         goto again;
4004
4005                 ret = find_watcher(rbd_dev, locker);
4006                 if (ret)
4007                         goto out; /* request lock or error */
4008
4009                 refreshed_locker = get_lock_owner_info(rbd_dev);
4010                 if (IS_ERR(refreshed_locker)) {
4011                         ret = PTR_ERR(refreshed_locker);
4012                         refreshed_locker = NULL;
4013                         goto out;
4014                 }
4015                 if (!refreshed_locker ||
4016                     !locker_equal(locker, refreshed_locker))
4017                         goto again;
4018
4019                 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4020                          ENTITY_NAME(locker->id.name));
4021
4022                 ret = ceph_monc_blocklist_add(&client->monc,
4023                                               &locker->info.addr);
4024                 if (ret) {
4025                         rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d",
4026                                  ENTITY_NAME(locker->id.name), ret);
4027                         goto out;
4028                 }
4029
4030                 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4031                                           &rbd_dev->header_oloc, RBD_LOCK_NAME,
4032                                           locker->id.cookie, &locker->id.name);
4033                 if (ret && ret != -ENOENT) {
4034                         rbd_warn(rbd_dev, "failed to break header lock: %d",
4035                                  ret);
4036                         goto out;
4037                 }
4038
4039 again:
4040                 free_locker(refreshed_locker);
4041                 free_locker(locker);
4042         }
4043
4044 out:
4045         free_locker(refreshed_locker);
4046         free_locker(locker);
4047         return ret;
4048 }
4049
4050 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4051 {
4052         int ret;
4053
4054         ret = rbd_dev_refresh(rbd_dev);
4055         if (ret)
4056                 return ret;
4057
4058         if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4059                 ret = rbd_object_map_open(rbd_dev);
4060                 if (ret)
4061                         return ret;
4062         }
4063
4064         return 0;
4065 }
4066
4067 /*
4068  * Return:
4069  *   0 - lock acquired
4070  *   1 - caller should call rbd_request_lock()
4071  *  <0 - error
4072  */
4073 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4074 {
4075         int ret;
4076
4077         down_read(&rbd_dev->lock_rwsem);
4078         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4079              rbd_dev->lock_state);
4080         if (__rbd_is_lock_owner(rbd_dev)) {
4081                 up_read(&rbd_dev->lock_rwsem);
4082                 return 0;
4083         }
4084
4085         up_read(&rbd_dev->lock_rwsem);
4086         down_write(&rbd_dev->lock_rwsem);
4087         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4088              rbd_dev->lock_state);
4089         if (__rbd_is_lock_owner(rbd_dev)) {
4090                 up_write(&rbd_dev->lock_rwsem);
4091                 return 0;
4092         }
4093
4094         ret = rbd_try_lock(rbd_dev);
4095         if (ret < 0) {
4096                 rbd_warn(rbd_dev, "failed to acquire lock: %d", ret);
4097                 goto out;
4098         }
4099         if (ret > 0) {
4100                 up_write(&rbd_dev->lock_rwsem);
4101                 return ret;
4102         }
4103
4104         rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4105         rbd_assert(list_empty(&rbd_dev->running_list));
4106
4107         ret = rbd_post_acquire_action(rbd_dev);
4108         if (ret) {
4109                 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4110                 /*
4111                  * Can't stay in RBD_LOCK_STATE_LOCKED because
4112                  * rbd_lock_add_request() would let the request through,
4113                  * assuming that e.g. object map is locked and loaded.
4114                  */
4115                 rbd_unlock(rbd_dev);
4116         }
4117
4118 out:
4119         wake_lock_waiters(rbd_dev, ret);
4120         up_write(&rbd_dev->lock_rwsem);
4121         return ret;
4122 }
4123
4124 static void rbd_acquire_lock(struct work_struct *work)
4125 {
4126         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4127                                             struct rbd_device, lock_dwork);
4128         int ret;
4129
4130         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4131 again:
4132         ret = rbd_try_acquire_lock(rbd_dev);
4133         if (ret <= 0) {
4134                 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4135                 return;
4136         }
4137
4138         ret = rbd_request_lock(rbd_dev);
4139         if (ret == -ETIMEDOUT) {
4140                 goto again; /* treat this as a dead client */
4141         } else if (ret == -EROFS) {
4142                 rbd_warn(rbd_dev, "peer will not release lock");
4143                 down_write(&rbd_dev->lock_rwsem);
4144                 wake_lock_waiters(rbd_dev, ret);
4145                 up_write(&rbd_dev->lock_rwsem);
4146         } else if (ret < 0) {
4147                 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4148                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4149                                  RBD_RETRY_DELAY);
4150         } else {
4151                 /*
4152                  * lock owner acked, but resend if we don't see them
4153                  * release the lock
4154                  */
4155                 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4156                      rbd_dev);
4157                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4158                     msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4159         }
4160 }
4161
4162 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4163 {
4164         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4165         lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4166
4167         if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4168                 return false;
4169
4170         /*
4171          * Ensure that all in-flight IO is flushed.
4172          */
4173         rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4174         rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4175         if (list_empty(&rbd_dev->running_list))
4176                 return true;
4177
4178         up_write(&rbd_dev->lock_rwsem);
4179         wait_for_completion(&rbd_dev->releasing_wait);
4180
4181         down_write(&rbd_dev->lock_rwsem);
4182         if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4183                 return false;
4184
4185         rbd_assert(list_empty(&rbd_dev->running_list));
4186         return true;
4187 }
4188
4189 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4190 {
4191         if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4192                 rbd_object_map_close(rbd_dev);
4193 }
4194
4195 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4196 {
4197         rbd_assert(list_empty(&rbd_dev->running_list));
4198
4199         rbd_pre_release_action(rbd_dev);
4200         rbd_unlock(rbd_dev);
4201 }
4202
4203 /*
4204  * lock_rwsem must be held for write
4205  */
4206 static void rbd_release_lock(struct rbd_device *rbd_dev)
4207 {
4208         if (!rbd_quiesce_lock(rbd_dev))
4209                 return;
4210
4211         __rbd_release_lock(rbd_dev);
4212
4213         /*
4214          * Give others a chance to grab the lock - we would re-acquire
4215          * almost immediately if we got new IO while draining the running
4216          * list otherwise.  We need to ack our own notifications, so this
4217          * lock_dwork will be requeued from rbd_handle_released_lock() by
4218          * way of maybe_kick_acquire().
4219          */
4220         cancel_delayed_work(&rbd_dev->lock_dwork);
4221 }
4222
4223 static void rbd_release_lock_work(struct work_struct *work)
4224 {
4225         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4226                                                   unlock_work);
4227
4228         down_write(&rbd_dev->lock_rwsem);
4229         rbd_release_lock(rbd_dev);
4230         up_write(&rbd_dev->lock_rwsem);
4231 }
4232
4233 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4234 {
4235         bool have_requests;
4236
4237         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4238         if (__rbd_is_lock_owner(rbd_dev))
4239                 return;
4240
4241         spin_lock(&rbd_dev->lock_lists_lock);
4242         have_requests = !list_empty(&rbd_dev->acquiring_list);
4243         spin_unlock(&rbd_dev->lock_lists_lock);
4244         if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4245                 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4246                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4247         }
4248 }
4249
4250 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4251                                      void **p)
4252 {
4253         struct rbd_client_id cid = { 0 };
4254
4255         if (struct_v >= 2) {
4256                 cid.gid = ceph_decode_64(p);
4257                 cid.handle = ceph_decode_64(p);
4258         }
4259
4260         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4261              cid.handle);
4262         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4263                 down_write(&rbd_dev->lock_rwsem);
4264                 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4265                         dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4266                              __func__, rbd_dev, cid.gid, cid.handle);
4267                 } else {
4268                         rbd_set_owner_cid(rbd_dev, &cid);
4269                 }
4270                 downgrade_write(&rbd_dev->lock_rwsem);
4271         } else {
4272                 down_read(&rbd_dev->lock_rwsem);
4273         }
4274
4275         maybe_kick_acquire(rbd_dev);
4276         up_read(&rbd_dev->lock_rwsem);
4277 }
4278
4279 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4280                                      void **p)
4281 {
4282         struct rbd_client_id cid = { 0 };
4283
4284         if (struct_v >= 2) {
4285                 cid.gid = ceph_decode_64(p);
4286                 cid.handle = ceph_decode_64(p);
4287         }
4288
4289         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4290              cid.handle);
4291         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4292                 down_write(&rbd_dev->lock_rwsem);
4293                 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4294                         dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4295                              __func__, rbd_dev, cid.gid, cid.handle,
4296                              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4297                 } else {
4298                         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4299                 }
4300                 downgrade_write(&rbd_dev->lock_rwsem);
4301         } else {
4302                 down_read(&rbd_dev->lock_rwsem);
4303         }
4304
4305         maybe_kick_acquire(rbd_dev);
4306         up_read(&rbd_dev->lock_rwsem);
4307 }
4308
4309 /*
4310  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4311  * ResponseMessage is needed.
4312  */
4313 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4314                                    void **p)
4315 {
4316         struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4317         struct rbd_client_id cid = { 0 };
4318         int result = 1;
4319
4320         if (struct_v >= 2) {
4321                 cid.gid = ceph_decode_64(p);
4322                 cid.handle = ceph_decode_64(p);
4323         }
4324
4325         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4326              cid.handle);
4327         if (rbd_cid_equal(&cid, &my_cid))
4328                 return result;
4329
4330         down_read(&rbd_dev->lock_rwsem);
4331         if (__rbd_is_lock_owner(rbd_dev)) {
4332                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4333                     rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4334                         goto out_unlock;
4335
4336                 /*
4337                  * encode ResponseMessage(0) so the peer can detect
4338                  * a missing owner
4339                  */
4340                 result = 0;
4341
4342                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4343                         if (!rbd_dev->opts->exclusive) {
4344                                 dout("%s rbd_dev %p queueing unlock_work\n",
4345                                      __func__, rbd_dev);
4346                                 queue_work(rbd_dev->task_wq,
4347                                            &rbd_dev->unlock_work);
4348                         } else {
4349                                 /* refuse to release the lock */
4350                                 result = -EROFS;
4351                         }
4352                 }
4353         }
4354
4355 out_unlock:
4356         up_read(&rbd_dev->lock_rwsem);
4357         return result;
4358 }
4359
4360 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4361                                      u64 notify_id, u64 cookie, s32 *result)
4362 {
4363         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4364         char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4365         int buf_size = sizeof(buf);
4366         int ret;
4367
4368         if (result) {
4369                 void *p = buf;
4370
4371                 /* encode ResponseMessage */
4372                 ceph_start_encoding(&p, 1, 1,
4373                                     buf_size - CEPH_ENCODING_START_BLK_LEN);
4374                 ceph_encode_32(&p, *result);
4375         } else {
4376                 buf_size = 0;
4377         }
4378
4379         ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4380                                    &rbd_dev->header_oloc, notify_id, cookie,
4381                                    buf, buf_size);
4382         if (ret)
4383                 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4384 }
4385
4386 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4387                                    u64 cookie)
4388 {
4389         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4390         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4391 }
4392
4393 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4394                                           u64 notify_id, u64 cookie, s32 result)
4395 {
4396         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4397         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4398 }
4399
4400 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4401                          u64 notifier_id, void *data, size_t data_len)
4402 {
4403         struct rbd_device *rbd_dev = arg;
4404         void *p = data;
4405         void *const end = p + data_len;
4406         u8 struct_v = 0;
4407         u32 len;
4408         u32 notify_op;
4409         int ret;
4410
4411         dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4412              __func__, rbd_dev, cookie, notify_id, data_len);
4413         if (data_len) {
4414                 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4415                                           &struct_v, &len);
4416                 if (ret) {
4417                         rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4418                                  ret);
4419                         return;
4420                 }
4421
4422                 notify_op = ceph_decode_32(&p);
4423         } else {
4424                 /* legacy notification for header updates */
4425                 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4426                 len = 0;
4427         }
4428
4429         dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4430         switch (notify_op) {
4431         case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4432                 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4433                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4434                 break;
4435         case RBD_NOTIFY_OP_RELEASED_LOCK:
4436                 rbd_handle_released_lock(rbd_dev, struct_v, &p);
4437                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4438                 break;
4439         case RBD_NOTIFY_OP_REQUEST_LOCK:
4440                 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4441                 if (ret <= 0)
4442                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
4443                                                       cookie, ret);
4444                 else
4445                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4446                 break;
4447         case RBD_NOTIFY_OP_HEADER_UPDATE:
4448                 ret = rbd_dev_refresh(rbd_dev);
4449                 if (ret)
4450                         rbd_warn(rbd_dev, "refresh failed: %d", ret);
4451
4452                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4453                 break;
4454         default:
4455                 if (rbd_is_lock_owner(rbd_dev))
4456                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
4457                                                       cookie, -EOPNOTSUPP);
4458                 else
4459                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4460                 break;
4461         }
4462 }
4463
4464 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4465
4466 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4467 {
4468         struct rbd_device *rbd_dev = arg;
4469
4470         rbd_warn(rbd_dev, "encountered watch error: %d", err);
4471
4472         down_write(&rbd_dev->lock_rwsem);
4473         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4474         up_write(&rbd_dev->lock_rwsem);
4475
4476         mutex_lock(&rbd_dev->watch_mutex);
4477         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4478                 __rbd_unregister_watch(rbd_dev);
4479                 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4480
4481                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4482         }
4483         mutex_unlock(&rbd_dev->watch_mutex);
4484 }
4485
4486 /*
4487  * watch_mutex must be locked
4488  */
4489 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4490 {
4491         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4492         struct ceph_osd_linger_request *handle;
4493
4494         rbd_assert(!rbd_dev->watch_handle);
4495         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4496
4497         handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4498                                  &rbd_dev->header_oloc, rbd_watch_cb,
4499                                  rbd_watch_errcb, rbd_dev);
4500         if (IS_ERR(handle))
4501                 return PTR_ERR(handle);
4502
4503         rbd_dev->watch_handle = handle;
4504         return 0;
4505 }
4506
4507 /*
4508  * watch_mutex must be locked
4509  */
4510 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4511 {
4512         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4513         int ret;
4514
4515         rbd_assert(rbd_dev->watch_handle);
4516         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4517
4518         ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4519         if (ret)
4520                 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4521
4522         rbd_dev->watch_handle = NULL;
4523 }
4524
4525 static int rbd_register_watch(struct rbd_device *rbd_dev)
4526 {
4527         int ret;
4528
4529         mutex_lock(&rbd_dev->watch_mutex);
4530         rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4531         ret = __rbd_register_watch(rbd_dev);
4532         if (ret)
4533                 goto out;
4534
4535         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4536         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4537
4538 out:
4539         mutex_unlock(&rbd_dev->watch_mutex);
4540         return ret;
4541 }
4542
4543 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4544 {
4545         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4546
4547         cancel_work_sync(&rbd_dev->acquired_lock_work);
4548         cancel_work_sync(&rbd_dev->released_lock_work);
4549         cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4550         cancel_work_sync(&rbd_dev->unlock_work);
4551 }
4552
4553 /*
4554  * header_rwsem must not be held to avoid a deadlock with
4555  * rbd_dev_refresh() when flushing notifies.
