3 rbd.c -- Export ceph rados objects as a Linux block device
6 based on drivers/block/osdblk.c:
8 Copyright 2009 Red Hat, Inc.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 For usage instructions, please refer to:
27 Documentation/ABI/testing/sysfs-bus-rbd
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
50 #include "rbd_types.h"
52 #define RBD_DEBUG /* Activate rbd_assert() calls */
55 * Increment the given counter and return its updated value.
56 * If the counter is already 0 it will not be incremented.
57 * If the counter is already at its maximum value returns
58 * -EINVAL without updating it.
60 static int atomic_inc_return_safe(atomic_t *v)
64 counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 if (counter <= (unsigned int)INT_MAX)
73 /* Decrement the counter. Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
78 counter = atomic_dec_return(v);
87 #define RBD_DRV_NAME "rbd"
89 #define RBD_MINORS_PER_MAJOR 256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
92 #define RBD_MAX_PARENT_CHAIN_LEN 16
94 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN \
96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
98 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
100 #define RBD_SNAP_HEAD_NAME "-"
102 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX 64
108 #define RBD_OBJ_PREFIX_LEN_MAX 64
110 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */
111 #define RBD_RETRY_DELAY msecs_to_jiffies(1000)
115 #define RBD_FEATURE_LAYERING (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP (1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF (1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN (1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL (1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS (1ULL<<8)
124 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \
125 RBD_FEATURE_STRIPINGV2 | \
126 RBD_FEATURE_EXCLUSIVE_LOCK | \
127 RBD_FEATURE_OBJECT_MAP | \
128 RBD_FEATURE_FAST_DIFF | \
129 RBD_FEATURE_DEEP_FLATTEN | \
130 RBD_FEATURE_DATA_POOL | \
131 RBD_FEATURE_OPERATIONS)
133 /* Features supported by this (client software) implementation. */
135 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
138 * An RBD device name will be "rbd#", where the "rbd" comes from
139 * RBD_DRV_NAME above, and # is a unique integer identifier.
141 #define DEV_NAME_LEN 32
144 * block device image metadata (in-memory version)
146 struct rbd_image_header {
147 /* These six fields never change for a given rbd image */
153 u64 features; /* Might be changeable someday? */
155 /* The remaining fields need to be updated occasionally */
157 struct ceph_snap_context *snapc;
158 char *snap_names; /* format 1 only */
159 u64 *snap_sizes; /* format 1 only */
163 * An rbd image specification.
165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166 * identify an image. Each rbd_dev structure includes a pointer to
167 * an rbd_spec structure that encapsulates this identity.
169 * Each of the id's in an rbd_spec has an associated name. For a
170 * user-mapped image, the names are supplied and the id's associated
171 * with them are looked up. For a layered image, a parent image is
172 * defined by the tuple, and the names are looked up.
174 * An rbd_dev structure contains a parent_spec pointer which is
175 * non-null if the image it represents is a child in a layered
176 * image. This pointer will refer to the rbd_spec structure used
177 * by the parent rbd_dev for its own identity (i.e., the structure
178 * is shared between the parent and child).
180 * Since these structures are populated once, during the discovery
181 * phase of image construction, they are effectively immutable so
182 * we make no effort to synchronize access to them.
184 * Note that code herein does not assume the image name is known (it
185 * could be a null pointer).
189 const char *pool_name;
190 const char *pool_ns; /* NULL if default, never "" */
192 const char *image_id;
193 const char *image_name;
196 const char *snap_name;
202 * an instance of the client. multiple devices may share an rbd client.
205 struct ceph_client *client;
207 struct list_head node;
210 struct pending_result {
211 int result; /* first nonzero result */
215 struct rbd_img_request;
217 enum obj_request_type {
218 OBJ_REQUEST_NODATA = 1,
219 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */
220 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */
221 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */
224 enum obj_operation_type {
231 #define RBD_OBJ_FLAG_DELETION (1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED (1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS (1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST (1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT (1U << 4)
237 enum rbd_obj_read_state {
238 RBD_OBJ_READ_START = 1,
244 * Writes go through the following state machine to deal with
247 * . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
250 * . RBD_OBJ_WRITE_READ_FROM_PARENT. . . .
252 * . v v (deep-copyup .
253 * (image . RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC . not needed) .
256 * . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . . (copyup .
259 * done . . . . . . . . . . . . . . . . . .
264 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265 * assert_exists guard is needed or not (in some cases it's not needed
266 * even if there is a parent).
268 enum rbd_obj_write_state {
269 RBD_OBJ_WRITE_START = 1,
270 RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 RBD_OBJ_WRITE_OBJECT,
272 __RBD_OBJ_WRITE_COPYUP,
273 RBD_OBJ_WRITE_COPYUP,
274 RBD_OBJ_WRITE_POST_OBJECT_MAP,
277 enum rbd_obj_copyup_state {
278 RBD_OBJ_COPYUP_START = 1,
279 RBD_OBJ_COPYUP_READ_PARENT,
280 __RBD_OBJ_COPYUP_OBJECT_MAPS,
281 RBD_OBJ_COPYUP_OBJECT_MAPS,
282 __RBD_OBJ_COPYUP_WRITE_OBJECT,
283 RBD_OBJ_COPYUP_WRITE_OBJECT,
286 struct rbd_obj_request {
287 struct ceph_object_extent ex;
288 unsigned int flags; /* RBD_OBJ_FLAG_* */
290 enum rbd_obj_read_state read_state; /* for reads */
291 enum rbd_obj_write_state write_state; /* for writes */
294 struct rbd_img_request *img_request;
295 struct ceph_file_extent *img_extents;
299 struct ceph_bio_iter bio_pos;
301 struct ceph_bvec_iter bvec_pos;
307 enum rbd_obj_copyup_state copyup_state;
308 struct bio_vec *copyup_bvecs;
309 u32 copyup_bvec_count;
311 struct list_head osd_reqs; /* w/ r_private_item */
313 struct mutex state_mutex;
314 struct pending_result pending;
319 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
320 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
325 RBD_IMG_EXCLUSIVE_LOCK,
326 __RBD_IMG_OBJECT_REQUESTS,
327 RBD_IMG_OBJECT_REQUESTS,
330 struct rbd_img_request {
331 struct rbd_device *rbd_dev;
332 enum obj_operation_type op_type;
333 enum obj_request_type data_type;
335 enum rbd_img_state state;
337 u64 snap_id; /* for reads */
338 struct ceph_snap_context *snapc; /* for writes */
340 struct rbd_obj_request *obj_request; /* obj req initiator */
342 struct list_head lock_item;
343 struct list_head object_extents; /* obj_req.ex structs */
345 struct mutex state_mutex;
346 struct pending_result pending;
347 struct work_struct work;
351 #define for_each_obj_request(ireq, oreq) \
352 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
356 enum rbd_watch_state {
357 RBD_WATCH_STATE_UNREGISTERED,
358 RBD_WATCH_STATE_REGISTERED,
359 RBD_WATCH_STATE_ERROR,
362 enum rbd_lock_state {
363 RBD_LOCK_STATE_UNLOCKED,
364 RBD_LOCK_STATE_LOCKED,
365 RBD_LOCK_STATE_RELEASING,
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
382 int dev_id; /* blkdev unique id */
384 int major; /* blkdev assigned major */
386 struct gendisk *disk; /* blkdev's gendisk and rq */
388 u32 image_format; /* Either 1 or 2 */
389 struct rbd_client *rbd_client;
391 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
393 spinlock_t lock; /* queue, flags, open_count */
395 struct rbd_image_header header;
396 unsigned long flags; /* possibly lock protected */
397 struct rbd_spec *spec;
398 struct rbd_options *opts;
399 char *config_info; /* add{,_single_major} string */
401 struct ceph_object_id header_oid;
402 struct ceph_object_locator header_oloc;
404 struct ceph_file_layout layout; /* used for all rbd requests */
406 struct mutex watch_mutex;
407 enum rbd_watch_state watch_state;
408 struct ceph_osd_linger_request *watch_handle;
410 struct delayed_work watch_dwork;
412 struct rw_semaphore lock_rwsem;
413 enum rbd_lock_state lock_state;
414 char lock_cookie[32];
415 struct rbd_client_id owner_cid;
416 struct work_struct acquired_lock_work;
417 struct work_struct released_lock_work;
418 struct delayed_work lock_dwork;
419 struct work_struct unlock_work;
420 spinlock_t lock_lists_lock;
421 struct list_head acquiring_list;
422 struct list_head running_list;
423 struct completion acquire_wait;
425 struct completion releasing_wait;
427 spinlock_t object_map_lock;
429 u64 object_map_size; /* in objects */
430 u64 object_map_flags;
432 struct workqueue_struct *task_wq;
434 struct rbd_spec *parent_spec;
437 struct rbd_device *parent;
439 /* Block layer tags. */
440 struct blk_mq_tag_set tag_set;
442 /* protects updating the header */
443 struct rw_semaphore header_rwsem;
445 struct rbd_mapping mapping;
447 struct list_head node;
451 unsigned long open_count; /* protected by lock */
455 * Flag bits for rbd_dev->flags:
456 * - REMOVING (which is coupled with rbd_dev->open_count) is protected
460 RBD_DEV_FLAG_EXISTS, /* rbd_dev_device_setup() ran */
461 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
462 RBD_DEV_FLAG_READONLY, /* -o ro or snapshot */
465 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
467 static LIST_HEAD(rbd_dev_list); /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
470 static LIST_HEAD(rbd_client_list); /* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
473 /* Slab caches for frequently-allocated structures */
475 static struct kmem_cache *rbd_img_request_cache;
476 static struct kmem_cache *rbd_obj_request_cache;
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
481 static struct workqueue_struct *rbd_wq;
483 static struct ceph_snap_context rbd_empty_snapc = {
484 .nref = REFCOUNT_INIT(1),
488 * single-major requires >= 0.75 version of userspace rbd utility.
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(struct bus_type *bus, const char *buf,
497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
503 static int rbd_dev_id_to_minor(int dev_id)
505 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
508 static int minor_to_rbd_dev_id(int minor)
510 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
515 return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
520 return rbd_dev->spec->snap_id != CEPH_NOSNAP;
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
525 lockdep_assert_held(&rbd_dev->lock_rwsem);
527 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
535 down_read(&rbd_dev->lock_rwsem);
536 is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 up_read(&rbd_dev->lock_rwsem);
538 return is_lock_owner;
541 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
543 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
552 static struct attribute *rbd_bus_attrs[] = {
554 &bus_attr_remove.attr,
555 &bus_attr_add_single_major.attr,
556 &bus_attr_remove_single_major.attr,
557 &bus_attr_supported_features.attr,
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 struct attribute *attr, int index)
565 (attr == &bus_attr_add_single_major.attr ||
566 attr == &bus_attr_remove_single_major.attr))
572 static const struct attribute_group rbd_bus_group = {
573 .attrs = rbd_bus_attrs,
574 .is_visible = rbd_bus_is_visible,
576 __ATTRIBUTE_GROUPS(rbd_bus);
578 static struct bus_type rbd_bus_type = {
580 .bus_groups = rbd_bus_groups,
583 static void rbd_root_dev_release(struct device *dev)
587 static struct device rbd_root_dev = {
589 .release = rbd_root_dev_release,
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
595 struct va_format vaf;
603 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 else if (rbd_dev->disk)
605 printk(KERN_WARNING "%s: %s: %pV\n",
606 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 printk(KERN_WARNING "%s: image %s: %pV\n",
609 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 printk(KERN_WARNING "%s: id %s: %pV\n",
612 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
614 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 RBD_DRV_NAME, rbd_dev, &vaf);
620 #define rbd_assert(expr) \
621 if (unlikely(!(expr))) { \
622 printk(KERN_ERR "\nAssertion failure in %s() " \
624 "\trbd_assert(%s);\n\n", \
625 __func__, __LINE__, #expr); \
628 #else /* !RBD_DEBUG */
629 # define rbd_assert(expr) ((void) 0)
630 #endif /* !RBD_DEBUG */
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
641 u8 *order, u64 *snap_size);
642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
648 * Return true if nothing else is pending.
650 static bool pending_result_dec(struct pending_result *pending, int *result)
652 rbd_assert(pending->num_pending > 0);
654 if (*result && !pending->result)
655 pending->result = *result;
656 if (--pending->num_pending)
659 *result = pending->result;
663 static int rbd_open(struct block_device *bdev, fmode_t mode)
665 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
666 bool removing = false;
668 spin_lock_irq(&rbd_dev->lock);
669 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
672 rbd_dev->open_count++;
673 spin_unlock_irq(&rbd_dev->lock);
677 (void) get_device(&rbd_dev->dev);
682 static void rbd_release(struct gendisk *disk, fmode_t mode)
684 struct rbd_device *rbd_dev = disk->private_data;
685 unsigned long open_count_before;
687 spin_lock_irq(&rbd_dev->lock);
688 open_count_before = rbd_dev->open_count--;
689 spin_unlock_irq(&rbd_dev->lock);
690 rbd_assert(open_count_before > 0);
692 put_device(&rbd_dev->dev);
695 static const struct block_device_operations rbd_bd_ops = {
696 .owner = THIS_MODULE,
698 .release = rbd_release,
702 * Initialize an rbd client instance. Success or not, this function
703 * consumes ceph_opts. Caller holds client_mutex.
705 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
707 struct rbd_client *rbdc;
710 dout("%s:\n", __func__);
711 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
715 kref_init(&rbdc->kref);
716 INIT_LIST_HEAD(&rbdc->node);
718 rbdc->client = ceph_create_client(ceph_opts, rbdc);
719 if (IS_ERR(rbdc->client))
721 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
723 ret = ceph_open_session(rbdc->client);
727 spin_lock(&rbd_client_list_lock);
728 list_add_tail(&rbdc->node, &rbd_client_list);
729 spin_unlock(&rbd_client_list_lock);
731 dout("%s: rbdc %p\n", __func__, rbdc);
735 ceph_destroy_client(rbdc->client);
740 ceph_destroy_options(ceph_opts);
741 dout("%s: error %d\n", __func__, ret);
746 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
748 kref_get(&rbdc->kref);
754 * Find a ceph client with specific addr and configuration. If
755 * found, bump its reference count.
757 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
759 struct rbd_client *rbdc = NULL, *iter;
761 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
764 spin_lock(&rbd_client_list_lock);
765 list_for_each_entry(iter, &rbd_client_list, node) {
766 if (!ceph_compare_options(ceph_opts, iter->client)) {
767 __rbd_get_client(iter);
773 spin_unlock(&rbd_client_list_lock);
779 * (Per device) rbd map options
787 Opt_compression_hint,
788 /* string args above */
797 Opt_compression_hint_none,
798 Opt_compression_hint_compressible,
799 Opt_compression_hint_incompressible,
802 static const struct constant_table rbd_param_compression_hint[] = {
803 {"none", Opt_compression_hint_none},
804 {"compressible", Opt_compression_hint_compressible},
805 {"incompressible", Opt_compression_hint_incompressible},
809 static const struct fs_parameter_spec rbd_parameters[] = {
810 fsparam_u32 ("alloc_size", Opt_alloc_size),
811 fsparam_enum ("compression_hint", Opt_compression_hint,
812 rbd_param_compression_hint),
813 fsparam_flag ("exclusive", Opt_exclusive),
814 fsparam_flag ("lock_on_read", Opt_lock_on_read),
815 fsparam_u32 ("lock_timeout", Opt_lock_timeout),
816 fsparam_flag ("notrim", Opt_notrim),
817 fsparam_string ("_pool_ns", Opt_pool_ns),
818 fsparam_u32 ("queue_depth", Opt_queue_depth),
819 fsparam_flag ("read_only", Opt_read_only),
820 fsparam_flag ("read_write", Opt_read_write),
821 fsparam_flag ("ro", Opt_read_only),
822 fsparam_flag ("rw", Opt_read_write),
829 unsigned long lock_timeout;
835 u32 alloc_hint_flags; /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
838 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_DEFAULT_RQ
839 #define RBD_ALLOC_SIZE_DEFAULT (64 * 1024)
840 #define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */
841 #define RBD_READ_ONLY_DEFAULT false
842 #define RBD_LOCK_ON_READ_DEFAULT false
843 #define RBD_EXCLUSIVE_DEFAULT false
844 #define RBD_TRIM_DEFAULT true
846 struct rbd_parse_opts_ctx {
847 struct rbd_spec *spec;
848 struct ceph_options *copts;
849 struct rbd_options *opts;
852 static char* obj_op_name(enum obj_operation_type op_type)
869 * Destroy ceph client
871 * Caller must hold rbd_client_list_lock.
873 static void rbd_client_release(struct kref *kref)
875 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
877 dout("%s: rbdc %p\n", __func__, rbdc);
878 spin_lock(&rbd_client_list_lock);
879 list_del(&rbdc->node);
880 spin_unlock(&rbd_client_list_lock);
882 ceph_destroy_client(rbdc->client);
887 * Drop reference to ceph client node. If it's not referenced anymore, release
890 static void rbd_put_client(struct rbd_client *rbdc)
893 kref_put(&rbdc->kref, rbd_client_release);
897 * Get a ceph client with specific addr and configuration, if one does
898 * not exist create it. Either way, ceph_opts is consumed by this
901 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
903 struct rbd_client *rbdc;
906 mutex_lock(&client_mutex);
907 rbdc = rbd_client_find(ceph_opts);
909 ceph_destroy_options(ceph_opts);
912 * Using an existing client. Make sure ->pg_pools is up to
913 * date before we look up the pool id in do_rbd_add().
