3 rbd.c -- Export ceph rados objects as a Linux block device
6 based on drivers/block/osdblk.c:
8 Copyright 2009 Red Hat, Inc.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 For usage instructions, please refer to:
27 Documentation/ABI/testing/sysfs-bus-rbd
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
50 #include "rbd_types.h"
52 #define RBD_DEBUG /* Activate rbd_assert() calls */
55 * Increment the given counter and return its updated value.
56 * If the counter is already 0 it will not be incremented.
57 * If the counter is already at its maximum value returns
58 * -EINVAL without updating it.
60 static int atomic_inc_return_safe(atomic_t *v)
64 counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 if (counter <= (unsigned int)INT_MAX)
73 /* Decrement the counter. Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
78 counter = atomic_dec_return(v);
87 #define RBD_DRV_NAME "rbd"
89 #define RBD_MINORS_PER_MAJOR 256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
92 #define RBD_MAX_PARENT_CHAIN_LEN 16
94 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN \
96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
98 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
100 #define RBD_SNAP_HEAD_NAME "-"
102 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX 64
108 #define RBD_OBJ_PREFIX_LEN_MAX 64
110 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */
111 #define RBD_RETRY_DELAY msecs_to_jiffies(1000)
115 #define RBD_FEATURE_LAYERING (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP (1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF (1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN (1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL (1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS (1ULL<<8)
124 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \
125 RBD_FEATURE_STRIPINGV2 | \
126 RBD_FEATURE_EXCLUSIVE_LOCK | \
127 RBD_FEATURE_OBJECT_MAP | \
128 RBD_FEATURE_FAST_DIFF | \
129 RBD_FEATURE_DEEP_FLATTEN | \
130 RBD_FEATURE_DATA_POOL | \
131 RBD_FEATURE_OPERATIONS)
133 /* Features supported by this (client software) implementation. */
135 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
138 * An RBD device name will be "rbd#", where the "rbd" comes from
139 * RBD_DRV_NAME above, and # is a unique integer identifier.
141 #define DEV_NAME_LEN 32
144 * block device image metadata (in-memory version)
146 struct rbd_image_header {
147 /* These six fields never change for a given rbd image */
153 u64 features; /* Might be changeable someday? */
155 /* The remaining fields need to be updated occasionally */
157 struct ceph_snap_context *snapc;
158 char *snap_names; /* format 1 only */
159 u64 *snap_sizes; /* format 1 only */
163 * An rbd image specification.
165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166 * identify an image. Each rbd_dev structure includes a pointer to
167 * an rbd_spec structure that encapsulates this identity.
169 * Each of the id's in an rbd_spec has an associated name. For a
170 * user-mapped image, the names are supplied and the id's associated
171 * with them are looked up. For a layered image, a parent image is
172 * defined by the tuple, and the names are looked up.
174 * An rbd_dev structure contains a parent_spec pointer which is
175 * non-null if the image it represents is a child in a layered
176 * image. This pointer will refer to the rbd_spec structure used
177 * by the parent rbd_dev for its own identity (i.e., the structure
178 * is shared between the parent and child).
180 * Since these structures are populated once, during the discovery
181 * phase of image construction, they are effectively immutable so
182 * we make no effort to synchronize access to them.
184 * Note that code herein does not assume the image name is known (it
185 * could be a null pointer).
189 const char *pool_name;
190 const char *pool_ns; /* NULL if default, never "" */
192 const char *image_id;
193 const char *image_name;
196 const char *snap_name;
202 * an instance of the client. multiple devices may share an rbd client.
205 struct ceph_client *client;
207 struct list_head node;
210 struct pending_result {
211 int result; /* first nonzero result */
215 struct rbd_img_request;
217 enum obj_request_type {
218 OBJ_REQUEST_NODATA = 1,
219 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */
220 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */
221 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */
224 enum obj_operation_type {
231 #define RBD_OBJ_FLAG_DELETION (1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED (1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS (1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST (1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT (1U << 4)
237 enum rbd_obj_read_state {
238 RBD_OBJ_READ_START = 1,
244 * Writes go through the following state machine to deal with
247 * . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
250 * . RBD_OBJ_WRITE_READ_FROM_PARENT. . . .
252 * . v v (deep-copyup .
253 * (image . RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC . not needed) .
256 * . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . . (copyup .
259 * done . . . . . . . . . . . . . . . . . .
264 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265 * assert_exists guard is needed or not (in some cases it's not needed
266 * even if there is a parent).
268 enum rbd_obj_write_state {
269 RBD_OBJ_WRITE_START = 1,
270 RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 RBD_OBJ_WRITE_OBJECT,
272 __RBD_OBJ_WRITE_COPYUP,
273 RBD_OBJ_WRITE_COPYUP,
274 RBD_OBJ_WRITE_POST_OBJECT_MAP,
277 enum rbd_obj_copyup_state {
278 RBD_OBJ_COPYUP_START = 1,
279 RBD_OBJ_COPYUP_READ_PARENT,
280 __RBD_OBJ_COPYUP_OBJECT_MAPS,
281 RBD_OBJ_COPYUP_OBJECT_MAPS,
282 __RBD_OBJ_COPYUP_WRITE_OBJECT,
283 RBD_OBJ_COPYUP_WRITE_OBJECT,
286 struct rbd_obj_request {
287 struct ceph_object_extent ex;
288 unsigned int flags; /* RBD_OBJ_FLAG_* */
290 enum rbd_obj_read_state read_state; /* for reads */
291 enum rbd_obj_write_state write_state; /* for writes */
294 struct rbd_img_request *img_request;
295 struct ceph_file_extent *img_extents;
299 struct ceph_bio_iter bio_pos;
301 struct ceph_bvec_iter bvec_pos;
307 enum rbd_obj_copyup_state copyup_state;
308 struct bio_vec *copyup_bvecs;
309 u32 copyup_bvec_count;
311 struct list_head osd_reqs; /* w/ r_private_item */
313 struct mutex state_mutex;
314 struct pending_result pending;
319 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
320 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
325 RBD_IMG_EXCLUSIVE_LOCK,
326 __RBD_IMG_OBJECT_REQUESTS,
327 RBD_IMG_OBJECT_REQUESTS,
330 struct rbd_img_request {
331 struct rbd_device *rbd_dev;
332 enum obj_operation_type op_type;
333 enum obj_request_type data_type;
335 enum rbd_img_state state;
337 u64 snap_id; /* for reads */
338 struct ceph_snap_context *snapc; /* for writes */
340 struct rbd_obj_request *obj_request; /* obj req initiator */
342 struct list_head lock_item;
343 struct list_head object_extents; /* obj_req.ex structs */
345 struct mutex state_mutex;
346 struct pending_result pending;
347 struct work_struct work;
351 #define for_each_obj_request(ireq, oreq) \
352 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
356 enum rbd_watch_state {
357 RBD_WATCH_STATE_UNREGISTERED,
358 RBD_WATCH_STATE_REGISTERED,
359 RBD_WATCH_STATE_ERROR,
362 enum rbd_lock_state {
363 RBD_LOCK_STATE_UNLOCKED,
364 RBD_LOCK_STATE_LOCKED,
365 RBD_LOCK_STATE_RELEASING,
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
382 int dev_id; /* blkdev unique id */
384 int major; /* blkdev assigned major */
386 struct gendisk *disk; /* blkdev's gendisk and rq */
388 u32 image_format; /* Either 1 or 2 */
389 struct rbd_client *rbd_client;
391 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
393 spinlock_t lock; /* queue, flags, open_count */
395 struct rbd_image_header header;
396 unsigned long flags; /* possibly lock protected */
397 struct rbd_spec *spec;
398 struct rbd_options *opts;
399 char *config_info; /* add{,_single_major} string */
401 struct ceph_object_id header_oid;
402 struct ceph_object_locator header_oloc;
404 struct ceph_file_layout layout; /* used for all rbd requests */
406 struct mutex watch_mutex;
407 enum rbd_watch_state watch_state;
408 struct ceph_osd_linger_request *watch_handle;
410 struct delayed_work watch_dwork;
412 struct rw_semaphore lock_rwsem;
413 enum rbd_lock_state lock_state;
414 char lock_cookie[32];
415 struct rbd_client_id owner_cid;
416 struct work_struct acquired_lock_work;
417 struct work_struct released_lock_work;
418 struct delayed_work lock_dwork;
419 struct work_struct unlock_work;
420 spinlock_t lock_lists_lock;
421 struct list_head acquiring_list;
422 struct list_head running_list;
423 struct completion acquire_wait;
425 struct completion releasing_wait;
427 spinlock_t object_map_lock;
429 u64 object_map_size; /* in objects */
430 u64 object_map_flags;
432 struct workqueue_struct *task_wq;
434 struct rbd_spec *parent_spec;
437 struct rbd_device *parent;
439 /* Block layer tags. */
440 struct blk_mq_tag_set tag_set;
442 /* protects updating the header */
443 struct rw_semaphore header_rwsem;
445 struct rbd_mapping mapping;
447 struct list_head node;
451 unsigned long open_count; /* protected by lock */
455 * Flag bits for rbd_dev->flags:
456 * - REMOVING (which is coupled with rbd_dev->open_count) is protected
460 RBD_DEV_FLAG_EXISTS, /* rbd_dev_device_setup() ran */
461 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
462 RBD_DEV_FLAG_READONLY, /* -o ro or snapshot */
465 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
467 static LIST_HEAD(rbd_dev_list); /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
470 static LIST_HEAD(rbd_client_list); /* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
473 /* Slab caches for frequently-allocated structures */
475 static struct kmem_cache *rbd_img_request_cache;
476 static struct kmem_cache *rbd_obj_request_cache;
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
481 static struct workqueue_struct *rbd_wq;
483 static struct ceph_snap_context rbd_empty_snapc = {
484 .nref = REFCOUNT_INIT(1),
488 * single-major requires >= 0.75 version of userspace rbd utility.
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(struct bus_type *bus, const char *buf,
497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
503 static int rbd_dev_id_to_minor(int dev_id)
505 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
508 static int minor_to_rbd_dev_id(int minor)
510 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
515 return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
520 return rbd_dev->spec->snap_id != CEPH_NOSNAP;
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
525 lockdep_assert_held(&rbd_dev->lock_rwsem);
527 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
535 down_read(&rbd_dev->lock_rwsem);
536 is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 up_read(&rbd_dev->lock_rwsem);
538 return is_lock_owner;
541 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
543 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
552 static struct attribute *rbd_bus_attrs[] = {
554 &bus_attr_remove.attr,
555 &bus_attr_add_single_major.attr,
556 &bus_attr_remove_single_major.attr,
557 &bus_attr_supported_features.attr,
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 struct attribute *attr, int index)
565 (attr == &bus_attr_add_single_major.attr ||
566 attr == &bus_attr_remove_single_major.attr))
572 static const struct attribute_group rbd_bus_group = {
573 .attrs = rbd_bus_attrs,
574 .is_visible = rbd_bus_is_visible,
576 __ATTRIBUTE_GROUPS(rbd_bus);
578 static struct bus_type rbd_bus_type = {
580 .bus_groups = rbd_bus_groups,
583 static void rbd_root_dev_release(struct device *dev)
587 static struct device rbd_root_dev = {
589 .release = rbd_root_dev_release,
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
595 struct va_format vaf;
603 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 else if (rbd_dev->disk)
605 printk(KERN_WARNING "%s: %s: %pV\n",
606 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 printk(KERN_WARNING "%s: image %s: %pV\n",
609 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 printk(KERN_WARNING "%s: id %s: %pV\n",
612 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
614 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 RBD_DRV_NAME, rbd_dev, &vaf);
620 #define rbd_assert(expr) \
621 if (unlikely(!(expr))) { \
622 printk(KERN_ERR "\nAssertion failure in %s() " \
624 "\trbd_assert(%s);\n\n", \
625 __func__, __LINE__, #expr); \
628 #else /* !RBD_DEBUG */
629 # define rbd_assert(expr) ((void) 0)
630 #endif /* !RBD_DEBUG */
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
641 u8 *order, u64 *snap_size);
642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
648 * Return true if nothing else is pending.
650 static bool pending_result_dec(struct pending_result *pending, int *result)
652 rbd_assert(pending->num_pending > 0);
654 if (*result && !pending->result)
655 pending->result = *result;
656 if (--pending->num_pending)
659 *result = pending->result;
663 static int rbd_open(struct block_device *bdev, fmode_t mode)
665 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
666 bool removing = false;
668 spin_lock_irq(&rbd_dev->lock);
669 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
672 rbd_dev->open_count++;
673 spin_unlock_irq(&rbd_dev->lock);
677 (void) get_device(&rbd_dev->dev);
682 static void rbd_release(struct gendisk *disk, fmode_t mode)
684 struct rbd_device *rbd_dev = disk->private_data;
685 unsigned long open_count_before;
687 spin_lock_irq(&rbd_dev->lock);
688 open_count_before = rbd_dev->open_count--;
689 spin_unlock_irq(&rbd_dev->lock);
690 rbd_assert(open_count_before > 0);
692 put_device(&rbd_dev->dev);
695 static const struct block_device_operations rbd_bd_ops = {
696 .owner = THIS_MODULE,
698 .release = rbd_release,
702 * Initialize an rbd client instance. Success or not, this function
703 * consumes ceph_opts. Caller holds client_mutex.
705 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
707 struct rbd_client *rbdc;
710 dout("%s:\n", __func__);
711 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
715 kref_init(&rbdc->kref);
716 INIT_LIST_HEAD(&rbdc->node);
718 rbdc->client = ceph_create_client(ceph_opts, rbdc);
719 if (IS_ERR(rbdc->client))
721 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
723 ret = ceph_open_session(rbdc->client);
727 spin_lock(&rbd_client_list_lock);
728 list_add_tail(&rbdc->node, &rbd_client_list);
729 spin_unlock(&rbd_client_list_lock);
731 dout("%s: rbdc %p\n", __func__, rbdc);
735 ceph_destroy_client(rbdc->client);
740 ceph_destroy_options(ceph_opts);
741 dout("%s: error %d\n", __func__, ret);
746 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
748 kref_get(&rbdc->kref);
754 * Find a ceph client with specific addr and configuration. If
755 * found, bump its reference count.
757 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
759 struct rbd_client *client_node;
762 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
765 spin_lock(&rbd_client_list_lock);
766 list_for_each_entry(client_node, &rbd_client_list, node) {
767 if (!ceph_compare_options(ceph_opts, client_node->client)) {
768 __rbd_get_client(client_node);
774 spin_unlock(&rbd_client_list_lock);
776 return found ? client_node : NULL;
780 * (Per device) rbd map options
788 Opt_compression_hint,
789 /* string args above */
798 Opt_compression_hint_none,
799 Opt_compression_hint_compressible,
800 Opt_compression_hint_incompressible,
803 static const struct constant_table rbd_param_compression_hint[] = {
804 {"none", Opt_compression_hint_none},
805 {"compressible", Opt_compression_hint_compressible},
806 {"incompressible", Opt_compression_hint_incompressible},
810 static const struct fs_parameter_spec rbd_parameters[] = {
811 fsparam_u32 ("alloc_size", Opt_alloc_size),
812 fsparam_enum ("compression_hint", Opt_compression_hint,
813 rbd_param_compression_hint),
814 fsparam_flag ("exclusive", Opt_exclusive),
815 fsparam_flag ("lock_on_read", Opt_lock_on_read),
816 fsparam_u32 ("lock_timeout", Opt_lock_timeout),
817 fsparam_flag ("notrim", Opt_notrim),
818 fsparam_string ("_pool_ns", Opt_pool_ns),
819 fsparam_u32 ("queue_depth", Opt_queue_depth),
820 fsparam_flag ("read_only", Opt_read_only),
821 fsparam_flag ("read_write", Opt_read_write),
822 fsparam_flag ("ro", Opt_read_only),
823 fsparam_flag ("rw", Opt_read_write),
830 unsigned long lock_timeout;
836 u32 alloc_hint_flags; /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
839 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
840 #define RBD_ALLOC_SIZE_DEFAULT (64 * 1024)
841 #define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */
842 #define RBD_READ_ONLY_DEFAULT false
843 #define RBD_LOCK_ON_READ_DEFAULT false
844 #define RBD_EXCLUSIVE_DEFAULT false
845 #define RBD_TRIM_DEFAULT true
847 struct rbd_parse_opts_ctx {
848 struct rbd_spec *spec;
849 struct ceph_options *copts;
850 struct rbd_options *opts;
853 static char* obj_op_name(enum obj_operation_type op_type)
870 * Destroy ceph client
872 * Caller must hold rbd_client_list_lock.
874 static void rbd_client_release(struct kref *kref)
876 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
878 dout("%s: rbdc %p\n", __func__, rbdc);
879 spin_lock(&rbd_client_list_lock);
880 list_del(&rbdc->node);
881 spin_unlock(&rbd_client_list_lock);
883 ceph_destroy_client(rbdc->client);
888 * Drop reference to ceph client node. If it's not referenced anymore, release
891 static void rbd_put_client(struct rbd_client *rbdc)
894 kref_put(&rbdc->kref, rbd_client_release);
898 * Get a ceph client with specific addr and configuration, if one does
899 * not exist create it. Either way, ceph_opts is consumed by this
902 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
904 struct rbd_client *rbdc;
907 mutex_lock(&client_mutex);
908 rbdc = rbd_client_find(ceph_opts);
910 ceph_destroy_options(ceph_opts);
913 * Using an existing client. Make sure ->pg_pools is up to
914 * date before we look up the pool id in do_rbd_add().