4556  */
4557 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4558 {
4559         cancel_tasks_sync(rbd_dev);
4560
4561         mutex_lock(&rbd_dev->watch_mutex);
4562         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4563                 __rbd_unregister_watch(rbd_dev);
4564         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4565         mutex_unlock(&rbd_dev->watch_mutex);
4566
4567         cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4568         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4569 }
4570
4571 /*
4572  * lock_rwsem must be held for write
4573  */
4574 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4575 {
4576         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4577         char cookie[32];
4578         int ret;
4579
4580         if (!rbd_quiesce_lock(rbd_dev))
4581                 return;
4582
4583         format_lock_cookie(rbd_dev, cookie);
4584         ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4585                                   &rbd_dev->header_oloc, RBD_LOCK_NAME,
4586                                   CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4587                                   RBD_LOCK_TAG, cookie);
4588         if (ret) {
4589                 if (ret != -EOPNOTSUPP)
4590                         rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4591                                  ret);
4592
4593                 /*
4594                  * Lock cookie cannot be updated on older OSDs, so do
4595                  * a manual release and queue an acquire.
4596                  */
4597                 __rbd_release_lock(rbd_dev);
4598                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4599         } else {
4600                 __rbd_lock(rbd_dev, cookie);
4601                 wake_lock_waiters(rbd_dev, 0);
4602         }
4603 }
4604
4605 static void rbd_reregister_watch(struct work_struct *work)
4606 {
4607         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4608                                             struct rbd_device, watch_dwork);
4609         int ret;
4610
4611         dout("%s rbd_dev %p\n", __func__, rbd_dev);
4612
4613         mutex_lock(&rbd_dev->watch_mutex);
4614         if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4615                 mutex_unlock(&rbd_dev->watch_mutex);
4616                 return;
4617         }
4618
4619         ret = __rbd_register_watch(rbd_dev);
4620         if (ret) {
4621                 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4622                 if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4623                         queue_delayed_work(rbd_dev->task_wq,
4624                                            &rbd_dev->watch_dwork,
4625                                            RBD_RETRY_DELAY);
4626                         mutex_unlock(&rbd_dev->watch_mutex);
4627                         return;
4628                 }
4629
4630                 mutex_unlock(&rbd_dev->watch_mutex);
4631                 down_write(&rbd_dev->lock_rwsem);
4632                 wake_lock_waiters(rbd_dev, ret);
4633                 up_write(&rbd_dev->lock_rwsem);
4634                 return;
4635         }
4636
4637         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4638         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4639         mutex_unlock(&rbd_dev->watch_mutex);
4640
4641         down_write(&rbd_dev->lock_rwsem);
4642         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4643                 rbd_reacquire_lock(rbd_dev);
4644         up_write(&rbd_dev->lock_rwsem);
4645
4646         ret = rbd_dev_refresh(rbd_dev);
4647         if (ret)
4648                 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4649 }
4650
4651 /*
4652  * Synchronous osd object method call.  Returns the number of bytes
4653  * returned in the outbound buffer, or a negative error code.
4654  */
4655 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4656                              struct ceph_object_id *oid,
4657                              struct ceph_object_locator *oloc,
4658                              const char *method_name,
4659                              const void *outbound,
4660                              size_t outbound_size,
4661                              void *inbound,
4662                              size_t inbound_size)
4663 {
4664         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4665         struct page *req_page = NULL;
4666         struct page *reply_page;
4667         int ret;
4668
4669         /*
4670          * Method calls are ultimately read operations.  The result
4671          * should placed into the inbound buffer provided.  They
4672          * also supply outbound data--parameters for the object
4673          * method.  Currently if this is present it will be a
4674          * snapshot id.
4675          */
4676         if (outbound) {
4677                 if (outbound_size > PAGE_SIZE)
4678                         return -E2BIG;
4679
4680                 req_page = alloc_page(GFP_KERNEL);
4681                 if (!req_page)
4682                         return -ENOMEM;
4683
4684                 memcpy(page_address(req_page), outbound, outbound_size);
4685         }
4686
4687         reply_page = alloc_page(GFP_KERNEL);
4688         if (!reply_page) {
4689                 if (req_page)
4690                         __free_page(req_page);
4691                 return -ENOMEM;
4692         }
4693
4694         ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4695                              CEPH_OSD_FLAG_READ, req_page, outbound_size,
4696                              &reply_page, &inbound_size);
4697         if (!ret) {
4698                 memcpy(inbound, page_address(reply_page), inbound_size);
4699                 ret = inbound_size;
4700         }
4701
4702         if (req_page)
4703                 __free_page(req_page);
4704         __free_page(reply_page);
4705         return ret;
4706 }
4707
4708 static void rbd_queue_workfn(struct work_struct *work)
4709 {
4710         struct rbd_img_request *img_request =
4711             container_of(work, struct rbd_img_request, work);
4712         struct rbd_device *rbd_dev = img_request->rbd_dev;
4713         enum obj_operation_type op_type = img_request->op_type;
4714         struct request *rq = blk_mq_rq_from_pdu(img_request);
4715         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4716         u64 length = blk_rq_bytes(rq);
4717         u64 mapping_size;
4718         int result;
4719
4720         /* Ignore/skip any zero-length requests */
4721         if (!length) {
4722                 dout("%s: zero-length request\n", __func__);
4723                 result = 0;
4724                 goto err_img_request;
4725         }
4726
4727         blk_mq_start_request(rq);
4728
4729         down_read(&rbd_dev->header_rwsem);
4730         mapping_size = rbd_dev->mapping.size;
4731         rbd_img_capture_header(img_request);
4732         up_read(&rbd_dev->header_rwsem);
4733
4734         if (offset + length > mapping_size) {
4735                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4736                          length, mapping_size);
4737                 result = -EIO;
4738                 goto err_img_request;
4739         }
4740
4741         dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4742              img_request, obj_op_name(op_type), offset, length);
4743
4744         if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4745                 result = rbd_img_fill_nodata(img_request, offset, length);
4746         else
4747                 result = rbd_img_fill_from_bio(img_request, offset, length,
4748                                                rq->bio);
4749         if (result)
4750                 goto err_img_request;
4751
4752         rbd_img_handle_request(img_request, 0);
4753         return;
4754
4755 err_img_request:
4756         rbd_img_request_destroy(img_request);
4757         if (result)
4758                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4759                          obj_op_name(op_type), length, offset, result);
4760         blk_mq_end_request(rq, errno_to_blk_status(result));
4761 }
4762
4763 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4764                 const struct blk_mq_queue_data *bd)
4765 {
4766         struct rbd_device *rbd_dev = hctx->queue->queuedata;
4767         struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4768         enum obj_operation_type op_type;
4769
4770         switch (req_op(bd->rq)) {
4771         case REQ_OP_DISCARD:
4772                 op_type = OBJ_OP_DISCARD;
4773                 break;
4774         case REQ_OP_WRITE_ZEROES:
4775                 op_type = OBJ_OP_ZEROOUT;
4776                 break;
4777         case REQ_OP_WRITE:
4778                 op_type = OBJ_OP_WRITE;
4779                 break;
4780         case REQ_OP_READ:
4781                 op_type = OBJ_OP_READ;
4782                 break;
4783         default:
4784                 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4785                 return BLK_STS_IOERR;
4786         }
4787
4788         rbd_img_request_init(img_req, rbd_dev, op_type);
4789
4790         if (rbd_img_is_write(img_req)) {
4791                 if (rbd_is_ro(rbd_dev)) {
4792                         rbd_warn(rbd_dev, "%s on read-only mapping",
4793                                  obj_op_name(img_req->op_type));
4794                         return BLK_STS_IOERR;
4795                 }
4796                 rbd_assert(!rbd_is_snap(rbd_dev));
4797         }
4798
4799         INIT_WORK(&img_req->work, rbd_queue_workfn);
4800         queue_work(rbd_wq, &img_req->work);
4801         return BLK_STS_OK;
4802 }
4803
4804 static void rbd_free_disk(struct rbd_device *rbd_dev)
4805 {
4806         put_disk(rbd_dev->disk);
4807         blk_mq_free_tag_set(&rbd_dev->tag_set);
4808         rbd_dev->disk = NULL;
4809 }
4810
4811 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4812                              struct ceph_object_id *oid,
4813                              struct ceph_object_locator *oloc,
4814                              void *buf, int buf_len)
4815
4816 {
4817         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4818         struct ceph_osd_request *req;
4819         struct page **pages;
4820         int num_pages = calc_pages_for(0, buf_len);
4821         int ret;
4822
4823         req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4824         if (!req)
4825                 return -ENOMEM;
4826
4827         ceph_oid_copy(&req->r_base_oid, oid);
4828         ceph_oloc_copy(&req->r_base_oloc, oloc);
4829         req->r_flags = CEPH_OSD_FLAG_READ;
4830
4831         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4832         if (IS_ERR(pages)) {
4833                 ret = PTR_ERR(pages);
4834                 goto out_req;
4835         }
4836
4837         osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4838         osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4839                                          true);
4840
4841         ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4842         if (ret)
4843                 goto out_req;
4844
4845         ceph_osdc_start_request(osdc, req);
4846         ret = ceph_osdc_wait_request(osdc, req);
4847         if (ret >= 0)
4848                 ceph_copy_from_page_vector(pages, buf, 0, ret);
4849
4850 out_req:
4851         ceph_osdc_put_request(req);
4852         return ret;
4853 }
4854
4855 /*
4856  * Read the complete header for the given rbd device.  On successful
4857  * return, the rbd_dev->header field will contain up-to-date
4858  * information about the image.