915 ret = ceph_wait_for_latest_osdmap(rbdc->client,
916 rbdc->client->options->mount_timeout);
918 rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
919 rbd_put_client(rbdc);
923 rbdc = rbd_client_create(ceph_opts);
925 mutex_unlock(&client_mutex);
930 static bool rbd_image_format_valid(u32 image_format)
932 return image_format == 1 || image_format == 2;
935 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
940 /* The header has to start with the magic rbd header text */
941 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
944 /* The bio layer requires at least sector-sized I/O */
946 if (ondisk->options.order < SECTOR_SHIFT)
949 /* If we use u64 in a few spots we may be able to loosen this */
951 if (ondisk->options.order > 8 * sizeof (int) - 1)
955 * The size of a snapshot header has to fit in a size_t, and
956 * that limits the number of snapshots.
958 snap_count = le32_to_cpu(ondisk->snap_count);
959 size = SIZE_MAX - sizeof (struct ceph_snap_context);
960 if (snap_count > size / sizeof (__le64))
964 * Not only that, but the size of the entire the snapshot
965 * header must also be representable in a size_t.
967 size -= snap_count * sizeof (__le64);
968 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
975 * returns the size of an object in the image
977 static u32 rbd_obj_bytes(struct rbd_image_header *header)
979 return 1U << header->obj_order;
982 static void rbd_init_layout(struct rbd_device *rbd_dev)
984 if (rbd_dev->header.stripe_unit == 0 ||
985 rbd_dev->header.stripe_count == 0) {
986 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
987 rbd_dev->header.stripe_count = 1;
990 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
991 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
992 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
993 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
994 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
995 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
999 * Fill an rbd image header with information from the given format 1
1002 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1003 struct rbd_image_header_ondisk *ondisk)
1005 struct rbd_image_header *header = &rbd_dev->header;
1006 bool first_time = header->object_prefix == NULL;
1007 struct ceph_snap_context *snapc;
1008 char *object_prefix = NULL;
1009 char *snap_names = NULL;
1010 u64 *snap_sizes = NULL;
1015 /* Allocate this now to avoid having to handle failure below */
1018 object_prefix = kstrndup(ondisk->object_prefix,
1019 sizeof(ondisk->object_prefix),
1025 /* Allocate the snapshot context and fill it in */
1027 snap_count = le32_to_cpu(ondisk->snap_count);
1028 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1031 snapc->seq = le64_to_cpu(ondisk->snap_seq);
1033 struct rbd_image_snap_ondisk *snaps;
1034 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1036 /* We'll keep a copy of the snapshot names... */
1038 if (snap_names_len > (u64)SIZE_MAX)
1040 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1044 /* ...as well as the array of their sizes. */
1045 snap_sizes = kmalloc_array(snap_count,
1046 sizeof(*header->snap_sizes),
1052 * Copy the names, and fill in each snapshot's id
1055 * Note that rbd_dev_v1_header_info() guarantees the
1056 * ondisk buffer we're working with has
1057 * snap_names_len bytes beyond the end of the
1058 * snapshot id array, this memcpy() is safe.
1060 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1061 snaps = ondisk->snaps;
1062 for (i = 0; i < snap_count; i++) {
1063 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1064 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1068 /* We won't fail any more, fill in the header */
1071 header->object_prefix = object_prefix;
1072 header->obj_order = ondisk->options.order;
1073 rbd_init_layout(rbd_dev);
1075 ceph_put_snap_context(header->snapc);
1076 kfree(header->snap_names);
1077 kfree(header->snap_sizes);
1080 /* The remaining fields always get updated (when we refresh) */
1082 header->image_size = le64_to_cpu(ondisk->image_size);
1083 header->snapc = snapc;
1084 header->snap_names = snap_names;
1085 header->snap_sizes = snap_sizes;
1093 ceph_put_snap_context(snapc);
1094 kfree(object_prefix);
1099 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1101 const char *snap_name;
1103 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1105 /* Skip over names until we find the one we are looking for */
1107 snap_name = rbd_dev->header.snap_names;
1109 snap_name += strlen(snap_name) + 1;
1111 return kstrdup(snap_name, GFP_KERNEL);
1115 * Snapshot id comparison function for use with qsort()/bsearch().
1116 * Note that result is for snapshots in *descending* order.
1118 static int snapid_compare_reverse(const void *s1, const void *s2)
1120 u64 snap_id1 = *(u64 *)s1;
1121 u64 snap_id2 = *(u64 *)s2;
1123 if (snap_id1 < snap_id2)
1125 return snap_id1 == snap_id2 ? 0 : -1;
1129 * Search a snapshot context to see if the given snapshot id is
1132 * Returns the position of the snapshot id in the array if it's found,
1133 * or BAD_SNAP_INDEX otherwise.
1135 * Note: The snapshot array is in kept sorted (by the osd) in
1136 * reverse order, highest snapshot id first.
1138 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1140 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1143 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1144 sizeof (snap_id), snapid_compare_reverse);
1146 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1149 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1153 const char *snap_name;
1155 which = rbd_dev_snap_index(rbd_dev, snap_id);
1156 if (which == BAD_SNAP_INDEX)
1157 return ERR_PTR(-ENOENT);
1159 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1160 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1163 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1165 if (snap_id == CEPH_NOSNAP)
1166 return RBD_SNAP_HEAD_NAME;
1168 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1169 if (rbd_dev->image_format == 1)
1170 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1172 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1175 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1178 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1179 if (snap_id == CEPH_NOSNAP) {
1180 *snap_size = rbd_dev->header.image_size;
1181 } else if (rbd_dev->image_format == 1) {
1184 which = rbd_dev_snap_index(rbd_dev, snap_id);
1185 if (which == BAD_SNAP_INDEX)
1188 *snap_size = rbd_dev->header.snap_sizes[which];
1193 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1202 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1204 u64 snap_id = rbd_dev->spec->snap_id;
1208 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1212 rbd_dev->mapping.size = size;
1216 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1218 rbd_dev->mapping.size = 0;
1221 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1223 struct ceph_bio_iter it = *bio_pos;
1225 ceph_bio_iter_advance(&it, off);
1226 ceph_bio_iter_advance_step(&it, bytes, ({
1231 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1233 struct ceph_bvec_iter it = *bvec_pos;
1235 ceph_bvec_iter_advance(&it, off);
1236 ceph_bvec_iter_advance_step(&it, bytes, ({
1242 * Zero a range in @obj_req data buffer defined by a bio (list) or
1243 * (private) bio_vec array.
1245 * @off is relative to the start of the data buffer.
1247 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1250 dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1252 switch (obj_req->img_request->data_type) {
1253 case OBJ_REQUEST_BIO:
1254 zero_bios(&obj_req->bio_pos, off, bytes);
1256 case OBJ_REQUEST_BVECS:
1257 case OBJ_REQUEST_OWN_BVECS:
1258 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1265 static void rbd_obj_request_destroy(struct kref *kref);
1266 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1268 rbd_assert(obj_request != NULL);
1269 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1270 kref_read(&obj_request->kref));
1271 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1274 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1275 struct rbd_obj_request *obj_request)
1277 rbd_assert(obj_request->img_request == NULL);
1279 /* Image request now owns object's original reference */
1280 obj_request->img_request = img_request;
1281 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1284 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1285 struct rbd_obj_request *obj_request)
1287 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1288 list_del(&obj_request->ex.oe_item);
1289 rbd_assert(obj_request->img_request == img_request);
1290 rbd_obj_request_put(obj_request);
1293 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1295 struct rbd_obj_request *obj_req = osd_req->r_priv;
1297 dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1298 __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1299 obj_req->ex.oe_off, obj_req->ex.oe_len);
1300 ceph_osdc_start_request(osd_req->r_osdc, osd_req);
1304 * The default/initial value for all image request flags is 0. Each
1305 * is conditionally set to 1 at image request initialization time
1306 * and currently never change thereafter.
1308 static void img_request_layered_set(struct rbd_img_request *img_request)
1310 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1313 static bool img_request_layered_test(struct rbd_img_request *img_request)
1315 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1318 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1320 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1322 return !obj_req->ex.oe_off &&
1323 obj_req->ex.oe_len == rbd_dev->layout.object_size;
1326 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1328 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1330 return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1331 rbd_dev->layout.object_size;
1335 * Must be called after rbd_obj_calc_img_extents().
1337 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1339 if (!obj_req->num_img_extents ||
1340 (rbd_obj_is_entire(obj_req) &&
1341 !obj_req->img_request->snapc->num_snaps))
1347 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1349 return ceph_file_extents_bytes(obj_req->img_extents,
1350 obj_req->num_img_extents);
1353 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1355 switch (img_req->op_type) {
1359 case OBJ_OP_DISCARD:
1360 case OBJ_OP_ZEROOUT:
1367 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1369 struct rbd_obj_request *obj_req = osd_req->r_priv;
1372 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1373 osd_req->r_result, obj_req);
1376 * Writes aren't allowed to return a data payload. In some
1377 * guarded write cases (e.g. stat + zero on an empty object)
1378 * a stat response makes it through, but we don't care.
1380 if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1383 result = osd_req->r_result;
1385 rbd_obj_handle_request(obj_req, result);
1388 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1390 struct rbd_obj_request *obj_request = osd_req->r_priv;
1391 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1392 struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1394 osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1395 osd_req->r_snapid = obj_request->img_request->snap_id;
1398 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1400 struct rbd_obj_request *obj_request = osd_req->r_priv;
1402 osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1403 ktime_get_real_ts64(&osd_req->r_mtime);
1404 osd_req->r_data_offset = obj_request->ex.oe_off;
1407 static struct ceph_osd_request *
1408 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1409 struct ceph_snap_context *snapc, int num_ops)
1411 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1412 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1413 struct ceph_osd_request *req;
1414 const char *name_format = rbd_dev->image_format == 1 ?
1415 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1418 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1420 return ERR_PTR(-ENOMEM);
1422 list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1423 req->r_callback = rbd_osd_req_callback;
1424 req->r_priv = obj_req;
1427 * Data objects may be stored in a separate pool, but always in
1428 * the same namespace in that pool as the header in its pool.
1430 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1431 req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1433 ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1434 rbd_dev->header.object_prefix,
1435 obj_req->ex.oe_objno);
1437 return ERR_PTR(ret);
1442 static struct ceph_osd_request *
1443 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1445 return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1449 static struct rbd_obj_request *rbd_obj_request_create(void)
1451 struct rbd_obj_request *obj_request;
1453 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1457 ceph_object_extent_init(&obj_request->ex);
1458 INIT_LIST_HEAD(&obj_request->osd_reqs);
1459 mutex_init(&obj_request->state_mutex);
1460 kref_init(&obj_request->kref);
1462 dout("%s %p\n", __func__, obj_request);
1466 static void rbd_obj_request_destroy(struct kref *kref)
1468 struct rbd_obj_request *obj_request;
1469 struct ceph_osd_request *osd_req;
1472 obj_request = container_of(kref, struct rbd_obj_request, kref);
1474 dout("%s: obj %p\n", __func__, obj_request);
1476 while (!list_empty(&obj_request->osd_reqs)) {
1477 osd_req = list_first_entry(&obj_request->osd_reqs,
1478 struct ceph_osd_request, r_private_item);
1479 list_del_init(&osd_req->r_private_item);
1480 ceph_osdc_put_request(osd_req);
1483 switch (obj_request->img_request->data_type) {
1484 case OBJ_REQUEST_NODATA:
1485 case OBJ_REQUEST_BIO:
1486 case OBJ_REQUEST_BVECS:
1487 break; /* Nothing to do */
1488 case OBJ_REQUEST_OWN_BVECS:
1489 kfree(obj_request->bvec_pos.bvecs);
1495 kfree(obj_request->img_extents);
1496 if (obj_request->copyup_bvecs) {
1497 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1498 if (obj_request->copyup_bvecs[i].bv_page)
1499 __free_page(obj_request->copyup_bvecs[i].bv_page);
1501 kfree(obj_request->copyup_bvecs);
1504 kmem_cache_free(rbd_obj_request_cache, obj_request);
1507 /* It's OK to call this for a device with no parent */
1509 static void rbd_spec_put(struct rbd_spec *spec);
1510 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1512 rbd_dev_remove_parent(rbd_dev);
1513 rbd_spec_put(rbd_dev->parent_spec);
1514 rbd_dev->parent_spec = NULL;
1515 rbd_dev->parent_overlap = 0;
1519 * Parent image reference counting is used to determine when an
1520 * image's parent fields can be safely torn down--after there are no
1521 * more in-flight requests to the parent image. When the last
1522 * reference is dropped, cleaning them up is safe.
1524 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1528 if (!rbd_dev->parent_spec)
1531 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1535 /* Last reference; clean up parent data structures */
1538 rbd_dev_unparent(rbd_dev);
1540 rbd_warn(rbd_dev, "parent reference underflow");
1544 * If an image has a non-zero parent overlap, get a reference to its
1547 * Returns true if the rbd device has a parent with a non-zero
1548 * overlap and a reference for it was successfully taken, or
1551 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1555 if (!rbd_dev->parent_spec)
1558 if (rbd_dev->parent_overlap)
1559 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1562 rbd_warn(rbd_dev, "parent reference overflow");
1567 static void rbd_img_request_init(struct rbd_img_request *img_request,
1568 struct rbd_device *rbd_dev,
1569 enum obj_operation_type op_type)
1571 memset(img_request, 0, sizeof(*img_request));
1573 img_request->rbd_dev = rbd_dev;
1574 img_request->op_type = op_type;
1576 INIT_LIST_HEAD(&img_request->lock_item);
1577 INIT_LIST_HEAD(&img_request->object_extents);
1578 mutex_init(&img_request->state_mutex);
1581 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1583 struct rbd_device *rbd_dev = img_req->rbd_dev;
1585 lockdep_assert_held(&rbd_dev->header_rwsem);
1587 if (rbd_img_is_write(img_req))
1588 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1590 img_req->snap_id = rbd_dev->spec->snap_id;
1592 if (rbd_dev_parent_get(rbd_dev))
1593 img_request_layered_set(img_req);
1596 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1598 struct rbd_obj_request *obj_request;
1599 struct rbd_obj_request *next_obj_request;
1601 dout("%s: img %p\n", __func__, img_request);
1603 WARN_ON(!list_empty(&img_request->lock_item));
1604 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1605 rbd_img_obj_request_del(img_request, obj_request);
1607 if (img_request_layered_test(img_request))
1608 rbd_dev_parent_put(img_request->rbd_dev);
1610 if (rbd_img_is_write(img_request))
1611 ceph_put_snap_context(img_request->snapc);
1613 if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1614 kmem_cache_free(rbd_img_request_cache, img_request);
1617 #define BITS_PER_OBJ 2
1618 #define OBJS_PER_BYTE (BITS_PER_BYTE / BITS_PER_OBJ)
1619 #define OBJ_MASK ((1 << BITS_PER_OBJ) - 1)
1621 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1622 u64 *index, u8 *shift)
1626 rbd_assert(objno < rbd_dev->object_map_size);
1627 *index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1628 *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1631 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1636 lockdep_assert_held(&rbd_dev->object_map_lock);
1637 __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1638 return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1641 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1647 lockdep_assert_held(&rbd_dev->object_map_lock);
1648 rbd_assert(!(val & ~OBJ_MASK));
1650 __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1651 p = &rbd_dev->object_map[index];
1652 *p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1655 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1659 spin_lock(&rbd_dev->object_map_lock);
1660 state = __rbd_object_map_get(rbd_dev, objno);
1661 spin_unlock(&rbd_dev->object_map_lock);
1665 static bool use_object_map(struct rbd_device *rbd_dev)
1668 * An image mapped read-only can't use the object map -- it isn't
1669 * loaded because the header lock isn't acquired. Someone else can
1670 * write to the image and update the object map behind our back.
1672 * A snapshot can't be written to, so using the object map is always
1675 if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1678 return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1679 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1682 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1686 /* fall back to default logic if object map is disabled or invalid */
1687 if (!use_object_map(rbd_dev))
1690 state = rbd_object_map_get(rbd_dev, objno);
1691 return state != OBJECT_NONEXISTENT;
1694 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1695 struct ceph_object_id *oid)
1697 if (snap_id == CEPH_NOSNAP)
1698 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1699 rbd_dev->spec->image_id);
1701 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1702 rbd_dev->spec->image_id, snap_id);
1705 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1707 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1708 CEPH_DEFINE_OID_ONSTACK(oid);
1711 struct ceph_locker *lockers;
1713 bool broke_lock = false;
1716 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1719 ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1720 CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1721 if (ret != -EBUSY || broke_lock) {
1723 ret = 0; /* already locked by myself */
1725 rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1729 ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1730 RBD_LOCK_NAME, &lock_type, &lock_tag,
1731 &lockers, &num_lockers);
1736 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1741 if (num_lockers == 0)
1744 rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1745 ENTITY_NAME(lockers[0].id.name));
1747 ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1748 RBD_LOCK_NAME, lockers[0].id.cookie,
1749 &lockers[0].id.name);
1750 ceph_free_lockers(lockers, num_lockers);
1755 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1763 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1765 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1766 CEPH_DEFINE_OID_ONSTACK(oid);
1769 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1771 ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1773 if (ret && ret != -ENOENT)
1774 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1777 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1785 ceph_decode_32_safe(p, end, header_len, e_inval);
1786 header_end = *p + header_len;
1788 ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1793 ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1802 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1804 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1805 CEPH_DEFINE_OID_ONSTACK(oid);
1806 struct page **pages;
1810 u64 object_map_bytes;
1811 u64 object_map_size;
1815 rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1817 num_objects = ceph_get_num_objects(&rbd_dev->layout,
1818 rbd_dev->mapping.size);
1819 object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1821 num_pages = calc_pages_for(0, object_map_bytes) + 1;
1822 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1824 return PTR_ERR(pages);
1826 reply_len = num_pages * PAGE_SIZE;
1827 rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1828 ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1829 "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1830 NULL, 0, pages, &reply_len);
1834 p = page_address(pages[0]);
1835 end = p + min(reply_len, (size_t)PAGE_SIZE);
1836 ret = decode_object_map_header(&p, end, &object_map_size);
1840 if (object_map_size != num_objects) {
1841 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1842 object_map_size, num_objects);
1847 if (offset_in_page(p) + object_map_bytes > reply_len) {
1852 rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1853 if (!rbd_dev->object_map) {
1858 rbd_dev->object_map_size = object_map_size;
1859 ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1860 offset_in_page(p), object_map_bytes);
1863 ceph_release_page_vector(pages, num_pages);
1867 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1869 kvfree(rbd_dev->object_map);
1870 rbd_dev->object_map = NULL;
1871 rbd_dev->object_map_size = 0;
1874 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1878 ret = __rbd_object_map_load(rbd_dev);
1882 ret = rbd_dev_v2_get_flags(rbd_dev);
1884 rbd_object_map_free(rbd_dev);
1888 if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1889 rbd_warn(rbd_dev, "object map is invalid");
1894 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1898 ret = rbd_object_map_lock(rbd_dev);
1902 ret = rbd_object_map_load(rbd_dev);
1904 rbd_object_map_unlock(rbd_dev);
1911 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1913 rbd_object_map_free(rbd_dev);
1914 rbd_object_map_unlock(rbd_dev);
1918 * This function needs snap_id (or more precisely just something to
1919 * distinguish between HEAD and snapshot object maps), new_state and
1920 * current_state that were passed to rbd_object_map_update().