916 ret = ceph_wait_for_latest_osdmap(rbdc->client,
917 rbdc->client->options->mount_timeout);
919 rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
920 rbd_put_client(rbdc);
924 rbdc = rbd_client_create(ceph_opts);
926 mutex_unlock(&client_mutex);
931 static bool rbd_image_format_valid(u32 image_format)
933 return image_format == 1 || image_format == 2;
936 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
941 /* The header has to start with the magic rbd header text */
942 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
945 /* The bio layer requires at least sector-sized I/O */
947 if (ondisk->options.order < SECTOR_SHIFT)
950 /* If we use u64 in a few spots we may be able to loosen this */
952 if (ondisk->options.order > 8 * sizeof (int) - 1)
956 * The size of a snapshot header has to fit in a size_t, and
957 * that limits the number of snapshots.
959 snap_count = le32_to_cpu(ondisk->snap_count);
960 size = SIZE_MAX - sizeof (struct ceph_snap_context);
961 if (snap_count > size / sizeof (__le64))
965 * Not only that, but the size of the entire the snapshot
966 * header must also be representable in a size_t.
968 size -= snap_count * sizeof (__le64);
969 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
976 * returns the size of an object in the image
978 static u32 rbd_obj_bytes(struct rbd_image_header *header)
980 return 1U << header->obj_order;
983 static void rbd_init_layout(struct rbd_device *rbd_dev)
985 if (rbd_dev->header.stripe_unit == 0 ||
986 rbd_dev->header.stripe_count == 0) {
987 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
988 rbd_dev->header.stripe_count = 1;
991 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
992 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
993 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
994 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
995 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
996 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1000 * Fill an rbd image header with information from the given format 1
1003 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1004 struct rbd_image_header_ondisk *ondisk)
1006 struct rbd_image_header *header = &rbd_dev->header;
1007 bool first_time = header->object_prefix == NULL;
1008 struct ceph_snap_context *snapc;
1009 char *object_prefix = NULL;
1010 char *snap_names = NULL;
1011 u64 *snap_sizes = NULL;
1016 /* Allocate this now to avoid having to handle failure below */
1019 object_prefix = kstrndup(ondisk->object_prefix,
1020 sizeof(ondisk->object_prefix),
1026 /* Allocate the snapshot context and fill it in */
1028 snap_count = le32_to_cpu(ondisk->snap_count);
1029 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1032 snapc->seq = le64_to_cpu(ondisk->snap_seq);
1034 struct rbd_image_snap_ondisk *snaps;
1035 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1037 /* We'll keep a copy of the snapshot names... */
1039 if (snap_names_len > (u64)SIZE_MAX)
1041 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1045 /* ...as well as the array of their sizes. */
1046 snap_sizes = kmalloc_array(snap_count,
1047 sizeof(*header->snap_sizes),
1053 * Copy the names, and fill in each snapshot's id
1056 * Note that rbd_dev_v1_header_info() guarantees the
1057 * ondisk buffer we're working with has
1058 * snap_names_len bytes beyond the end of the
1059 * snapshot id array, this memcpy() is safe.
1061 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1062 snaps = ondisk->snaps;
1063 for (i = 0; i < snap_count; i++) {
1064 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1065 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1069 /* We won't fail any more, fill in the header */
1072 header->object_prefix = object_prefix;
1073 header->obj_order = ondisk->options.order;
1074 rbd_init_layout(rbd_dev);
1076 ceph_put_snap_context(header->snapc);
1077 kfree(header->snap_names);
1078 kfree(header->snap_sizes);
1081 /* The remaining fields always get updated (when we refresh) */
1083 header->image_size = le64_to_cpu(ondisk->image_size);
1084 header->snapc = snapc;
1085 header->snap_names = snap_names;
1086 header->snap_sizes = snap_sizes;
1094 ceph_put_snap_context(snapc);
1095 kfree(object_prefix);
1100 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1102 const char *snap_name;
1104 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1106 /* Skip over names until we find the one we are looking for */
1108 snap_name = rbd_dev->header.snap_names;
1110 snap_name += strlen(snap_name) + 1;
1112 return kstrdup(snap_name, GFP_KERNEL);
1116 * Snapshot id comparison function for use with qsort()/bsearch().
1117 * Note that result is for snapshots in *descending* order.
1119 static int snapid_compare_reverse(const void *s1, const void *s2)
1121 u64 snap_id1 = *(u64 *)s1;
1122 u64 snap_id2 = *(u64 *)s2;
1124 if (snap_id1 < snap_id2)
1126 return snap_id1 == snap_id2 ? 0 : -1;
1130 * Search a snapshot context to see if the given snapshot id is
1133 * Returns the position of the snapshot id in the array if it's found,
1134 * or BAD_SNAP_INDEX otherwise.
1136 * Note: The snapshot array is in kept sorted (by the osd) in
1137 * reverse order, highest snapshot id first.
1139 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1141 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1144 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1145 sizeof (snap_id), snapid_compare_reverse);
1147 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1150 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1154 const char *snap_name;
1156 which = rbd_dev_snap_index(rbd_dev, snap_id);
1157 if (which == BAD_SNAP_INDEX)
1158 return ERR_PTR(-ENOENT);
1160 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1161 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1164 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1166 if (snap_id == CEPH_NOSNAP)
1167 return RBD_SNAP_HEAD_NAME;
1169 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1170 if (rbd_dev->image_format == 1)
1171 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1173 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1176 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1179 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1180 if (snap_id == CEPH_NOSNAP) {
1181 *snap_size = rbd_dev->header.image_size;
1182 } else if (rbd_dev->image_format == 1) {
1185 which = rbd_dev_snap_index(rbd_dev, snap_id);
1186 if (which == BAD_SNAP_INDEX)
1189 *snap_size = rbd_dev->header.snap_sizes[which];
1194 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1203 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1205 u64 snap_id = rbd_dev->spec->snap_id;
1209 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1213 rbd_dev->mapping.size = size;
1217 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1219 rbd_dev->mapping.size = 0;
1222 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1224 struct ceph_bio_iter it = *bio_pos;
1226 ceph_bio_iter_advance(&it, off);
1227 ceph_bio_iter_advance_step(&it, bytes, ({
1232 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1234 struct ceph_bvec_iter it = *bvec_pos;
1236 ceph_bvec_iter_advance(&it, off);
1237 ceph_bvec_iter_advance_step(&it, bytes, ({
1243 * Zero a range in @obj_req data buffer defined by a bio (list) or
1244 * (private) bio_vec array.
1246 * @off is relative to the start of the data buffer.
1248 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1251 dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1253 switch (obj_req->img_request->data_type) {
1254 case OBJ_REQUEST_BIO:
1255 zero_bios(&obj_req->bio_pos, off, bytes);
1257 case OBJ_REQUEST_BVECS:
1258 case OBJ_REQUEST_OWN_BVECS:
1259 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1266 static void rbd_obj_request_destroy(struct kref *kref);
1267 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1269 rbd_assert(obj_request != NULL);
1270 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1271 kref_read(&obj_request->kref));
1272 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1275 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1276 struct rbd_obj_request *obj_request)
1278 rbd_assert(obj_request->img_request == NULL);
1280 /* Image request now owns object's original reference */
1281 obj_request->img_request = img_request;
1282 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1285 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1286 struct rbd_obj_request *obj_request)
1288 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1289 list_del(&obj_request->ex.oe_item);
1290 rbd_assert(obj_request->img_request == img_request);
1291 rbd_obj_request_put(obj_request);
1294 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1296 struct rbd_obj_request *obj_req = osd_req->r_priv;
1298 dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1299 __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1300 obj_req->ex.oe_off, obj_req->ex.oe_len);
1301 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1305 * The default/initial value for all image request flags is 0. Each
1306 * is conditionally set to 1 at image request initialization time
1307 * and currently never change thereafter.
1309 static void img_request_layered_set(struct rbd_img_request *img_request)
1311 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1314 static bool img_request_layered_test(struct rbd_img_request *img_request)
1316 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1319 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1321 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1323 return !obj_req->ex.oe_off &&
1324 obj_req->ex.oe_len == rbd_dev->layout.object_size;
1327 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1329 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1331 return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1332 rbd_dev->layout.object_size;
1336 * Must be called after rbd_obj_calc_img_extents().
1338 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1340 if (!obj_req->num_img_extents ||
1341 (rbd_obj_is_entire(obj_req) &&
1342 !obj_req->img_request->snapc->num_snaps))
1348 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1350 return ceph_file_extents_bytes(obj_req->img_extents,
1351 obj_req->num_img_extents);
1354 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1356 switch (img_req->op_type) {
1360 case OBJ_OP_DISCARD:
1361 case OBJ_OP_ZEROOUT:
1368 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1370 struct rbd_obj_request *obj_req = osd_req->r_priv;
1373 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1374 osd_req->r_result, obj_req);
1377 * Writes aren't allowed to return a data payload. In some
1378 * guarded write cases (e.g. stat + zero on an empty object)
1379 * a stat response makes it through, but we don't care.
1381 if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1384 result = osd_req->r_result;
1386 rbd_obj_handle_request(obj_req, result);
1389 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1391 struct rbd_obj_request *obj_request = osd_req->r_priv;
1392 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1393 struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1395 osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1396 osd_req->r_snapid = obj_request->img_request->snap_id;
1399 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1401 struct rbd_obj_request *obj_request = osd_req->r_priv;
1403 osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1404 ktime_get_real_ts64(&osd_req->r_mtime);
1405 osd_req->r_data_offset = obj_request->ex.oe_off;
1408 static struct ceph_osd_request *
1409 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1410 struct ceph_snap_context *snapc, int num_ops)
1412 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1413 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1414 struct ceph_osd_request *req;
1415 const char *name_format = rbd_dev->image_format == 1 ?
1416 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1419 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1421 return ERR_PTR(-ENOMEM);
1423 list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1424 req->r_callback = rbd_osd_req_callback;
1425 req->r_priv = obj_req;
1428 * Data objects may be stored in a separate pool, but always in
1429 * the same namespace in that pool as the header in its pool.
1431 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1432 req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1434 ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1435 rbd_dev->header.object_prefix,
1436 obj_req->ex.oe_objno);
1438 return ERR_PTR(ret);
1443 static struct ceph_osd_request *
1444 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1446 return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1450 static struct rbd_obj_request *rbd_obj_request_create(void)
1452 struct rbd_obj_request *obj_request;
1454 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1458 ceph_object_extent_init(&obj_request->ex);
1459 INIT_LIST_HEAD(&obj_request->osd_reqs);
1460 mutex_init(&obj_request->state_mutex);
1461 kref_init(&obj_request->kref);
1463 dout("%s %p\n", __func__, obj_request);
1467 static void rbd_obj_request_destroy(struct kref *kref)
1469 struct rbd_obj_request *obj_request;
1470 struct ceph_osd_request *osd_req;
1473 obj_request = container_of(kref, struct rbd_obj_request, kref);
1475 dout("%s: obj %p\n", __func__, obj_request);
1477 while (!list_empty(&obj_request->osd_reqs)) {
1478 osd_req = list_first_entry(&obj_request->osd_reqs,
1479 struct ceph_osd_request, r_private_item);
1480 list_del_init(&osd_req->r_private_item);
1481 ceph_osdc_put_request(osd_req);
1484 switch (obj_request->img_request->data_type) {
1485 case OBJ_REQUEST_NODATA:
1486 case OBJ_REQUEST_BIO:
1487 case OBJ_REQUEST_BVECS:
1488 break; /* Nothing to do */
1489 case OBJ_REQUEST_OWN_BVECS:
1490 kfree(obj_request->bvec_pos.bvecs);
1496 kfree(obj_request->img_extents);
1497 if (obj_request->copyup_bvecs) {
1498 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1499 if (obj_request->copyup_bvecs[i].bv_page)
1500 __free_page(obj_request->copyup_bvecs[i].bv_page);
1502 kfree(obj_request->copyup_bvecs);
1505 kmem_cache_free(rbd_obj_request_cache, obj_request);
1508 /* It's OK to call this for a device with no parent */
1510 static void rbd_spec_put(struct rbd_spec *spec);
1511 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1513 rbd_dev_remove_parent(rbd_dev);
1514 rbd_spec_put(rbd_dev->parent_spec);
1515 rbd_dev->parent_spec = NULL;
1516 rbd_dev->parent_overlap = 0;
1520 * Parent image reference counting is used to determine when an
1521 * image's parent fields can be safely torn down--after there are no
1522 * more in-flight requests to the parent image. When the last
1523 * reference is dropped, cleaning them up is safe.
1525 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1529 if (!rbd_dev->parent_spec)
1532 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1536 /* Last reference; clean up parent data structures */
1539 rbd_dev_unparent(rbd_dev);
1541 rbd_warn(rbd_dev, "parent reference underflow");
1545 * If an image has a non-zero parent overlap, get a reference to its
1548 * Returns true if the rbd device has a parent with a non-zero
1549 * overlap and a reference for it was successfully taken, or
1552 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1556 if (!rbd_dev->parent_spec)
1559 if (rbd_dev->parent_overlap)
1560 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1563 rbd_warn(rbd_dev, "parent reference overflow");
1568 static void rbd_img_request_init(struct rbd_img_request *img_request,
1569 struct rbd_device *rbd_dev,
1570 enum obj_operation_type op_type)
1572 memset(img_request, 0, sizeof(*img_request));
1574 img_request->rbd_dev = rbd_dev;
1575 img_request->op_type = op_type;
1577 INIT_LIST_HEAD(&img_request->lock_item);
1578 INIT_LIST_HEAD(&img_request->object_extents);
1579 mutex_init(&img_request->state_mutex);
1582 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1584 struct rbd_device *rbd_dev = img_req->rbd_dev;
1586 lockdep_assert_held(&rbd_dev->header_rwsem);
1588 if (rbd_img_is_write(img_req))
1589 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1591 img_req->snap_id = rbd_dev->spec->snap_id;
1593 if (rbd_dev_parent_get(rbd_dev))
1594 img_request_layered_set(img_req);
1597 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1599 struct rbd_obj_request *obj_request;
1600 struct rbd_obj_request *next_obj_request;
1602 dout("%s: img %p\n", __func__, img_request);
1604 WARN_ON(!list_empty(&img_request->lock_item));
1605 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1606 rbd_img_obj_request_del(img_request, obj_request);
1608 if (img_request_layered_test(img_request))
1609 rbd_dev_parent_put(img_request->rbd_dev);
1611 if (rbd_img_is_write(img_request))
1612 ceph_put_snap_context(img_request->snapc);
1614 if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1615 kmem_cache_free(rbd_img_request_cache, img_request);
1618 #define BITS_PER_OBJ 2
1619 #define OBJS_PER_BYTE (BITS_PER_BYTE / BITS_PER_OBJ)
1620 #define OBJ_MASK ((1 << BITS_PER_OBJ) - 1)
1622 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1623 u64 *index, u8 *shift)
1627 rbd_assert(objno < rbd_dev->object_map_size);
1628 *index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1629 *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1632 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1637 lockdep_assert_held(&rbd_dev->object_map_lock);
1638 __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1639 return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1642 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1648 lockdep_assert_held(&rbd_dev->object_map_lock);
1649 rbd_assert(!(val & ~OBJ_MASK));
1651 __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1652 p = &rbd_dev->object_map[index];
1653 *p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1656 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1660 spin_lock(&rbd_dev->object_map_lock);
1661 state = __rbd_object_map_get(rbd_dev, objno);
1662 spin_unlock(&rbd_dev->object_map_lock);
1666 static bool use_object_map(struct rbd_device *rbd_dev)
1669 * An image mapped read-only can't use the object map -- it isn't
1670 * loaded because the header lock isn't acquired. Someone else can
1671 * write to the image and update the object map behind our back.
1673 * A snapshot can't be written to, so using the object map is always
1676 if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1679 return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1680 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1683 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1687 /* fall back to default logic if object map is disabled or invalid */
1688 if (!use_object_map(rbd_dev))
1691 state = rbd_object_map_get(rbd_dev, objno);
1692 return state != OBJECT_NONEXISTENT;
1695 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1696 struct ceph_object_id *oid)
1698 if (snap_id == CEPH_NOSNAP)
1699 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1700 rbd_dev->spec->image_id);
1702 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1703 rbd_dev->spec->image_id, snap_id);
1706 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1708 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1709 CEPH_DEFINE_OID_ONSTACK(oid);
1712 struct ceph_locker *lockers;
1714 bool broke_lock = false;
1717 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1720 ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1721 CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1722 if (ret != -EBUSY || broke_lock) {
1724 ret = 0; /* already locked by myself */
1726 rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1730 ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1731 RBD_LOCK_NAME, &lock_type, &lock_tag,
1732 &lockers, &num_lockers);
1737 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1742 if (num_lockers == 0)
1745 rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1746 ENTITY_NAME(lockers[0].id.name));
1748 ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1749 RBD_LOCK_NAME, lockers[0].id.cookie,
1750 &lockers[0].id.name);
1751 ceph_free_lockers(lockers, num_lockers);
1756 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1764 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1766 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1767 CEPH_DEFINE_OID_ONSTACK(oid);
1770 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1772 ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1774 if (ret && ret != -ENOENT)
1775 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1778 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1786 ceph_decode_32_safe(p, end, header_len, e_inval);
1787 header_end = *p + header_len;
1789 ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1794 ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1803 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1805 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1806 CEPH_DEFINE_OID_ONSTACK(oid);
1807 struct page **pages;
1811 u64 object_map_bytes;
1812 u64 object_map_size;
1816 rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1818 num_objects = ceph_get_num_objects(&rbd_dev->layout,
1819 rbd_dev->mapping.size);
1820 object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1822 num_pages = calc_pages_for(0, object_map_bytes) + 1;
1823 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1825 return PTR_ERR(pages);
1827 reply_len = num_pages * PAGE_SIZE;
1828 rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1829 ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1830 "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1831 NULL, 0, pages, &reply_len);
1835 p = page_address(pages[0]);
1836 end = p + min(reply_len, (size_t)PAGE_SIZE);
1837 ret = decode_object_map_header(&p, end, &object_map_size);
1841 if (object_map_size != num_objects) {
1842 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1843 object_map_size, num_objects);
1848 if (offset_in_page(p) + object_map_bytes > reply_len) {
1853 rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1854 if (!rbd_dev->object_map) {
1859 rbd_dev->object_map_size = object_map_size;
1860 ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1861 offset_in_page(p), object_map_bytes);
1864 ceph_release_page_vector(pages, num_pages);
1868 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1870 kvfree(rbd_dev->object_map);
1871 rbd_dev->object_map = NULL;
1872 rbd_dev->object_map_size = 0;
1875 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1879 ret = __rbd_object_map_load(rbd_dev);
1883 ret = rbd_dev_v2_get_flags(rbd_dev);
1885 rbd_object_map_free(rbd_dev);
1889 if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1890 rbd_warn(rbd_dev, "object map is invalid");
1895 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1899 ret = rbd_object_map_lock(rbd_dev);
1903 ret = rbd_object_map_load(rbd_dev);
1905 rbd_object_map_unlock(rbd_dev);
1912 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1914 rbd_object_map_free(rbd_dev);
1915 rbd_object_map_unlock(rbd_dev);
1919 * This function needs snap_id (or more precisely just something to
1920 * distinguish between HEAD and snapshot object maps), new_state and
1921 * current_state that were passed to rbd_object_map_update().