4859  */
4860 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4861 {
4862         struct rbd_image_header_ondisk *ondisk = NULL;
4863         u32 snap_count = 0;
4864         u64 names_size = 0;
4865         u32 want_count;
4866         int ret;
4867
4868         /*
4869          * The complete header will include an array of its 64-bit
4870          * snapshot ids, followed by the names of those snapshots as
4871          * a contiguous block of NUL-terminated strings.  Note that
4872          * the number of snapshots could change by the time we read
4873          * it in, in which case we re-read it.
4874          */
4875         do {
4876                 size_t size;
4877
4878                 kfree(ondisk);
4879
4880                 size = sizeof (*ondisk);
4881                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4882                 size += names_size;
4883                 ondisk = kmalloc(size, GFP_KERNEL);
4884                 if (!ondisk)
4885                         return -ENOMEM;
4886
4887                 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4888                                         &rbd_dev->header_oloc, ondisk, size);
4889                 if (ret < 0)
4890                         goto out;
4891                 if ((size_t)ret < size) {
4892                         ret = -ENXIO;
4893                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4894                                 size, ret);
4895                         goto out;
4896                 }
4897                 if (!rbd_dev_ondisk_valid(ondisk)) {
4898                         ret = -ENXIO;
4899                         rbd_warn(rbd_dev, "invalid header");
4900                         goto out;
4901                 }
4902
4903                 names_size = le64_to_cpu(ondisk->snap_names_len);
4904                 want_count = snap_count;
4905                 snap_count = le32_to_cpu(ondisk->snap_count);
4906         } while (snap_count != want_count);
4907
4908         ret = rbd_header_from_disk(rbd_dev, ondisk);
4909 out:
4910         kfree(ondisk);
4911
4912         return ret;
4913 }
4914
4915 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4916 {
4917         sector_t size;
4918
4919         /*
4920          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4921          * try to update its size.  If REMOVING is set, updating size
4922          * is just useless work since the device can't be opened.
4923          */
4924         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4925             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4926                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4927                 dout("setting size to %llu sectors", (unsigned long long)size);
4928                 set_capacity_and_notify(rbd_dev->disk, size);
4929         }
4930 }
4931
4932 static const struct blk_mq_ops rbd_mq_ops = {
4933         .queue_rq       = rbd_queue_rq,
4934 };
4935
4936 static int rbd_init_disk(struct rbd_device *rbd_dev)
4937 {
4938         struct gendisk *disk;
4939         struct request_queue *q;
4940         unsigned int objset_bytes =
4941             rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4942         int err;
4943
4944         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4945         rbd_dev->tag_set.ops = &rbd_mq_ops;
4946         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4947         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4948         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4949         rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4950         rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4951
4952         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4953         if (err)
4954                 return err;
4955
4956         disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev);
4957         if (IS_ERR(disk)) {
4958                 err = PTR_ERR(disk);
4959                 goto out_tag_set;
4960         }
4961         q = disk->queue;
4962
4963         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4964                  rbd_dev->dev_id);
4965         disk->major = rbd_dev->major;
4966         disk->first_minor = rbd_dev->minor;
4967         if (single_major)
4968                 disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
4969         else
4970                 disk->minors = RBD_MINORS_PER_MAJOR;
4971         disk->fops = &rbd_bd_ops;
4972         disk->private_data = rbd_dev;
4973
4974         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4975         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4976
4977         blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4978         q->limits.max_sectors = queue_max_hw_sectors(q);
4979         blk_queue_max_segments(q, USHRT_MAX);
4980         blk_queue_max_segment_size(q, UINT_MAX);
4981         blk_queue_io_min(q, rbd_dev->opts->alloc_size);
4982         blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
4983
4984         if (rbd_dev->opts->trim) {
4985                 q->limits.discard_granularity = rbd_dev->opts->alloc_size;
4986                 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
4987                 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
4988         }
4989
4990         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4991                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
4992
4993         rbd_dev->disk = disk;
4994
4995         return 0;
4996 out_tag_set:
4997         blk_mq_free_tag_set(&rbd_dev->tag_set);
4998         return err;
4999 }
5000
5001 /*
5002   sysfs
5003 */
5004
5005 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5006 {
5007         return container_of(dev, struct rbd_device, dev);
5008 }
5009
5010 static ssize_t rbd_size_show(struct device *dev,
5011                              struct device_attribute *attr, char *buf)
5012 {
5013         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5014
5015         return sprintf(buf, "%llu\n",
5016                 (unsigned long long)rbd_dev->mapping.size);
5017 }
5018
5019 static ssize_t rbd_features_show(struct device *dev,
5020                              struct device_attribute *attr, char *buf)
5021 {
5022         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5023
5024         return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5025 }
5026
5027 static ssize_t rbd_major_show(struct device *dev,
5028                               struct device_attribute *attr, char *buf)
5029 {
5030         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5031
5032         if (rbd_dev->major)
5033                 return sprintf(buf, "%d\n", rbd_dev->major);
5034
5035         return sprintf(buf, "(none)\n");
5036 }
5037
5038 static ssize_t rbd_minor_show(struct device *dev,
5039                               struct device_attribute *attr, char *buf)
5040 {
5041         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5042
5043         return sprintf(buf, "%d\n", rbd_dev->minor);
5044 }
5045
5046 static ssize_t rbd_client_addr_show(struct device *dev,
5047                                     struct device_attribute *attr, char *buf)
5048 {
5049         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5050         struct ceph_entity_addr *client_addr =
5051             ceph_client_addr(rbd_dev->rbd_client->client);
5052
5053         return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5054                        le32_to_cpu(client_addr->nonce));
5055 }
5056
5057 static ssize_t rbd_client_id_show(struct device *dev,
5058                                   struct device_attribute *attr, char *buf)
5059 {
5060         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5061
5062         return sprintf(buf, "client%lld\n",
5063                        ceph_client_gid(rbd_dev->rbd_client->client));
5064 }
5065
5066 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5067                                      struct device_attribute *attr, char *buf)
5068 {
5069         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5070
5071         return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5072 }
5073
5074 static ssize_t rbd_config_info_show(struct device *dev,
5075                                     struct device_attribute *attr, char *buf)
5076 {
5077         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5078
5079         if (!capable(CAP_SYS_ADMIN))
5080                 return -EPERM;
5081
5082         return sprintf(buf, "%s\n", rbd_dev->config_info);
5083 }
5084
5085 static ssize_t rbd_pool_show(struct device *dev,
5086                              struct device_attribute *attr, char *buf)
5087 {
5088         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5089
5090         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5091 }
5092
5093 static ssize_t rbd_pool_id_show(struct device *dev,
5094                              struct device_attribute *attr, char *buf)
5095 {
5096         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5097
5098         return sprintf(buf, "%llu\n",
5099                         (unsigned long long) rbd_dev->spec->pool_id);
5100 }
5101
5102 static ssize_t rbd_pool_ns_show(struct device *dev,
5103                                 struct device_attribute *attr, char *buf)
5104 {
5105         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5106
5107         return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5108 }
5109
5110 static ssize_t rbd_name_show(struct device *dev,
5111                              struct device_attribute *attr, char *buf)
5112 {
5113         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5114
5115         if (rbd_dev->spec->image_name)
5116                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5117
5118         return sprintf(buf, "(unknown)\n");
5119 }
5120
5121 static ssize_t rbd_image_id_show(struct device *dev,
5122                              struct device_attribute *attr, char *buf)
5123 {
5124         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5125
5126         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5127 }
5128
5129 /*
5130  * Shows the name of the currently-mapped snapshot (or
5131  * RBD_SNAP_HEAD_NAME for the base image).
5132  */
5133 static ssize_t rbd_snap_show(struct device *dev,
5134                              struct device_attribute *attr,
5135                              char *buf)
5136 {
5137         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5138
5139         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5140 }
5141
5142 static ssize_t rbd_snap_id_show(struct device *dev,
5143                                 struct device_attribute *attr, char *buf)
5144 {
5145         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5146
5147         return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5148 }
5149
5150 /*
5151  * For a v2 image, shows the chain of parent images, separated by empty
5152  * lines.  For v1 images or if there is no parent, shows "(no parent
5153  * image)".
5154  */
5155 static ssize_t rbd_parent_show(struct device *dev,
5156                                struct device_attribute *attr,
5157                                char *buf)
5158 {
5159         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5160         ssize_t count = 0;
5161
5162         if (!rbd_dev->parent)
5163                 return sprintf(buf, "(no parent image)\n");
5164
5165         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5166                 struct rbd_spec *spec = rbd_dev->parent_spec;
5167
5168                 count += sprintf(&buf[count], "%s"
5169                             "pool_id %llu\npool_name %s\n"
5170                             "pool_ns %s\n"
5171                             "image_id %s\nimage_name %s\n"
5172                             "snap_id %llu\nsnap_name %s\n"
5173                             "overlap %llu\n",
5174                             !count ? "" : "\n", /* first? */
5175                             spec->pool_id, spec->pool_name,
5176                             spec->pool_ns ?: "",
5177                             spec->image_id, spec->image_name ?: "(unknown)",
5178                             spec->snap_id, spec->snap_name,
5179                             rbd_dev->parent_overlap);
5180         }
5181
5182         return count;
5183 }
5184
5185 static ssize_t rbd_image_refresh(struct device *dev,
5186                                  struct device_attribute *attr,
5187                                  const char *buf,
5188                                  size_t size)
5189 {
5190         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5191         int ret;
5192
5193         if (!capable(CAP_SYS_ADMIN))
5194                 return -EPERM;
5195
5196         ret = rbd_dev_refresh(rbd_dev);
5197         if (ret)
5198                 return ret;
5199
5200         return size;
5201 }
5202
5203 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5204 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5205 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5206 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5207 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5208 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5209 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5210 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5211 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5212 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5213 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5214 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5215 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5216 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5217 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5218 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5219 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5220
5221 static struct attribute *rbd_attrs[] = {
5222         &dev_attr_size.attr,
5223         &dev_attr_features.attr,
5224         &dev_attr_major.attr,
5225         &dev_attr_minor.attr,
5226         &dev_attr_client_addr.attr,
5227         &dev_attr_client_id.attr,
5228         &dev_attr_cluster_fsid.attr,
5229         &dev_attr_config_info.attr,
5230         &dev_attr_pool.attr,
5231         &dev_attr_pool_id.attr,
5232         &dev_attr_pool_ns.attr,
5233         &dev_attr_name.attr,
5234         &dev_attr_image_id.attr,
5235         &dev_attr_current_snap.attr,
5236         &dev_attr_snap_id.attr,
5237         &dev_attr_parent.attr,
5238         &dev_attr_refresh.attr,
5239         NULL
5240 };
5241
5242 static struct attribute_group rbd_attr_group = {
5243         .attrs = rbd_attrs,
5244 };
5245
5246 static const struct attribute_group *rbd_attr_groups[] = {
5247         &rbd_attr_group,
5248         NULL
5249 };
5250
5251 static void rbd_dev_release(struct device *dev);
5252
5253 static const struct device_type rbd_device_type = {
5254         .name           = "rbd",
5255         .groups         = rbd_attr_groups,
5256         .release        = rbd_dev_release,
5257 };
5258
5259 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5260 {
5261         kref_get(&spec->kref);
5262
5263         return spec;
5264 }
5265
5266 static void rbd_spec_free(struct kref *kref);
5267 static void rbd_spec_put(struct rbd_spec *spec)
5268 {
5269         if (spec)
5270                 kref_put(&spec->kref, rbd_spec_free);
5271 }
5272
5273 static struct rbd_spec *rbd_spec_alloc(void)
5274 {
5275         struct rbd_spec *spec;
5276
5277         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5278         if (!spec)
5279                 return NULL;
5280
5281         spec->pool_id = CEPH_NOPOOL;
5282         spec->snap_id = CEPH_NOSNAP;
5283         kref_init(&spec->kref);
5284
5285         return spec;
5286 }
5287
5288 static void rbd_spec_free(struct kref *kref)
5289 {
5290         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5291
5292         kfree(spec->pool_name);
5293         kfree(spec->pool_ns);
5294         kfree(spec->image_id);
5295         kfree(spec->image_name);
5296         kfree(spec->snap_name);
5297         kfree(spec);
5298 }
5299
5300 static void rbd_dev_free(struct rbd_device *rbd_dev)
5301 {
5302         WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5303         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5304
5305         ceph_oid_destroy(&rbd_dev->header_oid);
5306         ceph_oloc_destroy(&rbd_dev->header_oloc);
5307         kfree(rbd_dev->config_info);
5308
5309         rbd_put_client(rbd_dev->rbd_client);
5310         rbd_spec_put(rbd_dev->spec);
5311         kfree(rbd_dev->opts);
5312         kfree(rbd_dev);
5313 }
5314
5315 static void rbd_dev_release(struct device *dev)
5316 {
5317         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5318         bool need_put = !!rbd_dev->opts;
5319
5320         if (need_put) {
5321                 destroy_workqueue(rbd_dev->task_wq);
5322                 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5323         }
5324
5325         rbd_dev_free(rbd_dev);
5326
5327         /*
5328          * This is racy, but way better than putting module outside of
5329          * the release callback.  The race window is pretty small, so
5330          * doing something similar to dm (dm-builtin.c) is overkill.