1922 * To avoid allocating and stashing a context we piggyback on the OSD
1923 * request. A HEAD update has two ops (assert_locked). For new_state
1924 * and current_state we decode our own object_map_update op, encoded in
1925 * rbd_cls_object_map_update().
1927 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1928 struct ceph_osd_request *osd_req)
1930 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1931 struct ceph_osd_data *osd_data;
1933 u8 state, new_state, current_state;
1934 bool has_current_state;
1937 if (osd_req->r_result)
1938 return osd_req->r_result;
1941 * Nothing to do for a snapshot object map.
1943 if (osd_req->r_num_ops == 1)
1947 * Update in-memory HEAD object map.
1949 rbd_assert(osd_req->r_num_ops == 2);
1950 osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1951 rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1953 p = page_address(osd_data->pages[0]);
1954 objno = ceph_decode_64(&p);
1955 rbd_assert(objno == obj_req->ex.oe_objno);
1956 rbd_assert(ceph_decode_64(&p) == objno + 1);
1957 new_state = ceph_decode_8(&p);
1958 has_current_state = ceph_decode_8(&p);
1959 if (has_current_state)
1960 current_state = ceph_decode_8(&p);
1962 spin_lock(&rbd_dev->object_map_lock);
1963 state = __rbd_object_map_get(rbd_dev, objno);
1964 if (!has_current_state || current_state == state ||
1965 (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1966 __rbd_object_map_set(rbd_dev, objno, new_state);
1967 spin_unlock(&rbd_dev->object_map_lock);
1972 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1974 struct rbd_obj_request *obj_req = osd_req->r_priv;
1977 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1978 osd_req->r_result, obj_req);
1980 result = rbd_object_map_update_finish(obj_req, osd_req);
1981 rbd_obj_handle_request(obj_req, result);
1984 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
1986 u8 state = rbd_object_map_get(rbd_dev, objno);
1988 if (state == new_state ||
1989 (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
1990 (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
1996 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
1997 int which, u64 objno, u8 new_state,
1998 const u8 *current_state)
2000 struct page **pages;
2004 ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2008 pages = ceph_alloc_page_vector(1, GFP_NOIO);
2010 return PTR_ERR(pages);
2012 p = start = page_address(pages[0]);
2013 ceph_encode_64(&p, objno);
2014 ceph_encode_64(&p, objno + 1);
2015 ceph_encode_8(&p, new_state);
2016 if (current_state) {
2017 ceph_encode_8(&p, 1);
2018 ceph_encode_8(&p, *current_state);
2020 ceph_encode_8(&p, 0);
2023 osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2030 * 0 - object map update sent
2031 * 1 - object map update isn't needed
2034 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2035 u8 new_state, const u8 *current_state)
2037 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2038 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2039 struct ceph_osd_request *req;
2044 if (snap_id == CEPH_NOSNAP) {
2045 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2048 num_ops++; /* assert_locked */
2051 req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2055 list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2056 req->r_callback = rbd_object_map_callback;
2057 req->r_priv = obj_req;
2059 rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2060 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2061 req->r_flags = CEPH_OSD_FLAG_WRITE;
2062 ktime_get_real_ts64(&req->r_mtime);
2064 if (snap_id == CEPH_NOSNAP) {
2066 * Protect against possible race conditions during lock
2067 * ownership transitions.
2069 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2070 CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2075 ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2076 new_state, current_state);
2080 ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2084 ceph_osdc_start_request(osdc, req);
2088 static void prune_extents(struct ceph_file_extent *img_extents,
2089 u32 *num_img_extents, u64 overlap)
2091 u32 cnt = *num_img_extents;
2093 /* drop extents completely beyond the overlap */
2094 while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2098 struct ceph_file_extent *ex = &img_extents[cnt - 1];
2100 /* trim final overlapping extent */
2101 if (ex->fe_off + ex->fe_len > overlap)
2102 ex->fe_len = overlap - ex->fe_off;
2105 *num_img_extents = cnt;
2109 * Determine the byte range(s) covered by either just the object extent
2110 * or the entire object in the parent image.
2112 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2115 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2118 if (!rbd_dev->parent_overlap)
2121 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2122 entire ? 0 : obj_req->ex.oe_off,
2123 entire ? rbd_dev->layout.object_size :
2125 &obj_req->img_extents,
2126 &obj_req->num_img_extents);
2130 prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2131 rbd_dev->parent_overlap);
2135 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2137 struct rbd_obj_request *obj_req = osd_req->r_priv;
2139 switch (obj_req->img_request->data_type) {
2140 case OBJ_REQUEST_BIO:
2141 osd_req_op_extent_osd_data_bio(osd_req, which,
2143 obj_req->ex.oe_len);
2145 case OBJ_REQUEST_BVECS:
2146 case OBJ_REQUEST_OWN_BVECS:
2147 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2148 obj_req->ex.oe_len);
2149 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2150 osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2151 &obj_req->bvec_pos);
2158 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2160 struct page **pages;
2163 * The response data for a STAT call consists of:
2170 pages = ceph_alloc_page_vector(1, GFP_NOIO);
2172 return PTR_ERR(pages);
2174 osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2175 osd_req_op_raw_data_in_pages(osd_req, which, pages,
2176 8 + sizeof(struct ceph_timespec),
2181 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2184 struct rbd_obj_request *obj_req = osd_req->r_priv;
2187 ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2191 osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2192 obj_req->copyup_bvec_count, bytes);
2196 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2198 obj_req->read_state = RBD_OBJ_READ_START;
2202 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2205 struct rbd_obj_request *obj_req = osd_req->r_priv;
2206 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2209 if (!use_object_map(rbd_dev) ||
2210 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2211 osd_req_op_alloc_hint_init(osd_req, which++,
2212 rbd_dev->layout.object_size,
2213 rbd_dev->layout.object_size,
2214 rbd_dev->opts->alloc_hint_flags);
2217 if (rbd_obj_is_entire(obj_req))
2218 opcode = CEPH_OSD_OP_WRITEFULL;
2220 opcode = CEPH_OSD_OP_WRITE;
2222 osd_req_op_extent_init(osd_req, which, opcode,
2223 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2224 rbd_osd_setup_data(osd_req, which);
2227 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2231 /* reverse map the entire object onto the parent */
2232 ret = rbd_obj_calc_img_extents(obj_req, true);
2236 if (rbd_obj_copyup_enabled(obj_req))
2237 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2239 obj_req->write_state = RBD_OBJ_WRITE_START;
2243 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2245 return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2249 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2252 struct rbd_obj_request *obj_req = osd_req->r_priv;
2254 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2255 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2256 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2258 osd_req_op_extent_init(osd_req, which,
2259 truncate_or_zero_opcode(obj_req),
2260 obj_req->ex.oe_off, obj_req->ex.oe_len,
2265 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2267 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2272 * Align the range to alloc_size boundary and punt on discards
2273 * that are too small to free up any space.
2275 * alloc_size == object_size && is_tail() is a special case for
2276 * filestore with filestore_punch_hole = false, needed to allow
2277 * truncate (in addition to delete).
2279 if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2280 !rbd_obj_is_tail(obj_req)) {
2281 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2282 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2283 rbd_dev->opts->alloc_size);
2284 if (off >= next_off)
2287 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2288 obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2289 off, next_off - off);
2290 obj_req->ex.oe_off = off;
2291 obj_req->ex.oe_len = next_off - off;
2294 /* reverse map the entire object onto the parent */
2295 ret = rbd_obj_calc_img_extents(obj_req, true);
2299 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2300 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2301 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2303 obj_req->write_state = RBD_OBJ_WRITE_START;
2307 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2310 struct rbd_obj_request *obj_req = osd_req->r_priv;
2313 if (rbd_obj_is_entire(obj_req)) {
2314 if (obj_req->num_img_extents) {
2315 if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2316 osd_req_op_init(osd_req, which++,
2317 CEPH_OSD_OP_CREATE, 0);
2318 opcode = CEPH_OSD_OP_TRUNCATE;
2320 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2321 osd_req_op_init(osd_req, which++,
2322 CEPH_OSD_OP_DELETE, 0);
2326 opcode = truncate_or_zero_opcode(obj_req);
2330 osd_req_op_extent_init(osd_req, which, opcode,
2331 obj_req->ex.oe_off, obj_req->ex.oe_len,
2335 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2339 /* reverse map the entire object onto the parent */
2340 ret = rbd_obj_calc_img_extents(obj_req, true);
2344 if (rbd_obj_copyup_enabled(obj_req))
2345 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2346 if (!obj_req->num_img_extents) {
2347 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2348 if (rbd_obj_is_entire(obj_req))
2349 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2352 obj_req->write_state = RBD_OBJ_WRITE_START;
2356 static int count_write_ops(struct rbd_obj_request *obj_req)
2358 struct rbd_img_request *img_req = obj_req->img_request;
2360 switch (img_req->op_type) {
2362 if (!use_object_map(img_req->rbd_dev) ||
2363 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2364 return 2; /* setallochint + write/writefull */
2366 return 1; /* write/writefull */
2367 case OBJ_OP_DISCARD:
2368 return 1; /* delete/truncate/zero */
2369 case OBJ_OP_ZEROOUT:
2370 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2371 !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2372 return 2; /* create + truncate */
2374 return 1; /* delete/truncate/zero */
2380 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2383 struct rbd_obj_request *obj_req = osd_req->r_priv;
2385 switch (obj_req->img_request->op_type) {
2387 __rbd_osd_setup_write_ops(osd_req, which);
2389 case OBJ_OP_DISCARD:
2390 __rbd_osd_setup_discard_ops(osd_req, which);
2392 case OBJ_OP_ZEROOUT:
2393 __rbd_osd_setup_zeroout_ops(osd_req, which);
2401 * Prune the list of object requests (adjust offset and/or length, drop
2402 * redundant requests). Prepare object request state machines and image
2403 * request state machine for execution.
2405 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2407 struct rbd_obj_request *obj_req, *next_obj_req;
2410 for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2411 switch (img_req->op_type) {
2413 ret = rbd_obj_init_read(obj_req);
2416 ret = rbd_obj_init_write(obj_req);
2418 case OBJ_OP_DISCARD:
2419 ret = rbd_obj_init_discard(obj_req);
2421 case OBJ_OP_ZEROOUT:
2422 ret = rbd_obj_init_zeroout(obj_req);
2430 rbd_img_obj_request_del(img_req, obj_req);
2435 img_req->state = RBD_IMG_START;
2439 union rbd_img_fill_iter {
2440 struct ceph_bio_iter bio_iter;
2441 struct ceph_bvec_iter bvec_iter;
2444 struct rbd_img_fill_ctx {
2445 enum obj_request_type pos_type;
2446 union rbd_img_fill_iter *pos;
2447 union rbd_img_fill_iter iter;
2448 ceph_object_extent_fn_t set_pos_fn;
2449 ceph_object_extent_fn_t count_fn;
2450 ceph_object_extent_fn_t copy_fn;
2453 static struct ceph_object_extent *alloc_object_extent(void *arg)
2455 struct rbd_img_request *img_req = arg;
2456 struct rbd_obj_request *obj_req;
2458 obj_req = rbd_obj_request_create();
2462 rbd_img_obj_request_add(img_req, obj_req);
2463 return &obj_req->ex;
2467 * While su != os && sc == 1 is technically not fancy (it's the same
2468 * layout as su == os && sc == 1), we can't use the nocopy path for it
2469 * because ->set_pos_fn() should be called only once per object.
2470 * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2471 * treat su != os && sc == 1 as fancy.
2473 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2475 return l->stripe_unit != l->object_size;
2478 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2479 struct ceph_file_extent *img_extents,
2480 u32 num_img_extents,
2481 struct rbd_img_fill_ctx *fctx)
2486 img_req->data_type = fctx->pos_type;
2489 * Create object requests and set each object request's starting
2490 * position in the provided bio (list) or bio_vec array.
2492 fctx->iter = *fctx->pos;
2493 for (i = 0; i < num_img_extents; i++) {
2494 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2495 img_extents[i].fe_off,
2496 img_extents[i].fe_len,
2497 &img_req->object_extents,
2498 alloc_object_extent, img_req,
2499 fctx->set_pos_fn, &fctx->iter);
2504 return __rbd_img_fill_request(img_req);
2508 * Map a list of image extents to a list of object extents, create the
2509 * corresponding object requests (normally each to a different object,
2510 * but not always) and add them to @img_req. For each object request,
2511 * set up its data descriptor to point to the corresponding chunk(s) of
2512 * @fctx->pos data buffer.
2514 * Because ceph_file_to_extents() will merge adjacent object extents
2515 * together, each object request's data descriptor may point to multiple
2516 * different chunks of @fctx->pos data buffer.
2518 * @fctx->pos data buffer is assumed to be large enough.
2520 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2521 struct ceph_file_extent *img_extents,
2522 u32 num_img_extents,
2523 struct rbd_img_fill_ctx *fctx)
2525 struct rbd_device *rbd_dev = img_req->rbd_dev;
2526 struct rbd_obj_request *obj_req;
2530 if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2531 !rbd_layout_is_fancy(&rbd_dev->layout))
2532 return rbd_img_fill_request_nocopy(img_req, img_extents,
2533 num_img_extents, fctx);
2535 img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2538 * Create object requests and determine ->bvec_count for each object
2539 * request. Note that ->bvec_count sum over all object requests may
2540 * be greater than the number of bio_vecs in the provided bio (list)
2541 * or bio_vec array because when mapped, those bio_vecs can straddle
2542 * stripe unit boundaries.