1923 * To avoid allocating and stashing a context we piggyback on the OSD
1924 * request. A HEAD update has two ops (assert_locked). For new_state
1925 * and current_state we decode our own object_map_update op, encoded in
1926 * rbd_cls_object_map_update().
1928 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1929 struct ceph_osd_request *osd_req)
1931 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1932 struct ceph_osd_data *osd_data;
1934 u8 state, new_state, current_state;
1935 bool has_current_state;
1938 if (osd_req->r_result)
1939 return osd_req->r_result;
1942 * Nothing to do for a snapshot object map.
1944 if (osd_req->r_num_ops == 1)
1948 * Update in-memory HEAD object map.
1950 rbd_assert(osd_req->r_num_ops == 2);
1951 osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1952 rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1954 p = page_address(osd_data->pages[0]);
1955 objno = ceph_decode_64(&p);
1956 rbd_assert(objno == obj_req->ex.oe_objno);
1957 rbd_assert(ceph_decode_64(&p) == objno + 1);
1958 new_state = ceph_decode_8(&p);
1959 has_current_state = ceph_decode_8(&p);
1960 if (has_current_state)
1961 current_state = ceph_decode_8(&p);
1963 spin_lock(&rbd_dev->object_map_lock);
1964 state = __rbd_object_map_get(rbd_dev, objno);
1965 if (!has_current_state || current_state == state ||
1966 (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1967 __rbd_object_map_set(rbd_dev, objno, new_state);
1968 spin_unlock(&rbd_dev->object_map_lock);
1973 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1975 struct rbd_obj_request *obj_req = osd_req->r_priv;
1978 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1979 osd_req->r_result, obj_req);
1981 result = rbd_object_map_update_finish(obj_req, osd_req);
1982 rbd_obj_handle_request(obj_req, result);
1985 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
1987 u8 state = rbd_object_map_get(rbd_dev, objno);
1989 if (state == new_state ||
1990 (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
1991 (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
1997 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
1998 int which, u64 objno, u8 new_state,
1999 const u8 *current_state)
2001 struct page **pages;
2005 ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2009 pages = ceph_alloc_page_vector(1, GFP_NOIO);
2011 return PTR_ERR(pages);
2013 p = start = page_address(pages[0]);
2014 ceph_encode_64(&p, objno);
2015 ceph_encode_64(&p, objno + 1);
2016 ceph_encode_8(&p, new_state);
2017 if (current_state) {
2018 ceph_encode_8(&p, 1);
2019 ceph_encode_8(&p, *current_state);
2021 ceph_encode_8(&p, 0);
2024 osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2031 * 0 - object map update sent
2032 * 1 - object map update isn't needed
2035 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2036 u8 new_state, const u8 *current_state)
2038 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2039 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2040 struct ceph_osd_request *req;
2045 if (snap_id == CEPH_NOSNAP) {
2046 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2049 num_ops++; /* assert_locked */
2052 req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2056 list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2057 req->r_callback = rbd_object_map_callback;
2058 req->r_priv = obj_req;
2060 rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2061 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2062 req->r_flags = CEPH_OSD_FLAG_WRITE;
2063 ktime_get_real_ts64(&req->r_mtime);
2065 if (snap_id == CEPH_NOSNAP) {
2067 * Protect against possible race conditions during lock
2068 * ownership transitions.
2070 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2071 CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2076 ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2077 new_state, current_state);
2081 ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2085 ceph_osdc_start_request(osdc, req, false);
2089 static void prune_extents(struct ceph_file_extent *img_extents,
2090 u32 *num_img_extents, u64 overlap)
2092 u32 cnt = *num_img_extents;
2094 /* drop extents completely beyond the overlap */
2095 while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2099 struct ceph_file_extent *ex = &img_extents[cnt - 1];
2101 /* trim final overlapping extent */
2102 if (ex->fe_off + ex->fe_len > overlap)
2103 ex->fe_len = overlap - ex->fe_off;
2106 *num_img_extents = cnt;
2110 * Determine the byte range(s) covered by either just the object extent
2111 * or the entire object in the parent image.
2113 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2116 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2119 if (!rbd_dev->parent_overlap)
2122 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2123 entire ? 0 : obj_req->ex.oe_off,
2124 entire ? rbd_dev->layout.object_size :
2126 &obj_req->img_extents,
2127 &obj_req->num_img_extents);
2131 prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2132 rbd_dev->parent_overlap);
2136 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2138 struct rbd_obj_request *obj_req = osd_req->r_priv;
2140 switch (obj_req->img_request->data_type) {
2141 case OBJ_REQUEST_BIO:
2142 osd_req_op_extent_osd_data_bio(osd_req, which,
2144 obj_req->ex.oe_len);
2146 case OBJ_REQUEST_BVECS:
2147 case OBJ_REQUEST_OWN_BVECS:
2148 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2149 obj_req->ex.oe_len);
2150 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2151 osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2152 &obj_req->bvec_pos);
2159 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2161 struct page **pages;
2164 * The response data for a STAT call consists of:
2171 pages = ceph_alloc_page_vector(1, GFP_NOIO);
2173 return PTR_ERR(pages);
2175 osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2176 osd_req_op_raw_data_in_pages(osd_req, which, pages,
2177 8 + sizeof(struct ceph_timespec),
2182 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2185 struct rbd_obj_request *obj_req = osd_req->r_priv;
2188 ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2192 osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2193 obj_req->copyup_bvec_count, bytes);
2197 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2199 obj_req->read_state = RBD_OBJ_READ_START;
2203 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2206 struct rbd_obj_request *obj_req = osd_req->r_priv;
2207 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2210 if (!use_object_map(rbd_dev) ||
2211 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2212 osd_req_op_alloc_hint_init(osd_req, which++,
2213 rbd_dev->layout.object_size,
2214 rbd_dev->layout.object_size,
2215 rbd_dev->opts->alloc_hint_flags);
2218 if (rbd_obj_is_entire(obj_req))
2219 opcode = CEPH_OSD_OP_WRITEFULL;
2221 opcode = CEPH_OSD_OP_WRITE;
2223 osd_req_op_extent_init(osd_req, which, opcode,
2224 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2225 rbd_osd_setup_data(osd_req, which);
2228 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2232 /* reverse map the entire object onto the parent */
2233 ret = rbd_obj_calc_img_extents(obj_req, true);
2237 if (rbd_obj_copyup_enabled(obj_req))
2238 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2240 obj_req->write_state = RBD_OBJ_WRITE_START;
2244 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2246 return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2250 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2253 struct rbd_obj_request *obj_req = osd_req->r_priv;
2255 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2256 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2257 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2259 osd_req_op_extent_init(osd_req, which,
2260 truncate_or_zero_opcode(obj_req),
2261 obj_req->ex.oe_off, obj_req->ex.oe_len,
2266 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2268 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2273 * Align the range to alloc_size boundary and punt on discards
2274 * that are too small to free up any space.
2276 * alloc_size == object_size && is_tail() is a special case for
2277 * filestore with filestore_punch_hole = false, needed to allow
2278 * truncate (in addition to delete).
2280 if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2281 !rbd_obj_is_tail(obj_req)) {
2282 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2283 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2284 rbd_dev->opts->alloc_size);
2285 if (off >= next_off)
2288 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2289 obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2290 off, next_off - off);
2291 obj_req->ex.oe_off = off;
2292 obj_req->ex.oe_len = next_off - off;
2295 /* reverse map the entire object onto the parent */
2296 ret = rbd_obj_calc_img_extents(obj_req, true);
2300 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2301 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2302 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2304 obj_req->write_state = RBD_OBJ_WRITE_START;
2308 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2311 struct rbd_obj_request *obj_req = osd_req->r_priv;
2314 if (rbd_obj_is_entire(obj_req)) {
2315 if (obj_req->num_img_extents) {
2316 if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2317 osd_req_op_init(osd_req, which++,
2318 CEPH_OSD_OP_CREATE, 0);
2319 opcode = CEPH_OSD_OP_TRUNCATE;
2321 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2322 osd_req_op_init(osd_req, which++,
2323 CEPH_OSD_OP_DELETE, 0);
2327 opcode = truncate_or_zero_opcode(obj_req);
2331 osd_req_op_extent_init(osd_req, which, opcode,
2332 obj_req->ex.oe_off, obj_req->ex.oe_len,
2336 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2340 /* reverse map the entire object onto the parent */
2341 ret = rbd_obj_calc_img_extents(obj_req, true);
2345 if (rbd_obj_copyup_enabled(obj_req))
2346 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2347 if (!obj_req->num_img_extents) {
2348 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2349 if (rbd_obj_is_entire(obj_req))
2350 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2353 obj_req->write_state = RBD_OBJ_WRITE_START;
2357 static int count_write_ops(struct rbd_obj_request *obj_req)
2359 struct rbd_img_request *img_req = obj_req->img_request;
2361 switch (img_req->op_type) {
2363 if (!use_object_map(img_req->rbd_dev) ||
2364 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2365 return 2; /* setallochint + write/writefull */
2367 return 1; /* write/writefull */
2368 case OBJ_OP_DISCARD:
2369 return 1; /* delete/truncate/zero */
2370 case OBJ_OP_ZEROOUT:
2371 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2372 !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2373 return 2; /* create + truncate */
2375 return 1; /* delete/truncate/zero */
2381 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2384 struct rbd_obj_request *obj_req = osd_req->r_priv;
2386 switch (obj_req->img_request->op_type) {
2388 __rbd_osd_setup_write_ops(osd_req, which);
2390 case OBJ_OP_DISCARD:
2391 __rbd_osd_setup_discard_ops(osd_req, which);
2393 case OBJ_OP_ZEROOUT:
2394 __rbd_osd_setup_zeroout_ops(osd_req, which);
2402 * Prune the list of object requests (adjust offset and/or length, drop
2403 * redundant requests). Prepare object request state machines and image
2404 * request state machine for execution.
2406 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2408 struct rbd_obj_request *obj_req, *next_obj_req;
2411 for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2412 switch (img_req->op_type) {
2414 ret = rbd_obj_init_read(obj_req);
2417 ret = rbd_obj_init_write(obj_req);
2419 case OBJ_OP_DISCARD:
2420 ret = rbd_obj_init_discard(obj_req);
2422 case OBJ_OP_ZEROOUT:
2423 ret = rbd_obj_init_zeroout(obj_req);
2431 rbd_img_obj_request_del(img_req, obj_req);
2436 img_req->state = RBD_IMG_START;
2440 union rbd_img_fill_iter {
2441 struct ceph_bio_iter bio_iter;
2442 struct ceph_bvec_iter bvec_iter;
2445 struct rbd_img_fill_ctx {
2446 enum obj_request_type pos_type;
2447 union rbd_img_fill_iter *pos;
2448 union rbd_img_fill_iter iter;
2449 ceph_object_extent_fn_t set_pos_fn;
2450 ceph_object_extent_fn_t count_fn;
2451 ceph_object_extent_fn_t copy_fn;
2454 static struct ceph_object_extent *alloc_object_extent(void *arg)
2456 struct rbd_img_request *img_req = arg;
2457 struct rbd_obj_request *obj_req;
2459 obj_req = rbd_obj_request_create();
2463 rbd_img_obj_request_add(img_req, obj_req);
2464 return &obj_req->ex;
2468 * While su != os && sc == 1 is technically not fancy (it's the same
2469 * layout as su == os && sc == 1), we can't use the nocopy path for it
2470 * because ->set_pos_fn() should be called only once per object.
2471 * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2472 * treat su != os && sc == 1 as fancy.
2474 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2476 return l->stripe_unit != l->object_size;
2479 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2480 struct ceph_file_extent *img_extents,
2481 u32 num_img_extents,
2482 struct rbd_img_fill_ctx *fctx)
2487 img_req->data_type = fctx->pos_type;
2490 * Create object requests and set each object request's starting
2491 * position in the provided bio (list) or bio_vec array.
2493 fctx->iter = *fctx->pos;
2494 for (i = 0; i < num_img_extents; i++) {
2495 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2496 img_extents[i].fe_off,
2497 img_extents[i].fe_len,
2498 &img_req->object_extents,
2499 alloc_object_extent, img_req,
2500 fctx->set_pos_fn, &fctx->iter);
2505 return __rbd_img_fill_request(img_req);
2509 * Map a list of image extents to a list of object extents, create the
2510 * corresponding object requests (normally each to a different object,
2511 * but not always) and add them to @img_req. For each object request,
2512 * set up its data descriptor to point to the corresponding chunk(s) of
2513 * @fctx->pos data buffer.
2515 * Because ceph_file_to_extents() will merge adjacent object extents
2516 * together, each object request's data descriptor may point to multiple
2517 * different chunks of @fctx->pos data buffer.
2519 * @fctx->pos data buffer is assumed to be large enough.
2521 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2522 struct ceph_file_extent *img_extents,
2523 u32 num_img_extents,
2524 struct rbd_img_fill_ctx *fctx)
2526 struct rbd_device *rbd_dev = img_req->rbd_dev;
2527 struct rbd_obj_request *obj_req;
2531 if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2532 !rbd_layout_is_fancy(&rbd_dev->layout))
2533 return rbd_img_fill_request_nocopy(img_req, img_extents,
2534 num_img_extents, fctx);
2536 img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2539 * Create object requests and determine ->bvec_count for each object
2540 * request. Note that ->bvec_count sum over all object requests may
2541 * be greater than the number of bio_vecs in the provided bio (list)
2542 * or bio_vec array because when mapped, those bio_vecs can straddle
2543 * stripe unit boundaries.