5331          */
5332         if (need_put)
5333                 module_put(THIS_MODULE);
5334 }
5335
5336 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5337 {
5338         struct rbd_device *rbd_dev;
5339
5340         rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5341         if (!rbd_dev)
5342                 return NULL;
5343
5344         spin_lock_init(&rbd_dev->lock);
5345         INIT_LIST_HEAD(&rbd_dev->node);
5346         init_rwsem(&rbd_dev->header_rwsem);
5347
5348         rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5349         ceph_oid_init(&rbd_dev->header_oid);
5350         rbd_dev->header_oloc.pool = spec->pool_id;
5351         if (spec->pool_ns) {
5352                 WARN_ON(!*spec->pool_ns);
5353                 rbd_dev->header_oloc.pool_ns =
5354                     ceph_find_or_create_string(spec->pool_ns,
5355                                                strlen(spec->pool_ns));
5356         }
5357
5358         mutex_init(&rbd_dev->watch_mutex);
5359         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5360         INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5361
5362         init_rwsem(&rbd_dev->lock_rwsem);
5363         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5364         INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5365         INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5366         INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5367         INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5368         spin_lock_init(&rbd_dev->lock_lists_lock);
5369         INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5370         INIT_LIST_HEAD(&rbd_dev->running_list);
5371         init_completion(&rbd_dev->acquire_wait);
5372         init_completion(&rbd_dev->releasing_wait);
5373
5374         spin_lock_init(&rbd_dev->object_map_lock);
5375
5376         rbd_dev->dev.bus = &rbd_bus_type;
5377         rbd_dev->dev.type = &rbd_device_type;
5378         rbd_dev->dev.parent = &rbd_root_dev;
5379         device_initialize(&rbd_dev->dev);
5380
5381         return rbd_dev;
5382 }
5383
5384 /*
5385  * Create a mapping rbd_dev.
5386  */
5387 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5388                                          struct rbd_spec *spec,
5389                                          struct rbd_options *opts)
5390 {
5391         struct rbd_device *rbd_dev;
5392
5393         rbd_dev = __rbd_dev_create(spec);
5394         if (!rbd_dev)
5395                 return NULL;
5396
5397         /* get an id and fill in device name */
5398         rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5399                                          minor_to_rbd_dev_id(1 << MINORBITS),
5400                                          GFP_KERNEL);
5401         if (rbd_dev->dev_id < 0)
5402                 goto fail_rbd_dev;
5403
5404         sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5405         rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5406                                                    rbd_dev->name);
5407         if (!rbd_dev->task_wq)
5408                 goto fail_dev_id;
5409
5410         /* we have a ref from do_rbd_add() */
5411         __module_get(THIS_MODULE);
5412
5413         rbd_dev->rbd_client = rbdc;
5414         rbd_dev->spec = spec;
5415         rbd_dev->opts = opts;
5416
5417         dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5418         return rbd_dev;
5419
5420 fail_dev_id:
5421         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5422 fail_rbd_dev:
5423         rbd_dev_free(rbd_dev);
5424         return NULL;
5425 }
5426
5427 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5428 {
5429         if (rbd_dev)
5430                 put_device(&rbd_dev->dev);
5431 }
5432
5433 /*
5434  * Get the size and object order for an image snapshot, or if
5435  * snap_id is CEPH_NOSNAP, gets this information for the base
5436  * image.
5437  */
5438 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5439                                 u8 *order, u64 *snap_size)
5440 {
5441         __le64 snapid = cpu_to_le64(snap_id);
5442         int ret;
5443         struct {
5444                 u8 order;
5445                 __le64 size;
5446         } __attribute__ ((packed)) size_buf = { 0 };
5447
5448         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5449                                   &rbd_dev->header_oloc, "get_size",
5450                                   &snapid, sizeof(snapid),
5451                                   &size_buf, sizeof(size_buf));
5452         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5453         if (ret < 0)
5454                 return ret;
5455         if (ret < sizeof (size_buf))
5456                 return -ERANGE;
5457
5458         if (order) {
5459                 *order = size_buf.order;
5460                 dout("  order %u", (unsigned int)*order);
5461         }
5462         *snap_size = le64_to_cpu(size_buf.size);
5463
5464         dout("  snap_id 0x%016llx snap_size = %llu\n",
5465                 (unsigned long long)snap_id,
5466                 (unsigned long long)*snap_size);
5467
5468         return 0;
5469 }
5470
5471 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5472 {
5473         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5474                                         &rbd_dev->header.obj_order,
5475                                         &rbd_dev->header.image_size);
5476 }
5477
5478 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5479 {
5480         size_t size;
5481         void *reply_buf;
5482         int ret;
5483         void *p;
5484
5485         /* Response will be an encoded string, which includes a length */
5486         size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5487         reply_buf = kzalloc(size, GFP_KERNEL);
5488         if (!reply_buf)
5489                 return -ENOMEM;
5490
5491         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5492                                   &rbd_dev->header_oloc, "get_object_prefix",
5493                                   NULL, 0, reply_buf, size);
5494         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5495         if (ret < 0)
5496                 goto out;
5497
5498         p = reply_buf;
5499         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5500                                                 p + ret, NULL, GFP_NOIO);
5501         ret = 0;
5502
5503         if (IS_ERR(rbd_dev->header.object_prefix)) {
5504                 ret = PTR_ERR(rbd_dev->header.object_prefix);
5505                 rbd_dev->header.object_prefix = NULL;
5506         } else {
5507                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5508         }
5509 out:
5510         kfree(reply_buf);
5511
5512         return ret;
5513 }
5514
5515 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5516                                      bool read_only, u64 *snap_features)
5517 {
5518         struct {
5519                 __le64 snap_id;
5520                 u8 read_only;
5521         } features_in;
5522         struct {
5523                 __le64 features;
5524                 __le64 incompat;
5525         } __attribute__ ((packed)) features_buf = { 0 };
5526         u64 unsup;
5527         int ret;
5528
5529         features_in.snap_id = cpu_to_le64(snap_id);
5530         features_in.read_only = read_only;
5531
5532         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5533                                   &rbd_dev->header_oloc, "get_features",
5534                                   &features_in, sizeof(features_in),
5535                                   &features_buf, sizeof(features_buf));
5536         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5537         if (ret < 0)
5538                 return ret;
5539         if (ret < sizeof (features_buf))
5540                 return -ERANGE;
5541
5542         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5543         if (unsup) {
5544                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5545                          unsup);
5546                 return -ENXIO;
5547         }
5548
5549         *snap_features = le64_to_cpu(features_buf.features);
5550
5551         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5552                 (unsigned long long)snap_id,
5553                 (unsigned long long)*snap_features,
5554                 (unsigned long long)le64_to_cpu(features_buf.incompat));
5555
5556         return 0;
5557 }
5558
5559 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5560 {
5561         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5562                                          rbd_is_ro(rbd_dev),
5563                                          &rbd_dev->header.features);
5564 }
5565
5566 /*
5567  * These are generic image flags, but since they are used only for
5568  * object map, store them in rbd_dev->object_map_flags.
5569  *
5570  * For the same reason, this function is called only on object map
5571  * (re)load and not on header refresh.
5572  */
5573 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5574 {
5575         __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5576         __le64 flags;
5577         int ret;
5578
5579         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5580                                   &rbd_dev->header_oloc, "get_flags",
5581                                   &snapid, sizeof(snapid),
5582                                   &flags, sizeof(flags));
5583         if (ret < 0)
5584                 return ret;
5585         if (ret < sizeof(flags))
5586                 return -EBADMSG;
5587
5588         rbd_dev->object_map_flags = le64_to_cpu(flags);
5589         return 0;
5590 }
5591
5592 struct parent_image_info {
5593         u64             pool_id;
5594         const char      *pool_ns;
5595         const char      *image_id;
5596         u64             snap_id;
5597
5598         bool            has_overlap;
5599         u64             overlap;
5600 };
5601
5602 /*
5603  * The caller is responsible for @pii.
5604  */
5605 static int decode_parent_image_spec(void **p, void *end,
5606                                     struct parent_image_info *pii)
5607 {
5608         u8 struct_v;
5609         u32 struct_len;
5610         int ret;
5611
5612         ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5613                                   &struct_v, &struct_len);
5614         if (ret)
5615                 return ret;
5616
5617         ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5618         pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5619         if (IS_ERR(pii->pool_ns)) {
5620                 ret = PTR_ERR(pii->pool_ns);
5621                 pii->pool_ns = NULL;
5622                 return ret;
5623         }
5624         pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5625         if (IS_ERR(pii->image_id)) {
5626                 ret = PTR_ERR(pii->image_id);
5627                 pii->image_id = NULL;
5628                 return ret;
5629         }
5630         ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5631         return 0;
5632
5633 e_inval:
5634         return -EINVAL;
5635 }
5636
5637 static int __get_parent_info(struct rbd_device *rbd_dev,
5638                              struct page *req_page,
5639                              struct page *reply_page,
5640                              struct parent_image_info *pii)
5641 {
5642         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5643         size_t reply_len = PAGE_SIZE;
5644         void *p, *end;
5645         int ret;
5646
5647         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5648                              "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5649                              req_page, sizeof(u64), &reply_page, &reply_len);
5650         if (ret)
5651                 return ret == -EOPNOTSUPP ? 1 : ret;
5652
5653         p = page_address(reply_page);
5654         end = p + reply_len;
5655         ret = decode_parent_image_spec(&p, end, pii);
5656         if (ret)
5657                 return ret;
5658
5659         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5660                              "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5661                              req_page, sizeof(u64), &reply_page, &reply_len);
5662         if (ret)
5663                 return ret;
5664
5665         p = page_address(reply_page);
5666         end = p + reply_len;
5667         ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5668         if (pii->has_overlap)
5669                 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5670
5671         return 0;
5672
5673 e_inval:
5674         return -EINVAL;
5675 }
5676
5677 /*
5678  * The caller is responsible for @pii.
5679  */
5680 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5681                                     struct page *req_page,
5682                                     struct page *reply_page,
5683                                     struct parent_image_info *pii)
5684 {
5685         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5686         size_t reply_len = PAGE_SIZE;
5687         void *p, *end;
5688         int ret;
5689
5690         ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5691                              "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5692                              req_page, sizeof(u64), &reply_page, &reply_len);
5693         if (ret)
5694                 return ret;
5695
5696         p = page_address(reply_page);
5697         end = p + reply_len;
5698         ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5699         pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5700         if (IS_ERR(pii->image_id)) {
5701                 ret = PTR_ERR(pii->image_id);
5702                 pii->image_id = NULL;
5703                 return ret;
5704         }
5705         ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5706         pii->has_overlap = true;
5707         ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5708
5709         return 0;
5710
5711 e_inval:
5712         return -EINVAL;
5713 }
5714
5715 static int get_parent_info(struct rbd_device *rbd_dev,
5716                            struct parent_image_info *pii)
5717 {
5718         struct page *req_page, *reply_page;
5719         void *p;
5720         int ret;
5721
5722         req_page = alloc_page(GFP_KERNEL);
5723         if (!req_page)
5724                 return -ENOMEM;
5725
5726         reply_page = alloc_page(GFP_KERNEL);
5727         if (!reply_page) {
5728                 __free_page(req_page);
5729                 return -ENOMEM;
5730         }
5731
5732         p = page_address(req_page);
5733         ceph_encode_64(&p, rbd_dev->spec->snap_id);
5734         ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5735         if (ret > 0)
5736                 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5737                                                pii);
5738
5739         __free_page(req_page);
5740         __free_page(reply_page);
5741         return ret;
5742 }
5743
5744 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5745 {
5746         struct rbd_spec *parent_spec;
5747         struct parent_image_info pii = { 0 };
5748         int ret;
5749
5750         parent_spec = rbd_spec_alloc();
5751         if (!parent_spec)
5752                 return -ENOMEM;
5753
5754         ret = get_parent_info(rbd_dev, &pii);
5755         if (ret)
5756                 goto out_err;
5757
5758         dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5759              __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5760              pii.has_overlap, pii.overlap);
5761
5762         if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5763                 /*
5764                  * Either the parent never existed, or we have
5765                  * record of it but the image got flattened so it no
5766                  * longer has a parent.  When the parent of a
5767                  * layered image disappears we immediately set the
5768                  * overlap to 0.  The effect of this is that all new
5769                  * requests will be treated as if the image had no
5770                  * parent.