2544 fctx->iter = *fctx->pos;
2545 for (i = 0; i < num_img_extents; i++) {
2546 ret = ceph_file_to_extents(&rbd_dev->layout,
2547 img_extents[i].fe_off,
2548 img_extents[i].fe_len,
2549 &img_req->object_extents,
2550 alloc_object_extent, img_req,
2551 fctx->count_fn, &fctx->iter);
2556 for_each_obj_request(img_req, obj_req) {
2557 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2558 sizeof(*obj_req->bvec_pos.bvecs),
2560 if (!obj_req->bvec_pos.bvecs)
2565 * Fill in each object request's private bio_vec array, splitting and
2566 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2568 fctx->iter = *fctx->pos;
2569 for (i = 0; i < num_img_extents; i++) {
2570 ret = ceph_iterate_extents(&rbd_dev->layout,
2571 img_extents[i].fe_off,
2572 img_extents[i].fe_len,
2573 &img_req->object_extents,
2574 fctx->copy_fn, &fctx->iter);
2579 return __rbd_img_fill_request(img_req);
2582 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2585 struct ceph_file_extent ex = { off, len };
2586 union rbd_img_fill_iter dummy = {};
2587 struct rbd_img_fill_ctx fctx = {
2588 .pos_type = OBJ_REQUEST_NODATA,
2592 return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2595 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2597 struct rbd_obj_request *obj_req =
2598 container_of(ex, struct rbd_obj_request, ex);
2599 struct ceph_bio_iter *it = arg;
2601 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2602 obj_req->bio_pos = *it;
2603 ceph_bio_iter_advance(it, bytes);
2606 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2608 struct rbd_obj_request *obj_req =
2609 container_of(ex, struct rbd_obj_request, ex);
2610 struct ceph_bio_iter *it = arg;
2612 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2613 ceph_bio_iter_advance_step(it, bytes, ({
2614 obj_req->bvec_count++;
2619 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2621 struct rbd_obj_request *obj_req =
2622 container_of(ex, struct rbd_obj_request, ex);
2623 struct ceph_bio_iter *it = arg;
2625 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2626 ceph_bio_iter_advance_step(it, bytes, ({
2627 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2628 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2632 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2633 struct ceph_file_extent *img_extents,
2634 u32 num_img_extents,
2635 struct ceph_bio_iter *bio_pos)
2637 struct rbd_img_fill_ctx fctx = {
2638 .pos_type = OBJ_REQUEST_BIO,
2639 .pos = (union rbd_img_fill_iter *)bio_pos,
2640 .set_pos_fn = set_bio_pos,
2641 .count_fn = count_bio_bvecs,
2642 .copy_fn = copy_bio_bvecs,
2645 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2649 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2650 u64 off, u64 len, struct bio *bio)
2652 struct ceph_file_extent ex = { off, len };
2653 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2655 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2658 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2660 struct rbd_obj_request *obj_req =
2661 container_of(ex, struct rbd_obj_request, ex);
2662 struct ceph_bvec_iter *it = arg;
2664 obj_req->bvec_pos = *it;
2665 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2666 ceph_bvec_iter_advance(it, bytes);
2669 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2671 struct rbd_obj_request *obj_req =
2672 container_of(ex, struct rbd_obj_request, ex);
2673 struct ceph_bvec_iter *it = arg;
2675 ceph_bvec_iter_advance_step(it, bytes, ({
2676 obj_req->bvec_count++;
2680 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2682 struct rbd_obj_request *obj_req =
2683 container_of(ex, struct rbd_obj_request, ex);
2684 struct ceph_bvec_iter *it = arg;
2686 ceph_bvec_iter_advance_step(it, bytes, ({
2687 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2688 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2692 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2693 struct ceph_file_extent *img_extents,
2694 u32 num_img_extents,
2695 struct ceph_bvec_iter *bvec_pos)
2697 struct rbd_img_fill_ctx fctx = {
2698 .pos_type = OBJ_REQUEST_BVECS,
2699 .pos = (union rbd_img_fill_iter *)bvec_pos,
2700 .set_pos_fn = set_bvec_pos,
2701 .count_fn = count_bvecs,
2702 .copy_fn = copy_bvecs,
2705 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2709 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2710 struct ceph_file_extent *img_extents,
2711 u32 num_img_extents,
2712 struct bio_vec *bvecs)
2714 struct ceph_bvec_iter it = {
2716 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2720 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2724 static void rbd_img_handle_request_work(struct work_struct *work)
2726 struct rbd_img_request *img_req =
2727 container_of(work, struct rbd_img_request, work);
2729 rbd_img_handle_request(img_req, img_req->work_result);
2732 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2734 INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2735 img_req->work_result = result;
2736 queue_work(rbd_wq, &img_req->work);
2739 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2741 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2743 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2744 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2748 dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2749 obj_req->ex.oe_objno);
2753 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2755 struct ceph_osd_request *osd_req;
2758 osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2759 if (IS_ERR(osd_req))
2760 return PTR_ERR(osd_req);
2762 osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2763 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2764 rbd_osd_setup_data(osd_req, 0);
2765 rbd_osd_format_read(osd_req);
2767 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2771 rbd_osd_submit(osd_req);
2775 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2777 struct rbd_img_request *img_req = obj_req->img_request;
2778 struct rbd_device *parent = img_req->rbd_dev->parent;
2779 struct rbd_img_request *child_img_req;
2782 child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2786 rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2787 __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2788 child_img_req->obj_request = obj_req;
2790 down_read(&parent->header_rwsem);
2791 rbd_img_capture_header(child_img_req);
2792 up_read(&parent->header_rwsem);
2794 dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2797 if (!rbd_img_is_write(img_req)) {
2798 switch (img_req->data_type) {
2799 case OBJ_REQUEST_BIO:
2800 ret = __rbd_img_fill_from_bio(child_img_req,
2801 obj_req->img_extents,
2802 obj_req->num_img_extents,
2805 case OBJ_REQUEST_BVECS:
2806 case OBJ_REQUEST_OWN_BVECS:
2807 ret = __rbd_img_fill_from_bvecs(child_img_req,
2808 obj_req->img_extents,
2809 obj_req->num_img_extents,
2810 &obj_req->bvec_pos);
2816 ret = rbd_img_fill_from_bvecs(child_img_req,
2817 obj_req->img_extents,
2818 obj_req->num_img_extents,
2819 obj_req->copyup_bvecs);
2822 rbd_img_request_destroy(child_img_req);
2826 /* avoid parent chain recursion */
2827 rbd_img_schedule(child_img_req, 0);
2831 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2833 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2837 switch (obj_req->read_state) {
2838 case RBD_OBJ_READ_START:
2839 rbd_assert(!*result);
2841 if (!rbd_obj_may_exist(obj_req)) {
2843 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2847 ret = rbd_obj_read_object(obj_req);
2852 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2854 case RBD_OBJ_READ_OBJECT:
2855 if (*result == -ENOENT && rbd_dev->parent_overlap) {
2856 /* reverse map this object extent onto the parent */
2857 ret = rbd_obj_calc_img_extents(obj_req, false);
2862 if (obj_req->num_img_extents) {
2863 ret = rbd_obj_read_from_parent(obj_req);
2868 obj_req->read_state = RBD_OBJ_READ_PARENT;
2874 * -ENOENT means a hole in the image -- zero-fill the entire
2875 * length of the request. A short read also implies zero-fill
2876 * to the end of the request.
2878 if (*result == -ENOENT) {
2879 rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2881 } else if (*result >= 0) {
2882 if (*result < obj_req->ex.oe_len)
2883 rbd_obj_zero_range(obj_req, *result,
2884 obj_req->ex.oe_len - *result);
2886 rbd_assert(*result == obj_req->ex.oe_len);
2890 case RBD_OBJ_READ_PARENT:
2892 * The parent image is read only up to the overlap -- zero-fill
2893 * from the overlap to the end of the request.
2896 u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2898 if (obj_overlap < obj_req->ex.oe_len)
2899 rbd_obj_zero_range(obj_req, obj_overlap,
2900 obj_req->ex.oe_len - obj_overlap);
2908 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2910 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2912 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2913 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2915 if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2916 (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2917 dout("%s %p noop for nonexistent\n", __func__, obj_req);
2926 * 0 - object map update sent
2927 * 1 - object map update isn't needed
2930 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2932 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2935 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2938 if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2939 new_state = OBJECT_PENDING;
2941 new_state = OBJECT_EXISTS;
2943 return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2946 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2948 struct ceph_osd_request *osd_req;
2949 int num_ops = count_write_ops(obj_req);
2953 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2954 num_ops++; /* stat */
2956 osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2957 if (IS_ERR(osd_req))
2958 return PTR_ERR(osd_req);
2960 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2961 ret = rbd_osd_setup_stat(osd_req, which++);
2966 rbd_osd_setup_write_ops(osd_req, which);
2967 rbd_osd_format_write(osd_req);
2969 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2973 rbd_osd_submit(osd_req);
2978 * copyup_bvecs pages are never highmem pages
2980 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2982 struct ceph_bvec_iter it = {
2984 .iter = { .bi_size = bytes },
2987 ceph_bvec_iter_advance_step(&it, bytes, ({
2988 if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
2994 #define MODS_ONLY U32_MAX
2996 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
2999 struct ceph_osd_request *osd_req;
3002 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3003 rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3005 osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3006 if (IS_ERR(osd_req))
3007 return PTR_ERR(osd_req);
3009 ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3013 rbd_osd_format_write(osd_req);
3015 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3019 rbd_osd_submit(osd_req);
3023 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3026 struct ceph_osd_request *osd_req;
3027 int num_ops = count_write_ops(obj_req);
3031 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3033 if (bytes != MODS_ONLY)
3034 num_ops++; /* copyup */
3036 osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3037 if (IS_ERR(osd_req))
3038 return PTR_ERR(osd_req);
3040 if (bytes != MODS_ONLY) {
3041 ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3046 rbd_osd_setup_write_ops(osd_req, which);
3047 rbd_osd_format_write(osd_req);
3049 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3053 rbd_osd_submit(osd_req);
3057 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3061 rbd_assert(!obj_req->copyup_bvecs);
3062 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3063 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3064 sizeof(*obj_req->copyup_bvecs),
3066 if (!obj_req->copyup_bvecs)
3069 for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3070 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3072 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3073 if (!obj_req->copyup_bvecs[i].bv_page)
3076 obj_req->copyup_bvecs[i].bv_offset = 0;
3077 obj_req->copyup_bvecs[i].bv_len = len;
3081 rbd_assert(!obj_overlap);
3086 * The target object doesn't exist. Read the data for the entire
3087 * target object up to the overlap point (if any) from the parent,
3088 * so we can use it for a copyup.
3090 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3092 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3095 rbd_assert(obj_req->num_img_extents);
3096 prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3097 rbd_dev->parent_overlap);
3098 if (!obj_req->num_img_extents) {
3100 * The overlap has become 0 (most likely because the
3101 * image has been flattened). Re-submit the original write
3102 * request -- pass MODS_ONLY since the copyup isn't needed
3105 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3108 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3112 return rbd_obj_read_from_parent(obj_req);
3115 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3117 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3118 struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3123 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3125 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3128 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3131 for (i = 0; i < snapc->num_snaps; i++) {
3132 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3133 i + 1 < snapc->num_snaps)
3134 new_state = OBJECT_EXISTS_CLEAN;
3136 new_state = OBJECT_EXISTS;
3138 ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3141 obj_req->pending.result = ret;
3146 obj_req->pending.num_pending++;
3150 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3152 u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3155 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3158 * Only send non-zero copyup data to save some I/O and network
3159 * bandwidth -- zero copyup data is equivalent to the object not
3162 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3165 if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3167 * Send a copyup request with an empty snapshot context to
3168 * deep-copyup the object through all existing snapshots.
3169 * A second request with the current snapshot context will be
3170 * sent for the actual modification.
3172 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3174 obj_req->pending.result = ret;
3178 obj_req->pending.num_pending++;
3182 ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3184 obj_req->pending.result = ret;
3188 obj_req->pending.num_pending++;
3191 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3193 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3197 switch (obj_req->copyup_state) {
3198 case RBD_OBJ_COPYUP_START:
3199 rbd_assert(!*result);
3201 ret = rbd_obj_copyup_read_parent(obj_req);
3206 if (obj_req->num_img_extents)
3207 obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3209 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3211 case RBD_OBJ_COPYUP_READ_PARENT:
3215 if (is_zero_bvecs(obj_req->copyup_bvecs,
3216 rbd_obj_img_extents_bytes(obj_req))) {
3217 dout("%s %p detected zeros\n", __func__, obj_req);
3218 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3221 rbd_obj_copyup_object_maps(obj_req);
3222 if (!obj_req->pending.num_pending) {
3223 *result = obj_req->pending.result;
3224 obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3227 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3229 case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3230 if (!pending_result_dec(&obj_req->pending, result))
3233 case RBD_OBJ_COPYUP_OBJECT_MAPS:
3235 rbd_warn(rbd_dev, "snap object map update failed: %d",
3240 rbd_obj_copyup_write_object(obj_req);
3241 if (!obj_req->pending.num_pending) {
3242 *result = obj_req->pending.result;
3243 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3246 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3248 case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3249 if (!pending_result_dec(&obj_req->pending, result))
3252 case RBD_OBJ_COPYUP_WRITE_OBJECT:
3261 * 0 - object map update sent
3262 * 1 - object map update isn't needed
3265 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3267 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3268 u8 current_state = OBJECT_PENDING;
3270 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3273 if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3276 return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3280 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3282 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3286 switch (obj_req->write_state) {
3287 case RBD_OBJ_WRITE_START:
3288 rbd_assert(!*result);
3290 if (rbd_obj_write_is_noop(obj_req))
3293 ret = rbd_obj_write_pre_object_map(obj_req);
3298 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3302 case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3304 rbd_warn(rbd_dev, "pre object map update failed: %d",
3308 ret = rbd_obj_write_object(obj_req);
3313 obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3315 case RBD_OBJ_WRITE_OBJECT:
3316 if (*result == -ENOENT) {
3317 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3319 obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3320 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3324 * On a non-existent object:
3325 * delete - -ENOENT, truncate/zero - 0
3327 if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3333 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3335 case __RBD_OBJ_WRITE_COPYUP:
3336 if (!rbd_obj_advance_copyup(obj_req, result))
3339 case RBD_OBJ_WRITE_COPYUP:
3341 rbd_warn(rbd_dev, "copyup failed: %d", *result);
3344 ret = rbd_obj_write_post_object_map(obj_req);
3349 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3353 case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3355 rbd_warn(rbd_dev, "post object map update failed: %d",
3364 * Return true if @obj_req is completed.
3366 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3369 struct rbd_img_request *img_req = obj_req->img_request;
3370 struct rbd_device *rbd_dev = img_req->rbd_dev;
3373 mutex_lock(&obj_req->state_mutex);
3374 if (!rbd_img_is_write(img_req))
3375 done = rbd_obj_advance_read(obj_req, result);
3377 done = rbd_obj_advance_write(obj_req, result);
3378 mutex_unlock(&obj_req->state_mutex);
3380 if (done && *result) {
3381 rbd_assert(*result < 0);
3382 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3383 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3384 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3390 * This is open-coded in rbd_img_handle_request() to avoid parent chain
3393 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3395 if (__rbd_obj_handle_request(obj_req, &result))
3396 rbd_img_handle_request(obj_req->img_request, result);
3399 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3401 struct rbd_device *rbd_dev = img_req->rbd_dev;
3403 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3406 if (rbd_is_ro(rbd_dev))
3409 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3410 if (rbd_dev->opts->lock_on_read ||
3411 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3414 return rbd_img_is_write(img_req);
3417 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3419 struct rbd_device *rbd_dev = img_req->rbd_dev;
3422 lockdep_assert_held(&rbd_dev->lock_rwsem);
3423 locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3424 spin_lock(&rbd_dev->lock_lists_lock);
3425 rbd_assert(list_empty(&img_req->lock_item));
3427 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3429 list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3430 spin_unlock(&rbd_dev->lock_lists_lock);
3434 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3436 struct rbd_device *rbd_dev = img_req->rbd_dev;
3439 lockdep_assert_held(&rbd_dev->lock_rwsem);
3440 spin_lock(&rbd_dev->lock_lists_lock);
3441 rbd_assert(!list_empty(&img_req->lock_item));
3442 list_del_init(&img_req->lock_item);
3443 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3444 list_empty(&rbd_dev->running_list));
3445 spin_unlock(&rbd_dev->lock_lists_lock);
3447 complete(&rbd_dev->releasing_wait);
3450 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3452 struct rbd_device *rbd_dev = img_req->rbd_dev;
3454 if (!need_exclusive_lock(img_req))
3457 if (rbd_lock_add_request(img_req))
3460 if (rbd_dev->opts->exclusive) {
3461 WARN_ON(1); /* lock got released? */
3466 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3467 * and cancel_delayed_work() in wake_lock_waiters().
3469 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3470 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3474 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3476 struct rbd_obj_request *obj_req;
3478 rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3480 for_each_obj_request(img_req, obj_req) {
3483 if (__rbd_obj_handle_request(obj_req, &result)) {
3485 img_req->pending.result = result;
3489 img_req->pending.num_pending++;
3494 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3496 struct rbd_device *rbd_dev = img_req->rbd_dev;
3500 switch (img_req->state) {
3502 rbd_assert(!*result);
3504 ret = rbd_img_exclusive_lock(img_req);
3509 img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3513 case RBD_IMG_EXCLUSIVE_LOCK:
3517 rbd_assert(!need_exclusive_lock(img_req) ||
3518 __rbd_is_lock_owner(rbd_dev));
3520 rbd_img_object_requests(img_req);
3521 if (!img_req->pending.num_pending) {
3522 *result = img_req->pending.result;
3523 img_req->state = RBD_IMG_OBJECT_REQUESTS;
3526 img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3528 case __RBD_IMG_OBJECT_REQUESTS:
3529 if (!pending_result_dec(&img_req->pending, result))
3532 case RBD_IMG_OBJECT_REQUESTS:
3540 * Return true if @img_req is completed.