2545 fctx->iter = *fctx->pos;
2546 for (i = 0; i < num_img_extents; i++) {
2547 ret = ceph_file_to_extents(&rbd_dev->layout,
2548 img_extents[i].fe_off,
2549 img_extents[i].fe_len,
2550 &img_req->object_extents,
2551 alloc_object_extent, img_req,
2552 fctx->count_fn, &fctx->iter);
2557 for_each_obj_request(img_req, obj_req) {
2558 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2559 sizeof(*obj_req->bvec_pos.bvecs),
2561 if (!obj_req->bvec_pos.bvecs)
2566 * Fill in each object request's private bio_vec array, splitting and
2567 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2569 fctx->iter = *fctx->pos;
2570 for (i = 0; i < num_img_extents; i++) {
2571 ret = ceph_iterate_extents(&rbd_dev->layout,
2572 img_extents[i].fe_off,
2573 img_extents[i].fe_len,
2574 &img_req->object_extents,
2575 fctx->copy_fn, &fctx->iter);
2580 return __rbd_img_fill_request(img_req);
2583 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2586 struct ceph_file_extent ex = { off, len };
2587 union rbd_img_fill_iter dummy = {};
2588 struct rbd_img_fill_ctx fctx = {
2589 .pos_type = OBJ_REQUEST_NODATA,
2593 return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2596 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2598 struct rbd_obj_request *obj_req =
2599 container_of(ex, struct rbd_obj_request, ex);
2600 struct ceph_bio_iter *it = arg;
2602 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2603 obj_req->bio_pos = *it;
2604 ceph_bio_iter_advance(it, bytes);
2607 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2609 struct rbd_obj_request *obj_req =
2610 container_of(ex, struct rbd_obj_request, ex);
2611 struct ceph_bio_iter *it = arg;
2613 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2614 ceph_bio_iter_advance_step(it, bytes, ({
2615 obj_req->bvec_count++;
2620 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2622 struct rbd_obj_request *obj_req =
2623 container_of(ex, struct rbd_obj_request, ex);
2624 struct ceph_bio_iter *it = arg;
2626 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2627 ceph_bio_iter_advance_step(it, bytes, ({
2628 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2629 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2633 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2634 struct ceph_file_extent *img_extents,
2635 u32 num_img_extents,
2636 struct ceph_bio_iter *bio_pos)
2638 struct rbd_img_fill_ctx fctx = {
2639 .pos_type = OBJ_REQUEST_BIO,
2640 .pos = (union rbd_img_fill_iter *)bio_pos,
2641 .set_pos_fn = set_bio_pos,
2642 .count_fn = count_bio_bvecs,
2643 .copy_fn = copy_bio_bvecs,
2646 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2650 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2651 u64 off, u64 len, struct bio *bio)
2653 struct ceph_file_extent ex = { off, len };
2654 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2656 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2659 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2661 struct rbd_obj_request *obj_req =
2662 container_of(ex, struct rbd_obj_request, ex);
2663 struct ceph_bvec_iter *it = arg;
2665 obj_req->bvec_pos = *it;
2666 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2667 ceph_bvec_iter_advance(it, bytes);
2670 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2672 struct rbd_obj_request *obj_req =
2673 container_of(ex, struct rbd_obj_request, ex);
2674 struct ceph_bvec_iter *it = arg;
2676 ceph_bvec_iter_advance_step(it, bytes, ({
2677 obj_req->bvec_count++;
2681 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2683 struct rbd_obj_request *obj_req =
2684 container_of(ex, struct rbd_obj_request, ex);
2685 struct ceph_bvec_iter *it = arg;
2687 ceph_bvec_iter_advance_step(it, bytes, ({
2688 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2689 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2693 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2694 struct ceph_file_extent *img_extents,
2695 u32 num_img_extents,
2696 struct ceph_bvec_iter *bvec_pos)
2698 struct rbd_img_fill_ctx fctx = {
2699 .pos_type = OBJ_REQUEST_BVECS,
2700 .pos = (union rbd_img_fill_iter *)bvec_pos,
2701 .set_pos_fn = set_bvec_pos,
2702 .count_fn = count_bvecs,
2703 .copy_fn = copy_bvecs,
2706 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2710 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2711 struct ceph_file_extent *img_extents,
2712 u32 num_img_extents,
2713 struct bio_vec *bvecs)
2715 struct ceph_bvec_iter it = {
2717 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2721 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2725 static void rbd_img_handle_request_work(struct work_struct *work)
2727 struct rbd_img_request *img_req =
2728 container_of(work, struct rbd_img_request, work);
2730 rbd_img_handle_request(img_req, img_req->work_result);
2733 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2735 INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2736 img_req->work_result = result;
2737 queue_work(rbd_wq, &img_req->work);
2740 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2742 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2744 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2745 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2749 dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2750 obj_req->ex.oe_objno);
2754 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2756 struct ceph_osd_request *osd_req;
2759 osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2760 if (IS_ERR(osd_req))
2761 return PTR_ERR(osd_req);
2763 osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2764 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2765 rbd_osd_setup_data(osd_req, 0);
2766 rbd_osd_format_read(osd_req);
2768 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2772 rbd_osd_submit(osd_req);
2776 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2778 struct rbd_img_request *img_req = obj_req->img_request;
2779 struct rbd_device *parent = img_req->rbd_dev->parent;
2780 struct rbd_img_request *child_img_req;
2783 child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2787 rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2788 __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2789 child_img_req->obj_request = obj_req;
2791 down_read(&parent->header_rwsem);
2792 rbd_img_capture_header(child_img_req);
2793 up_read(&parent->header_rwsem);
2795 dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2798 if (!rbd_img_is_write(img_req)) {
2799 switch (img_req->data_type) {
2800 case OBJ_REQUEST_BIO:
2801 ret = __rbd_img_fill_from_bio(child_img_req,
2802 obj_req->img_extents,
2803 obj_req->num_img_extents,
2806 case OBJ_REQUEST_BVECS:
2807 case OBJ_REQUEST_OWN_BVECS:
2808 ret = __rbd_img_fill_from_bvecs(child_img_req,
2809 obj_req->img_extents,
2810 obj_req->num_img_extents,
2811 &obj_req->bvec_pos);
2817 ret = rbd_img_fill_from_bvecs(child_img_req,
2818 obj_req->img_extents,
2819 obj_req->num_img_extents,
2820 obj_req->copyup_bvecs);
2823 rbd_img_request_destroy(child_img_req);
2827 /* avoid parent chain recursion */
2828 rbd_img_schedule(child_img_req, 0);
2832 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2834 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2838 switch (obj_req->read_state) {
2839 case RBD_OBJ_READ_START:
2840 rbd_assert(!*result);
2842 if (!rbd_obj_may_exist(obj_req)) {
2844 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2848 ret = rbd_obj_read_object(obj_req);
2853 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2855 case RBD_OBJ_READ_OBJECT:
2856 if (*result == -ENOENT && rbd_dev->parent_overlap) {
2857 /* reverse map this object extent onto the parent */
2858 ret = rbd_obj_calc_img_extents(obj_req, false);
2863 if (obj_req->num_img_extents) {
2864 ret = rbd_obj_read_from_parent(obj_req);
2869 obj_req->read_state = RBD_OBJ_READ_PARENT;
2875 * -ENOENT means a hole in the image -- zero-fill the entire
2876 * length of the request. A short read also implies zero-fill
2877 * to the end of the request.
2879 if (*result == -ENOENT) {
2880 rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2882 } else if (*result >= 0) {
2883 if (*result < obj_req->ex.oe_len)
2884 rbd_obj_zero_range(obj_req, *result,
2885 obj_req->ex.oe_len - *result);
2887 rbd_assert(*result == obj_req->ex.oe_len);
2891 case RBD_OBJ_READ_PARENT:
2893 * The parent image is read only up to the overlap -- zero-fill
2894 * from the overlap to the end of the request.
2897 u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2899 if (obj_overlap < obj_req->ex.oe_len)
2900 rbd_obj_zero_range(obj_req, obj_overlap,
2901 obj_req->ex.oe_len - obj_overlap);
2909 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2911 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2913 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2914 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2916 if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2917 (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2918 dout("%s %p noop for nonexistent\n", __func__, obj_req);
2927 * 0 - object map update sent
2928 * 1 - object map update isn't needed
2931 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2933 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2936 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2939 if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2940 new_state = OBJECT_PENDING;
2942 new_state = OBJECT_EXISTS;
2944 return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2947 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2949 struct ceph_osd_request *osd_req;
2950 int num_ops = count_write_ops(obj_req);
2954 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2955 num_ops++; /* stat */
2957 osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2958 if (IS_ERR(osd_req))
2959 return PTR_ERR(osd_req);
2961 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2962 ret = rbd_osd_setup_stat(osd_req, which++);
2967 rbd_osd_setup_write_ops(osd_req, which);
2968 rbd_osd_format_write(osd_req);
2970 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2974 rbd_osd_submit(osd_req);
2979 * copyup_bvecs pages are never highmem pages
2981 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2983 struct ceph_bvec_iter it = {
2985 .iter = { .bi_size = bytes },
2988 ceph_bvec_iter_advance_step(&it, bytes, ({
2989 if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
2995 #define MODS_ONLY U32_MAX
2997 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3000 struct ceph_osd_request *osd_req;
3003 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3004 rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3006 osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3007 if (IS_ERR(osd_req))
3008 return PTR_ERR(osd_req);
3010 ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3014 rbd_osd_format_write(osd_req);
3016 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3020 rbd_osd_submit(osd_req);
3024 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3027 struct ceph_osd_request *osd_req;
3028 int num_ops = count_write_ops(obj_req);
3032 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3034 if (bytes != MODS_ONLY)
3035 num_ops++; /* copyup */
3037 osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3038 if (IS_ERR(osd_req))
3039 return PTR_ERR(osd_req);
3041 if (bytes != MODS_ONLY) {
3042 ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3047 rbd_osd_setup_write_ops(osd_req, which);
3048 rbd_osd_format_write(osd_req);
3050 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3054 rbd_osd_submit(osd_req);
3058 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3062 rbd_assert(!obj_req->copyup_bvecs);
3063 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3064 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3065 sizeof(*obj_req->copyup_bvecs),
3067 if (!obj_req->copyup_bvecs)
3070 for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3071 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3073 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3074 if (!obj_req->copyup_bvecs[i].bv_page)
3077 obj_req->copyup_bvecs[i].bv_offset = 0;
3078 obj_req->copyup_bvecs[i].bv_len = len;
3082 rbd_assert(!obj_overlap);
3087 * The target object doesn't exist. Read the data for the entire
3088 * target object up to the overlap point (if any) from the parent,
3089 * so we can use it for a copyup.
3091 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3093 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3096 rbd_assert(obj_req->num_img_extents);
3097 prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3098 rbd_dev->parent_overlap);
3099 if (!obj_req->num_img_extents) {
3101 * The overlap has become 0 (most likely because the
3102 * image has been flattened). Re-submit the original write
3103 * request -- pass MODS_ONLY since the copyup isn't needed
3106 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3109 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3113 return rbd_obj_read_from_parent(obj_req);
3116 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3118 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3119 struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3124 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3126 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3129 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3132 for (i = 0; i < snapc->num_snaps; i++) {
3133 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3134 i + 1 < snapc->num_snaps)
3135 new_state = OBJECT_EXISTS_CLEAN;
3137 new_state = OBJECT_EXISTS;
3139 ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3142 obj_req->pending.result = ret;
3147 obj_req->pending.num_pending++;
3151 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3153 u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3156 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3159 * Only send non-zero copyup data to save some I/O and network
3160 * bandwidth -- zero copyup data is equivalent to the object not
3163 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3166 if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3168 * Send a copyup request with an empty snapshot context to
3169 * deep-copyup the object through all existing snapshots.
3170 * A second request with the current snapshot context will be
3171 * sent for the actual modification.
3173 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3175 obj_req->pending.result = ret;
3179 obj_req->pending.num_pending++;
3183 ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3185 obj_req->pending.result = ret;
3189 obj_req->pending.num_pending++;
3192 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3194 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3198 switch (obj_req->copyup_state) {
3199 case RBD_OBJ_COPYUP_START:
3200 rbd_assert(!*result);
3202 ret = rbd_obj_copyup_read_parent(obj_req);
3207 if (obj_req->num_img_extents)
3208 obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3210 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3212 case RBD_OBJ_COPYUP_READ_PARENT:
3216 if (is_zero_bvecs(obj_req->copyup_bvecs,
3217 rbd_obj_img_extents_bytes(obj_req))) {
3218 dout("%s %p detected zeros\n", __func__, obj_req);
3219 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3222 rbd_obj_copyup_object_maps(obj_req);
3223 if (!obj_req->pending.num_pending) {
3224 *result = obj_req->pending.result;
3225 obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3228 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3230 case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3231 if (!pending_result_dec(&obj_req->pending, result))
3234 case RBD_OBJ_COPYUP_OBJECT_MAPS:
3236 rbd_warn(rbd_dev, "snap object map update failed: %d",
3241 rbd_obj_copyup_write_object(obj_req);
3242 if (!obj_req->pending.num_pending) {
3243 *result = obj_req->pending.result;
3244 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3247 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3249 case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3250 if (!pending_result_dec(&obj_req->pending, result))
3253 case RBD_OBJ_COPYUP_WRITE_OBJECT:
3262 * 0 - object map update sent
3263 * 1 - object map update isn't needed
3266 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3268 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3269 u8 current_state = OBJECT_PENDING;
3271 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3274 if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3277 return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3281 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3283 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3287 switch (obj_req->write_state) {
3288 case RBD_OBJ_WRITE_START:
3289 rbd_assert(!*result);
3291 if (rbd_obj_write_is_noop(obj_req))
3294 ret = rbd_obj_write_pre_object_map(obj_req);
3299 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3303 case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3305 rbd_warn(rbd_dev, "pre object map update failed: %d",
3309 ret = rbd_obj_write_object(obj_req);
3314 obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3316 case RBD_OBJ_WRITE_OBJECT:
3317 if (*result == -ENOENT) {
3318 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3320 obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3321 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3325 * On a non-existent object:
3326 * delete - -ENOENT, truncate/zero - 0
3328 if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3334 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3336 case __RBD_OBJ_WRITE_COPYUP:
3337 if (!rbd_obj_advance_copyup(obj_req, result))
3340 case RBD_OBJ_WRITE_COPYUP:
3342 rbd_warn(rbd_dev, "copyup failed: %d", *result);
3345 ret = rbd_obj_write_post_object_map(obj_req);
3350 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3354 case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3356 rbd_warn(rbd_dev, "post object map update failed: %d",
3365 * Return true if @obj_req is completed.
3367 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3370 struct rbd_img_request *img_req = obj_req->img_request;
3371 struct rbd_device *rbd_dev = img_req->rbd_dev;
3374 mutex_lock(&obj_req->state_mutex);
3375 if (!rbd_img_is_write(img_req))
3376 done = rbd_obj_advance_read(obj_req, result);
3378 done = rbd_obj_advance_write(obj_req, result);
3379 mutex_unlock(&obj_req->state_mutex);
3381 if (done && *result) {
3382 rbd_assert(*result < 0);
3383 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3384 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3385 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3391 * This is open-coded in rbd_img_handle_request() to avoid parent chain
3394 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3396 if (__rbd_obj_handle_request(obj_req, &result))
3397 rbd_img_handle_request(obj_req->img_request, result);
3400 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3402 struct rbd_device *rbd_dev = img_req->rbd_dev;
3404 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3407 if (rbd_is_ro(rbd_dev))
3410 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3411 if (rbd_dev->opts->lock_on_read ||
3412 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3415 return rbd_img_is_write(img_req);
3418 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3420 struct rbd_device *rbd_dev = img_req->rbd_dev;
3423 lockdep_assert_held(&rbd_dev->lock_rwsem);
3424 locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3425 spin_lock(&rbd_dev->lock_lists_lock);
3426 rbd_assert(list_empty(&img_req->lock_item));
3428 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3430 list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3431 spin_unlock(&rbd_dev->lock_lists_lock);
3435 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3437 struct rbd_device *rbd_dev = img_req->rbd_dev;
3440 lockdep_assert_held(&rbd_dev->lock_rwsem);
3441 spin_lock(&rbd_dev->lock_lists_lock);
3442 rbd_assert(!list_empty(&img_req->lock_item));
3443 list_del_init(&img_req->lock_item);
3444 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3445 list_empty(&rbd_dev->running_list));
3446 spin_unlock(&rbd_dev->lock_lists_lock);
3448 complete(&rbd_dev->releasing_wait);
3451 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3453 struct rbd_device *rbd_dev = img_req->rbd_dev;
3455 if (!need_exclusive_lock(img_req))
3458 if (rbd_lock_add_request(img_req))
3461 if (rbd_dev->opts->exclusive) {
3462 WARN_ON(1); /* lock got released? */
3467 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3468 * and cancel_delayed_work() in wake_lock_waiters().
3470 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3471 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3475 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3477 struct rbd_obj_request *obj_req;
3479 rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3481 for_each_obj_request(img_req, obj_req) {
3484 if (__rbd_obj_handle_request(obj_req, &result)) {
3486 img_req->pending.result = result;
3490 img_req->pending.num_pending++;
3495 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3497 struct rbd_device *rbd_dev = img_req->rbd_dev;
3501 switch (img_req->state) {
3503 rbd_assert(!*result);
3505 ret = rbd_img_exclusive_lock(img_req);
3510 img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3514 case RBD_IMG_EXCLUSIVE_LOCK:
3518 rbd_assert(!need_exclusive_lock(img_req) ||
3519 __rbd_is_lock_owner(rbd_dev));
3521 rbd_img_object_requests(img_req);
3522 if (!img_req->pending.num_pending) {
3523 *result = img_req->pending.result;
3524 img_req->state = RBD_IMG_OBJECT_REQUESTS;
3527 img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3529 case __RBD_IMG_OBJECT_REQUESTS:
3530 if (!pending_result_dec(&img_req->pending, result))
3533 case RBD_IMG_OBJECT_REQUESTS:
3541 * Return true if @img_req is completed.