5771                  *
5772                  * If !pii.has_overlap, the parent image spec is not
5773                  * applicable.  It's there to avoid duplication in each
5774                  * snapshot record.
5775                  */
5776                 if (rbd_dev->parent_overlap) {
5777                         rbd_dev->parent_overlap = 0;
5778                         rbd_dev_parent_put(rbd_dev);
5779                         pr_info("%s: clone image has been flattened\n",
5780                                 rbd_dev->disk->disk_name);
5781                 }
5782
5783                 goto out;       /* No parent?  No problem. */
5784         }
5785
5786         /* The ceph file layout needs to fit pool id in 32 bits */
5787
5788         ret = -EIO;
5789         if (pii.pool_id > (u64)U32_MAX) {
5790                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5791                         (unsigned long long)pii.pool_id, U32_MAX);
5792                 goto out_err;
5793         }
5794
5795         /*
5796          * The parent won't change (except when the clone is
5797          * flattened, already handled that).  So we only need to
5798          * record the parent spec we have not already done so.
5799          */
5800         if (!rbd_dev->parent_spec) {
5801                 parent_spec->pool_id = pii.pool_id;
5802                 if (pii.pool_ns && *pii.pool_ns) {
5803                         parent_spec->pool_ns = pii.pool_ns;
5804                         pii.pool_ns = NULL;
5805                 }
5806                 parent_spec->image_id = pii.image_id;
5807                 pii.image_id = NULL;
5808                 parent_spec->snap_id = pii.snap_id;
5809
5810                 rbd_dev->parent_spec = parent_spec;
5811                 parent_spec = NULL;     /* rbd_dev now owns this */
5812         }
5813
5814         /*
5815          * We always update the parent overlap.  If it's zero we issue
5816          * a warning, as we will proceed as if there was no parent.
5817          */
5818         if (!pii.overlap) {
5819                 if (parent_spec) {
5820                         /* refresh, careful to warn just once */
5821                         if (rbd_dev->parent_overlap)
5822                                 rbd_warn(rbd_dev,
5823                                     "clone now standalone (overlap became 0)");
5824                 } else {
5825                         /* initial probe */
5826                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5827                 }
5828         }
5829         rbd_dev->parent_overlap = pii.overlap;
5830
5831 out:
5832         ret = 0;
5833 out_err:
5834         kfree(pii.pool_ns);
5835         kfree(pii.image_id);
5836         rbd_spec_put(parent_spec);
5837         return ret;
5838 }
5839
5840 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5841 {
5842         struct {
5843                 __le64 stripe_unit;
5844                 __le64 stripe_count;
5845         } __attribute__ ((packed)) striping_info_buf = { 0 };
5846         size_t size = sizeof (striping_info_buf);
5847         void *p;
5848         int ret;
5849
5850         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5851                                 &rbd_dev->header_oloc, "get_stripe_unit_count",
5852                                 NULL, 0, &striping_info_buf, size);
5853         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5854         if (ret < 0)
5855                 return ret;
5856         if (ret < size)
5857                 return -ERANGE;
5858
5859         p = &striping_info_buf;
5860         rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5861         rbd_dev->header.stripe_count = ceph_decode_64(&p);
5862         return 0;
5863 }
5864
5865 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5866 {
5867         __le64 data_pool_id;
5868         int ret;
5869
5870         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5871                                   &rbd_dev->header_oloc, "get_data_pool",
5872                                   NULL, 0, &data_pool_id, sizeof(data_pool_id));
5873         if (ret < 0)
5874                 return ret;
5875         if (ret < sizeof(data_pool_id))
5876                 return -EBADMSG;
5877
5878         rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5879         WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5880         return 0;
5881 }
5882
5883 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5884 {
5885         CEPH_DEFINE_OID_ONSTACK(oid);
5886         size_t image_id_size;
5887         char *image_id;
5888         void *p;
5889         void *end;
5890         size_t size;
5891         void *reply_buf = NULL;
5892         size_t len = 0;
5893         char *image_name = NULL;
5894         int ret;
5895
5896         rbd_assert(!rbd_dev->spec->image_name);
5897
5898         len = strlen(rbd_dev->spec->image_id);
5899         image_id_size = sizeof (__le32) + len;
5900         image_id = kmalloc(image_id_size, GFP_KERNEL);
5901         if (!image_id)
5902                 return NULL;
5903
5904         p = image_id;
5905         end = image_id + image_id_size;
5906         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5907
5908         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5909         reply_buf = kmalloc(size, GFP_KERNEL);
5910         if (!reply_buf)
5911                 goto out;
5912
5913         ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5914         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5915                                   "dir_get_name", image_id, image_id_size,
5916                                   reply_buf, size);
5917         if (ret < 0)
5918                 goto out;
5919         p = reply_buf;
5920         end = reply_buf + ret;
5921
5922         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5923         if (IS_ERR(image_name))
5924                 image_name = NULL;
5925         else
5926                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5927 out:
5928         kfree(reply_buf);
5929         kfree(image_id);
5930
5931         return image_name;
5932 }
5933
5934 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5935 {
5936         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5937         const char *snap_name;
5938         u32 which = 0;
5939
5940         /* Skip over names until we find the one we are looking for */
5941
5942         snap_name = rbd_dev->header.snap_names;
5943         while (which < snapc->num_snaps) {
5944                 if (!strcmp(name, snap_name))
5945                         return snapc->snaps[which];
5946                 snap_name += strlen(snap_name) + 1;
5947                 which++;
5948         }
5949         return CEPH_NOSNAP;
5950 }
5951
5952 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5953 {
5954         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5955         u32 which;
5956         bool found = false;
5957         u64 snap_id;
5958
5959         for (which = 0; !found && which < snapc->num_snaps; which++) {
5960                 const char *snap_name;
5961
5962                 snap_id = snapc->snaps[which];
5963                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5964                 if (IS_ERR(snap_name)) {
5965                         /* ignore no-longer existing snapshots */
5966                         if (PTR_ERR(snap_name) == -ENOENT)
5967                                 continue;
5968                         else
5969                                 break;
5970                 }
5971                 found = !strcmp(name, snap_name);
5972                 kfree(snap_name);
5973         }
5974         return found ? snap_id : CEPH_NOSNAP;
5975 }
5976
5977 /*
5978  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5979  * no snapshot by that name is found, or if an error occurs.
5980  */
5981 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5982 {
5983         if (rbd_dev->image_format == 1)
5984                 return rbd_v1_snap_id_by_name(rbd_dev, name);
5985
5986         return rbd_v2_snap_id_by_name(rbd_dev, name);
5987 }
5988
5989 /*
5990  * An image being mapped will have everything but the snap id.
5991  */
5992 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5993 {
5994         struct rbd_spec *spec = rbd_dev->spec;
5995
5996         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5997         rbd_assert(spec->image_id && spec->image_name);
5998         rbd_assert(spec->snap_name);
5999
6000         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6001                 u64 snap_id;
6002
6003                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6004                 if (snap_id == CEPH_NOSNAP)
6005                         return -ENOENT;
6006
6007                 spec->snap_id = snap_id;
6008         } else {
6009                 spec->snap_id = CEPH_NOSNAP;
6010         }
6011
6012         return 0;
6013 }
6014
6015 /*
6016  * A parent image will have all ids but none of the names.
6017  *
6018  * All names in an rbd spec are dynamically allocated.  It's OK if we
6019  * can't figure out the name for an image id.
6020  */
6021 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6022 {
6023         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6024         struct rbd_spec *spec = rbd_dev->spec;
6025         const char *pool_name;
6026         const char *image_name;
6027         const char *snap_name;
6028         int ret;
6029
6030         rbd_assert(spec->pool_id != CEPH_NOPOOL);
6031         rbd_assert(spec->image_id);
6032         rbd_assert(spec->snap_id != CEPH_NOSNAP);
6033
6034         /* Get the pool name; we have to make our own copy of this */
6035
6036         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6037         if (!pool_name) {
6038                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6039                 return -EIO;
6040         }
6041         pool_name = kstrdup(pool_name, GFP_KERNEL);
6042         if (!pool_name)
6043                 return -ENOMEM;
6044
6045         /* Fetch the image name; tolerate failure here */
6046
6047         image_name = rbd_dev_image_name(rbd_dev);
6048         if (!image_name)
6049                 rbd_warn(rbd_dev, "unable to get image name");
6050
6051         /* Fetch the snapshot name */
6052
6053         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6054         if (IS_ERR(snap_name)) {
6055                 ret = PTR_ERR(snap_name);
6056                 goto out_err;
6057         }
6058
6059         spec->pool_name = pool_name;
6060         spec->image_name = image_name;
6061         spec->snap_name = snap_name;
6062
6063         return 0;
6064
6065 out_err:
6066         kfree(image_name);
6067         kfree(pool_name);
6068         return ret;
6069 }
6070
6071 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6072 {
6073         size_t size;
6074         int ret;
6075         void *reply_buf;
6076         void *p;
6077         void *end;
6078         u64 seq;
6079         u32 snap_count;
6080         struct ceph_snap_context *snapc;
6081         u32 i;
6082
6083         /*
6084          * We'll need room for the seq value (maximum snapshot id),
6085          * snapshot count, and array of that many snapshot ids.
6086          * For now we have a fixed upper limit on the number we're
6087          * prepared to receive.
6088          */
6089         size = sizeof (__le64) + sizeof (__le32) +
6090                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
6091         reply_buf = kzalloc(size, GFP_KERNEL);
6092         if (!reply_buf)
6093                 return -ENOMEM;
6094
6095         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6096                                   &rbd_dev->header_oloc, "get_snapcontext",
6097                                   NULL, 0, reply_buf, size);
6098         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6099         if (ret < 0)
6100                 goto out;
6101
6102         p = reply_buf;
6103         end = reply_buf + ret;
6104         ret = -ERANGE;
6105         ceph_decode_64_safe(&p, end, seq, out);
6106         ceph_decode_32_safe(&p, end, snap_count, out);
6107
6108         /*
6109          * Make sure the reported number of snapshot ids wouldn't go
6110          * beyond the end of our buffer.  But before checking that,
6111          * make sure the computed size of the snapshot context we
6112          * allocate is representable in a size_t.
6113          */
6114         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6115                                  / sizeof (u64)) {
6116                 ret = -EINVAL;
6117                 goto out;
6118         }
6119         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6120                 goto out;
6121         ret = 0;
6122
6123         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6124         if (!snapc) {
6125                 ret = -ENOMEM;
6126                 goto out;
6127         }
6128         snapc->seq = seq;
6129         for (i = 0; i < snap_count; i++)
6130                 snapc->snaps[i] = ceph_decode_64(&p);
6131
6132         ceph_put_snap_context(rbd_dev->header.snapc);
6133         rbd_dev->header.snapc = snapc;
6134
6135         dout("  snap context seq = %llu, snap_count = %u\n",
6136                 (unsigned long long)seq, (unsigned int)snap_count);
6137 out:
6138         kfree(reply_buf);
6139
6140         return ret;
6141 }
6142
6143 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6144                                         u64 snap_id)
6145 {
6146         size_t size;
6147         void *reply_buf;
6148         __le64 snapid;
6149         int ret;
6150         void *p;
6151         void *end;
6152         char *snap_name;
6153
6154         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6155         reply_buf = kmalloc(size, GFP_KERNEL);
6156         if (!reply_buf)
6157                 return ERR_PTR(-ENOMEM);
6158
6159         snapid = cpu_to_le64(snap_id);
6160         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6161                                   &rbd_dev->header_oloc, "get_snapshot_name",
6162                                   &snapid, sizeof(snapid), reply_buf, size);
6163         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6164         if (ret < 0) {
6165                 snap_name = ERR_PTR(ret);
6166                 goto out;
6167         }
6168
6169         p = reply_buf;
6170         end = reply_buf + ret;
6171         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6172         if (IS_ERR(snap_name))
6173                 goto out;
6174
6175         dout("  snap_id 0x%016llx snap_name = %s\n",
6176                 (unsigned long long)snap_id, snap_name);
6177 out:
6178         kfree(reply_buf);
6179
6180         return snap_name;
6181 }
6182
6183 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6184 {
6185         bool first_time = rbd_dev->header.object_prefix == NULL;
6186         int ret;
6187
6188         ret = rbd_dev_v2_image_size(rbd_dev);
6189         if (ret)
6190                 return ret;
6191
6192         if (first_time) {
6193                 ret = rbd_dev_v2_header_onetime(rbd_dev);
6194                 if (ret)
6195                         return ret;
6196         }
6197
6198         ret = rbd_dev_v2_snap_context(rbd_dev);
6199         if (ret && first_time) {
6200                 kfree(rbd_dev->header.object_prefix);
6201                 rbd_dev->header.object_prefix = NULL;
6202         }
6203
6204         return ret;
6205 }
6206
6207 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6208 {
6209         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6210
6211         if (rbd_dev->image_format == 1)
6212                 return rbd_dev_v1_header_info(rbd_dev);
6213
6214         return rbd_dev_v2_header_info(rbd_dev);
6215 }
6216
6217 /*
6218  * Skips over white space at *buf, and updates *buf to point to the
6219  * first found non-space character (if any). Returns the length of
6220  * the token (string of non-white space characters) found.  Note
6221  * that *buf must be terminated with '\0'.