3542 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3545 struct rbd_device *rbd_dev = img_req->rbd_dev;
3548 if (need_exclusive_lock(img_req)) {
3549 down_read(&rbd_dev->lock_rwsem);
3550 mutex_lock(&img_req->state_mutex);
3551 done = rbd_img_advance(img_req, result);
3553 rbd_lock_del_request(img_req);
3554 mutex_unlock(&img_req->state_mutex);
3555 up_read(&rbd_dev->lock_rwsem);
3557 mutex_lock(&img_req->state_mutex);
3558 done = rbd_img_advance(img_req, result);
3559 mutex_unlock(&img_req->state_mutex);
3562 if (done && *result) {
3563 rbd_assert(*result < 0);
3564 rbd_warn(rbd_dev, "%s%s result %d",
3565 test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3566 obj_op_name(img_req->op_type), *result);
3571 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3574 if (!__rbd_img_handle_request(img_req, &result))
3577 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3578 struct rbd_obj_request *obj_req = img_req->obj_request;
3580 rbd_img_request_destroy(img_req);
3581 if (__rbd_obj_handle_request(obj_req, &result)) {
3582 img_req = obj_req->img_request;
3586 struct request *rq = blk_mq_rq_from_pdu(img_req);
3588 rbd_img_request_destroy(img_req);
3589 blk_mq_end_request(rq, errno_to_blk_status(result));
3593 static const struct rbd_client_id rbd_empty_cid;
3595 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3596 const struct rbd_client_id *rhs)
3598 return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3601 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3603 struct rbd_client_id cid;
3605 mutex_lock(&rbd_dev->watch_mutex);
3606 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3607 cid.handle = rbd_dev->watch_cookie;
3608 mutex_unlock(&rbd_dev->watch_mutex);
3613 * lock_rwsem must be held for write
3615 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3616 const struct rbd_client_id *cid)
3618 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3619 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3620 cid->gid, cid->handle);
3621 rbd_dev->owner_cid = *cid; /* struct */
3624 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3626 mutex_lock(&rbd_dev->watch_mutex);
3627 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3628 mutex_unlock(&rbd_dev->watch_mutex);
3631 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3633 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3635 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3636 strcpy(rbd_dev->lock_cookie, cookie);
3637 rbd_set_owner_cid(rbd_dev, &cid);
3638 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3642 * lock_rwsem must be held for write
3644 static int rbd_lock(struct rbd_device *rbd_dev)
3646 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3650 WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3651 rbd_dev->lock_cookie[0] != '\0');
3653 format_lock_cookie(rbd_dev, cookie);
3654 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3655 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3656 RBD_LOCK_TAG, "", 0);
3660 __rbd_lock(rbd_dev, cookie);
3665 * lock_rwsem must be held for write
3667 static void rbd_unlock(struct rbd_device *rbd_dev)
3669 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3672 WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3673 rbd_dev->lock_cookie[0] == '\0');
3675 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3676 RBD_LOCK_NAME, rbd_dev->lock_cookie);
3677 if (ret && ret != -ENOENT)
3678 rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3680 /* treat errors as the image is unlocked */
3681 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3682 rbd_dev->lock_cookie[0] = '\0';
3683 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3684 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3687 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3688 enum rbd_notify_op notify_op,
3689 struct page ***preply_pages,
3692 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3693 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3694 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3695 int buf_size = sizeof(buf);
3698 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3700 /* encode *LockPayload NotifyMessage (op + ClientId) */
3701 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3702 ceph_encode_32(&p, notify_op);
3703 ceph_encode_64(&p, cid.gid);
3704 ceph_encode_64(&p, cid.handle);
3706 return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3707 &rbd_dev->header_oloc, buf, buf_size,
3708 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3711 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3712 enum rbd_notify_op notify_op)
3714 __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3717 static void rbd_notify_acquired_lock(struct work_struct *work)
3719 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3720 acquired_lock_work);
3722 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3725 static void rbd_notify_released_lock(struct work_struct *work)
3727 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3728 released_lock_work);
3730 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3733 static int rbd_request_lock(struct rbd_device *rbd_dev)
3735 struct page **reply_pages;
3737 bool lock_owner_responded = false;
3740 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3742 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3743 &reply_pages, &reply_len);
3744 if (ret && ret != -ETIMEDOUT) {
3745 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3749 if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3750 void *p = page_address(reply_pages[0]);
3751 void *const end = p + reply_len;
3754 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3759 ceph_decode_need(&p, end, 8 + 8, e_inval);
3760 p += 8 + 8; /* skip gid and cookie */
3762 ceph_decode_32_safe(&p, end, len, e_inval);
3766 if (lock_owner_responded) {
3768 "duplicate lock owners detected");
3773 lock_owner_responded = true;
3774 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3778 "failed to decode ResponseMessage: %d",
3783 ret = ceph_decode_32(&p);
3787 if (!lock_owner_responded) {
3788 rbd_warn(rbd_dev, "no lock owners detected");
3793 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3802 * Either image request state machine(s) or rbd_add_acquire_lock()
3805 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3807 struct rbd_img_request *img_req;
3809 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3810 lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3812 cancel_delayed_work(&rbd_dev->lock_dwork);
3813 if (!completion_done(&rbd_dev->acquire_wait)) {
3814 rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3815 list_empty(&rbd_dev->running_list));
3816 rbd_dev->acquire_err = result;
3817 complete_all(&rbd_dev->acquire_wait);
3821 list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3822 mutex_lock(&img_req->state_mutex);
3823 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3824 rbd_img_schedule(img_req, result);
3825 mutex_unlock(&img_req->state_mutex);
3828 list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3831 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3832 struct ceph_locker **lockers, u32 *num_lockers)
3834 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3839 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3841 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3842 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3843 &lock_type, &lock_tag, lockers, num_lockers);
3847 if (*num_lockers == 0) {
3848 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3852 if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3853 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3859 if (lock_type == CEPH_CLS_LOCK_SHARED) {
3860 rbd_warn(rbd_dev, "shared lock type detected");
3865 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3866 strlen(RBD_LOCK_COOKIE_PREFIX))) {
3867 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3868 (*lockers)[0].id.cookie);
3878 static int find_watcher(struct rbd_device *rbd_dev,
3879 const struct ceph_locker *locker)
3881 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3882 struct ceph_watch_item *watchers;
3888 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3889 &rbd_dev->header_oloc, &watchers,
3894 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3895 for (i = 0; i < num_watchers; i++) {
3897 * Ignore addr->type while comparing. This mimics
3898 * entity_addr_t::get_legacy_str() + strcmp().
3900 if (ceph_addr_equal_no_type(&watchers[i].addr,
3901 &locker->info.addr) &&
3902 watchers[i].cookie == cookie) {
3903 struct rbd_client_id cid = {
3904 .gid = le64_to_cpu(watchers[i].name.num),
3908 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3909 rbd_dev, cid.gid, cid.handle);
3910 rbd_set_owner_cid(rbd_dev, &cid);
3916 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3924 * lock_rwsem must be held for write
3926 static int rbd_try_lock(struct rbd_device *rbd_dev)
3928 struct ceph_client *client = rbd_dev->rbd_client->client;
3929 struct ceph_locker *lockers;
3934 ret = rbd_lock(rbd_dev);
3938 /* determine if the current lock holder is still alive */
3939 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3943 if (num_lockers == 0)
3946 ret = find_watcher(rbd_dev, lockers);
3948 goto out; /* request lock or error */
3950 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
3951 ENTITY_NAME(lockers[0].id.name));
3953 ret = ceph_monc_blocklist_add(&client->monc,
3954 &lockers[0].info.addr);
3956 rbd_warn(rbd_dev, "blocklist of %s%llu failed: %d",
3957 ENTITY_NAME(lockers[0].id.name), ret);
3961 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3962 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3963 lockers[0].id.cookie,
3964 &lockers[0].id.name);
3965 if (ret && ret != -ENOENT)
3969 ceph_free_lockers(lockers, num_lockers);
3973 ceph_free_lockers(lockers, num_lockers);
3977 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
3981 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
3982 ret = rbd_object_map_open(rbd_dev);
3993 * 1 - caller should call rbd_request_lock()
3996 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4000 down_read(&rbd_dev->lock_rwsem);
4001 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4002 rbd_dev->lock_state);
4003 if (__rbd_is_lock_owner(rbd_dev)) {
4004 up_read(&rbd_dev->lock_rwsem);
4008 up_read(&rbd_dev->lock_rwsem);
4009 down_write(&rbd_dev->lock_rwsem);
4010 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4011 rbd_dev->lock_state);
4012 if (__rbd_is_lock_owner(rbd_dev)) {
4013 up_write(&rbd_dev->lock_rwsem);
4017 ret = rbd_try_lock(rbd_dev);
4019 rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4020 if (ret == -EBLOCKLISTED)
4023 ret = 1; /* request lock anyway */
4026 up_write(&rbd_dev->lock_rwsem);
4030 rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4031 rbd_assert(list_empty(&rbd_dev->running_list));
4033 ret = rbd_post_acquire_action(rbd_dev);
4035 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4037 * Can't stay in RBD_LOCK_STATE_LOCKED because
4038 * rbd_lock_add_request() would let the request through,
4039 * assuming that e.g. object map is locked and loaded.
4041 rbd_unlock(rbd_dev);
4045 wake_lock_waiters(rbd_dev, ret);
4046 up_write(&rbd_dev->lock_rwsem);
4050 static void rbd_acquire_lock(struct work_struct *work)
4052 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4053 struct rbd_device, lock_dwork);
4056 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4058 ret = rbd_try_acquire_lock(rbd_dev);
4060 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4064 ret = rbd_request_lock(rbd_dev);
4065 if (ret == -ETIMEDOUT) {
4066 goto again; /* treat this as a dead client */
4067 } else if (ret == -EROFS) {
4068 rbd_warn(rbd_dev, "peer will not release lock");
4069 down_write(&rbd_dev->lock_rwsem);
4070 wake_lock_waiters(rbd_dev, ret);
4071 up_write(&rbd_dev->lock_rwsem);
4072 } else if (ret < 0) {
4073 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4074 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4078 * lock owner acked, but resend if we don't see them
4081 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4083 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4084 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4088 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4090 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4091 lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4093 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4097 * Ensure that all in-flight IO is flushed.
4099 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4100 rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4101 if (list_empty(&rbd_dev->running_list))
4104 up_write(&rbd_dev->lock_rwsem);
4105 wait_for_completion(&rbd_dev->releasing_wait);
4107 down_write(&rbd_dev->lock_rwsem);
4108 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4111 rbd_assert(list_empty(&rbd_dev->running_list));
4115 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4117 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4118 rbd_object_map_close(rbd_dev);
4121 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4123 rbd_assert(list_empty(&rbd_dev->running_list));
4125 rbd_pre_release_action(rbd_dev);
4126 rbd_unlock(rbd_dev);
4130 * lock_rwsem must be held for write
4132 static void rbd_release_lock(struct rbd_device *rbd_dev)
4134 if (!rbd_quiesce_lock(rbd_dev))
4137 __rbd_release_lock(rbd_dev);
4140 * Give others a chance to grab the lock - we would re-acquire
4141 * almost immediately if we got new IO while draining the running
4142 * list otherwise. We need to ack our own notifications, so this
4143 * lock_dwork will be requeued from rbd_handle_released_lock() by
4144 * way of maybe_kick_acquire().
4146 cancel_delayed_work(&rbd_dev->lock_dwork);
4149 static void rbd_release_lock_work(struct work_struct *work)
4151 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4154 down_write(&rbd_dev->lock_rwsem);
4155 rbd_release_lock(rbd_dev);
4156 up_write(&rbd_dev->lock_rwsem);
4159 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4163 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4164 if (__rbd_is_lock_owner(rbd_dev))
4167 spin_lock(&rbd_dev->lock_lists_lock);
4168 have_requests = !list_empty(&rbd_dev->acquiring_list);
4169 spin_unlock(&rbd_dev->lock_lists_lock);
4170 if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4171 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4172 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4176 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4179 struct rbd_client_id cid = { 0 };
4181 if (struct_v >= 2) {
4182 cid.gid = ceph_decode_64(p);
4183 cid.handle = ceph_decode_64(p);
4186 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4188 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4189 down_write(&rbd_dev->lock_rwsem);
4190 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4191 dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4192 __func__, rbd_dev, cid.gid, cid.handle);
4194 rbd_set_owner_cid(rbd_dev, &cid);
4196 downgrade_write(&rbd_dev->lock_rwsem);
4198 down_read(&rbd_dev->lock_rwsem);
4201 maybe_kick_acquire(rbd_dev);
4202 up_read(&rbd_dev->lock_rwsem);
4205 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4208 struct rbd_client_id cid = { 0 };
4210 if (struct_v >= 2) {
4211 cid.gid = ceph_decode_64(p);
4212 cid.handle = ceph_decode_64(p);
4215 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4217 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4218 down_write(&rbd_dev->lock_rwsem);
4219 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4220 dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4221 __func__, rbd_dev, cid.gid, cid.handle,
4222 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4224 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4226 downgrade_write(&rbd_dev->lock_rwsem);
4228 down_read(&rbd_dev->lock_rwsem);
4231 maybe_kick_acquire(rbd_dev);
4232 up_read(&rbd_dev->lock_rwsem);
4236 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4237 * ResponseMessage is needed.
4239 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4242 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4243 struct rbd_client_id cid = { 0 };
4246 if (struct_v >= 2) {
4247 cid.gid = ceph_decode_64(p);
4248 cid.handle = ceph_decode_64(p);
4251 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4253 if (rbd_cid_equal(&cid, &my_cid))
4256 down_read(&rbd_dev->lock_rwsem);
4257 if (__rbd_is_lock_owner(rbd_dev)) {
4258 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4259 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4263 * encode ResponseMessage(0) so the peer can detect
4268 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4269 if (!rbd_dev->opts->exclusive) {
4270 dout("%s rbd_dev %p queueing unlock_work\n",
4272 queue_work(rbd_dev->task_wq,
4273 &rbd_dev->unlock_work);
4275 /* refuse to release the lock */
4282 up_read(&rbd_dev->lock_rwsem);
4286 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4287 u64 notify_id, u64 cookie, s32 *result)
4289 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4290 char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4291 int buf_size = sizeof(buf);
4297 /* encode ResponseMessage */
4298 ceph_start_encoding(&p, 1, 1,
4299 buf_size - CEPH_ENCODING_START_BLK_LEN);
4300 ceph_encode_32(&p, *result);
4305 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4306 &rbd_dev->header_oloc, notify_id, cookie,
4309 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4312 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4315 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4316 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4319 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4320 u64 notify_id, u64 cookie, s32 result)
4322 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4323 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4326 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4327 u64 notifier_id, void *data, size_t data_len)
4329 struct rbd_device *rbd_dev = arg;
4331 void *const end = p + data_len;
4337 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4338 __func__, rbd_dev, cookie, notify_id, data_len);
4340 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4343 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4348 notify_op = ceph_decode_32(&p);
4350 /* legacy notification for header updates */
4351 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4355 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4356 switch (notify_op) {
4357 case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4358 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4359 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4361 case RBD_NOTIFY_OP_RELEASED_LOCK:
4362 rbd_handle_released_lock(rbd_dev, struct_v, &p);
4363 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4365 case RBD_NOTIFY_OP_REQUEST_LOCK:
4366 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4368 rbd_acknowledge_notify_result(rbd_dev, notify_id,
4371 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4373 case RBD_NOTIFY_OP_HEADER_UPDATE:
4374 ret = rbd_dev_refresh(rbd_dev);
4376 rbd_warn(rbd_dev, "refresh failed: %d", ret);
4378 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4381 if (rbd_is_lock_owner(rbd_dev))
4382 rbd_acknowledge_notify_result(rbd_dev, notify_id,
4383 cookie, -EOPNOTSUPP);
4385 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4390 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4392 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4394 struct rbd_device *rbd_dev = arg;
4396 rbd_warn(rbd_dev, "encountered watch error: %d", err);
4398 down_write(&rbd_dev->lock_rwsem);
4399 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4400 up_write(&rbd_dev->lock_rwsem);
4402 mutex_lock(&rbd_dev->watch_mutex);
4403 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4404 __rbd_unregister_watch(rbd_dev);
4405 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4407 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4409 mutex_unlock(&rbd_dev->watch_mutex);
4413 * watch_mutex must be locked
4415 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4417 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4418 struct ceph_osd_linger_request *handle;
4420 rbd_assert(!rbd_dev->watch_handle);
4421 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4423 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4424 &rbd_dev->header_oloc, rbd_watch_cb,
4425 rbd_watch_errcb, rbd_dev);
4427 return PTR_ERR(handle);
4429 rbd_dev->watch_handle = handle;
4434 * watch_mutex must be locked
4436 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4438 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4441 rbd_assert(rbd_dev->watch_handle);
4442 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4444 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4446 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4448 rbd_dev->watch_handle = NULL;
4451 static int rbd_register_watch(struct rbd_device *rbd_dev)
4455 mutex_lock(&rbd_dev->watch_mutex);
4456 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4457 ret = __rbd_register_watch(rbd_dev);
4461 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4462 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4465 mutex_unlock(&rbd_dev->watch_mutex);
4469 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4471 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4473 cancel_work_sync(&rbd_dev->acquired_lock_work);
4474 cancel_work_sync(&rbd_dev->released_lock_work);
4475 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4476 cancel_work_sync(&rbd_dev->unlock_work);
4480 * header_rwsem must not be held to avoid a deadlock with
4481 * rbd_dev_refresh() when flushing notifies.
4483 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4485 cancel_tasks_sync(rbd_dev);
4487 mutex_lock(&rbd_dev->watch_mutex);
4488 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4489 __rbd_unregister_watch(rbd_dev);
4490 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4491 mutex_unlock(&rbd_dev->watch_mutex);
4493 cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4494 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4498 * lock_rwsem must be held for write
4500 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4502 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4506 if (!rbd_quiesce_lock(rbd_dev))
4509 format_lock_cookie(rbd_dev, cookie);
4510 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4511 &rbd_dev->header_oloc, RBD_LOCK_NAME,
4512 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4513 RBD_LOCK_TAG, cookie);
4515 if (ret != -EOPNOTSUPP)
4516 rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4520 * Lock cookie cannot be updated on older OSDs, so do
4521 * a manual release and queue an acquire.
4523 __rbd_release_lock(rbd_dev);
4524 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4526 __rbd_lock(rbd_dev, cookie);
4527 wake_lock_waiters(rbd_dev, 0);
4531 static void rbd_reregister_watch(struct work_struct *work)
4533 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4534 struct rbd_device, watch_dwork);
4537 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4539 mutex_lock(&rbd_dev->watch_mutex);
4540 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4541 mutex_unlock(&rbd_dev->watch_mutex);
4545 ret = __rbd_register_watch(rbd_dev);
4547 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4548 if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4549 queue_delayed_work(rbd_dev->task_wq,
4550 &rbd_dev->watch_dwork,
4552 mutex_unlock(&rbd_dev->watch_mutex);
4556 mutex_unlock(&rbd_dev->watch_mutex);
4557 down_write(&rbd_dev->lock_rwsem);
4558 wake_lock_waiters(rbd_dev, ret);
4559 up_write(&rbd_dev->lock_rwsem);
4563 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4564 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4565 mutex_unlock(&rbd_dev->watch_mutex);
4567 down_write(&rbd_dev->lock_rwsem);
4568 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4569 rbd_reacquire_lock(rbd_dev);
4570 up_write(&rbd_dev->lock_rwsem);
4572 ret = rbd_dev_refresh(rbd_dev);
4574 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4578 * Synchronous osd object method call. Returns the number of bytes
4579 * returned in the outbound buffer, or a negative error code.