3543 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3546 struct rbd_device *rbd_dev = img_req->rbd_dev;
3549 if (need_exclusive_lock(img_req)) {
3550 down_read(&rbd_dev->lock_rwsem);
3551 mutex_lock(&img_req->state_mutex);
3552 done = rbd_img_advance(img_req, result);
3554 rbd_lock_del_request(img_req);
3555 mutex_unlock(&img_req->state_mutex);
3556 up_read(&rbd_dev->lock_rwsem);
3558 mutex_lock(&img_req->state_mutex);
3559 done = rbd_img_advance(img_req, result);
3560 mutex_unlock(&img_req->state_mutex);
3563 if (done && *result) {
3564 rbd_assert(*result < 0);
3565 rbd_warn(rbd_dev, "%s%s result %d",
3566 test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3567 obj_op_name(img_req->op_type), *result);
3572 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3575 if (!__rbd_img_handle_request(img_req, &result))
3578 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3579 struct rbd_obj_request *obj_req = img_req->obj_request;
3581 rbd_img_request_destroy(img_req);
3582 if (__rbd_obj_handle_request(obj_req, &result)) {
3583 img_req = obj_req->img_request;
3587 struct request *rq = blk_mq_rq_from_pdu(img_req);
3589 rbd_img_request_destroy(img_req);
3590 blk_mq_end_request(rq, errno_to_blk_status(result));
3594 static const struct rbd_client_id rbd_empty_cid;
3596 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3597 const struct rbd_client_id *rhs)
3599 return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3602 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3604 struct rbd_client_id cid;
3606 mutex_lock(&rbd_dev->watch_mutex);
3607 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3608 cid.handle = rbd_dev->watch_cookie;
3609 mutex_unlock(&rbd_dev->watch_mutex);
3614 * lock_rwsem must be held for write
3616 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3617 const struct rbd_client_id *cid)
3619 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3620 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3621 cid->gid, cid->handle);
3622 rbd_dev->owner_cid = *cid; /* struct */
3625 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3627 mutex_lock(&rbd_dev->watch_mutex);
3628 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3629 mutex_unlock(&rbd_dev->watch_mutex);
3632 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3634 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3636 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3637 strcpy(rbd_dev->lock_cookie, cookie);
3638 rbd_set_owner_cid(rbd_dev, &cid);
3639 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3643 * lock_rwsem must be held for write
3645 static int rbd_lock(struct rbd_device *rbd_dev)
3647 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3651 WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3652 rbd_dev->lock_cookie[0] != '\0');
3654 format_lock_cookie(rbd_dev, cookie);
3655 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3656 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3657 RBD_LOCK_TAG, "", 0);
3661 __rbd_lock(rbd_dev, cookie);
3666 * lock_rwsem must be held for write
3668 static void rbd_unlock(struct rbd_device *rbd_dev)
3670 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3673 WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3674 rbd_dev->lock_cookie[0] == '\0');
3676 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3677 RBD_LOCK_NAME, rbd_dev->lock_cookie);
3678 if (ret && ret != -ENOENT)
3679 rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3681 /* treat errors as the image is unlocked */
3682 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3683 rbd_dev->lock_cookie[0] = '\0';
3684 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3685 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3688 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3689 enum rbd_notify_op notify_op,
3690 struct page ***preply_pages,
3693 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3694 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3695 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3696 int buf_size = sizeof(buf);
3699 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3701 /* encode *LockPayload NotifyMessage (op + ClientId) */
3702 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3703 ceph_encode_32(&p, notify_op);
3704 ceph_encode_64(&p, cid.gid);
3705 ceph_encode_64(&p, cid.handle);
3707 return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3708 &rbd_dev->header_oloc, buf, buf_size,
3709 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3712 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3713 enum rbd_notify_op notify_op)
3715 __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3718 static void rbd_notify_acquired_lock(struct work_struct *work)
3720 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3721 acquired_lock_work);
3723 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3726 static void rbd_notify_released_lock(struct work_struct *work)
3728 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3729 released_lock_work);
3731 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3734 static int rbd_request_lock(struct rbd_device *rbd_dev)
3736 struct page **reply_pages;
3738 bool lock_owner_responded = false;
3741 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3743 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3744 &reply_pages, &reply_len);
3745 if (ret && ret != -ETIMEDOUT) {
3746 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3750 if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3751 void *p = page_address(reply_pages[0]);
3752 void *const end = p + reply_len;
3755 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3760 ceph_decode_need(&p, end, 8 + 8, e_inval);
3761 p += 8 + 8; /* skip gid and cookie */
3763 ceph_decode_32_safe(&p, end, len, e_inval);
3767 if (lock_owner_responded) {
3769 "duplicate lock owners detected");
3774 lock_owner_responded = true;
3775 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3779 "failed to decode ResponseMessage: %d",
3784 ret = ceph_decode_32(&p);
3788 if (!lock_owner_responded) {
3789 rbd_warn(rbd_dev, "no lock owners detected");
3794 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3803 * Either image request state machine(s) or rbd_add_acquire_lock()
3806 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3808 struct rbd_img_request *img_req;
3810 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3811 lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3813 cancel_delayed_work(&rbd_dev->lock_dwork);
3814 if (!completion_done(&rbd_dev->acquire_wait)) {
3815 rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3816 list_empty(&rbd_dev->running_list));
3817 rbd_dev->acquire_err = result;
3818 complete_all(&rbd_dev->acquire_wait);
3822 list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3823 mutex_lock(&img_req->state_mutex);
3824 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3825 rbd_img_schedule(img_req, result);
3826 mutex_unlock(&img_req->state_mutex);
3829 list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3832 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3833 struct ceph_locker **lockers, u32 *num_lockers)
3835 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3840 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3842 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3843 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3844 &lock_type, &lock_tag, lockers, num_lockers);
3848 if (*num_lockers == 0) {
3849 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3853 if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3854 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3860 if (lock_type == CEPH_CLS_LOCK_SHARED) {
3861 rbd_warn(rbd_dev, "shared lock type detected");
3866 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3867 strlen(RBD_LOCK_COOKIE_PREFIX))) {
3868 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3869 (*lockers)[0].id.cookie);
3879 static int find_watcher(struct rbd_device *rbd_dev,
3880 const struct ceph_locker *locker)
3882 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3883 struct ceph_watch_item *watchers;
3889 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3890 &rbd_dev->header_oloc, &watchers,
3895 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3896 for (i = 0; i < num_watchers; i++) {
3898 * Ignore addr->type while comparing. This mimics
3899 * entity_addr_t::get_legacy_str() + strcmp().
3901 if (ceph_addr_equal_no_type(&watchers[i].addr,
3902 &locker->info.addr) &&
3903 watchers[i].cookie == cookie) {
3904 struct rbd_client_id cid = {
3905 .gid = le64_to_cpu(watchers[i].name.num),
3909 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3910 rbd_dev, cid.gid, cid.handle);
3911 rbd_set_owner_cid(rbd_dev, &cid);
3917 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3925 * lock_rwsem must be held for write
3927 static int rbd_try_lock(struct rbd_device *rbd_dev)
3929 struct ceph_client *client = rbd_dev->rbd_client->client;
3930 struct ceph_locker *lockers;
3935 ret = rbd_lock(rbd_dev);
3939 /* determine if the current lock holder is still alive */
3940 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3944 if (num_lockers == 0)
3947 ret = find_watcher(rbd_dev, lockers);
3949 goto out; /* request lock or error */
3951 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
3952 ENTITY_NAME(lockers[0].id.name));
3954 ret = ceph_monc_blocklist_add(&client->monc,
3955 &lockers[0].info.addr);
3957 rbd_warn(rbd_dev, "blocklist of %s%llu failed: %d",
3958 ENTITY_NAME(lockers[0].id.name), ret);
3962 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3963 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3964 lockers[0].id.cookie,
3965 &lockers[0].id.name);
3966 if (ret && ret != -ENOENT)
3970 ceph_free_lockers(lockers, num_lockers);
3974 ceph_free_lockers(lockers, num_lockers);
3978 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
3982 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
3983 ret = rbd_object_map_open(rbd_dev);
3994 * 1 - caller should call rbd_request_lock()
3997 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4001 down_read(&rbd_dev->lock_rwsem);
4002 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4003 rbd_dev->lock_state);
4004 if (__rbd_is_lock_owner(rbd_dev)) {
4005 up_read(&rbd_dev->lock_rwsem);
4009 up_read(&rbd_dev->lock_rwsem);
4010 down_write(&rbd_dev->lock_rwsem);
4011 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4012 rbd_dev->lock_state);
4013 if (__rbd_is_lock_owner(rbd_dev)) {
4014 up_write(&rbd_dev->lock_rwsem);
4018 ret = rbd_try_lock(rbd_dev);
4020 rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4021 if (ret == -EBLOCKLISTED)
4024 ret = 1; /* request lock anyway */
4027 up_write(&rbd_dev->lock_rwsem);
4031 rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4032 rbd_assert(list_empty(&rbd_dev->running_list));
4034 ret = rbd_post_acquire_action(rbd_dev);
4036 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4038 * Can't stay in RBD_LOCK_STATE_LOCKED because
4039 * rbd_lock_add_request() would let the request through,
4040 * assuming that e.g. object map is locked and loaded.
4042 rbd_unlock(rbd_dev);
4046 wake_lock_waiters(rbd_dev, ret);
4047 up_write(&rbd_dev->lock_rwsem);
4051 static void rbd_acquire_lock(struct work_struct *work)
4053 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4054 struct rbd_device, lock_dwork);
4057 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4059 ret = rbd_try_acquire_lock(rbd_dev);
4061 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4065 ret = rbd_request_lock(rbd_dev);
4066 if (ret == -ETIMEDOUT) {
4067 goto again; /* treat this as a dead client */
4068 } else if (ret == -EROFS) {
4069 rbd_warn(rbd_dev, "peer will not release lock");
4070 down_write(&rbd_dev->lock_rwsem);
4071 wake_lock_waiters(rbd_dev, ret);
4072 up_write(&rbd_dev->lock_rwsem);
4073 } else if (ret < 0) {
4074 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4075 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4079 * lock owner acked, but resend if we don't see them
4082 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4084 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4085 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4089 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4091 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4092 lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4094 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4098 * Ensure that all in-flight IO is flushed.
4100 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4101 rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4102 if (list_empty(&rbd_dev->running_list))
4105 up_write(&rbd_dev->lock_rwsem);
4106 wait_for_completion(&rbd_dev->releasing_wait);
4108 down_write(&rbd_dev->lock_rwsem);
4109 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4112 rbd_assert(list_empty(&rbd_dev->running_list));
4116 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4118 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4119 rbd_object_map_close(rbd_dev);
4122 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4124 rbd_assert(list_empty(&rbd_dev->running_list));
4126 rbd_pre_release_action(rbd_dev);
4127 rbd_unlock(rbd_dev);
4131 * lock_rwsem must be held for write
4133 static void rbd_release_lock(struct rbd_device *rbd_dev)
4135 if (!rbd_quiesce_lock(rbd_dev))
4138 __rbd_release_lock(rbd_dev);
4141 * Give others a chance to grab the lock - we would re-acquire
4142 * almost immediately if we got new IO while draining the running
4143 * list otherwise. We need to ack our own notifications, so this
4144 * lock_dwork will be requeued from rbd_handle_released_lock() by
4145 * way of maybe_kick_acquire().
4147 cancel_delayed_work(&rbd_dev->lock_dwork);
4150 static void rbd_release_lock_work(struct work_struct *work)
4152 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4155 down_write(&rbd_dev->lock_rwsem);
4156 rbd_release_lock(rbd_dev);
4157 up_write(&rbd_dev->lock_rwsem);
4160 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4164 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4165 if (__rbd_is_lock_owner(rbd_dev))
4168 spin_lock(&rbd_dev->lock_lists_lock);
4169 have_requests = !list_empty(&rbd_dev->acquiring_list);
4170 spin_unlock(&rbd_dev->lock_lists_lock);
4171 if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4172 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4173 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4177 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4180 struct rbd_client_id cid = { 0 };
4182 if (struct_v >= 2) {
4183 cid.gid = ceph_decode_64(p);
4184 cid.handle = ceph_decode_64(p);
4187 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4189 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4190 down_write(&rbd_dev->lock_rwsem);
4191 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4192 dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4193 __func__, rbd_dev, cid.gid, cid.handle);
4195 rbd_set_owner_cid(rbd_dev, &cid);
4197 downgrade_write(&rbd_dev->lock_rwsem);
4199 down_read(&rbd_dev->lock_rwsem);
4202 maybe_kick_acquire(rbd_dev);
4203 up_read(&rbd_dev->lock_rwsem);
4206 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4209 struct rbd_client_id cid = { 0 };
4211 if (struct_v >= 2) {
4212 cid.gid = ceph_decode_64(p);
4213 cid.handle = ceph_decode_64(p);
4216 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4218 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4219 down_write(&rbd_dev->lock_rwsem);
4220 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4221 dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4222 __func__, rbd_dev, cid.gid, cid.handle,
4223 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4225 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4227 downgrade_write(&rbd_dev->lock_rwsem);
4229 down_read(&rbd_dev->lock_rwsem);
4232 maybe_kick_acquire(rbd_dev);
4233 up_read(&rbd_dev->lock_rwsem);
4237 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4238 * ResponseMessage is needed.
4240 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4243 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4244 struct rbd_client_id cid = { 0 };
4247 if (struct_v >= 2) {
4248 cid.gid = ceph_decode_64(p);
4249 cid.handle = ceph_decode_64(p);
4252 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4254 if (rbd_cid_equal(&cid, &my_cid))
4257 down_read(&rbd_dev->lock_rwsem);
4258 if (__rbd_is_lock_owner(rbd_dev)) {
4259 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4260 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4264 * encode ResponseMessage(0) so the peer can detect
4269 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4270 if (!rbd_dev->opts->exclusive) {
4271 dout("%s rbd_dev %p queueing unlock_work\n",
4273 queue_work(rbd_dev->task_wq,
4274 &rbd_dev->unlock_work);
4276 /* refuse to release the lock */
4283 up_read(&rbd_dev->lock_rwsem);
4287 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4288 u64 notify_id, u64 cookie, s32 *result)
4290 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4291 char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4292 int buf_size = sizeof(buf);
4298 /* encode ResponseMessage */
4299 ceph_start_encoding(&p, 1, 1,
4300 buf_size - CEPH_ENCODING_START_BLK_LEN);
4301 ceph_encode_32(&p, *result);
4306 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4307 &rbd_dev->header_oloc, notify_id, cookie,
4310 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4313 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4316 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4317 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4320 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4321 u64 notify_id, u64 cookie, s32 result)
4323 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4324 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4327 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4328 u64 notifier_id, void *data, size_t data_len)
4330 struct rbd_device *rbd_dev = arg;
4332 void *const end = p + data_len;
4338 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4339 __func__, rbd_dev, cookie, notify_id, data_len);
4341 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4344 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4349 notify_op = ceph_decode_32(&p);
4351 /* legacy notification for header updates */
4352 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4356 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4357 switch (notify_op) {
4358 case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4359 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4360 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4362 case RBD_NOTIFY_OP_RELEASED_LOCK:
4363 rbd_handle_released_lock(rbd_dev, struct_v, &p);
4364 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4366 case RBD_NOTIFY_OP_REQUEST_LOCK:
4367 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4369 rbd_acknowledge_notify_result(rbd_dev, notify_id,
4372 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4374 case RBD_NOTIFY_OP_HEADER_UPDATE:
4375 ret = rbd_dev_refresh(rbd_dev);
4377 rbd_warn(rbd_dev, "refresh failed: %d", ret);
4379 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4382 if (rbd_is_lock_owner(rbd_dev))
4383 rbd_acknowledge_notify_result(rbd_dev, notify_id,
4384 cookie, -EOPNOTSUPP);
4386 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4391 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4393 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4395 struct rbd_device *rbd_dev = arg;
4397 rbd_warn(rbd_dev, "encountered watch error: %d", err);
4399 down_write(&rbd_dev->lock_rwsem);
4400 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4401 up_write(&rbd_dev->lock_rwsem);
4403 mutex_lock(&rbd_dev->watch_mutex);
4404 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4405 __rbd_unregister_watch(rbd_dev);
4406 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4408 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4410 mutex_unlock(&rbd_dev->watch_mutex);
4414 * watch_mutex must be locked
4416 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4418 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4419 struct ceph_osd_linger_request *handle;
4421 rbd_assert(!rbd_dev->watch_handle);
4422 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4424 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4425 &rbd_dev->header_oloc, rbd_watch_cb,
4426 rbd_watch_errcb, rbd_dev);
4428 return PTR_ERR(handle);
4430 rbd_dev->watch_handle = handle;
4435 * watch_mutex must be locked
4437 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4439 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4442 rbd_assert(rbd_dev->watch_handle);
4443 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4445 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4447 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4449 rbd_dev->watch_handle = NULL;
4452 static int rbd_register_watch(struct rbd_device *rbd_dev)
4456 mutex_lock(&rbd_dev->watch_mutex);
4457 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4458 ret = __rbd_register_watch(rbd_dev);
4462 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4463 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4466 mutex_unlock(&rbd_dev->watch_mutex);
4470 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4472 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4474 cancel_work_sync(&rbd_dev->acquired_lock_work);
4475 cancel_work_sync(&rbd_dev->released_lock_work);
4476 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4477 cancel_work_sync(&rbd_dev->unlock_work);
4481 * header_rwsem must not be held to avoid a deadlock with
4482 * rbd_dev_refresh() when flushing notifies.
4484 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4486 cancel_tasks_sync(rbd_dev);
4488 mutex_lock(&rbd_dev->watch_mutex);
4489 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4490 __rbd_unregister_watch(rbd_dev);
4491 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4492 mutex_unlock(&rbd_dev->watch_mutex);
4494 cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4495 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4499 * lock_rwsem must be held for write
4501 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4503 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4507 if (!rbd_quiesce_lock(rbd_dev))
4510 format_lock_cookie(rbd_dev, cookie);
4511 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4512 &rbd_dev->header_oloc, RBD_LOCK_NAME,
4513 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4514 RBD_LOCK_TAG, cookie);
4516 if (ret != -EOPNOTSUPP)
4517 rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4521 * Lock cookie cannot be updated on older OSDs, so do
4522 * a manual release and queue an acquire.
4524 __rbd_release_lock(rbd_dev);
4525 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4527 __rbd_lock(rbd_dev, cookie);
4528 wake_lock_waiters(rbd_dev, 0);
4532 static void rbd_reregister_watch(struct work_struct *work)
4534 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4535 struct rbd_device, watch_dwork);
4538 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4540 mutex_lock(&rbd_dev->watch_mutex);
4541 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4542 mutex_unlock(&rbd_dev->watch_mutex);
4546 ret = __rbd_register_watch(rbd_dev);
4548 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4549 if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4550 queue_delayed_work(rbd_dev->task_wq,
4551 &rbd_dev->watch_dwork,
4553 mutex_unlock(&rbd_dev->watch_mutex);
4557 mutex_unlock(&rbd_dev->watch_mutex);
4558 down_write(&rbd_dev->lock_rwsem);
4559 wake_lock_waiters(rbd_dev, ret);
4560 up_write(&rbd_dev->lock_rwsem);
4564 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4565 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4566 mutex_unlock(&rbd_dev->watch_mutex);
4568 down_write(&rbd_dev->lock_rwsem);
4569 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4570 rbd_reacquire_lock(rbd_dev);
4571 up_write(&rbd_dev->lock_rwsem);
4573 ret = rbd_dev_refresh(rbd_dev);
4575 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4579 * Synchronous osd object method call. Returns the number of bytes
4580 * returned in the outbound buffer, or a negative error code.