6222  */
6223 static inline size_t next_token(const char **buf)
6224 {
6225         /*
6226         * These are the characters that produce nonzero for
6227         * isspace() in the "C" and "POSIX" locales.
6228         */
6229         static const char spaces[] = " \f\n\r\t\v";
6230
6231         *buf += strspn(*buf, spaces);   /* Find start of token */
6232
6233         return strcspn(*buf, spaces);   /* Return token length */
6234 }
6235
6236 /*
6237  * Finds the next token in *buf, dynamically allocates a buffer big
6238  * enough to hold a copy of it, and copies the token into the new
6239  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6240  * that a duplicate buffer is created even for a zero-length token.
6241  *
6242  * Returns a pointer to the newly-allocated duplicate, or a null
6243  * pointer if memory for the duplicate was not available.  If
6244  * the lenp argument is a non-null pointer, the length of the token
6245  * (not including the '\0') is returned in *lenp.
6246  *
6247  * If successful, the *buf pointer will be updated to point beyond
6248  * the end of the found token.
6249  *
6250  * Note: uses GFP_KERNEL for allocation.
6251  */
6252 static inline char *dup_token(const char **buf, size_t *lenp)
6253 {
6254         char *dup;
6255         size_t len;
6256
6257         len = next_token(buf);
6258         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6259         if (!dup)
6260                 return NULL;
6261         *(dup + len) = '\0';
6262         *buf += len;
6263
6264         if (lenp)
6265                 *lenp = len;
6266
6267         return dup;
6268 }
6269
6270 static int rbd_parse_param(struct fs_parameter *param,
6271                             struct rbd_parse_opts_ctx *pctx)
6272 {
6273         struct rbd_options *opt = pctx->opts;
6274         struct fs_parse_result result;
6275         struct p_log log = {.prefix = "rbd"};
6276         int token, ret;
6277
6278         ret = ceph_parse_param(param, pctx->copts, NULL);
6279         if (ret != -ENOPARAM)
6280                 return ret;
6281
6282         token = __fs_parse(&log, rbd_parameters, param, &result);
6283         dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6284         if (token < 0) {
6285                 if (token == -ENOPARAM)
6286                         return inval_plog(&log, "Unknown parameter '%s'",
6287                                           param->key);
6288                 return token;
6289         }
6290
6291         switch (token) {
6292         case Opt_queue_depth:
6293                 if (result.uint_32 < 1)
6294                         goto out_of_range;
6295                 opt->queue_depth = result.uint_32;
6296                 break;
6297         case Opt_alloc_size:
6298                 if (result.uint_32 < SECTOR_SIZE)
6299                         goto out_of_range;
6300                 if (!is_power_of_2(result.uint_32))
6301                         return inval_plog(&log, "alloc_size must be a power of 2");
6302                 opt->alloc_size = result.uint_32;
6303                 break;
6304         case Opt_lock_timeout:
6305                 /* 0 is "wait forever" (i.e. infinite timeout) */
6306                 if (result.uint_32 > INT_MAX / 1000)
6307                         goto out_of_range;
6308                 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6309                 break;
6310         case Opt_pool_ns:
6311                 kfree(pctx->spec->pool_ns);
6312                 pctx->spec->pool_ns = param->string;
6313                 param->string = NULL;
6314                 break;
6315         case Opt_compression_hint:
6316                 switch (result.uint_32) {
6317                 case Opt_compression_hint_none:
6318                         opt->alloc_hint_flags &=
6319                             ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6320                               CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6321                         break;
6322                 case Opt_compression_hint_compressible:
6323                         opt->alloc_hint_flags |=
6324                             CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6325                         opt->alloc_hint_flags &=
6326                             ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6327                         break;
6328                 case Opt_compression_hint_incompressible:
6329                         opt->alloc_hint_flags |=
6330                             CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6331                         opt->alloc_hint_flags &=
6332                             ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6333                         break;
6334                 default:
6335                         BUG();
6336                 }
6337                 break;
6338         case Opt_read_only:
6339                 opt->read_only = true;
6340                 break;
6341         case Opt_read_write:
6342                 opt->read_only = false;
6343                 break;
6344         case Opt_lock_on_read:
6345                 opt->lock_on_read = true;
6346                 break;
6347         case Opt_exclusive:
6348                 opt->exclusive = true;
6349                 break;
6350         case Opt_notrim:
6351                 opt->trim = false;
6352                 break;
6353         default:
6354                 BUG();
6355         }
6356
6357         return 0;
6358
6359 out_of_range:
6360         return inval_plog(&log, "%s out of range", param->key);
6361 }
6362
6363 /*
6364  * This duplicates most of generic_parse_monolithic(), untying it from
6365  * fs_context and skipping standard superblock and security options.
6366  */
6367 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6368 {
6369         char *key;
6370         int ret = 0;
6371
6372         dout("%s '%s'\n", __func__, options);
6373         while ((key = strsep(&options, ",")) != NULL) {
6374                 if (*key) {
6375                         struct fs_parameter param = {
6376                                 .key    = key,
6377                                 .type   = fs_value_is_flag,
6378                         };
6379                         char *value = strchr(key, '=');
6380                         size_t v_len = 0;
6381
6382                         if (value) {
6383                                 if (value == key)
6384                                         continue;
6385                                 *value++ = 0;
6386                                 v_len = strlen(value);
6387                                 param.string = kmemdup_nul(value, v_len,
6388                                                            GFP_KERNEL);
6389                                 if (!param.string)
6390                                         return -ENOMEM;
6391                                 param.type = fs_value_is_string;
6392                         }
6393                         param.size = v_len;
6394
6395                         ret = rbd_parse_param(&param, pctx);
6396                         kfree(param.string);
6397                         if (ret)
6398                                 break;
6399                 }
6400         }
6401
6402         return ret;
6403 }
6404
6405 /*
6406  * Parse the options provided for an "rbd add" (i.e., rbd image
6407  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6408  * and the data written is passed here via a NUL-terminated buffer.
6409  * Returns 0 if successful or an error code otherwise.
6410  *
6411  * The information extracted from these options is recorded in
6412  * the other parameters which return dynamically-allocated
6413  * structures:
6414  *  ceph_opts
6415  *      The address of a pointer that will refer to a ceph options
6416  *      structure.  Caller must release the returned pointer using
6417  *      ceph_destroy_options() when it is no longer needed.
6418  *  rbd_opts
6419  *      Address of an rbd options pointer.  Fully initialized by
6420  *      this function; caller must release with kfree().
6421  *  spec
6422  *      Address of an rbd image specification pointer.  Fully
6423  *      initialized by this function based on parsed options.
6424  *      Caller must release with rbd_spec_put().
6425  *
6426  * The options passed take this form:
6427  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6428  * where:
6429  *  <mon_addrs>
6430  *      A comma-separated list of one or more monitor addresses.
6431  *      A monitor address is an ip address, optionally followed
6432  *      by a port number (separated by a colon).
6433  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6434  *  <options>
6435  *      A comma-separated list of ceph and/or rbd options.
6436  *  <pool_name>
6437  *      The name of the rados pool containing the rbd image.
6438  *  <image_name>
6439  *      The name of the image in that pool to map.
6440  *  <snap_id>
6441  *      An optional snapshot id.  If provided, the mapping will
6442  *      present data from the image at the time that snapshot was
6443  *      created.  The image head is used if no snapshot id is
6444  *      provided.  Snapshot mappings are always read-only.
6445  */
6446 static int rbd_add_parse_args(const char *buf,
6447                                 struct ceph_options **ceph_opts,
6448                                 struct rbd_options **opts,
6449                                 struct rbd_spec **rbd_spec)
6450 {
6451         size_t len;
6452         char *options;
6453         const char *mon_addrs;
6454         char *snap_name;
6455         size_t mon_addrs_size;
6456         struct rbd_parse_opts_ctx pctx = { 0 };
6457         int ret;
6458
6459         /* The first four tokens are required */
6460
6461         len = next_token(&buf);
6462         if (!len) {
6463                 rbd_warn(NULL, "no monitor address(es) provided");
6464                 return -EINVAL;
6465         }
6466         mon_addrs = buf;
6467         mon_addrs_size = len;
6468         buf += len;
6469
6470         ret = -EINVAL;
6471         options = dup_token(&buf, NULL);
6472         if (!options)
6473                 return -ENOMEM;
6474         if (!*options) {
6475                 rbd_warn(NULL, "no options provided");
6476                 goto out_err;
6477         }
6478
6479         pctx.spec = rbd_spec_alloc();
6480         if (!pctx.spec)
6481                 goto out_mem;
6482
6483         pctx.spec->pool_name = dup_token(&buf, NULL);
6484         if (!pctx.spec->pool_name)
6485                 goto out_mem;
6486         if (!*pctx.spec->pool_name) {
6487                 rbd_warn(NULL, "no pool name provided");
6488                 goto out_err;
6489         }
6490
6491         pctx.spec->image_name = dup_token(&buf, NULL);
6492         if (!pctx.spec->image_name)
6493                 goto out_mem;
6494         if (!*pctx.spec->image_name) {
6495                 rbd_warn(NULL, "no image name provided");
6496                 goto out_err;
6497         }
6498
6499         /*
6500          * Snapshot name is optional; default is to use "-"
6501          * (indicating the head/no snapshot).
6502          */
6503         len = next_token(&buf);
6504         if (!len) {
6505                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6506                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6507         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
6508                 ret = -ENAMETOOLONG;
6509                 goto out_err;
6510         }
6511         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6512         if (!snap_name)
6513                 goto out_mem;
6514         *(snap_name + len) = '\0';
6515         pctx.spec->snap_name = snap_name;
6516
6517         pctx.copts = ceph_alloc_options();
6518         if (!pctx.copts)
6519                 goto out_mem;
6520
6521         /* Initialize all rbd options to the defaults */
6522
6523         pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6524         if (!pctx.opts)
6525                 goto out_mem;
6526
6527         pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6528         pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6529         pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6530         pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6531         pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6532         pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6533         pctx.opts->trim = RBD_TRIM_DEFAULT;
6534
6535         ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL,
6536                                  ',');
6537         if (ret)
6538                 goto out_err;
6539
6540         ret = rbd_parse_options(options, &pctx);
6541         if (ret)
6542                 goto out_err;
6543
6544         *ceph_opts = pctx.copts;
6545         *opts = pctx.opts;
6546         *rbd_spec = pctx.spec;
6547         kfree(options);
6548         return 0;
6549
6550 out_mem:
6551         ret = -ENOMEM;
6552 out_err:
6553         kfree(pctx.opts);
6554         ceph_destroy_options(pctx.copts);
6555         rbd_spec_put(pctx.spec);
6556         kfree(options);
6557         return ret;
6558 }
6559
6560 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6561 {
6562         down_write(&rbd_dev->lock_rwsem);
6563         if (__rbd_is_lock_owner(rbd_dev))
6564                 __rbd_release_lock(rbd_dev);
6565         up_write(&rbd_dev->lock_rwsem);
6566 }
6567
6568 /*
6569  * If the wait is interrupted, an error is returned even if the lock
6570  * was successfully acquired.  rbd_dev_image_unlock() will release it
6571  * if needed.