4581 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4582 struct ceph_object_id *oid,
4583 struct ceph_object_locator *oloc,
4584 const char *method_name,
4585 const void *outbound,
4586 size_t outbound_size,
4588 size_t inbound_size)
4590 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4591 struct page *req_page = NULL;
4592 struct page *reply_page;
4596 * Method calls are ultimately read operations. The result
4597 * should placed into the inbound buffer provided. They
4598 * also supply outbound data--parameters for the object
4599 * method. Currently if this is present it will be a
4603 if (outbound_size > PAGE_SIZE)
4606 req_page = alloc_page(GFP_KERNEL);
4610 memcpy(page_address(req_page), outbound, outbound_size);
4613 reply_page = alloc_page(GFP_KERNEL);
4616 __free_page(req_page);
4620 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4621 CEPH_OSD_FLAG_READ, req_page, outbound_size,
4622 &reply_page, &inbound_size);
4624 memcpy(inbound, page_address(reply_page), inbound_size);
4629 __free_page(req_page);
4630 __free_page(reply_page);
4634 static void rbd_queue_workfn(struct work_struct *work)
4636 struct rbd_img_request *img_request =
4637 container_of(work, struct rbd_img_request, work);
4638 struct rbd_device *rbd_dev = img_request->rbd_dev;
4639 enum obj_operation_type op_type = img_request->op_type;
4640 struct request *rq = blk_mq_rq_from_pdu(img_request);
4641 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4642 u64 length = blk_rq_bytes(rq);
4646 /* Ignore/skip any zero-length requests */
4648 dout("%s: zero-length request\n", __func__);
4650 goto err_img_request;
4653 blk_mq_start_request(rq);
4655 down_read(&rbd_dev->header_rwsem);
4656 mapping_size = rbd_dev->mapping.size;
4657 rbd_img_capture_header(img_request);
4658 up_read(&rbd_dev->header_rwsem);
4660 if (offset + length > mapping_size) {
4661 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4662 length, mapping_size);
4664 goto err_img_request;
4667 dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4668 img_request, obj_op_name(op_type), offset, length);
4670 if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4671 result = rbd_img_fill_nodata(img_request, offset, length);
4673 result = rbd_img_fill_from_bio(img_request, offset, length,
4676 goto err_img_request;
4678 rbd_img_handle_request(img_request, 0);
4682 rbd_img_request_destroy(img_request);
4684 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4685 obj_op_name(op_type), length, offset, result);
4686 blk_mq_end_request(rq, errno_to_blk_status(result));
4689 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4690 const struct blk_mq_queue_data *bd)
4692 struct rbd_device *rbd_dev = hctx->queue->queuedata;
4693 struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4694 enum obj_operation_type op_type;
4696 switch (req_op(bd->rq)) {
4697 case REQ_OP_DISCARD:
4698 op_type = OBJ_OP_DISCARD;
4700 case REQ_OP_WRITE_ZEROES:
4701 op_type = OBJ_OP_ZEROOUT;
4704 op_type = OBJ_OP_WRITE;
4707 op_type = OBJ_OP_READ;
4710 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4711 return BLK_STS_IOERR;
4714 rbd_img_request_init(img_req, rbd_dev, op_type);
4716 if (rbd_img_is_write(img_req)) {
4717 if (rbd_is_ro(rbd_dev)) {
4718 rbd_warn(rbd_dev, "%s on read-only mapping",
4719 obj_op_name(img_req->op_type));
4720 return BLK_STS_IOERR;
4722 rbd_assert(!rbd_is_snap(rbd_dev));
4725 INIT_WORK(&img_req->work, rbd_queue_workfn);
4726 queue_work(rbd_wq, &img_req->work);
4730 static void rbd_free_disk(struct rbd_device *rbd_dev)
4732 put_disk(rbd_dev->disk);
4733 blk_mq_free_tag_set(&rbd_dev->tag_set);
4734 rbd_dev->disk = NULL;
4737 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4738 struct ceph_object_id *oid,
4739 struct ceph_object_locator *oloc,
4740 void *buf, int buf_len)
4743 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4744 struct ceph_osd_request *req;
4745 struct page **pages;
4746 int num_pages = calc_pages_for(0, buf_len);
4749 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4753 ceph_oid_copy(&req->r_base_oid, oid);
4754 ceph_oloc_copy(&req->r_base_oloc, oloc);
4755 req->r_flags = CEPH_OSD_FLAG_READ;
4757 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4758 if (IS_ERR(pages)) {
4759 ret = PTR_ERR(pages);
4763 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4764 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4767 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4771 ceph_osdc_start_request(osdc, req);
4772 ret = ceph_osdc_wait_request(osdc, req);
4774 ceph_copy_from_page_vector(pages, buf, 0, ret);
4777 ceph_osdc_put_request(req);
4782 * Read the complete header for the given rbd device. On successful
4783 * return, the rbd_dev->header field will contain up-to-date
4784 * information about the image.
4786 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4788 struct rbd_image_header_ondisk *ondisk = NULL;
4795 * The complete header will include an array of its 64-bit
4796 * snapshot ids, followed by the names of those snapshots as
4797 * a contiguous block of NUL-terminated strings. Note that
4798 * the number of snapshots could change by the time we read
4799 * it in, in which case we re-read it.
4806 size = sizeof (*ondisk);
4807 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4809 ondisk = kmalloc(size, GFP_KERNEL);
4813 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4814 &rbd_dev->header_oloc, ondisk, size);
4817 if ((size_t)ret < size) {
4819 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4823 if (!rbd_dev_ondisk_valid(ondisk)) {
4825 rbd_warn(rbd_dev, "invalid header");
4829 names_size = le64_to_cpu(ondisk->snap_names_len);
4830 want_count = snap_count;
4831 snap_count = le32_to_cpu(ondisk->snap_count);
4832 } while (snap_count != want_count);
4834 ret = rbd_header_from_disk(rbd_dev, ondisk);
4841 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4846 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4847 * try to update its size. If REMOVING is set, updating size
4848 * is just useless work since the device can't be opened.
4850 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4851 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4852 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4853 dout("setting size to %llu sectors", (unsigned long long)size);
4854 set_capacity_and_notify(rbd_dev->disk, size);
4858 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4863 down_write(&rbd_dev->header_rwsem);
4864 mapping_size = rbd_dev->mapping.size;
4866 ret = rbd_dev_header_info(rbd_dev);
4871 * If there is a parent, see if it has disappeared due to the
4872 * mapped image getting flattened.
4874 if (rbd_dev->parent) {
4875 ret = rbd_dev_v2_parent_info(rbd_dev);
4880 rbd_assert(!rbd_is_snap(rbd_dev));
4881 rbd_dev->mapping.size = rbd_dev->header.image_size;
4884 up_write(&rbd_dev->header_rwsem);
4885 if (!ret && mapping_size != rbd_dev->mapping.size)
4886 rbd_dev_update_size(rbd_dev);
4891 static const struct blk_mq_ops rbd_mq_ops = {
4892 .queue_rq = rbd_queue_rq,
4895 static int rbd_init_disk(struct rbd_device *rbd_dev)
4897 struct gendisk *disk;
4898 struct request_queue *q;
4899 unsigned int objset_bytes =
4900 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4903 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4904 rbd_dev->tag_set.ops = &rbd_mq_ops;
4905 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4906 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4907 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4908 rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4909 rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4911 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4915 disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev);
4917 err = PTR_ERR(disk);
4922 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4924 disk->major = rbd_dev->major;
4925 disk->first_minor = rbd_dev->minor;
4927 disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
4929 disk->minors = RBD_MINORS_PER_MAJOR;
4930 disk->fops = &rbd_bd_ops;
4931 disk->private_data = rbd_dev;
4933 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4934 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4936 blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4937 q->limits.max_sectors = queue_max_hw_sectors(q);
4938 blk_queue_max_segments(q, USHRT_MAX);
4939 blk_queue_max_segment_size(q, UINT_MAX);
4940 blk_queue_io_min(q, rbd_dev->opts->alloc_size);
4941 blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
4943 if (rbd_dev->opts->trim) {
4944 q->limits.discard_granularity = rbd_dev->opts->alloc_size;
4945 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
4946 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
4949 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4950 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
4952 rbd_dev->disk = disk;
4956 blk_mq_free_tag_set(&rbd_dev->tag_set);
4964 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4966 return container_of(dev, struct rbd_device, dev);
4969 static ssize_t rbd_size_show(struct device *dev,
4970 struct device_attribute *attr, char *buf)
4972 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4974 return sprintf(buf, "%llu\n",
4975 (unsigned long long)rbd_dev->mapping.size);
4978 static ssize_t rbd_features_show(struct device *dev,
4979 struct device_attribute *attr, char *buf)
4981 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4983 return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
4986 static ssize_t rbd_major_show(struct device *dev,
4987 struct device_attribute *attr, char *buf)
4989 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4992 return sprintf(buf, "%d\n", rbd_dev->major);
4994 return sprintf(buf, "(none)\n");
4997 static ssize_t rbd_minor_show(struct device *dev,
4998 struct device_attribute *attr, char *buf)
5000 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5002 return sprintf(buf, "%d\n", rbd_dev->minor);
5005 static ssize_t rbd_client_addr_show(struct device *dev,
5006 struct device_attribute *attr, char *buf)
5008 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5009 struct ceph_entity_addr *client_addr =
5010 ceph_client_addr(rbd_dev->rbd_client->client);
5012 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5013 le32_to_cpu(client_addr->nonce));
5016 static ssize_t rbd_client_id_show(struct device *dev,
5017 struct device_attribute *attr, char *buf)
5019 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5021 return sprintf(buf, "client%lld\n",
5022 ceph_client_gid(rbd_dev->rbd_client->client));
5025 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5026 struct device_attribute *attr, char *buf)
5028 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5030 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5033 static ssize_t rbd_config_info_show(struct device *dev,
5034 struct device_attribute *attr, char *buf)
5036 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5038 if (!capable(CAP_SYS_ADMIN))
5041 return sprintf(buf, "%s\n", rbd_dev->config_info);
5044 static ssize_t rbd_pool_show(struct device *dev,
5045 struct device_attribute *attr, char *buf)
5047 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5049 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5052 static ssize_t rbd_pool_id_show(struct device *dev,
5053 struct device_attribute *attr, char *buf)
5055 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5057 return sprintf(buf, "%llu\n",
5058 (unsigned long long) rbd_dev->spec->pool_id);
5061 static ssize_t rbd_pool_ns_show(struct device *dev,
5062 struct device_attribute *attr, char *buf)
5064 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5066 return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5069 static ssize_t rbd_name_show(struct device *dev,
5070 struct device_attribute *attr, char *buf)
5072 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5074 if (rbd_dev->spec->image_name)
5075 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5077 return sprintf(buf, "(unknown)\n");
5080 static ssize_t rbd_image_id_show(struct device *dev,
5081 struct device_attribute *attr, char *buf)
5083 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5085 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5089 * Shows the name of the currently-mapped snapshot (or
5090 * RBD_SNAP_HEAD_NAME for the base image).
5092 static ssize_t rbd_snap_show(struct device *dev,
5093 struct device_attribute *attr,
5096 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5098 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5101 static ssize_t rbd_snap_id_show(struct device *dev,
5102 struct device_attribute *attr, char *buf)
5104 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5106 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5110 * For a v2 image, shows the chain of parent images, separated by empty
5111 * lines. For v1 images or if there is no parent, shows "(no parent
5114 static ssize_t rbd_parent_show(struct device *dev,
5115 struct device_attribute *attr,
5118 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5121 if (!rbd_dev->parent)
5122 return sprintf(buf, "(no parent image)\n");
5124 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5125 struct rbd_spec *spec = rbd_dev->parent_spec;
5127 count += sprintf(&buf[count], "%s"
5128 "pool_id %llu\npool_name %s\n"
5130 "image_id %s\nimage_name %s\n"
5131 "snap_id %llu\nsnap_name %s\n"
5133 !count ? "" : "\n", /* first? */
5134 spec->pool_id, spec->pool_name,
5135 spec->pool_ns ?: "",
5136 spec->image_id, spec->image_name ?: "(unknown)",
5137 spec->snap_id, spec->snap_name,
5138 rbd_dev->parent_overlap);
5144 static ssize_t rbd_image_refresh(struct device *dev,
5145 struct device_attribute *attr,
5149 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5152 if (!capable(CAP_SYS_ADMIN))
5155 ret = rbd_dev_refresh(rbd_dev);
5162 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5163 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5164 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5165 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5166 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5167 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5168 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5169 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5170 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5171 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5172 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5173 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5174 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5175 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5176 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5177 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5178 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5180 static struct attribute *rbd_attrs[] = {
5181 &dev_attr_size.attr,
5182 &dev_attr_features.attr,
5183 &dev_attr_major.attr,
5184 &dev_attr_minor.attr,
5185 &dev_attr_client_addr.attr,
5186 &dev_attr_client_id.attr,
5187 &dev_attr_cluster_fsid.attr,
5188 &dev_attr_config_info.attr,
5189 &dev_attr_pool.attr,
5190 &dev_attr_pool_id.attr,
5191 &dev_attr_pool_ns.attr,
5192 &dev_attr_name.attr,
5193 &dev_attr_image_id.attr,
5194 &dev_attr_current_snap.attr,
5195 &dev_attr_snap_id.attr,
5196 &dev_attr_parent.attr,
5197 &dev_attr_refresh.attr,
5201 static struct attribute_group rbd_attr_group = {
5205 static const struct attribute_group *rbd_attr_groups[] = {
5210 static void rbd_dev_release(struct device *dev);
5212 static const struct device_type rbd_device_type = {
5214 .groups = rbd_attr_groups,
5215 .release = rbd_dev_release,
5218 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5220 kref_get(&spec->kref);
5225 static void rbd_spec_free(struct kref *kref);
5226 static void rbd_spec_put(struct rbd_spec *spec)
5229 kref_put(&spec->kref, rbd_spec_free);
5232 static struct rbd_spec *rbd_spec_alloc(void)
5234 struct rbd_spec *spec;
5236 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5240 spec->pool_id = CEPH_NOPOOL;
5241 spec->snap_id = CEPH_NOSNAP;
5242 kref_init(&spec->kref);
5247 static void rbd_spec_free(struct kref *kref)
5249 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5251 kfree(spec->pool_name);
5252 kfree(spec->pool_ns);
5253 kfree(spec->image_id);
5254 kfree(spec->image_name);
5255 kfree(spec->snap_name);
5259 static void rbd_dev_free(struct rbd_device *rbd_dev)
5261 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5262 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5264 ceph_oid_destroy(&rbd_dev->header_oid);
5265 ceph_oloc_destroy(&rbd_dev->header_oloc);
5266 kfree(rbd_dev->config_info);
5268 rbd_put_client(rbd_dev->rbd_client);
5269 rbd_spec_put(rbd_dev->spec);
5270 kfree(rbd_dev->opts);
5274 static void rbd_dev_release(struct device *dev)
5276 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5277 bool need_put = !!rbd_dev->opts;
5280 destroy_workqueue(rbd_dev->task_wq);
5281 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5284 rbd_dev_free(rbd_dev);
5287 * This is racy, but way better than putting module outside of
5288 * the release callback. The race window is pretty small, so
5289 * doing something similar to dm (dm-builtin.c) is overkill.
5292 module_put(THIS_MODULE);
5295 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
5296 struct rbd_spec *spec)
5298 struct rbd_device *rbd_dev;
5300 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5304 spin_lock_init(&rbd_dev->lock);
5305 INIT_LIST_HEAD(&rbd_dev->node);
5306 init_rwsem(&rbd_dev->header_rwsem);
5308 rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5309 ceph_oid_init(&rbd_dev->header_oid);
5310 rbd_dev->header_oloc.pool = spec->pool_id;
5311 if (spec->pool_ns) {
5312 WARN_ON(!*spec->pool_ns);
5313 rbd_dev->header_oloc.pool_ns =
5314 ceph_find_or_create_string(spec->pool_ns,
5315 strlen(spec->pool_ns));
5318 mutex_init(&rbd_dev->watch_mutex);
5319 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5320 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5322 init_rwsem(&rbd_dev->lock_rwsem);
5323 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5324 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5325 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5326 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5327 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5328 spin_lock_init(&rbd_dev->lock_lists_lock);
5329 INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5330 INIT_LIST_HEAD(&rbd_dev->running_list);
5331 init_completion(&rbd_dev->acquire_wait);
5332 init_completion(&rbd_dev->releasing_wait);
5334 spin_lock_init(&rbd_dev->object_map_lock);
5336 rbd_dev->dev.bus = &rbd_bus_type;
5337 rbd_dev->dev.type = &rbd_device_type;
5338 rbd_dev->dev.parent = &rbd_root_dev;
5339 device_initialize(&rbd_dev->dev);
5341 rbd_dev->rbd_client = rbdc;
5342 rbd_dev->spec = spec;
5348 * Create a mapping rbd_dev.
5350 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5351 struct rbd_spec *spec,
5352 struct rbd_options *opts)
5354 struct rbd_device *rbd_dev;
5356 rbd_dev = __rbd_dev_create(rbdc, spec);
5360 rbd_dev->opts = opts;
5362 /* get an id and fill in device name */
5363 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5364 minor_to_rbd_dev_id(1 << MINORBITS),
5366 if (rbd_dev->dev_id < 0)
5369 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5370 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5372 if (!rbd_dev->task_wq)
5375 /* we have a ref from do_rbd_add() */
5376 __module_get(THIS_MODULE);
5378 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5382 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5384 rbd_dev_free(rbd_dev);
5388 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5391 put_device(&rbd_dev->dev);
5395 * Get the size and object order for an image snapshot, or if
5396 * snap_id is CEPH_NOSNAP, gets this information for the base
5399 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5400 u8 *order, u64 *snap_size)
5402 __le64 snapid = cpu_to_le64(snap_id);
5407 } __attribute__ ((packed)) size_buf = { 0 };
5409 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5410 &rbd_dev->header_oloc, "get_size",
5411 &snapid, sizeof(snapid),
5412 &size_buf, sizeof(size_buf));
5413 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5416 if (ret < sizeof (size_buf))
5420 *order = size_buf.order;
5421 dout(" order %u", (unsigned int)*order);
5423 *snap_size = le64_to_cpu(size_buf.size);
5425 dout(" snap_id 0x%016llx snap_size = %llu\n",
5426 (unsigned long long)snap_id,
5427 (unsigned long long)*snap_size);
5432 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5434 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5435 &rbd_dev->header.obj_order,
5436 &rbd_dev->header.image_size);
5439 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5446 /* Response will be an encoded string, which includes a length */
5447 size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5448 reply_buf = kzalloc(size, GFP_KERNEL);
5452 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5453 &rbd_dev->header_oloc, "get_object_prefix",
5454 NULL, 0, reply_buf, size);
5455 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5460 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5461 p + ret, NULL, GFP_NOIO);
5464 if (IS_ERR(rbd_dev->header.object_prefix)) {
5465 ret = PTR_ERR(rbd_dev->header.object_prefix);
5466 rbd_dev->header.object_prefix = NULL;
5468 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
5476 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5477 bool read_only, u64 *snap_features)
5486 } __attribute__ ((packed)) features_buf = { 0 };
5490 features_in.snap_id = cpu_to_le64(snap_id);
5491 features_in.read_only = read_only;
5493 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5494 &rbd_dev->header_oloc, "get_features",
5495 &features_in, sizeof(features_in),
5496 &features_buf, sizeof(features_buf));
5497 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5500 if (ret < sizeof (features_buf))
5503 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5505 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5510 *snap_features = le64_to_cpu(features_buf.features);
5512 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5513 (unsigned long long)snap_id,
5514 (unsigned long long)*snap_features,
5515 (unsigned long long)le64_to_cpu(features_buf.incompat));
5520 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5522 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5524 &rbd_dev->header.features);
5528 * These are generic image flags, but since they are used only for
5529 * object map, store them in rbd_dev->object_map_flags.