4582 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4583 struct ceph_object_id *oid,
4584 struct ceph_object_locator *oloc,
4585 const char *method_name,
4586 const void *outbound,
4587 size_t outbound_size,
4589 size_t inbound_size)
4591 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4592 struct page *req_page = NULL;
4593 struct page *reply_page;
4597 * Method calls are ultimately read operations. The result
4598 * should placed into the inbound buffer provided. They
4599 * also supply outbound data--parameters for the object
4600 * method. Currently if this is present it will be a
4604 if (outbound_size > PAGE_SIZE)
4607 req_page = alloc_page(GFP_KERNEL);
4611 memcpy(page_address(req_page), outbound, outbound_size);
4614 reply_page = alloc_page(GFP_KERNEL);
4617 __free_page(req_page);
4621 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4622 CEPH_OSD_FLAG_READ, req_page, outbound_size,
4623 &reply_page, &inbound_size);
4625 memcpy(inbound, page_address(reply_page), inbound_size);
4630 __free_page(req_page);
4631 __free_page(reply_page);
4635 static void rbd_queue_workfn(struct work_struct *work)
4637 struct rbd_img_request *img_request =
4638 container_of(work, struct rbd_img_request, work);
4639 struct rbd_device *rbd_dev = img_request->rbd_dev;
4640 enum obj_operation_type op_type = img_request->op_type;
4641 struct request *rq = blk_mq_rq_from_pdu(img_request);
4642 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4643 u64 length = blk_rq_bytes(rq);
4647 /* Ignore/skip any zero-length requests */
4649 dout("%s: zero-length request\n", __func__);
4651 goto err_img_request;
4654 blk_mq_start_request(rq);
4656 down_read(&rbd_dev->header_rwsem);
4657 mapping_size = rbd_dev->mapping.size;
4658 rbd_img_capture_header(img_request);
4659 up_read(&rbd_dev->header_rwsem);
4661 if (offset + length > mapping_size) {
4662 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4663 length, mapping_size);
4665 goto err_img_request;
4668 dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4669 img_request, obj_op_name(op_type), offset, length);
4671 if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4672 result = rbd_img_fill_nodata(img_request, offset, length);
4674 result = rbd_img_fill_from_bio(img_request, offset, length,
4677 goto err_img_request;
4679 rbd_img_handle_request(img_request, 0);
4683 rbd_img_request_destroy(img_request);
4685 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4686 obj_op_name(op_type), length, offset, result);
4687 blk_mq_end_request(rq, errno_to_blk_status(result));
4690 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4691 const struct blk_mq_queue_data *bd)
4693 struct rbd_device *rbd_dev = hctx->queue->queuedata;
4694 struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4695 enum obj_operation_type op_type;
4697 switch (req_op(bd->rq)) {
4698 case REQ_OP_DISCARD:
4699 op_type = OBJ_OP_DISCARD;
4701 case REQ_OP_WRITE_ZEROES:
4702 op_type = OBJ_OP_ZEROOUT;
4705 op_type = OBJ_OP_WRITE;
4708 op_type = OBJ_OP_READ;
4711 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4712 return BLK_STS_IOERR;
4715 rbd_img_request_init(img_req, rbd_dev, op_type);
4717 if (rbd_img_is_write(img_req)) {
4718 if (rbd_is_ro(rbd_dev)) {
4719 rbd_warn(rbd_dev, "%s on read-only mapping",
4720 obj_op_name(img_req->op_type));
4721 return BLK_STS_IOERR;
4723 rbd_assert(!rbd_is_snap(rbd_dev));
4726 INIT_WORK(&img_req->work, rbd_queue_workfn);
4727 queue_work(rbd_wq, &img_req->work);
4731 static void rbd_free_disk(struct rbd_device *rbd_dev)
4733 blk_cleanup_disk(rbd_dev->disk);
4734 blk_mq_free_tag_set(&rbd_dev->tag_set);
4735 rbd_dev->disk = NULL;
4738 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4739 struct ceph_object_id *oid,
4740 struct ceph_object_locator *oloc,
4741 void *buf, int buf_len)
4744 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4745 struct ceph_osd_request *req;
4746 struct page **pages;
4747 int num_pages = calc_pages_for(0, buf_len);
4750 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4754 ceph_oid_copy(&req->r_base_oid, oid);
4755 ceph_oloc_copy(&req->r_base_oloc, oloc);
4756 req->r_flags = CEPH_OSD_FLAG_READ;
4758 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4759 if (IS_ERR(pages)) {
4760 ret = PTR_ERR(pages);
4764 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4765 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4768 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4772 ceph_osdc_start_request(osdc, req, false);
4773 ret = ceph_osdc_wait_request(osdc, req);
4775 ceph_copy_from_page_vector(pages, buf, 0, ret);
4778 ceph_osdc_put_request(req);
4783 * Read the complete header for the given rbd device. On successful
4784 * return, the rbd_dev->header field will contain up-to-date
4785 * information about the image.
4787 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4789 struct rbd_image_header_ondisk *ondisk = NULL;
4796 * The complete header will include an array of its 64-bit
4797 * snapshot ids, followed by the names of those snapshots as
4798 * a contiguous block of NUL-terminated strings. Note that
4799 * the number of snapshots could change by the time we read
4800 * it in, in which case we re-read it.
4807 size = sizeof (*ondisk);
4808 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4810 ondisk = kmalloc(size, GFP_KERNEL);
4814 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4815 &rbd_dev->header_oloc, ondisk, size);
4818 if ((size_t)ret < size) {
4820 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4824 if (!rbd_dev_ondisk_valid(ondisk)) {
4826 rbd_warn(rbd_dev, "invalid header");
4830 names_size = le64_to_cpu(ondisk->snap_names_len);
4831 want_count = snap_count;
4832 snap_count = le32_to_cpu(ondisk->snap_count);
4833 } while (snap_count != want_count);
4835 ret = rbd_header_from_disk(rbd_dev, ondisk);
4842 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4847 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4848 * try to update its size. If REMOVING is set, updating size
4849 * is just useless work since the device can't be opened.
4851 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4852 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4853 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4854 dout("setting size to %llu sectors", (unsigned long long)size);
4855 set_capacity_and_notify(rbd_dev->disk, size);
4859 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4864 down_write(&rbd_dev->header_rwsem);
4865 mapping_size = rbd_dev->mapping.size;
4867 ret = rbd_dev_header_info(rbd_dev);
4872 * If there is a parent, see if it has disappeared due to the
4873 * mapped image getting flattened.
4875 if (rbd_dev->parent) {
4876 ret = rbd_dev_v2_parent_info(rbd_dev);
4881 rbd_assert(!rbd_is_snap(rbd_dev));
4882 rbd_dev->mapping.size = rbd_dev->header.image_size;
4885 up_write(&rbd_dev->header_rwsem);
4886 if (!ret && mapping_size != rbd_dev->mapping.size)
4887 rbd_dev_update_size(rbd_dev);
4892 static const struct blk_mq_ops rbd_mq_ops = {
4893 .queue_rq = rbd_queue_rq,
4896 static int rbd_init_disk(struct rbd_device *rbd_dev)
4898 struct gendisk *disk;
4899 struct request_queue *q;
4900 unsigned int objset_bytes =
4901 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4904 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4905 rbd_dev->tag_set.ops = &rbd_mq_ops;
4906 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4907 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4908 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4909 rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4910 rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4912 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4916 disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev);
4918 err = PTR_ERR(disk);
4923 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4925 disk->major = rbd_dev->major;
4926 disk->first_minor = rbd_dev->minor;
4928 disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
4929 disk->flags |= GENHD_FL_EXT_DEVT;
4931 disk->minors = RBD_MINORS_PER_MAJOR;
4933 disk->fops = &rbd_bd_ops;
4934 disk->private_data = rbd_dev;
4936 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4937 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4939 blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4940 q->limits.max_sectors = queue_max_hw_sectors(q);
4941 blk_queue_max_segments(q, USHRT_MAX);
4942 blk_queue_max_segment_size(q, UINT_MAX);
4943 blk_queue_io_min(q, rbd_dev->opts->alloc_size);
4944 blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
4946 if (rbd_dev->opts->trim) {
4947 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
4948 q->limits.discard_granularity = rbd_dev->opts->alloc_size;
4949 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
4950 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
4953 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4954 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
4956 rbd_dev->disk = disk;
4960 blk_mq_free_tag_set(&rbd_dev->tag_set);
4968 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4970 return container_of(dev, struct rbd_device, dev);
4973 static ssize_t rbd_size_show(struct device *dev,
4974 struct device_attribute *attr, char *buf)
4976 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4978 return sprintf(buf, "%llu\n",
4979 (unsigned long long)rbd_dev->mapping.size);
4982 static ssize_t rbd_features_show(struct device *dev,
4983 struct device_attribute *attr, char *buf)
4985 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4987 return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
4990 static ssize_t rbd_major_show(struct device *dev,
4991 struct device_attribute *attr, char *buf)
4993 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4996 return sprintf(buf, "%d\n", rbd_dev->major);
4998 return sprintf(buf, "(none)\n");
5001 static ssize_t rbd_minor_show(struct device *dev,
5002 struct device_attribute *attr, char *buf)
5004 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5006 return sprintf(buf, "%d\n", rbd_dev->minor);
5009 static ssize_t rbd_client_addr_show(struct device *dev,
5010 struct device_attribute *attr, char *buf)
5012 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5013 struct ceph_entity_addr *client_addr =
5014 ceph_client_addr(rbd_dev->rbd_client->client);
5016 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5017 le32_to_cpu(client_addr->nonce));
5020 static ssize_t rbd_client_id_show(struct device *dev,
5021 struct device_attribute *attr, char *buf)
5023 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5025 return sprintf(buf, "client%lld\n",
5026 ceph_client_gid(rbd_dev->rbd_client->client));
5029 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5030 struct device_attribute *attr, char *buf)
5032 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5034 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5037 static ssize_t rbd_config_info_show(struct device *dev,
5038 struct device_attribute *attr, char *buf)
5040 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5042 if (!capable(CAP_SYS_ADMIN))
5045 return sprintf(buf, "%s\n", rbd_dev->config_info);
5048 static ssize_t rbd_pool_show(struct device *dev,
5049 struct device_attribute *attr, char *buf)
5051 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5053 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5056 static ssize_t rbd_pool_id_show(struct device *dev,
5057 struct device_attribute *attr, char *buf)
5059 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5061 return sprintf(buf, "%llu\n",
5062 (unsigned long long) rbd_dev->spec->pool_id);
5065 static ssize_t rbd_pool_ns_show(struct device *dev,
5066 struct device_attribute *attr, char *buf)
5068 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5070 return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5073 static ssize_t rbd_name_show(struct device *dev,
5074 struct device_attribute *attr, char *buf)
5076 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5078 if (rbd_dev->spec->image_name)
5079 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5081 return sprintf(buf, "(unknown)\n");
5084 static ssize_t rbd_image_id_show(struct device *dev,
5085 struct device_attribute *attr, char *buf)
5087 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5089 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5093 * Shows the name of the currently-mapped snapshot (or
5094 * RBD_SNAP_HEAD_NAME for the base image).
5096 static ssize_t rbd_snap_show(struct device *dev,
5097 struct device_attribute *attr,
5100 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5102 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5105 static ssize_t rbd_snap_id_show(struct device *dev,
5106 struct device_attribute *attr, char *buf)
5108 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5110 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5114 * For a v2 image, shows the chain of parent images, separated by empty
5115 * lines. For v1 images or if there is no parent, shows "(no parent
5118 static ssize_t rbd_parent_show(struct device *dev,
5119 struct device_attribute *attr,
5122 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5125 if (!rbd_dev->parent)
5126 return sprintf(buf, "(no parent image)\n");
5128 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5129 struct rbd_spec *spec = rbd_dev->parent_spec;
5131 count += sprintf(&buf[count], "%s"
5132 "pool_id %llu\npool_name %s\n"
5134 "image_id %s\nimage_name %s\n"
5135 "snap_id %llu\nsnap_name %s\n"
5137 !count ? "" : "\n", /* first? */
5138 spec->pool_id, spec->pool_name,
5139 spec->pool_ns ?: "",
5140 spec->image_id, spec->image_name ?: "(unknown)",
5141 spec->snap_id, spec->snap_name,
5142 rbd_dev->parent_overlap);
5148 static ssize_t rbd_image_refresh(struct device *dev,
5149 struct device_attribute *attr,
5153 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5156 if (!capable(CAP_SYS_ADMIN))
5159 ret = rbd_dev_refresh(rbd_dev);
5166 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5167 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5168 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5169 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5170 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5171 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5172 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5173 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5174 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5175 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5176 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5177 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5178 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5179 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5180 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5181 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5182 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5184 static struct attribute *rbd_attrs[] = {
5185 &dev_attr_size.attr,
5186 &dev_attr_features.attr,
5187 &dev_attr_major.attr,
5188 &dev_attr_minor.attr,
5189 &dev_attr_client_addr.attr,
5190 &dev_attr_client_id.attr,
5191 &dev_attr_cluster_fsid.attr,
5192 &dev_attr_config_info.attr,
5193 &dev_attr_pool.attr,
5194 &dev_attr_pool_id.attr,
5195 &dev_attr_pool_ns.attr,
5196 &dev_attr_name.attr,
5197 &dev_attr_image_id.attr,
5198 &dev_attr_current_snap.attr,
5199 &dev_attr_snap_id.attr,
5200 &dev_attr_parent.attr,
5201 &dev_attr_refresh.attr,
5205 static struct attribute_group rbd_attr_group = {
5209 static const struct attribute_group *rbd_attr_groups[] = {
5214 static void rbd_dev_release(struct device *dev);
5216 static const struct device_type rbd_device_type = {
5218 .groups = rbd_attr_groups,
5219 .release = rbd_dev_release,
5222 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5224 kref_get(&spec->kref);
5229 static void rbd_spec_free(struct kref *kref);
5230 static void rbd_spec_put(struct rbd_spec *spec)
5233 kref_put(&spec->kref, rbd_spec_free);
5236 static struct rbd_spec *rbd_spec_alloc(void)
5238 struct rbd_spec *spec;
5240 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5244 spec->pool_id = CEPH_NOPOOL;
5245 spec->snap_id = CEPH_NOSNAP;
5246 kref_init(&spec->kref);
5251 static void rbd_spec_free(struct kref *kref)
5253 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5255 kfree(spec->pool_name);
5256 kfree(spec->pool_ns);
5257 kfree(spec->image_id);
5258 kfree(spec->image_name);
5259 kfree(spec->snap_name);
5263 static void rbd_dev_free(struct rbd_device *rbd_dev)
5265 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5266 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5268 ceph_oid_destroy(&rbd_dev->header_oid);
5269 ceph_oloc_destroy(&rbd_dev->header_oloc);
5270 kfree(rbd_dev->config_info);
5272 rbd_put_client(rbd_dev->rbd_client);
5273 rbd_spec_put(rbd_dev->spec);
5274 kfree(rbd_dev->opts);
5278 static void rbd_dev_release(struct device *dev)
5280 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5281 bool need_put = !!rbd_dev->opts;
5284 destroy_workqueue(rbd_dev->task_wq);
5285 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5288 rbd_dev_free(rbd_dev);
5291 * This is racy, but way better than putting module outside of
5292 * the release callback. The race window is pretty small, so
5293 * doing something similar to dm (dm-builtin.c) is overkill.
5296 module_put(THIS_MODULE);
5299 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
5300 struct rbd_spec *spec)
5302 struct rbd_device *rbd_dev;
5304 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5308 spin_lock_init(&rbd_dev->lock);
5309 INIT_LIST_HEAD(&rbd_dev->node);
5310 init_rwsem(&rbd_dev->header_rwsem);
5312 rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5313 ceph_oid_init(&rbd_dev->header_oid);
5314 rbd_dev->header_oloc.pool = spec->pool_id;
5315 if (spec->pool_ns) {
5316 WARN_ON(!*spec->pool_ns);
5317 rbd_dev->header_oloc.pool_ns =
5318 ceph_find_or_create_string(spec->pool_ns,
5319 strlen(spec->pool_ns));
5322 mutex_init(&rbd_dev->watch_mutex);
5323 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5324 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5326 init_rwsem(&rbd_dev->lock_rwsem);
5327 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5328 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5329 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5330 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5331 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5332 spin_lock_init(&rbd_dev->lock_lists_lock);
5333 INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5334 INIT_LIST_HEAD(&rbd_dev->running_list);
5335 init_completion(&rbd_dev->acquire_wait);
5336 init_completion(&rbd_dev->releasing_wait);
5338 spin_lock_init(&rbd_dev->object_map_lock);
5340 rbd_dev->dev.bus = &rbd_bus_type;
5341 rbd_dev->dev.type = &rbd_device_type;
5342 rbd_dev->dev.parent = &rbd_root_dev;
5343 device_initialize(&rbd_dev->dev);
5345 rbd_dev->rbd_client = rbdc;
5346 rbd_dev->spec = spec;
5352 * Create a mapping rbd_dev.
5354 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5355 struct rbd_spec *spec,
5356 struct rbd_options *opts)
5358 struct rbd_device *rbd_dev;
5360 rbd_dev = __rbd_dev_create(rbdc, spec);
5364 rbd_dev->opts = opts;
5366 /* get an id and fill in device name */
5367 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5368 minor_to_rbd_dev_id(1 << MINORBITS),
5370 if (rbd_dev->dev_id < 0)
5373 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5374 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5376 if (!rbd_dev->task_wq)
5379 /* we have a ref from do_rbd_add() */
5380 __module_get(THIS_MODULE);
5382 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5386 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5388 rbd_dev_free(rbd_dev);
5392 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5395 put_device(&rbd_dev->dev);
5399 * Get the size and object order for an image snapshot, or if
5400 * snap_id is CEPH_NOSNAP, gets this information for the base
5403 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5404 u8 *order, u64 *snap_size)
5406 __le64 snapid = cpu_to_le64(snap_id);
5411 } __attribute__ ((packed)) size_buf = { 0 };
5413 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5414 &rbd_dev->header_oloc, "get_size",
5415 &snapid, sizeof(snapid),
5416 &size_buf, sizeof(size_buf));
5417 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5420 if (ret < sizeof (size_buf))
5424 *order = size_buf.order;
5425 dout(" order %u", (unsigned int)*order);
5427 *snap_size = le64_to_cpu(size_buf.size);
5429 dout(" snap_id 0x%016llx snap_size = %llu\n",
5430 (unsigned long long)snap_id,
5431 (unsigned long long)*snap_size);
5436 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5438 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5439 &rbd_dev->header.obj_order,
5440 &rbd_dev->header.image_size);
5443 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5450 /* Response will be an encoded string, which includes a length */
5451 size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5452 reply_buf = kzalloc(size, GFP_KERNEL);
5456 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5457 &rbd_dev->header_oloc, "get_object_prefix",
5458 NULL, 0, reply_buf, size);
5459 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5464 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5465 p + ret, NULL, GFP_NOIO);
5468 if (IS_ERR(rbd_dev->header.object_prefix)) {
5469 ret = PTR_ERR(rbd_dev->header.object_prefix);
5470 rbd_dev->header.object_prefix = NULL;
5472 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
5480 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5481 bool read_only, u64 *snap_features)
5490 } __attribute__ ((packed)) features_buf = { 0 };
5494 features_in.snap_id = cpu_to_le64(snap_id);
5495 features_in.read_only = read_only;
5497 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5498 &rbd_dev->header_oloc, "get_features",
5499 &features_in, sizeof(features_in),
5500 &features_buf, sizeof(features_buf));
5501 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5504 if (ret < sizeof (features_buf))
5507 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5509 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5514 *snap_features = le64_to_cpu(features_buf.features);
5516 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5517 (unsigned long long)snap_id,
5518 (unsigned long long)*snap_features,
5519 (unsigned long long)le64_to_cpu(features_buf.incompat));
5524 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5526 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5528 &rbd_dev->header.features);
5532 * These are generic image flags, but since they are used only for
5533 * object map, store them in rbd_dev->object_map_flags.