6572  */
6573 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6574 {
6575         long ret;
6576
6577         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6578                 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6579                         return 0;
6580
6581                 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6582                 return -EINVAL;
6583         }
6584
6585         if (rbd_is_ro(rbd_dev))
6586                 return 0;
6587
6588         rbd_assert(!rbd_is_lock_owner(rbd_dev));
6589         queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6590         ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6591                             ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6592         if (ret > 0) {
6593                 ret = rbd_dev->acquire_err;
6594         } else {
6595                 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6596                 if (!ret)
6597                         ret = -ETIMEDOUT;
6598
6599                 rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret);
6600         }
6601         if (ret)
6602                 return ret;
6603
6604         /*
6605          * The lock may have been released by now, unless automatic lock
6606          * transitions are disabled.
6607          */
6608         rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6609         return 0;
6610 }
6611
6612 /*
6613  * An rbd format 2 image has a unique identifier, distinct from the
6614  * name given to it by the user.  Internally, that identifier is
6615  * what's used to specify the names of objects related to the image.
6616  *
6617  * A special "rbd id" object is used to map an rbd image name to its
6618  * id.  If that object doesn't exist, then there is no v2 rbd image
6619  * with the supplied name.
6620  *
6621  * This function will record the given rbd_dev's image_id field if
6622  * it can be determined, and in that case will return 0.  If any
6623  * errors occur a negative errno will be returned and the rbd_dev's
6624  * image_id field will be unchanged (and should be NULL).
6625  */
6626 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6627 {
6628         int ret;
6629         size_t size;
6630         CEPH_DEFINE_OID_ONSTACK(oid);
6631         void *response;
6632         char *image_id;
6633
6634         /*
6635          * When probing a parent image, the image id is already
6636          * known (and the image name likely is not).  There's no
6637          * need to fetch the image id again in this case.  We
6638          * do still need to set the image format though.
6639          */
6640         if (rbd_dev->spec->image_id) {
6641                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6642
6643                 return 0;
6644         }
6645
6646         /*
6647          * First, see if the format 2 image id file exists, and if
6648          * so, get the image's persistent id from it.
6649          */
6650         ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6651                                rbd_dev->spec->image_name);
6652         if (ret)
6653                 return ret;
6654
6655         dout("rbd id object name is %s\n", oid.name);
6656
6657         /* Response will be an encoded string, which includes a length */
6658         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6659         response = kzalloc(size, GFP_NOIO);
6660         if (!response) {
6661                 ret = -ENOMEM;
6662                 goto out;
6663         }
6664
6665         /* If it doesn't exist we'll assume it's a format 1 image */
6666
6667         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6668                                   "get_id", NULL, 0,
6669                                   response, size);
6670         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6671         if (ret == -ENOENT) {
6672                 image_id = kstrdup("", GFP_KERNEL);
6673                 ret = image_id ? 0 : -ENOMEM;
6674                 if (!ret)
6675                         rbd_dev->image_format = 1;
6676         } else if (ret >= 0) {
6677                 void *p = response;
6678
6679                 image_id = ceph_extract_encoded_string(&p, p + ret,
6680                                                 NULL, GFP_NOIO);
6681                 ret = PTR_ERR_OR_ZERO(image_id);
6682                 if (!ret)
6683                         rbd_dev->image_format = 2;
6684         }
6685
6686         if (!ret) {
6687                 rbd_dev->spec->image_id = image_id;
6688                 dout("image_id is %s\n", image_id);
6689         }
6690 out:
6691         kfree(response);
6692         ceph_oid_destroy(&oid);
6693         return ret;
6694 }
6695
6696 /*
6697  * Undo whatever state changes are made by v1 or v2 header info
6698  * call.
6699  */
6700 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6701 {
6702         struct rbd_image_header *header;
6703
6704         rbd_dev_parent_put(rbd_dev);
6705         rbd_object_map_free(rbd_dev);
6706         rbd_dev_mapping_clear(rbd_dev);
6707
6708         /* Free dynamic fields from the header, then zero it out */
6709
6710         header = &rbd_dev->header;
6711         ceph_put_snap_context(header->snapc);
6712         kfree(header->snap_sizes);
6713         kfree(header->snap_names);
6714         kfree(header->object_prefix);
6715         memset(header, 0, sizeof (*header));
6716 }
6717
6718 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6719 {
6720         int ret;
6721
6722         ret = rbd_dev_v2_object_prefix(rbd_dev);
6723         if (ret)
6724                 goto out_err;
6725
6726         /*
6727          * Get the and check features for the image.  Currently the
6728          * features are assumed to never change.
6729          */
6730         ret = rbd_dev_v2_features(rbd_dev);
6731         if (ret)
6732                 goto out_err;
6733
6734         /* If the image supports fancy striping, get its parameters */
6735
6736         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6737                 ret = rbd_dev_v2_striping_info(rbd_dev);
6738                 if (ret < 0)
6739                         goto out_err;
6740         }
6741
6742         if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6743                 ret = rbd_dev_v2_data_pool(rbd_dev);
6744                 if (ret)
6745                         goto out_err;
6746         }
6747
6748         rbd_init_layout(rbd_dev);
6749         return 0;
6750
6751 out_err:
6752         rbd_dev->header.features = 0;
6753         kfree(rbd_dev->header.object_prefix);
6754         rbd_dev->header.object_prefix = NULL;
6755         return ret;
6756 }
6757
6758 /*
6759  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6760  * rbd_dev_image_probe() recursion depth, which means it's also the
6761  * length of the already discovered part of the parent chain.
6762  */
6763 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6764 {
6765         struct rbd_device *parent = NULL;
6766         int ret;
6767
6768         if (!rbd_dev->parent_spec)
6769                 return 0;
6770
6771         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6772                 pr_info("parent chain is too long (%d)\n", depth);
6773                 ret = -EINVAL;
6774                 goto out_err;
6775         }
6776
6777         parent = __rbd_dev_create(rbd_dev->parent_spec);
6778         if (!parent) {
6779                 ret = -ENOMEM;
6780                 goto out_err;
6781         }
6782
6783         /*
6784          * Images related by parent/child relationships always share
6785          * rbd_client and spec/parent_spec, so bump their refcounts.
6786          */
6787         parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6788         parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6789
6790         __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6791
6792         ret = rbd_dev_image_probe(parent, depth);
6793         if (ret < 0)
6794                 goto out_err;
6795
6796         rbd_dev->parent = parent;
6797         atomic_set(&rbd_dev->parent_ref, 1);
6798         return 0;
6799
6800 out_err:
6801         rbd_dev_unparent(rbd_dev);
6802         rbd_dev_destroy(parent);
6803         return ret;
6804 }
6805
6806 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6807 {
6808         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6809         rbd_free_disk(rbd_dev);
6810         if (!single_major)
6811                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6812 }
6813
6814 /*
6815  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6816  * upon return.
6817  */
6818 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6819 {
6820         int ret;
6821
6822         /* Record our major and minor device numbers. */
6823
6824         if (!single_major) {
6825                 ret = register_blkdev(0, rbd_dev->name);
6826                 if (ret < 0)
6827                         goto err_out_unlock;
6828
6829                 rbd_dev->major = ret;
6830                 rbd_dev->minor = 0;
6831         } else {
6832                 rbd_dev->major = rbd_major;
6833                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6834         }
6835
6836         /* Set up the blkdev mapping. */
6837
6838         ret = rbd_init_disk(rbd_dev);
6839         if (ret)
6840                 goto err_out_blkdev;
6841
6842         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6843         set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6844
6845         ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6846         if (ret)
6847                 goto err_out_disk;
6848
6849         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6850         up_write(&rbd_dev->header_rwsem);
6851         return 0;
6852
6853 err_out_disk:
6854         rbd_free_disk(rbd_dev);
6855 err_out_blkdev:
6856         if (!single_major)
6857                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6858 err_out_unlock:
6859         up_write(&rbd_dev->header_rwsem);
6860         return ret;
6861 }
6862
6863 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6864 {
6865         struct rbd_spec *spec = rbd_dev->spec;
6866         int ret;
6867
6868         /* Record the header object name for this rbd image. */
6869
6870         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6871         if (rbd_dev->image_format == 1)
6872                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6873                                        spec->image_name, RBD_SUFFIX);
6874         else
6875                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6876                                        RBD_HEADER_PREFIX, spec->image_id);
6877
6878         return ret;
6879 }
6880
6881 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6882 {
6883         if (!is_snap) {
6884                 pr_info("image %s/%s%s%s does not exist\n",
6885                         rbd_dev->spec->pool_name,
6886                         rbd_dev->spec->pool_ns ?: "",
6887                         rbd_dev->spec->pool_ns ? "/" : "",
6888                         rbd_dev->spec->image_name);
6889         } else {
6890                 pr_info("snap %s/%s%s%s@%s does not exist\n",
6891                         rbd_dev->spec->pool_name,
6892                         rbd_dev->spec->pool_ns ?: "",
6893                         rbd_dev->spec->pool_ns ? "/" : "",
6894                         rbd_dev->spec->image_name,
6895                         rbd_dev->spec->snap_name);
6896         }
6897 }
6898
6899 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6900 {
6901         if (!rbd_is_ro(rbd_dev))
6902                 rbd_unregister_watch(rbd_dev);
6903
6904         rbd_dev_unprobe(rbd_dev);
6905         rbd_dev->image_format = 0;
6906         kfree(rbd_dev->spec->image_id);
6907         rbd_dev->spec->image_id = NULL;
6908 }
6909
6910 /*
6911  * Probe for the existence of the header object for the given rbd
6912  * device.  If this image is the one being mapped (i.e., not a
6913  * parent), initiate a watch on its header object before using that
6914  * object to get detailed information about the rbd image.
6915  *
6916  * On success, returns with header_rwsem held for write if called
6917  * with @depth == 0.
6918  */
6919 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6920 {
6921         bool need_watch = !rbd_is_ro(rbd_dev);
6922         int ret;
6923
6924         /*
6925          * Get the id from the image id object.  Unless there's an
6926          * error, rbd_dev->spec->image_id will be filled in with
6927          * a dynamically-allocated string, and rbd_dev->image_format
6928          * will be set to either 1 or 2.
6929          */
6930         ret = rbd_dev_image_id(rbd_dev);
6931         if (ret)
6932                 return ret;
6933
6934         ret = rbd_dev_header_name(rbd_dev);
6935         if (ret)
6936                 goto err_out_format;
6937
6938         if (need_watch) {
6939                 ret = rbd_register_watch(rbd_dev);
6940                 if (ret) {
6941                         if (ret == -ENOENT)
6942                                 rbd_print_dne(rbd_dev, false);
6943                         goto err_out_format;
6944                 }
6945         }
6946
6947         if (!depth)
6948                 down_write(&rbd_dev->header_rwsem);
6949
6950         ret = rbd_dev_header_info(rbd_dev);
6951         if (ret) {
6952                 if (ret == -ENOENT && !need_watch)
6953                         rbd_print_dne(rbd_dev, false);
6954                 goto err_out_probe;
6955         }
6956
6957         /*
6958          * If this image is the one being mapped, we have pool name and
6959          * id, image name and id, and snap name - need to fill snap id.
6960          * Otherwise this is a parent image, identified by pool, image
6961          * and snap ids - need to fill in names for those ids.
6962          */
6963         if (!depth)
6964                 ret = rbd_spec_fill_snap_id(rbd_dev);
6965         else
6966                 ret = rbd_spec_fill_names(rbd_dev);
6967         if (ret) {
6968                 if (ret == -ENOENT)
6969                         rbd_print_dne(rbd_dev, true);
6970                 goto err_out_probe;
6971         }
6972
6973         ret = rbd_dev_mapping_set(rbd_dev);
6974         if (ret)
6975                 goto err_out_probe;
6976
6977         if (rbd_is_snap(rbd_dev) &&
6978             (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6979                 ret = rbd_object_map_load(rbd_dev);
6980                 if (ret)
6981                         goto err_out_probe;
6982         }
6983
6984         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6985                 ret = rbd_dev_v2_parent_info(rbd_dev);
6986                 if (ret)
6987                         goto err_out_probe;
6988         }
6989
6990         ret = rbd_dev_probe_parent(rbd_dev, depth);
6991         if (ret)
6992                 goto err_out_probe;
6993
6994         dout("discovered format %u image, header name is %s\n",
6995                 rbd_dev->image_format, rbd_dev->header_oid.name);
6996         return 0;
6997
6998 err_out_probe:
6999         if (!depth)
7000                 up_write(&rbd_dev->header_rwsem);
7001         if (need_watch)
7002                 rbd_unregister_watch(rbd_dev);
7003         rbd_dev_unprobe(rbd_dev);
7004 err_out_format:
7005         rbd_dev->image_format = 0;
7006         kfree(rbd_dev->spec->image_id);
7007         rbd_dev->spec->image_id = NULL;
7008         return ret;
7009 }
7010
7011 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
7012 {
7013         u64 mapping_size;
7014         int ret;
7015
7016         down_write(&rbd_dev->header_rwsem);
7017         mapping_size = rbd_dev->mapping.size;
7018
7019         ret = rbd_dev_header_info(rbd_dev);
7020         if (ret)
7021                 goto out;
7022
7023         /*
7024          * If there is a parent, see if it has disappeared due to the
7025          * mapped image getting flattened.