5531 * For the same reason, this function is called only on object map
5532 * (re)load and not on header refresh.
5534 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5536 __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5540 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5541 &rbd_dev->header_oloc, "get_flags",
5542 &snapid, sizeof(snapid),
5543 &flags, sizeof(flags));
5546 if (ret < sizeof(flags))
5549 rbd_dev->object_map_flags = le64_to_cpu(flags);
5553 struct parent_image_info {
5555 const char *pool_ns;
5556 const char *image_id;
5564 * The caller is responsible for @pii.
5566 static int decode_parent_image_spec(void **p, void *end,
5567 struct parent_image_info *pii)
5573 ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5574 &struct_v, &struct_len);
5578 ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5579 pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5580 if (IS_ERR(pii->pool_ns)) {
5581 ret = PTR_ERR(pii->pool_ns);
5582 pii->pool_ns = NULL;
5585 pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5586 if (IS_ERR(pii->image_id)) {
5587 ret = PTR_ERR(pii->image_id);
5588 pii->image_id = NULL;
5591 ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5598 static int __get_parent_info(struct rbd_device *rbd_dev,
5599 struct page *req_page,
5600 struct page *reply_page,
5601 struct parent_image_info *pii)
5603 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5604 size_t reply_len = PAGE_SIZE;
5608 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5609 "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5610 req_page, sizeof(u64), &reply_page, &reply_len);
5612 return ret == -EOPNOTSUPP ? 1 : ret;
5614 p = page_address(reply_page);
5615 end = p + reply_len;
5616 ret = decode_parent_image_spec(&p, end, pii);
5620 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5621 "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5622 req_page, sizeof(u64), &reply_page, &reply_len);
5626 p = page_address(reply_page);
5627 end = p + reply_len;
5628 ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5629 if (pii->has_overlap)
5630 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5639 * The caller is responsible for @pii.
5641 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5642 struct page *req_page,
5643 struct page *reply_page,
5644 struct parent_image_info *pii)
5646 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5647 size_t reply_len = PAGE_SIZE;
5651 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5652 "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5653 req_page, sizeof(u64), &reply_page, &reply_len);
5657 p = page_address(reply_page);
5658 end = p + reply_len;
5659 ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5660 pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5661 if (IS_ERR(pii->image_id)) {
5662 ret = PTR_ERR(pii->image_id);
5663 pii->image_id = NULL;
5666 ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5667 pii->has_overlap = true;
5668 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5676 static int get_parent_info(struct rbd_device *rbd_dev,
5677 struct parent_image_info *pii)
5679 struct page *req_page, *reply_page;
5683 req_page = alloc_page(GFP_KERNEL);
5687 reply_page = alloc_page(GFP_KERNEL);
5689 __free_page(req_page);
5693 p = page_address(req_page);
5694 ceph_encode_64(&p, rbd_dev->spec->snap_id);
5695 ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5697 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5700 __free_page(req_page);
5701 __free_page(reply_page);
5705 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5707 struct rbd_spec *parent_spec;
5708 struct parent_image_info pii = { 0 };
5711 parent_spec = rbd_spec_alloc();
5715 ret = get_parent_info(rbd_dev, &pii);
5719 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5720 __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5721 pii.has_overlap, pii.overlap);
5723 if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5725 * Either the parent never existed, or we have
5726 * record of it but the image got flattened so it no
5727 * longer has a parent. When the parent of a
5728 * layered image disappears we immediately set the
5729 * overlap to 0. The effect of this is that all new
5730 * requests will be treated as if the image had no
5733 * If !pii.has_overlap, the parent image spec is not
5734 * applicable. It's there to avoid duplication in each
5737 if (rbd_dev->parent_overlap) {
5738 rbd_dev->parent_overlap = 0;
5739 rbd_dev_parent_put(rbd_dev);
5740 pr_info("%s: clone image has been flattened\n",
5741 rbd_dev->disk->disk_name);
5744 goto out; /* No parent? No problem. */
5747 /* The ceph file layout needs to fit pool id in 32 bits */
5750 if (pii.pool_id > (u64)U32_MAX) {
5751 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5752 (unsigned long long)pii.pool_id, U32_MAX);
5757 * The parent won't change (except when the clone is
5758 * flattened, already handled that). So we only need to
5759 * record the parent spec we have not already done so.
5761 if (!rbd_dev->parent_spec) {
5762 parent_spec->pool_id = pii.pool_id;
5763 if (pii.pool_ns && *pii.pool_ns) {
5764 parent_spec->pool_ns = pii.pool_ns;
5767 parent_spec->image_id = pii.image_id;
5768 pii.image_id = NULL;
5769 parent_spec->snap_id = pii.snap_id;
5771 rbd_dev->parent_spec = parent_spec;
5772 parent_spec = NULL; /* rbd_dev now owns this */
5776 * We always update the parent overlap. If it's zero we issue
5777 * a warning, as we will proceed as if there was no parent.
5781 /* refresh, careful to warn just once */
5782 if (rbd_dev->parent_overlap)
5784 "clone now standalone (overlap became 0)");
5787 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5790 rbd_dev->parent_overlap = pii.overlap;
5796 kfree(pii.image_id);
5797 rbd_spec_put(parent_spec);
5801 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5805 __le64 stripe_count;
5806 } __attribute__ ((packed)) striping_info_buf = { 0 };
5807 size_t size = sizeof (striping_info_buf);
5811 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5812 &rbd_dev->header_oloc, "get_stripe_unit_count",
5813 NULL, 0, &striping_info_buf, size);
5814 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5820 p = &striping_info_buf;
5821 rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5822 rbd_dev->header.stripe_count = ceph_decode_64(&p);
5826 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5828 __le64 data_pool_id;
5831 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5832 &rbd_dev->header_oloc, "get_data_pool",
5833 NULL, 0, &data_pool_id, sizeof(data_pool_id));
5836 if (ret < sizeof(data_pool_id))
5839 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5840 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5844 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5846 CEPH_DEFINE_OID_ONSTACK(oid);
5847 size_t image_id_size;
5852 void *reply_buf = NULL;
5854 char *image_name = NULL;
5857 rbd_assert(!rbd_dev->spec->image_name);
5859 len = strlen(rbd_dev->spec->image_id);
5860 image_id_size = sizeof (__le32) + len;
5861 image_id = kmalloc(image_id_size, GFP_KERNEL);
5866 end = image_id + image_id_size;
5867 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5869 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5870 reply_buf = kmalloc(size, GFP_KERNEL);
5874 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5875 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5876 "dir_get_name", image_id, image_id_size,
5881 end = reply_buf + ret;
5883 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5884 if (IS_ERR(image_name))
5887 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5895 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5897 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5898 const char *snap_name;
5901 /* Skip over names until we find the one we are looking for */
5903 snap_name = rbd_dev->header.snap_names;
5904 while (which < snapc->num_snaps) {
5905 if (!strcmp(name, snap_name))
5906 return snapc->snaps[which];
5907 snap_name += strlen(snap_name) + 1;
5913 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5915 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5920 for (which = 0; !found && which < snapc->num_snaps; which++) {
5921 const char *snap_name;
5923 snap_id = snapc->snaps[which];
5924 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5925 if (IS_ERR(snap_name)) {
5926 /* ignore no-longer existing snapshots */
5927 if (PTR_ERR(snap_name) == -ENOENT)
5932 found = !strcmp(name, snap_name);
5935 return found ? snap_id : CEPH_NOSNAP;
5939 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5940 * no snapshot by that name is found, or if an error occurs.
5942 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5944 if (rbd_dev->image_format == 1)
5945 return rbd_v1_snap_id_by_name(rbd_dev, name);
5947 return rbd_v2_snap_id_by_name(rbd_dev, name);
5951 * An image being mapped will have everything but the snap id.
5953 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5955 struct rbd_spec *spec = rbd_dev->spec;
5957 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5958 rbd_assert(spec->image_id && spec->image_name);
5959 rbd_assert(spec->snap_name);
5961 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5964 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5965 if (snap_id == CEPH_NOSNAP)
5968 spec->snap_id = snap_id;
5970 spec->snap_id = CEPH_NOSNAP;
5977 * A parent image will have all ids but none of the names.
5979 * All names in an rbd spec are dynamically allocated. It's OK if we
5980 * can't figure out the name for an image id.
5982 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5984 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5985 struct rbd_spec *spec = rbd_dev->spec;
5986 const char *pool_name;
5987 const char *image_name;
5988 const char *snap_name;
5991 rbd_assert(spec->pool_id != CEPH_NOPOOL);
5992 rbd_assert(spec->image_id);
5993 rbd_assert(spec->snap_id != CEPH_NOSNAP);
5995 /* Get the pool name; we have to make our own copy of this */
5997 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5999 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6002 pool_name = kstrdup(pool_name, GFP_KERNEL);
6006 /* Fetch the image name; tolerate failure here */
6008 image_name = rbd_dev_image_name(rbd_dev);
6010 rbd_warn(rbd_dev, "unable to get image name");
6012 /* Fetch the snapshot name */
6014 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6015 if (IS_ERR(snap_name)) {
6016 ret = PTR_ERR(snap_name);
6020 spec->pool_name = pool_name;
6021 spec->image_name = image_name;
6022 spec->snap_name = snap_name;
6032 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6041 struct ceph_snap_context *snapc;
6045 * We'll need room for the seq value (maximum snapshot id),
6046 * snapshot count, and array of that many snapshot ids.
6047 * For now we have a fixed upper limit on the number we're
6048 * prepared to receive.
6050 size = sizeof (__le64) + sizeof (__le32) +
6051 RBD_MAX_SNAP_COUNT * sizeof (__le64);
6052 reply_buf = kzalloc(size, GFP_KERNEL);
6056 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6057 &rbd_dev->header_oloc, "get_snapcontext",
6058 NULL, 0, reply_buf, size);
6059 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6064 end = reply_buf + ret;
6066 ceph_decode_64_safe(&p, end, seq, out);
6067 ceph_decode_32_safe(&p, end, snap_count, out);
6070 * Make sure the reported number of snapshot ids wouldn't go
6071 * beyond the end of our buffer. But before checking that,
6072 * make sure the computed size of the snapshot context we
6073 * allocate is representable in a size_t.
6075 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6080 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6084 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6090 for (i = 0; i < snap_count; i++)
6091 snapc->snaps[i] = ceph_decode_64(&p);
6093 ceph_put_snap_context(rbd_dev->header.snapc);
6094 rbd_dev->header.snapc = snapc;
6096 dout(" snap context seq = %llu, snap_count = %u\n",
6097 (unsigned long long)seq, (unsigned int)snap_count);
6104 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6115 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6116 reply_buf = kmalloc(size, GFP_KERNEL);
6118 return ERR_PTR(-ENOMEM);
6120 snapid = cpu_to_le64(snap_id);
6121 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6122 &rbd_dev->header_oloc, "get_snapshot_name",
6123 &snapid, sizeof(snapid), reply_buf, size);
6124 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6126 snap_name = ERR_PTR(ret);
6131 end = reply_buf + ret;
6132 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6133 if (IS_ERR(snap_name))
6136 dout(" snap_id 0x%016llx snap_name = %s\n",
6137 (unsigned long long)snap_id, snap_name);
6144 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6146 bool first_time = rbd_dev->header.object_prefix == NULL;
6149 ret = rbd_dev_v2_image_size(rbd_dev);
6154 ret = rbd_dev_v2_header_onetime(rbd_dev);
6159 ret = rbd_dev_v2_snap_context(rbd_dev);
6160 if (ret && first_time) {
6161 kfree(rbd_dev->header.object_prefix);
6162 rbd_dev->header.object_prefix = NULL;
6168 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6170 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6172 if (rbd_dev->image_format == 1)
6173 return rbd_dev_v1_header_info(rbd_dev);
6175 return rbd_dev_v2_header_info(rbd_dev);
6179 * Skips over white space at *buf, and updates *buf to point to the
6180 * first found non-space character (if any). Returns the length of
6181 * the token (string of non-white space characters) found. Note
6182 * that *buf must be terminated with '\0'.
6184 static inline size_t next_token(const char **buf)
6187 * These are the characters that produce nonzero for
6188 * isspace() in the "C" and "POSIX" locales.
6190 static const char spaces[] = " \f\n\r\t\v";
6192 *buf += strspn(*buf, spaces); /* Find start of token */
6194 return strcspn(*buf, spaces); /* Return token length */
6198 * Finds the next token in *buf, dynamically allocates a buffer big
6199 * enough to hold a copy of it, and copies the token into the new
6200 * buffer. The copy is guaranteed to be terminated with '\0'. Note
6201 * that a duplicate buffer is created even for a zero-length token.
6203 * Returns a pointer to the newly-allocated duplicate, or a null
6204 * pointer if memory for the duplicate was not available. If
6205 * the lenp argument is a non-null pointer, the length of the token
6206 * (not including the '\0') is returned in *lenp.
6208 * If successful, the *buf pointer will be updated to point beyond
6209 * the end of the found token.
6211 * Note: uses GFP_KERNEL for allocation.
6213 static inline char *dup_token(const char **buf, size_t *lenp)
6218 len = next_token(buf);
6219 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6222 *(dup + len) = '\0';
6231 static int rbd_parse_param(struct fs_parameter *param,
6232 struct rbd_parse_opts_ctx *pctx)
6234 struct rbd_options *opt = pctx->opts;
6235 struct fs_parse_result result;
6236 struct p_log log = {.prefix = "rbd"};
6239 ret = ceph_parse_param(param, pctx->copts, NULL);
6240 if (ret != -ENOPARAM)
6243 token = __fs_parse(&log, rbd_parameters, param, &result);
6244 dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6246 if (token == -ENOPARAM)
6247 return inval_plog(&log, "Unknown parameter '%s'",
6253 case Opt_queue_depth:
6254 if (result.uint_32 < 1)
6256 opt->queue_depth = result.uint_32;
6258 case Opt_alloc_size:
6259 if (result.uint_32 < SECTOR_SIZE)
6261 if (!is_power_of_2(result.uint_32))
6262 return inval_plog(&log, "alloc_size must be a power of 2");
6263 opt->alloc_size = result.uint_32;
6265 case Opt_lock_timeout:
6266 /* 0 is "wait forever" (i.e. infinite timeout) */
6267 if (result.uint_32 > INT_MAX / 1000)
6269 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6272 kfree(pctx->spec->pool_ns);
6273 pctx->spec->pool_ns = param->string;
6274 param->string = NULL;
6276 case Opt_compression_hint:
6277 switch (result.uint_32) {
6278 case Opt_compression_hint_none:
6279 opt->alloc_hint_flags &=
6280 ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6281 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6283 case Opt_compression_hint_compressible:
6284 opt->alloc_hint_flags |=
6285 CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6286 opt->alloc_hint_flags &=
6287 ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6289 case Opt_compression_hint_incompressible:
6290 opt->alloc_hint_flags |=
6291 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6292 opt->alloc_hint_flags &=
6293 ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6300 opt->read_only = true;
6302 case Opt_read_write:
6303 opt->read_only = false;
6305 case Opt_lock_on_read:
6306 opt->lock_on_read = true;
6309 opt->exclusive = true;
6321 return inval_plog(&log, "%s out of range", param->key);
6325 * This duplicates most of generic_parse_monolithic(), untying it from
6326 * fs_context and skipping standard superblock and security options.
6328 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6333 dout("%s '%s'\n", __func__, options);
6334 while ((key = strsep(&options, ",")) != NULL) {
6336 struct fs_parameter param = {
6338 .type = fs_value_is_flag,
6340 char *value = strchr(key, '=');
6347 v_len = strlen(value);
6348 param.string = kmemdup_nul(value, v_len,
6352 param.type = fs_value_is_string;
6356 ret = rbd_parse_param(¶m, pctx);
6357 kfree(param.string);
6367 * Parse the options provided for an "rbd add" (i.e., rbd image
6368 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
6369 * and the data written is passed here via a NUL-terminated buffer.
6370 * Returns 0 if successful or an error code otherwise.
6372 * The information extracted from these options is recorded in
6373 * the other parameters which return dynamically-allocated
6376 * The address of a pointer that will refer to a ceph options
6377 * structure. Caller must release the returned pointer using
6378 * ceph_destroy_options() when it is no longer needed.
6380 * Address of an rbd options pointer. Fully initialized by
6381 * this function; caller must release with kfree().
6383 * Address of an rbd image specification pointer. Fully
6384 * initialized by this function based on parsed options.
6385 * Caller must release with rbd_spec_put().
6387 * The options passed take this form:
6388 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6391 * A comma-separated list of one or more monitor addresses.
6392 * A monitor address is an ip address, optionally followed
6393 * by a port number (separated by a colon).
6394 * I.e.: ip1[:port1][,ip2[:port2]...]
6396 * A comma-separated list of ceph and/or rbd options.
6398 * The name of the rados pool containing the rbd image.
6400 * The name of the image in that pool to map.
6402 * An optional snapshot id. If provided, the mapping will
6403 * present data from the image at the time that snapshot was
6404 * created. The image head is used if no snapshot id is
6405 * provided. Snapshot mappings are always read-only.