5535 * For the same reason, this function is called only on object map
5536 * (re)load and not on header refresh.
5538 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5540 __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5544 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5545 &rbd_dev->header_oloc, "get_flags",
5546 &snapid, sizeof(snapid),
5547 &flags, sizeof(flags));
5550 if (ret < sizeof(flags))
5553 rbd_dev->object_map_flags = le64_to_cpu(flags);
5557 struct parent_image_info {
5559 const char *pool_ns;
5560 const char *image_id;
5568 * The caller is responsible for @pii.
5570 static int decode_parent_image_spec(void **p, void *end,
5571 struct parent_image_info *pii)
5577 ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5578 &struct_v, &struct_len);
5582 ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5583 pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5584 if (IS_ERR(pii->pool_ns)) {
5585 ret = PTR_ERR(pii->pool_ns);
5586 pii->pool_ns = NULL;
5589 pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5590 if (IS_ERR(pii->image_id)) {
5591 ret = PTR_ERR(pii->image_id);
5592 pii->image_id = NULL;
5595 ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5602 static int __get_parent_info(struct rbd_device *rbd_dev,
5603 struct page *req_page,
5604 struct page *reply_page,
5605 struct parent_image_info *pii)
5607 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5608 size_t reply_len = PAGE_SIZE;
5612 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5613 "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5614 req_page, sizeof(u64), &reply_page, &reply_len);
5616 return ret == -EOPNOTSUPP ? 1 : ret;
5618 p = page_address(reply_page);
5619 end = p + reply_len;
5620 ret = decode_parent_image_spec(&p, end, pii);
5624 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5625 "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5626 req_page, sizeof(u64), &reply_page, &reply_len);
5630 p = page_address(reply_page);
5631 end = p + reply_len;
5632 ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5633 if (pii->has_overlap)
5634 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5643 * The caller is responsible for @pii.
5645 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5646 struct page *req_page,
5647 struct page *reply_page,
5648 struct parent_image_info *pii)
5650 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5651 size_t reply_len = PAGE_SIZE;
5655 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5656 "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5657 req_page, sizeof(u64), &reply_page, &reply_len);
5661 p = page_address(reply_page);
5662 end = p + reply_len;
5663 ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5664 pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5665 if (IS_ERR(pii->image_id)) {
5666 ret = PTR_ERR(pii->image_id);
5667 pii->image_id = NULL;
5670 ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5671 pii->has_overlap = true;
5672 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5680 static int get_parent_info(struct rbd_device *rbd_dev,
5681 struct parent_image_info *pii)
5683 struct page *req_page, *reply_page;
5687 req_page = alloc_page(GFP_KERNEL);
5691 reply_page = alloc_page(GFP_KERNEL);
5693 __free_page(req_page);
5697 p = page_address(req_page);
5698 ceph_encode_64(&p, rbd_dev->spec->snap_id);
5699 ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5701 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5704 __free_page(req_page);
5705 __free_page(reply_page);
5709 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5711 struct rbd_spec *parent_spec;
5712 struct parent_image_info pii = { 0 };
5715 parent_spec = rbd_spec_alloc();
5719 ret = get_parent_info(rbd_dev, &pii);
5723 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5724 __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5725 pii.has_overlap, pii.overlap);
5727 if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5729 * Either the parent never existed, or we have
5730 * record of it but the image got flattened so it no
5731 * longer has a parent. When the parent of a
5732 * layered image disappears we immediately set the
5733 * overlap to 0. The effect of this is that all new
5734 * requests will be treated as if the image had no
5737 * If !pii.has_overlap, the parent image spec is not
5738 * applicable. It's there to avoid duplication in each
5741 if (rbd_dev->parent_overlap) {
5742 rbd_dev->parent_overlap = 0;
5743 rbd_dev_parent_put(rbd_dev);
5744 pr_info("%s: clone image has been flattened\n",
5745 rbd_dev->disk->disk_name);
5748 goto out; /* No parent? No problem. */
5751 /* The ceph file layout needs to fit pool id in 32 bits */
5754 if (pii.pool_id > (u64)U32_MAX) {
5755 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5756 (unsigned long long)pii.pool_id, U32_MAX);
5761 * The parent won't change (except when the clone is
5762 * flattened, already handled that). So we only need to
5763 * record the parent spec we have not already done so.
5765 if (!rbd_dev->parent_spec) {
5766 parent_spec->pool_id = pii.pool_id;
5767 if (pii.pool_ns && *pii.pool_ns) {
5768 parent_spec->pool_ns = pii.pool_ns;
5771 parent_spec->image_id = pii.image_id;
5772 pii.image_id = NULL;
5773 parent_spec->snap_id = pii.snap_id;
5775 rbd_dev->parent_spec = parent_spec;
5776 parent_spec = NULL; /* rbd_dev now owns this */
5780 * We always update the parent overlap. If it's zero we issue
5781 * a warning, as we will proceed as if there was no parent.
5785 /* refresh, careful to warn just once */
5786 if (rbd_dev->parent_overlap)
5788 "clone now standalone (overlap became 0)");
5791 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5794 rbd_dev->parent_overlap = pii.overlap;
5800 kfree(pii.image_id);
5801 rbd_spec_put(parent_spec);
5805 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5809 __le64 stripe_count;
5810 } __attribute__ ((packed)) striping_info_buf = { 0 };
5811 size_t size = sizeof (striping_info_buf);
5815 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5816 &rbd_dev->header_oloc, "get_stripe_unit_count",
5817 NULL, 0, &striping_info_buf, size);
5818 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5824 p = &striping_info_buf;
5825 rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5826 rbd_dev->header.stripe_count = ceph_decode_64(&p);
5830 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5832 __le64 data_pool_id;
5835 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5836 &rbd_dev->header_oloc, "get_data_pool",
5837 NULL, 0, &data_pool_id, sizeof(data_pool_id));
5840 if (ret < sizeof(data_pool_id))
5843 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5844 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5848 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5850 CEPH_DEFINE_OID_ONSTACK(oid);
5851 size_t image_id_size;
5856 void *reply_buf = NULL;
5858 char *image_name = NULL;
5861 rbd_assert(!rbd_dev->spec->image_name);
5863 len = strlen(rbd_dev->spec->image_id);
5864 image_id_size = sizeof (__le32) + len;
5865 image_id = kmalloc(image_id_size, GFP_KERNEL);
5870 end = image_id + image_id_size;
5871 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5873 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5874 reply_buf = kmalloc(size, GFP_KERNEL);
5878 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5879 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5880 "dir_get_name", image_id, image_id_size,
5885 end = reply_buf + ret;
5887 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5888 if (IS_ERR(image_name))
5891 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5899 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5901 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5902 const char *snap_name;
5905 /* Skip over names until we find the one we are looking for */
5907 snap_name = rbd_dev->header.snap_names;
5908 while (which < snapc->num_snaps) {
5909 if (!strcmp(name, snap_name))
5910 return snapc->snaps[which];
5911 snap_name += strlen(snap_name) + 1;
5917 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5919 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5924 for (which = 0; !found && which < snapc->num_snaps; which++) {
5925 const char *snap_name;
5927 snap_id = snapc->snaps[which];
5928 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5929 if (IS_ERR(snap_name)) {
5930 /* ignore no-longer existing snapshots */
5931 if (PTR_ERR(snap_name) == -ENOENT)
5936 found = !strcmp(name, snap_name);
5939 return found ? snap_id : CEPH_NOSNAP;
5943 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5944 * no snapshot by that name is found, or if an error occurs.
5946 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5948 if (rbd_dev->image_format == 1)
5949 return rbd_v1_snap_id_by_name(rbd_dev, name);
5951 return rbd_v2_snap_id_by_name(rbd_dev, name);
5955 * An image being mapped will have everything but the snap id.
5957 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5959 struct rbd_spec *spec = rbd_dev->spec;
5961 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5962 rbd_assert(spec->image_id && spec->image_name);
5963 rbd_assert(spec->snap_name);
5965 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5968 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5969 if (snap_id == CEPH_NOSNAP)
5972 spec->snap_id = snap_id;
5974 spec->snap_id = CEPH_NOSNAP;
5981 * A parent image will have all ids but none of the names.
5983 * All names in an rbd spec are dynamically allocated. It's OK if we
5984 * can't figure out the name for an image id.
5986 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5988 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5989 struct rbd_spec *spec = rbd_dev->spec;
5990 const char *pool_name;
5991 const char *image_name;
5992 const char *snap_name;
5995 rbd_assert(spec->pool_id != CEPH_NOPOOL);
5996 rbd_assert(spec->image_id);
5997 rbd_assert(spec->snap_id != CEPH_NOSNAP);
5999 /* Get the pool name; we have to make our own copy of this */
6001 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6003 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6006 pool_name = kstrdup(pool_name, GFP_KERNEL);
6010 /* Fetch the image name; tolerate failure here */
6012 image_name = rbd_dev_image_name(rbd_dev);
6014 rbd_warn(rbd_dev, "unable to get image name");
6016 /* Fetch the snapshot name */
6018 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6019 if (IS_ERR(snap_name)) {
6020 ret = PTR_ERR(snap_name);
6024 spec->pool_name = pool_name;
6025 spec->image_name = image_name;
6026 spec->snap_name = snap_name;
6036 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6045 struct ceph_snap_context *snapc;
6049 * We'll need room for the seq value (maximum snapshot id),
6050 * snapshot count, and array of that many snapshot ids.
6051 * For now we have a fixed upper limit on the number we're
6052 * prepared to receive.
6054 size = sizeof (__le64) + sizeof (__le32) +
6055 RBD_MAX_SNAP_COUNT * sizeof (__le64);
6056 reply_buf = kzalloc(size, GFP_KERNEL);
6060 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6061 &rbd_dev->header_oloc, "get_snapcontext",
6062 NULL, 0, reply_buf, size);
6063 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6068 end = reply_buf + ret;
6070 ceph_decode_64_safe(&p, end, seq, out);
6071 ceph_decode_32_safe(&p, end, snap_count, out);
6074 * Make sure the reported number of snapshot ids wouldn't go
6075 * beyond the end of our buffer. But before checking that,
6076 * make sure the computed size of the snapshot context we
6077 * allocate is representable in a size_t.
6079 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6084 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6088 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6094 for (i = 0; i < snap_count; i++)
6095 snapc->snaps[i] = ceph_decode_64(&p);
6097 ceph_put_snap_context(rbd_dev->header.snapc);
6098 rbd_dev->header.snapc = snapc;
6100 dout(" snap context seq = %llu, snap_count = %u\n",
6101 (unsigned long long)seq, (unsigned int)snap_count);
6108 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6119 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6120 reply_buf = kmalloc(size, GFP_KERNEL);
6122 return ERR_PTR(-ENOMEM);
6124 snapid = cpu_to_le64(snap_id);
6125 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6126 &rbd_dev->header_oloc, "get_snapshot_name",
6127 &snapid, sizeof(snapid), reply_buf, size);
6128 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6130 snap_name = ERR_PTR(ret);
6135 end = reply_buf + ret;
6136 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6137 if (IS_ERR(snap_name))
6140 dout(" snap_id 0x%016llx snap_name = %s\n",
6141 (unsigned long long)snap_id, snap_name);
6148 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6150 bool first_time = rbd_dev->header.object_prefix == NULL;
6153 ret = rbd_dev_v2_image_size(rbd_dev);
6158 ret = rbd_dev_v2_header_onetime(rbd_dev);
6163 ret = rbd_dev_v2_snap_context(rbd_dev);
6164 if (ret && first_time) {
6165 kfree(rbd_dev->header.object_prefix);
6166 rbd_dev->header.object_prefix = NULL;
6172 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6174 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6176 if (rbd_dev->image_format == 1)
6177 return rbd_dev_v1_header_info(rbd_dev);
6179 return rbd_dev_v2_header_info(rbd_dev);
6183 * Skips over white space at *buf, and updates *buf to point to the
6184 * first found non-space character (if any). Returns the length of
6185 * the token (string of non-white space characters) found. Note
6186 * that *buf must be terminated with '\0'.
6188 static inline size_t next_token(const char **buf)
6191 * These are the characters that produce nonzero for
6192 * isspace() in the "C" and "POSIX" locales.
6194 const char *spaces = " \f\n\r\t\v";
6196 *buf += strspn(*buf, spaces); /* Find start of token */
6198 return strcspn(*buf, spaces); /* Return token length */
6202 * Finds the next token in *buf, dynamically allocates a buffer big
6203 * enough to hold a copy of it, and copies the token into the new
6204 * buffer. The copy is guaranteed to be terminated with '\0'. Note
6205 * that a duplicate buffer is created even for a zero-length token.
6207 * Returns a pointer to the newly-allocated duplicate, or a null
6208 * pointer if memory for the duplicate was not available. If
6209 * the lenp argument is a non-null pointer, the length of the token
6210 * (not including the '\0') is returned in *lenp.
6212 * If successful, the *buf pointer will be updated to point beyond
6213 * the end of the found token.
6215 * Note: uses GFP_KERNEL for allocation.
6217 static inline char *dup_token(const char **buf, size_t *lenp)
6222 len = next_token(buf);
6223 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6226 *(dup + len) = '\0';
6235 static int rbd_parse_param(struct fs_parameter *param,
6236 struct rbd_parse_opts_ctx *pctx)
6238 struct rbd_options *opt = pctx->opts;
6239 struct fs_parse_result result;
6240 struct p_log log = {.prefix = "rbd"};
6243 ret = ceph_parse_param(param, pctx->copts, NULL);
6244 if (ret != -ENOPARAM)
6247 token = __fs_parse(&log, rbd_parameters, param, &result);
6248 dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6250 if (token == -ENOPARAM)
6251 return inval_plog(&log, "Unknown parameter '%s'",
6257 case Opt_queue_depth:
6258 if (result.uint_32 < 1)
6260 opt->queue_depth = result.uint_32;
6262 case Opt_alloc_size:
6263 if (result.uint_32 < SECTOR_SIZE)
6265 if (!is_power_of_2(result.uint_32))
6266 return inval_plog(&log, "alloc_size must be a power of 2");
6267 opt->alloc_size = result.uint_32;
6269 case Opt_lock_timeout:
6270 /* 0 is "wait forever" (i.e. infinite timeout) */
6271 if (result.uint_32 > INT_MAX / 1000)
6273 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6276 kfree(pctx->spec->pool_ns);
6277 pctx->spec->pool_ns = param->string;
6278 param->string = NULL;
6280 case Opt_compression_hint:
6281 switch (result.uint_32) {
6282 case Opt_compression_hint_none:
6283 opt->alloc_hint_flags &=
6284 ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6285 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6287 case Opt_compression_hint_compressible:
6288 opt->alloc_hint_flags |=
6289 CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6290 opt->alloc_hint_flags &=
6291 ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6293 case Opt_compression_hint_incompressible:
6294 opt->alloc_hint_flags |=
6295 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6296 opt->alloc_hint_flags &=
6297 ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6304 opt->read_only = true;
6306 case Opt_read_write:
6307 opt->read_only = false;
6309 case Opt_lock_on_read:
6310 opt->lock_on_read = true;
6313 opt->exclusive = true;
6325 return inval_plog(&log, "%s out of range", param->key);
6329 * This duplicates most of generic_parse_monolithic(), untying it from
6330 * fs_context and skipping standard superblock and security options.
6332 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6337 dout("%s '%s'\n", __func__, options);
6338 while ((key = strsep(&options, ",")) != NULL) {
6340 struct fs_parameter param = {
6342 .type = fs_value_is_flag,
6344 char *value = strchr(key, '=');
6351 v_len = strlen(value);
6352 param.string = kmemdup_nul(value, v_len,
6356 param.type = fs_value_is_string;
6360 ret = rbd_parse_param(¶m, pctx);
6361 kfree(param.string);
6371 * Parse the options provided for an "rbd add" (i.e., rbd image
6372 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
6373 * and the data written is passed here via a NUL-terminated buffer.
6374 * Returns 0 if successful or an error code otherwise.
6376 * The information extracted from these options is recorded in
6377 * the other parameters which return dynamically-allocated
6380 * The address of a pointer that will refer to a ceph options
6381 * structure. Caller must release the returned pointer using
6382 * ceph_destroy_options() when it is no longer needed.
6384 * Address of an rbd options pointer. Fully initialized by
6385 * this function; caller must release with kfree().
6387 * Address of an rbd image specification pointer. Fully
6388 * initialized by this function based on parsed options.
6389 * Caller must release with rbd_spec_put().
6391 * The options passed take this form:
6392 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6395 * A comma-separated list of one or more monitor addresses.
6396 * A monitor address is an ip address, optionally followed
6397 * by a port number (separated by a colon).
6398 * I.e.: ip1[:port1][,ip2[:port2]...]
6400 * A comma-separated list of ceph and/or rbd options.
6402 * The name of the rados pool containing the rbd image.
6404 * The name of the image in that pool to map.
6406 * An optional snapshot id. If provided, the mapping will
6407 * present data from the image at the time that snapshot was
6408 * created. The image head is used if no snapshot id is
6409 * provided. Snapshot mappings are always read-only.