7026          */
7027         if (rbd_dev->parent) {
7028                 ret = rbd_dev_v2_parent_info(rbd_dev);
7029                 if (ret)
7030                         goto out;
7031         }
7032
7033         rbd_assert(!rbd_is_snap(rbd_dev));
7034         rbd_dev->mapping.size = rbd_dev->header.image_size;
7035
7036 out:
7037         up_write(&rbd_dev->header_rwsem);
7038         if (!ret && mapping_size != rbd_dev->mapping.size)
7039                 rbd_dev_update_size(rbd_dev);
7040
7041         return ret;
7042 }
7043
7044 static ssize_t do_rbd_add(const char *buf, size_t count)
7045 {
7046         struct rbd_device *rbd_dev = NULL;
7047         struct ceph_options *ceph_opts = NULL;
7048         struct rbd_options *rbd_opts = NULL;
7049         struct rbd_spec *spec = NULL;
7050         struct rbd_client *rbdc;
7051         int rc;
7052
7053         if (!capable(CAP_SYS_ADMIN))
7054                 return -EPERM;
7055
7056         if (!try_module_get(THIS_MODULE))
7057                 return -ENODEV;
7058
7059         /* parse add command */
7060         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7061         if (rc < 0)
7062                 goto out;
7063
7064         rbdc = rbd_get_client(ceph_opts);
7065         if (IS_ERR(rbdc)) {
7066                 rc = PTR_ERR(rbdc);
7067                 goto err_out_args;
7068         }
7069
7070         /* pick the pool */
7071         rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7072         if (rc < 0) {
7073                 if (rc == -ENOENT)
7074                         pr_info("pool %s does not exist\n", spec->pool_name);
7075                 goto err_out_client;
7076         }
7077         spec->pool_id = (u64)rc;
7078
7079         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7080         if (!rbd_dev) {
7081                 rc = -ENOMEM;
7082                 goto err_out_client;
7083         }
7084         rbdc = NULL;            /* rbd_dev now owns this */
7085         spec = NULL;            /* rbd_dev now owns this */
7086         rbd_opts = NULL;        /* rbd_dev now owns this */
7087
7088         /* if we are mapping a snapshot it will be a read-only mapping */
7089         if (rbd_dev->opts->read_only ||
7090             strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7091                 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7092
7093         rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7094         if (!rbd_dev->config_info) {
7095                 rc = -ENOMEM;
7096                 goto err_out_rbd_dev;
7097         }
7098
7099         rc = rbd_dev_image_probe(rbd_dev, 0);
7100         if (rc < 0)
7101                 goto err_out_rbd_dev;
7102
7103         if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7104                 rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7105                          rbd_dev->layout.object_size);
7106                 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7107         }
7108
7109         rc = rbd_dev_device_setup(rbd_dev);
7110         if (rc)
7111                 goto err_out_image_probe;
7112
7113         rc = rbd_add_acquire_lock(rbd_dev);
7114         if (rc)
7115                 goto err_out_image_lock;
7116
7117         /* Everything's ready.  Announce the disk to the world. */
7118
7119         rc = device_add(&rbd_dev->dev);
7120         if (rc)
7121                 goto err_out_image_lock;
7122
7123         rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7124         if (rc)
7125                 goto err_out_cleanup_disk;
7126
7127         spin_lock(&rbd_dev_list_lock);
7128         list_add_tail(&rbd_dev->node, &rbd_dev_list);
7129         spin_unlock(&rbd_dev_list_lock);
7130
7131         pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7132                 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7133                 rbd_dev->header.features);
7134         rc = count;
7135 out:
7136         module_put(THIS_MODULE);
7137         return rc;
7138
7139 err_out_cleanup_disk:
7140         rbd_free_disk(rbd_dev);
7141 err_out_image_lock:
7142         rbd_dev_image_unlock(rbd_dev);
7143         rbd_dev_device_release(rbd_dev);
7144 err_out_image_probe:
7145         rbd_dev_image_release(rbd_dev);
7146 err_out_rbd_dev:
7147         rbd_dev_destroy(rbd_dev);
7148 err_out_client:
7149         rbd_put_client(rbdc);
7150 err_out_args:
7151         rbd_spec_put(spec);
7152         kfree(rbd_opts);
7153         goto out;
7154 }
7155
7156 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count)
7157 {
7158         if (single_major)
7159                 return -EINVAL;
7160
7161         return do_rbd_add(buf, count);
7162 }
7163
7164 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
7165                                       size_t count)
7166 {
7167         return do_rbd_add(buf, count);
7168 }
7169
7170 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7171 {
7172         while (rbd_dev->parent) {
7173                 struct rbd_device *first = rbd_dev;
7174                 struct rbd_device *second = first->parent;
7175                 struct rbd_device *third;
7176
7177                 /*
7178                  * Follow to the parent with no grandparent and
7179                  * remove it.
7180                  */
7181                 while (second && (third = second->parent)) {
7182                         first = second;
7183                         second = third;
7184                 }
7185                 rbd_assert(second);
7186                 rbd_dev_image_release(second);
7187                 rbd_dev_destroy(second);
7188                 first->parent = NULL;
7189                 first->parent_overlap = 0;
7190
7191                 rbd_assert(first->parent_spec);
7192                 rbd_spec_put(first->parent_spec);
7193                 first->parent_spec = NULL;
7194         }
7195 }
7196
7197 static ssize_t do_rbd_remove(const char *buf, size_t count)
7198 {
7199         struct rbd_device *rbd_dev = NULL;
7200         int dev_id;
7201         char opt_buf[6];
7202         bool force = false;
7203         int ret;
7204
7205         if (!capable(CAP_SYS_ADMIN))
7206                 return -EPERM;
7207
7208         dev_id = -1;
7209         opt_buf[0] = '\0';
7210         sscanf(buf, "%d %5s", &dev_id, opt_buf);
7211         if (dev_id < 0) {
7212                 pr_err("dev_id out of range\n");
7213                 return -EINVAL;
7214         }
7215         if (opt_buf[0] != '\0') {
7216                 if (!strcmp(opt_buf, "force")) {
7217                         force = true;
7218                 } else {
7219                         pr_err("bad remove option at '%s'\n", opt_buf);
7220                         return -EINVAL;
7221                 }
7222         }
7223
7224         ret = -ENOENT;
7225         spin_lock(&rbd_dev_list_lock);
7226         list_for_each_entry(rbd_dev, &rbd_dev_list, node) {
7227                 if (rbd_dev->dev_id == dev_id) {
7228                         ret = 0;
7229                         break;
7230                 }
7231         }
7232         if (!ret) {
7233                 spin_lock_irq(&rbd_dev->lock);
7234                 if (rbd_dev->open_count && !force)
7235                         ret = -EBUSY;
7236                 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7237                                           &rbd_dev->flags))
7238                         ret = -EINPROGRESS;
7239                 spin_unlock_irq(&rbd_dev->lock);
7240         }
7241         spin_unlock(&rbd_dev_list_lock);
7242         if (ret)
7243                 return ret;
7244
7245         if (force) {
7246                 /*
7247                  * Prevent new IO from being queued and wait for existing
7248                  * IO to complete/fail.
7249                  */
7250                 blk_mq_freeze_queue(rbd_dev->disk->queue);
7251                 blk_mark_disk_dead(rbd_dev->disk);
7252         }
7253
7254         del_gendisk(rbd_dev->disk);
7255         spin_lock(&rbd_dev_list_lock);
7256         list_del_init(&rbd_dev->node);
7257         spin_unlock(&rbd_dev_list_lock);
7258         device_del(&rbd_dev->dev);
7259
7260         rbd_dev_image_unlock(rbd_dev);
7261         rbd_dev_device_release(rbd_dev);
7262         rbd_dev_image_release(rbd_dev);
7263         rbd_dev_destroy(rbd_dev);
7264         return count;
7265 }
7266
7267 static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count)
7268 {
7269         if (single_major)
7270                 return -EINVAL;
7271
7272         return do_rbd_remove(buf, count);
7273 }
7274
7275 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
7276                                          size_t count)
7277 {
7278         return do_rbd_remove(buf, count);
7279 }
7280
7281 /*
7282  * create control files in sysfs
7283  * /sys/bus/rbd/...
7284  */
7285 static int __init rbd_sysfs_init(void)
7286 {
7287         int ret;
7288
7289         ret = device_register(&rbd_root_dev);
7290         if (ret < 0) {
7291                 put_device(&rbd_root_dev);
7292                 return ret;
7293         }
7294
7295         ret = bus_register(&rbd_bus_type);
7296         if (ret < 0)
7297                 device_unregister(&rbd_root_dev);
7298
7299         return ret;
7300 }
7301
7302 static void __exit rbd_sysfs_cleanup(void)
7303 {
7304         bus_unregister(&rbd_bus_type);
7305         device_unregister(&rbd_root_dev);
7306 }
7307
7308 static int __init rbd_slab_init(void)
7309 {
7310         rbd_assert(!rbd_img_request_cache);
7311         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7312         if (!rbd_img_request_cache)
7313                 return -ENOMEM;
7314
7315         rbd_assert(!rbd_obj_request_cache);
7316         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7317         if (!rbd_obj_request_cache)
7318                 goto out_err;
7319
7320         return 0;
7321
7322 out_err:
7323         kmem_cache_destroy(rbd_img_request_cache);
7324         rbd_img_request_cache = NULL;
7325         return -ENOMEM;
7326 }
7327
7328 static void rbd_slab_exit(void)
7329 {
7330         rbd_assert(rbd_obj_request_cache);
7331         kmem_cache_destroy(rbd_obj_request_cache);
7332         rbd_obj_request_cache = NULL;
7333
7334         rbd_assert(rbd_img_request_cache);
7335         kmem_cache_destroy(rbd_img_request_cache);
7336         rbd_img_request_cache = NULL;
7337 }
7338
7339 static int __init rbd_init(void)
7340 {
7341         int rc;
7342
7343         if (!libceph_compatible(NULL)) {
7344                 rbd_warn(NULL, "libceph incompatibility (quitting)");
7345                 return -EINVAL;
7346         }
7347
7348         rc = rbd_slab_init();
7349         if (rc)
7350                 return rc;
7351
7352         /*
7353          * The number of active work items is limited by the number of
7354          * rbd devices * queue depth, so leave @max_active at default.
7355          */
7356         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7357         if (!rbd_wq) {
7358                 rc = -ENOMEM;
7359                 goto err_out_slab;
7360         }
7361
7362         if (single_major) {
7363                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
7364                 if (rbd_major < 0) {
7365                         rc = rbd_major;
7366                         goto err_out_wq;
7367                 }
7368         }
7369
7370         rc = rbd_sysfs_init();
7371         if (rc)
7372                 goto err_out_blkdev;
7373
7374         if (single_major)
7375                 pr_info("loaded (major %d)\n", rbd_major);
7376         else
7377                 pr_info("loaded\n");
7378
7379         return 0;
7380
7381 err_out_blkdev:
7382         if (single_major)
7383                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7384 err_out_wq:
7385         destroy_workqueue(rbd_wq);
7386 err_out_slab:
7387         rbd_slab_exit();
7388         return rc;
7389 }
7390
7391 static void __exit rbd_exit(void)
7392 {
7393         ida_destroy(&rbd_dev_id_ida);
7394         rbd_sysfs_cleanup();
7395         if (single_major)
7396                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7397         destroy_workqueue(rbd_wq);
7398         rbd_slab_exit();
7399 }
7400
7401 module_init(rbd_init);
7402 module_exit(rbd_exit);
7403
7404 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7405 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7406 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7407 /* following authorship retained from original osdblk.c */
7408 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7409
7410 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7411 MODULE_LICENSE("GPL");