6407 static int rbd_add_parse_args(const char *buf,
6408 struct ceph_options **ceph_opts,
6409 struct rbd_options **opts,
6410 struct rbd_spec **rbd_spec)
6414 const char *mon_addrs;
6416 size_t mon_addrs_size;
6417 struct rbd_parse_opts_ctx pctx = { 0 };
6420 /* The first four tokens are required */
6422 len = next_token(&buf);
6424 rbd_warn(NULL, "no monitor address(es) provided");
6428 mon_addrs_size = len;
6432 options = dup_token(&buf, NULL);
6436 rbd_warn(NULL, "no options provided");
6440 pctx.spec = rbd_spec_alloc();
6444 pctx.spec->pool_name = dup_token(&buf, NULL);
6445 if (!pctx.spec->pool_name)
6447 if (!*pctx.spec->pool_name) {
6448 rbd_warn(NULL, "no pool name provided");
6452 pctx.spec->image_name = dup_token(&buf, NULL);
6453 if (!pctx.spec->image_name)
6455 if (!*pctx.spec->image_name) {
6456 rbd_warn(NULL, "no image name provided");
6461 * Snapshot name is optional; default is to use "-"
6462 * (indicating the head/no snapshot).
6464 len = next_token(&buf);
6466 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6467 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6468 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
6469 ret = -ENAMETOOLONG;
6472 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6475 *(snap_name + len) = '\0';
6476 pctx.spec->snap_name = snap_name;
6478 pctx.copts = ceph_alloc_options();
6482 /* Initialize all rbd options to the defaults */
6484 pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6488 pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6489 pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6490 pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6491 pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6492 pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6493 pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6494 pctx.opts->trim = RBD_TRIM_DEFAULT;
6496 ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL,
6501 ret = rbd_parse_options(options, &pctx);
6505 *ceph_opts = pctx.copts;
6507 *rbd_spec = pctx.spec;
6515 ceph_destroy_options(pctx.copts);
6516 rbd_spec_put(pctx.spec);
6521 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6523 down_write(&rbd_dev->lock_rwsem);
6524 if (__rbd_is_lock_owner(rbd_dev))
6525 __rbd_release_lock(rbd_dev);
6526 up_write(&rbd_dev->lock_rwsem);
6530 * If the wait is interrupted, an error is returned even if the lock
6531 * was successfully acquired. rbd_dev_image_unlock() will release it
6534 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6538 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6539 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6542 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6546 if (rbd_is_ro(rbd_dev))
6549 rbd_assert(!rbd_is_lock_owner(rbd_dev));
6550 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6551 ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6552 ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6554 ret = rbd_dev->acquire_err;
6556 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6562 rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6567 * The lock may have been released by now, unless automatic lock
6568 * transitions are disabled.
6570 rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6575 * An rbd format 2 image has a unique identifier, distinct from the
6576 * name given to it by the user. Internally, that identifier is
6577 * what's used to specify the names of objects related to the image.
6579 * A special "rbd id" object is used to map an rbd image name to its
6580 * id. If that object doesn't exist, then there is no v2 rbd image
6581 * with the supplied name.
6583 * This function will record the given rbd_dev's image_id field if
6584 * it can be determined, and in that case will return 0. If any
6585 * errors occur a negative errno will be returned and the rbd_dev's
6586 * image_id field will be unchanged (and should be NULL).
6588 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6592 CEPH_DEFINE_OID_ONSTACK(oid);
6597 * When probing a parent image, the image id is already
6598 * known (and the image name likely is not). There's no
6599 * need to fetch the image id again in this case. We
6600 * do still need to set the image format though.
6602 if (rbd_dev->spec->image_id) {
6603 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6609 * First, see if the format 2 image id file exists, and if
6610 * so, get the image's persistent id from it.
6612 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6613 rbd_dev->spec->image_name);
6617 dout("rbd id object name is %s\n", oid.name);
6619 /* Response will be an encoded string, which includes a length */
6620 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6621 response = kzalloc(size, GFP_NOIO);
6627 /* If it doesn't exist we'll assume it's a format 1 image */
6629 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6632 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6633 if (ret == -ENOENT) {
6634 image_id = kstrdup("", GFP_KERNEL);
6635 ret = image_id ? 0 : -ENOMEM;
6637 rbd_dev->image_format = 1;
6638 } else if (ret >= 0) {
6641 image_id = ceph_extract_encoded_string(&p, p + ret,
6643 ret = PTR_ERR_OR_ZERO(image_id);
6645 rbd_dev->image_format = 2;
6649 rbd_dev->spec->image_id = image_id;
6650 dout("image_id is %s\n", image_id);
6654 ceph_oid_destroy(&oid);
6659 * Undo whatever state changes are made by v1 or v2 header info
6662 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6664 struct rbd_image_header *header;
6666 rbd_dev_parent_put(rbd_dev);
6667 rbd_object_map_free(rbd_dev);
6668 rbd_dev_mapping_clear(rbd_dev);
6670 /* Free dynamic fields from the header, then zero it out */
6672 header = &rbd_dev->header;
6673 ceph_put_snap_context(header->snapc);
6674 kfree(header->snap_sizes);
6675 kfree(header->snap_names);
6676 kfree(header->object_prefix);
6677 memset(header, 0, sizeof (*header));
6680 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6684 ret = rbd_dev_v2_object_prefix(rbd_dev);
6689 * Get the and check features for the image. Currently the
6690 * features are assumed to never change.
6692 ret = rbd_dev_v2_features(rbd_dev);
6696 /* If the image supports fancy striping, get its parameters */
6698 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6699 ret = rbd_dev_v2_striping_info(rbd_dev);
6704 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6705 ret = rbd_dev_v2_data_pool(rbd_dev);
6710 rbd_init_layout(rbd_dev);
6714 rbd_dev->header.features = 0;
6715 kfree(rbd_dev->header.object_prefix);
6716 rbd_dev->header.object_prefix = NULL;
6721 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6722 * rbd_dev_image_probe() recursion depth, which means it's also the
6723 * length of the already discovered part of the parent chain.
6725 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6727 struct rbd_device *parent = NULL;
6730 if (!rbd_dev->parent_spec)
6733 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6734 pr_info("parent chain is too long (%d)\n", depth);
6739 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
6746 * Images related by parent/child relationships always share
6747 * rbd_client and spec/parent_spec, so bump their refcounts.
6749 __rbd_get_client(rbd_dev->rbd_client);
6750 rbd_spec_get(rbd_dev->parent_spec);
6752 __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6754 ret = rbd_dev_image_probe(parent, depth);
6758 rbd_dev->parent = parent;
6759 atomic_set(&rbd_dev->parent_ref, 1);
6763 rbd_dev_unparent(rbd_dev);
6764 rbd_dev_destroy(parent);
6768 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6770 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6771 rbd_free_disk(rbd_dev);
6773 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6777 * rbd_dev->header_rwsem must be locked for write and will be unlocked
6780 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6784 /* Record our major and minor device numbers. */
6786 if (!single_major) {
6787 ret = register_blkdev(0, rbd_dev->name);
6789 goto err_out_unlock;
6791 rbd_dev->major = ret;
6794 rbd_dev->major = rbd_major;
6795 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6798 /* Set up the blkdev mapping. */
6800 ret = rbd_init_disk(rbd_dev);
6802 goto err_out_blkdev;
6804 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6805 set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6807 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6811 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6812 up_write(&rbd_dev->header_rwsem);
6816 rbd_free_disk(rbd_dev);
6819 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6821 up_write(&rbd_dev->header_rwsem);
6825 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6827 struct rbd_spec *spec = rbd_dev->spec;
6830 /* Record the header object name for this rbd image. */
6832 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6833 if (rbd_dev->image_format == 1)
6834 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6835 spec->image_name, RBD_SUFFIX);
6837 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6838 RBD_HEADER_PREFIX, spec->image_id);
6843 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6846 pr_info("image %s/%s%s%s does not exist\n",
6847 rbd_dev->spec->pool_name,
6848 rbd_dev->spec->pool_ns ?: "",
6849 rbd_dev->spec->pool_ns ? "/" : "",
6850 rbd_dev->spec->image_name);
6852 pr_info("snap %s/%s%s%s@%s does not exist\n",
6853 rbd_dev->spec->pool_name,
6854 rbd_dev->spec->pool_ns ?: "",
6855 rbd_dev->spec->pool_ns ? "/" : "",
6856 rbd_dev->spec->image_name,
6857 rbd_dev->spec->snap_name);
6861 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6863 if (!rbd_is_ro(rbd_dev))
6864 rbd_unregister_watch(rbd_dev);
6866 rbd_dev_unprobe(rbd_dev);
6867 rbd_dev->image_format = 0;
6868 kfree(rbd_dev->spec->image_id);
6869 rbd_dev->spec->image_id = NULL;
6873 * Probe for the existence of the header object for the given rbd
6874 * device. If this image is the one being mapped (i.e., not a
6875 * parent), initiate a watch on its header object before using that
6876 * object to get detailed information about the rbd image.
6878 * On success, returns with header_rwsem held for write if called
6881 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6883 bool need_watch = !rbd_is_ro(rbd_dev);
6887 * Get the id from the image id object. Unless there's an
6888 * error, rbd_dev->spec->image_id will be filled in with
6889 * a dynamically-allocated string, and rbd_dev->image_format
6890 * will be set to either 1 or 2.
6892 ret = rbd_dev_image_id(rbd_dev);
6896 ret = rbd_dev_header_name(rbd_dev);
6898 goto err_out_format;
6901 ret = rbd_register_watch(rbd_dev);
6904 rbd_print_dne(rbd_dev, false);
6905 goto err_out_format;
6910 down_write(&rbd_dev->header_rwsem);
6912 ret = rbd_dev_header_info(rbd_dev);
6914 if (ret == -ENOENT && !need_watch)
6915 rbd_print_dne(rbd_dev, false);
6920 * If this image is the one being mapped, we have pool name and
6921 * id, image name and id, and snap name - need to fill snap id.
6922 * Otherwise this is a parent image, identified by pool, image
6923 * and snap ids - need to fill in names for those ids.
6926 ret = rbd_spec_fill_snap_id(rbd_dev);
6928 ret = rbd_spec_fill_names(rbd_dev);
6931 rbd_print_dne(rbd_dev, true);
6935 ret = rbd_dev_mapping_set(rbd_dev);
6939 if (rbd_is_snap(rbd_dev) &&
6940 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6941 ret = rbd_object_map_load(rbd_dev);
6946 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6947 ret = rbd_dev_v2_parent_info(rbd_dev);
6952 ret = rbd_dev_probe_parent(rbd_dev, depth);
6956 dout("discovered format %u image, header name is %s\n",
6957 rbd_dev->image_format, rbd_dev->header_oid.name);
6962 up_write(&rbd_dev->header_rwsem);
6964 rbd_unregister_watch(rbd_dev);
6965 rbd_dev_unprobe(rbd_dev);
6967 rbd_dev->image_format = 0;
6968 kfree(rbd_dev->spec->image_id);
6969 rbd_dev->spec->image_id = NULL;
6973 static ssize_t do_rbd_add(struct bus_type *bus,
6977 struct rbd_device *rbd_dev = NULL;
6978 struct ceph_options *ceph_opts = NULL;
6979 struct rbd_options *rbd_opts = NULL;
6980 struct rbd_spec *spec = NULL;
6981 struct rbd_client *rbdc;
6984 if (!capable(CAP_SYS_ADMIN))
6987 if (!try_module_get(THIS_MODULE))
6990 /* parse add command */
6991 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
6995 rbdc = rbd_get_client(ceph_opts);
7002 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7005 pr_info("pool %s does not exist\n", spec->pool_name);
7006 goto err_out_client;
7008 spec->pool_id = (u64)rc;
7010 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7013 goto err_out_client;
7015 rbdc = NULL; /* rbd_dev now owns this */
7016 spec = NULL; /* rbd_dev now owns this */
7017 rbd_opts = NULL; /* rbd_dev now owns this */
7019 /* if we are mapping a snapshot it will be a read-only mapping */
7020 if (rbd_dev->opts->read_only ||
7021 strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7022 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7024 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7025 if (!rbd_dev->config_info) {
7027 goto err_out_rbd_dev;
7030 rc = rbd_dev_image_probe(rbd_dev, 0);
7032 goto err_out_rbd_dev;
7034 if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7035 rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7036 rbd_dev->layout.object_size);
7037 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7040 rc = rbd_dev_device_setup(rbd_dev);
7042 goto err_out_image_probe;
7044 rc = rbd_add_acquire_lock(rbd_dev);
7046 goto err_out_image_lock;
7048 /* Everything's ready. Announce the disk to the world. */
7050 rc = device_add(&rbd_dev->dev);
7052 goto err_out_image_lock;
7054 rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7056 goto err_out_cleanup_disk;
7058 spin_lock(&rbd_dev_list_lock);
7059 list_add_tail(&rbd_dev->node, &rbd_dev_list);
7060 spin_unlock(&rbd_dev_list_lock);
7062 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7063 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7064 rbd_dev->header.features);
7067 module_put(THIS_MODULE);
7070 err_out_cleanup_disk:
7071 rbd_free_disk(rbd_dev);
7073 rbd_dev_image_unlock(rbd_dev);
7074 rbd_dev_device_release(rbd_dev);
7075 err_out_image_probe:
7076 rbd_dev_image_release(rbd_dev);
7078 rbd_dev_destroy(rbd_dev);
7080 rbd_put_client(rbdc);
7087 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7092 return do_rbd_add(bus, buf, count);
7095 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7098 return do_rbd_add(bus, buf, count);
7101 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7103 while (rbd_dev->parent) {
7104 struct rbd_device *first = rbd_dev;
7105 struct rbd_device *second = first->parent;
7106 struct rbd_device *third;
7109 * Follow to the parent with no grandparent and
7112 while (second && (third = second->parent)) {
7117 rbd_dev_image_release(second);
7118 rbd_dev_destroy(second);
7119 first->parent = NULL;
7120 first->parent_overlap = 0;
7122 rbd_assert(first->parent_spec);
7123 rbd_spec_put(first->parent_spec);
7124 first->parent_spec = NULL;
7128 static ssize_t do_rbd_remove(struct bus_type *bus,
7132 struct rbd_device *rbd_dev = NULL;
7133 struct list_head *tmp;
7139 if (!capable(CAP_SYS_ADMIN))
7144 sscanf(buf, "%d %5s", &dev_id, opt_buf);
7146 pr_err("dev_id out of range\n");
7149 if (opt_buf[0] != '\0') {
7150 if (!strcmp(opt_buf, "force")) {
7153 pr_err("bad remove option at '%s'\n", opt_buf);
7159 spin_lock(&rbd_dev_list_lock);
7160 list_for_each(tmp, &rbd_dev_list) {
7161 rbd_dev = list_entry(tmp, struct rbd_device, node);
7162 if (rbd_dev->dev_id == dev_id) {
7168 spin_lock_irq(&rbd_dev->lock);
7169 if (rbd_dev->open_count && !force)
7171 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7174 spin_unlock_irq(&rbd_dev->lock);
7176 spin_unlock(&rbd_dev_list_lock);
7182 * Prevent new IO from being queued and wait for existing
7183 * IO to complete/fail.
7185 blk_mq_freeze_queue(rbd_dev->disk->queue);
7186 blk_mark_disk_dead(rbd_dev->disk);
7189 del_gendisk(rbd_dev->disk);
7190 spin_lock(&rbd_dev_list_lock);
7191 list_del_init(&rbd_dev->node);
7192 spin_unlock(&rbd_dev_list_lock);
7193 device_del(&rbd_dev->dev);
7195 rbd_dev_image_unlock(rbd_dev);
7196 rbd_dev_device_release(rbd_dev);
7197 rbd_dev_image_release(rbd_dev);
7198 rbd_dev_destroy(rbd_dev);
7202 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7207 return do_rbd_remove(bus, buf, count);
7210 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7213 return do_rbd_remove(bus, buf, count);
7217 * create control files in sysfs
7220 static int __init rbd_sysfs_init(void)
7224 ret = device_register(&rbd_root_dev);
7228 ret = bus_register(&rbd_bus_type);
7230 device_unregister(&rbd_root_dev);
7235 static void __exit rbd_sysfs_cleanup(void)
7237 bus_unregister(&rbd_bus_type);
7238 device_unregister(&rbd_root_dev);
7241 static int __init rbd_slab_init(void)
7243 rbd_assert(!rbd_img_request_cache);
7244 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7245 if (!rbd_img_request_cache)
7248 rbd_assert(!rbd_obj_request_cache);
7249 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7250 if (!rbd_obj_request_cache)
7256 kmem_cache_destroy(rbd_img_request_cache);
7257 rbd_img_request_cache = NULL;
7261 static void rbd_slab_exit(void)
7263 rbd_assert(rbd_obj_request_cache);
7264 kmem_cache_destroy(rbd_obj_request_cache);
7265 rbd_obj_request_cache = NULL;
7267 rbd_assert(rbd_img_request_cache);
7268 kmem_cache_destroy(rbd_img_request_cache);
7269 rbd_img_request_cache = NULL;
7272 static int __init rbd_init(void)
7276 if (!libceph_compatible(NULL)) {
7277 rbd_warn(NULL, "libceph incompatibility (quitting)");
7281 rc = rbd_slab_init();
7286 * The number of active work items is limited by the number of
7287 * rbd devices * queue depth, so leave @max_active at default.
7289 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7296 rbd_major = register_blkdev(0, RBD_DRV_NAME);
7297 if (rbd_major < 0) {
7303 rc = rbd_sysfs_init();
7305 goto err_out_blkdev;
7308 pr_info("loaded (major %d)\n", rbd_major);
7310 pr_info("loaded\n");
7316 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7318 destroy_workqueue(rbd_wq);
7324 static void __exit rbd_exit(void)
7326 ida_destroy(&rbd_dev_id_ida);
7327 rbd_sysfs_cleanup();
7329 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7330 destroy_workqueue(rbd_wq);
7334 module_init(rbd_init);
7335 module_exit(rbd_exit);
7337 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7338 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7339 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7340 /* following authorship retained from original osdblk.c */
7341 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7343 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7344 MODULE_LICENSE("GPL");