6411 static int rbd_add_parse_args(const char *buf,
6412 struct ceph_options **ceph_opts,
6413 struct rbd_options **opts,
6414 struct rbd_spec **rbd_spec)
6418 const char *mon_addrs;
6420 size_t mon_addrs_size;
6421 struct rbd_parse_opts_ctx pctx = { 0 };
6424 /* The first four tokens are required */
6426 len = next_token(&buf);
6428 rbd_warn(NULL, "no monitor address(es) provided");
6432 mon_addrs_size = len;
6436 options = dup_token(&buf, NULL);
6440 rbd_warn(NULL, "no options provided");
6444 pctx.spec = rbd_spec_alloc();
6448 pctx.spec->pool_name = dup_token(&buf, NULL);
6449 if (!pctx.spec->pool_name)
6451 if (!*pctx.spec->pool_name) {
6452 rbd_warn(NULL, "no pool name provided");
6456 pctx.spec->image_name = dup_token(&buf, NULL);
6457 if (!pctx.spec->image_name)
6459 if (!*pctx.spec->image_name) {
6460 rbd_warn(NULL, "no image name provided");
6465 * Snapshot name is optional; default is to use "-"
6466 * (indicating the head/no snapshot).
6468 len = next_token(&buf);
6470 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6471 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6472 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
6473 ret = -ENAMETOOLONG;
6476 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6479 *(snap_name + len) = '\0';
6480 pctx.spec->snap_name = snap_name;
6482 pctx.copts = ceph_alloc_options();
6486 /* Initialize all rbd options to the defaults */
6488 pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6492 pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6493 pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6494 pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6495 pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6496 pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6497 pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6498 pctx.opts->trim = RBD_TRIM_DEFAULT;
6500 ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL);
6504 ret = rbd_parse_options(options, &pctx);
6508 *ceph_opts = pctx.copts;
6510 *rbd_spec = pctx.spec;
6518 ceph_destroy_options(pctx.copts);
6519 rbd_spec_put(pctx.spec);
6524 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6526 down_write(&rbd_dev->lock_rwsem);
6527 if (__rbd_is_lock_owner(rbd_dev))
6528 __rbd_release_lock(rbd_dev);
6529 up_write(&rbd_dev->lock_rwsem);
6533 * If the wait is interrupted, an error is returned even if the lock
6534 * was successfully acquired. rbd_dev_image_unlock() will release it
6537 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6541 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6542 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6545 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6549 if (rbd_is_ro(rbd_dev))
6552 rbd_assert(!rbd_is_lock_owner(rbd_dev));
6553 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6554 ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6555 ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6557 ret = rbd_dev->acquire_err;
6559 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6565 rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6570 * The lock may have been released by now, unless automatic lock
6571 * transitions are disabled.
6573 rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6578 * An rbd format 2 image has a unique identifier, distinct from the
6579 * name given to it by the user. Internally, that identifier is
6580 * what's used to specify the names of objects related to the image.
6582 * A special "rbd id" object is used to map an rbd image name to its
6583 * id. If that object doesn't exist, then there is no v2 rbd image
6584 * with the supplied name.
6586 * This function will record the given rbd_dev's image_id field if
6587 * it can be determined, and in that case will return 0. If any
6588 * errors occur a negative errno will be returned and the rbd_dev's
6589 * image_id field will be unchanged (and should be NULL).
6591 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6595 CEPH_DEFINE_OID_ONSTACK(oid);
6600 * When probing a parent image, the image id is already
6601 * known (and the image name likely is not). There's no
6602 * need to fetch the image id again in this case. We
6603 * do still need to set the image format though.
6605 if (rbd_dev->spec->image_id) {
6606 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6612 * First, see if the format 2 image id file exists, and if
6613 * so, get the image's persistent id from it.
6615 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6616 rbd_dev->spec->image_name);
6620 dout("rbd id object name is %s\n", oid.name);
6622 /* Response will be an encoded string, which includes a length */
6623 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6624 response = kzalloc(size, GFP_NOIO);
6630 /* If it doesn't exist we'll assume it's a format 1 image */
6632 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6635 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6636 if (ret == -ENOENT) {
6637 image_id = kstrdup("", GFP_KERNEL);
6638 ret = image_id ? 0 : -ENOMEM;
6640 rbd_dev->image_format = 1;
6641 } else if (ret >= 0) {
6644 image_id = ceph_extract_encoded_string(&p, p + ret,
6646 ret = PTR_ERR_OR_ZERO(image_id);
6648 rbd_dev->image_format = 2;
6652 rbd_dev->spec->image_id = image_id;
6653 dout("image_id is %s\n", image_id);
6657 ceph_oid_destroy(&oid);
6662 * Undo whatever state changes are made by v1 or v2 header info
6665 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6667 struct rbd_image_header *header;
6669 rbd_dev_parent_put(rbd_dev);
6670 rbd_object_map_free(rbd_dev);
6671 rbd_dev_mapping_clear(rbd_dev);
6673 /* Free dynamic fields from the header, then zero it out */
6675 header = &rbd_dev->header;
6676 ceph_put_snap_context(header->snapc);
6677 kfree(header->snap_sizes);
6678 kfree(header->snap_names);
6679 kfree(header->object_prefix);
6680 memset(header, 0, sizeof (*header));
6683 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6687 ret = rbd_dev_v2_object_prefix(rbd_dev);
6692 * Get the and check features for the image. Currently the
6693 * features are assumed to never change.
6695 ret = rbd_dev_v2_features(rbd_dev);
6699 /* If the image supports fancy striping, get its parameters */
6701 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6702 ret = rbd_dev_v2_striping_info(rbd_dev);
6707 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6708 ret = rbd_dev_v2_data_pool(rbd_dev);
6713 rbd_init_layout(rbd_dev);
6717 rbd_dev->header.features = 0;
6718 kfree(rbd_dev->header.object_prefix);
6719 rbd_dev->header.object_prefix = NULL;
6724 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6725 * rbd_dev_image_probe() recursion depth, which means it's also the
6726 * length of the already discovered part of the parent chain.
6728 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6730 struct rbd_device *parent = NULL;
6733 if (!rbd_dev->parent_spec)
6736 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6737 pr_info("parent chain is too long (%d)\n", depth);
6742 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
6749 * Images related by parent/child relationships always share
6750 * rbd_client and spec/parent_spec, so bump their refcounts.
6752 __rbd_get_client(rbd_dev->rbd_client);
6753 rbd_spec_get(rbd_dev->parent_spec);
6755 __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6757 ret = rbd_dev_image_probe(parent, depth);
6761 rbd_dev->parent = parent;
6762 atomic_set(&rbd_dev->parent_ref, 1);
6766 rbd_dev_unparent(rbd_dev);
6767 rbd_dev_destroy(parent);
6771 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6773 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6774 rbd_free_disk(rbd_dev);
6776 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6780 * rbd_dev->header_rwsem must be locked for write and will be unlocked
6783 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6787 /* Record our major and minor device numbers. */
6789 if (!single_major) {
6790 ret = register_blkdev(0, rbd_dev->name);
6792 goto err_out_unlock;
6794 rbd_dev->major = ret;
6797 rbd_dev->major = rbd_major;
6798 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6801 /* Set up the blkdev mapping. */
6803 ret = rbd_init_disk(rbd_dev);
6805 goto err_out_blkdev;
6807 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6808 set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6810 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6814 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6815 up_write(&rbd_dev->header_rwsem);
6819 rbd_free_disk(rbd_dev);
6822 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6824 up_write(&rbd_dev->header_rwsem);
6828 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6830 struct rbd_spec *spec = rbd_dev->spec;
6833 /* Record the header object name for this rbd image. */
6835 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6836 if (rbd_dev->image_format == 1)
6837 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6838 spec->image_name, RBD_SUFFIX);
6840 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6841 RBD_HEADER_PREFIX, spec->image_id);
6846 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6849 pr_info("image %s/%s%s%s does not exist\n",
6850 rbd_dev->spec->pool_name,
6851 rbd_dev->spec->pool_ns ?: "",
6852 rbd_dev->spec->pool_ns ? "/" : "",
6853 rbd_dev->spec->image_name);
6855 pr_info("snap %s/%s%s%s@%s does not exist\n",
6856 rbd_dev->spec->pool_name,
6857 rbd_dev->spec->pool_ns ?: "",
6858 rbd_dev->spec->pool_ns ? "/" : "",
6859 rbd_dev->spec->image_name,
6860 rbd_dev->spec->snap_name);
6864 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6866 if (!rbd_is_ro(rbd_dev))
6867 rbd_unregister_watch(rbd_dev);
6869 rbd_dev_unprobe(rbd_dev);
6870 rbd_dev->image_format = 0;
6871 kfree(rbd_dev->spec->image_id);
6872 rbd_dev->spec->image_id = NULL;
6876 * Probe for the existence of the header object for the given rbd
6877 * device. If this image is the one being mapped (i.e., not a
6878 * parent), initiate a watch on its header object before using that
6879 * object to get detailed information about the rbd image.
6881 * On success, returns with header_rwsem held for write if called
6884 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6886 bool need_watch = !rbd_is_ro(rbd_dev);
6890 * Get the id from the image id object. Unless there's an
6891 * error, rbd_dev->spec->image_id will be filled in with
6892 * a dynamically-allocated string, and rbd_dev->image_format
6893 * will be set to either 1 or 2.
6895 ret = rbd_dev_image_id(rbd_dev);
6899 ret = rbd_dev_header_name(rbd_dev);
6901 goto err_out_format;
6904 ret = rbd_register_watch(rbd_dev);
6907 rbd_print_dne(rbd_dev, false);
6908 goto err_out_format;
6913 down_write(&rbd_dev->header_rwsem);
6915 ret = rbd_dev_header_info(rbd_dev);
6917 if (ret == -ENOENT && !need_watch)
6918 rbd_print_dne(rbd_dev, false);
6923 * If this image is the one being mapped, we have pool name and
6924 * id, image name and id, and snap name - need to fill snap id.
6925 * Otherwise this is a parent image, identified by pool, image
6926 * and snap ids - need to fill in names for those ids.
6929 ret = rbd_spec_fill_snap_id(rbd_dev);
6931 ret = rbd_spec_fill_names(rbd_dev);
6934 rbd_print_dne(rbd_dev, true);
6938 ret = rbd_dev_mapping_set(rbd_dev);
6942 if (rbd_is_snap(rbd_dev) &&
6943 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6944 ret = rbd_object_map_load(rbd_dev);
6949 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6950 ret = rbd_dev_v2_parent_info(rbd_dev);
6955 ret = rbd_dev_probe_parent(rbd_dev, depth);
6959 dout("discovered format %u image, header name is %s\n",
6960 rbd_dev->image_format, rbd_dev->header_oid.name);
6965 up_write(&rbd_dev->header_rwsem);
6967 rbd_unregister_watch(rbd_dev);
6968 rbd_dev_unprobe(rbd_dev);
6970 rbd_dev->image_format = 0;
6971 kfree(rbd_dev->spec->image_id);
6972 rbd_dev->spec->image_id = NULL;
6976 static ssize_t do_rbd_add(struct bus_type *bus,
6980 struct rbd_device *rbd_dev = NULL;
6981 struct ceph_options *ceph_opts = NULL;
6982 struct rbd_options *rbd_opts = NULL;
6983 struct rbd_spec *spec = NULL;
6984 struct rbd_client *rbdc;
6987 if (!capable(CAP_SYS_ADMIN))
6990 if (!try_module_get(THIS_MODULE))
6993 /* parse add command */
6994 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
6998 rbdc = rbd_get_client(ceph_opts);
7005 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7008 pr_info("pool %s does not exist\n", spec->pool_name);
7009 goto err_out_client;
7011 spec->pool_id = (u64)rc;
7013 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7016 goto err_out_client;
7018 rbdc = NULL; /* rbd_dev now owns this */
7019 spec = NULL; /* rbd_dev now owns this */
7020 rbd_opts = NULL; /* rbd_dev now owns this */
7022 /* if we are mapping a snapshot it will be a read-only mapping */
7023 if (rbd_dev->opts->read_only ||
7024 strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7025 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7027 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7028 if (!rbd_dev->config_info) {
7030 goto err_out_rbd_dev;
7033 rc = rbd_dev_image_probe(rbd_dev, 0);
7035 goto err_out_rbd_dev;
7037 if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7038 rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7039 rbd_dev->layout.object_size);
7040 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7043 rc = rbd_dev_device_setup(rbd_dev);
7045 goto err_out_image_probe;
7047 rc = rbd_add_acquire_lock(rbd_dev);
7049 goto err_out_image_lock;
7051 /* Everything's ready. Announce the disk to the world. */
7053 rc = device_add(&rbd_dev->dev);
7055 goto err_out_image_lock;
7057 device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7059 spin_lock(&rbd_dev_list_lock);
7060 list_add_tail(&rbd_dev->node, &rbd_dev_list);
7061 spin_unlock(&rbd_dev_list_lock);
7063 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7064 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7065 rbd_dev->header.features);
7068 module_put(THIS_MODULE);
7072 rbd_dev_image_unlock(rbd_dev);
7073 rbd_dev_device_release(rbd_dev);
7074 err_out_image_probe:
7075 rbd_dev_image_release(rbd_dev);
7077 rbd_dev_destroy(rbd_dev);
7079 rbd_put_client(rbdc);
7086 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7091 return do_rbd_add(bus, buf, count);
7094 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7097 return do_rbd_add(bus, buf, count);
7100 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7102 while (rbd_dev->parent) {
7103 struct rbd_device *first = rbd_dev;
7104 struct rbd_device *second = first->parent;
7105 struct rbd_device *third;
7108 * Follow to the parent with no grandparent and
7111 while (second && (third = second->parent)) {
7116 rbd_dev_image_release(second);
7117 rbd_dev_destroy(second);
7118 first->parent = NULL;
7119 first->parent_overlap = 0;
7121 rbd_assert(first->parent_spec);
7122 rbd_spec_put(first->parent_spec);
7123 first->parent_spec = NULL;
7127 static ssize_t do_rbd_remove(struct bus_type *bus,
7131 struct rbd_device *rbd_dev = NULL;
7132 struct list_head *tmp;
7138 if (!capable(CAP_SYS_ADMIN))
7143 sscanf(buf, "%d %5s", &dev_id, opt_buf);
7145 pr_err("dev_id out of range\n");
7148 if (opt_buf[0] != '\0') {
7149 if (!strcmp(opt_buf, "force")) {
7152 pr_err("bad remove option at '%s'\n", opt_buf);
7158 spin_lock(&rbd_dev_list_lock);
7159 list_for_each(tmp, &rbd_dev_list) {
7160 rbd_dev = list_entry(tmp, struct rbd_device, node);
7161 if (rbd_dev->dev_id == dev_id) {
7167 spin_lock_irq(&rbd_dev->lock);
7168 if (rbd_dev->open_count && !force)
7170 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7173 spin_unlock_irq(&rbd_dev->lock);
7175 spin_unlock(&rbd_dev_list_lock);
7181 * Prevent new IO from being queued and wait for existing
7182 * IO to complete/fail.
7184 blk_mq_freeze_queue(rbd_dev->disk->queue);
7185 blk_mark_disk_dead(rbd_dev->disk);
7188 del_gendisk(rbd_dev->disk);
7189 spin_lock(&rbd_dev_list_lock);
7190 list_del_init(&rbd_dev->node);
7191 spin_unlock(&rbd_dev_list_lock);
7192 device_del(&rbd_dev->dev);
7194 rbd_dev_image_unlock(rbd_dev);
7195 rbd_dev_device_release(rbd_dev);
7196 rbd_dev_image_release(rbd_dev);
7197 rbd_dev_destroy(rbd_dev);
7201 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7206 return do_rbd_remove(bus, buf, count);
7209 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7212 return do_rbd_remove(bus, buf, count);
7216 * create control files in sysfs
7219 static int __init rbd_sysfs_init(void)
7223 ret = device_register(&rbd_root_dev);
7227 ret = bus_register(&rbd_bus_type);
7229 device_unregister(&rbd_root_dev);
7234 static void __exit rbd_sysfs_cleanup(void)
7236 bus_unregister(&rbd_bus_type);
7237 device_unregister(&rbd_root_dev);
7240 static int __init rbd_slab_init(void)
7242 rbd_assert(!rbd_img_request_cache);
7243 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7244 if (!rbd_img_request_cache)
7247 rbd_assert(!rbd_obj_request_cache);
7248 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7249 if (!rbd_obj_request_cache)
7255 kmem_cache_destroy(rbd_img_request_cache);
7256 rbd_img_request_cache = NULL;
7260 static void rbd_slab_exit(void)
7262 rbd_assert(rbd_obj_request_cache);
7263 kmem_cache_destroy(rbd_obj_request_cache);
7264 rbd_obj_request_cache = NULL;
7266 rbd_assert(rbd_img_request_cache);
7267 kmem_cache_destroy(rbd_img_request_cache);
7268 rbd_img_request_cache = NULL;
7271 static int __init rbd_init(void)
7275 if (!libceph_compatible(NULL)) {
7276 rbd_warn(NULL, "libceph incompatibility (quitting)");
7280 rc = rbd_slab_init();
7285 * The number of active work items is limited by the number of
7286 * rbd devices * queue depth, so leave @max_active at default.
7288 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7295 rbd_major = register_blkdev(0, RBD_DRV_NAME);
7296 if (rbd_major < 0) {
7302 rc = rbd_sysfs_init();
7304 goto err_out_blkdev;
7307 pr_info("loaded (major %d)\n", rbd_major);
7309 pr_info("loaded\n");
7315 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7317 destroy_workqueue(rbd_wq);
7323 static void __exit rbd_exit(void)
7325 ida_destroy(&rbd_dev_id_ida);
7326 rbd_sysfs_cleanup();
7328 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7329 destroy_workqueue(rbd_wq);
7333 module_init(rbd_init);
7334 module_exit(rbd_exit);
7336 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7337 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7338 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7339 /* following authorship retained from original osdblk.c */
7340 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7342 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7343 MODULE_LICENSE("GPL");