libceph: drop msg argument from ceph_osdc_callback_t
[platform/kernel/linux-rpi.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47
48 #include "rbd_types.h"
49
50 #define RBD_DEBUG       /* Activate rbd_assert() calls */
51
52 /*
53  * The basic unit of block I/O is a sector.  It is interpreted in a
54  * number of contexts in Linux (blk, bio, genhd), but the default is
55  * universally 512 bytes.  These symbols are just slightly more
56  * meaningful than the bare numbers they represent.
57  */
58 #define SECTOR_SHIFT    9
59 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
60
61 /*
62  * Increment the given counter and return its updated value.
63  * If the counter is already 0 it will not be incremented.
64  * If the counter is already at its maximum value returns
65  * -EINVAL without updating it.
66  */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69         unsigned int counter;
70
71         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72         if (counter <= (unsigned int)INT_MAX)
73                 return (int)counter;
74
75         atomic_dec(v);
76
77         return -EINVAL;
78 }
79
80 /* Decrement the counter.  Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83         int counter;
84
85         counter = atomic_dec_return(v);
86         if (counter >= 0)
87                 return counter;
88
89         atomic_inc(v);
90
91         return -EINVAL;
92 }
93
94 #define RBD_DRV_NAME "rbd"
95
96 #define RBD_MINORS_PER_MAJOR            256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
98
99 #define RBD_MAX_PARENT_CHAIN_LEN        16
100
101 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
102 #define RBD_MAX_SNAP_NAME_LEN   \
103                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
104
105 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
106
107 #define RBD_SNAP_HEAD_NAME      "-"
108
109 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
110
111 /* This allows a single page to hold an image name sent by OSD */
112 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
113 #define RBD_IMAGE_ID_LEN_MAX    64
114
115 #define RBD_OBJ_PREFIX_LEN_MAX  64
116
117 /* Feature bits */
118
119 #define RBD_FEATURE_LAYERING    (1<<0)
120 #define RBD_FEATURE_STRIPINGV2  (1<<1)
121 #define RBD_FEATURES_ALL \
122             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
123
124 /* Features supported by this (client software) implementation. */
125
126 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
127
128 /*
129  * An RBD device name will be "rbd#", where the "rbd" comes from
130  * RBD_DRV_NAME above, and # is a unique integer identifier.
131  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
132  * enough to hold all possible device names.
133  */
134 #define DEV_NAME_LEN            32
135 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
136
137 /*
138  * block device image metadata (in-memory version)
139  */
140 struct rbd_image_header {
141         /* These six fields never change for a given rbd image */
142         char *object_prefix;
143         __u8 obj_order;
144         __u8 crypt_type;
145         __u8 comp_type;
146         u64 stripe_unit;
147         u64 stripe_count;
148         u64 features;           /* Might be changeable someday? */
149
150         /* The remaining fields need to be updated occasionally */
151         u64 image_size;
152         struct ceph_snap_context *snapc;
153         char *snap_names;       /* format 1 only */
154         u64 *snap_sizes;        /* format 1 only */
155 };
156
157 /*
158  * An rbd image specification.
159  *
160  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
161  * identify an image.  Each rbd_dev structure includes a pointer to
162  * an rbd_spec structure that encapsulates this identity.
163  *
164  * Each of the id's in an rbd_spec has an associated name.  For a
165  * user-mapped image, the names are supplied and the id's associated
166  * with them are looked up.  For a layered image, a parent image is
167  * defined by the tuple, and the names are looked up.
168  *
169  * An rbd_dev structure contains a parent_spec pointer which is
170  * non-null if the image it represents is a child in a layered
171  * image.  This pointer will refer to the rbd_spec structure used
172  * by the parent rbd_dev for its own identity (i.e., the structure
173  * is shared between the parent and child).
174  *
175  * Since these structures are populated once, during the discovery
176  * phase of image construction, they are effectively immutable so
177  * we make no effort to synchronize access to them.
178  *
179  * Note that code herein does not assume the image name is known (it
180  * could be a null pointer).
181  */
182 struct rbd_spec {
183         u64             pool_id;
184         const char      *pool_name;
185
186         const char      *image_id;
187         const char      *image_name;
188
189         u64             snap_id;
190         const char      *snap_name;
191
192         struct kref     kref;
193 };
194
195 /*
196  * an instance of the client.  multiple devices may share an rbd client.
197  */
198 struct rbd_client {
199         struct ceph_client      *client;
200         struct kref             kref;
201         struct list_head        node;
202 };
203
204 struct rbd_img_request;
205 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
206
207 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
208
209 struct rbd_obj_request;
210 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
211
212 enum obj_request_type {
213         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
214 };
215
216 enum obj_operation_type {
217         OBJ_OP_WRITE,
218         OBJ_OP_READ,
219         OBJ_OP_DISCARD,
220 };
221
222 enum obj_req_flags {
223         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
224         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
225         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
226         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
227 };
228
229 struct rbd_obj_request {
230         const char              *object_name;
231         u64                     offset;         /* object start byte */
232         u64                     length;         /* bytes from offset */
233         unsigned long           flags;
234
235         /*
236          * An object request associated with an image will have its
237          * img_data flag set; a standalone object request will not.
238          *
239          * A standalone object request will have which == BAD_WHICH
240          * and a null obj_request pointer.
241          *
242          * An object request initiated in support of a layered image
243          * object (to check for its existence before a write) will
244          * have which == BAD_WHICH and a non-null obj_request pointer.
245          *
246          * Finally, an object request for rbd image data will have
247          * which != BAD_WHICH, and will have a non-null img_request
248          * pointer.  The value of which will be in the range
249          * 0..(img_request->obj_request_count-1).
250          */
251         union {
252                 struct rbd_obj_request  *obj_request;   /* STAT op */
253                 struct {
254                         struct rbd_img_request  *img_request;
255                         u64                     img_offset;
256                         /* links for img_request->obj_requests list */
257                         struct list_head        links;
258                 };
259         };
260         u32                     which;          /* posn image request list */
261
262         enum obj_request_type   type;
263         union {
264                 struct bio      *bio_list;
265                 struct {
266                         struct page     **pages;
267                         u32             page_count;
268                 };
269         };
270         struct page             **copyup_pages;
271         u32                     copyup_page_count;
272
273         struct ceph_osd_request *osd_req;
274
275         u64                     xferred;        /* bytes transferred */
276         int                     result;
277
278         rbd_obj_callback_t      callback;
279         struct completion       completion;
280
281         struct kref             kref;
282 };
283
284 enum img_req_flags {
285         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
286         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
287         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
288         IMG_REQ_DISCARD,        /* discard: normal = 0, discard request = 1 */
289 };
290
291 struct rbd_img_request {
292         struct rbd_device       *rbd_dev;
293         u64                     offset; /* starting image byte offset */
294         u64                     length; /* byte count from offset */
295         unsigned long           flags;
296         union {
297                 u64                     snap_id;        /* for reads */
298                 struct ceph_snap_context *snapc;        /* for writes */
299         };
300         union {
301                 struct request          *rq;            /* block request */
302                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
303         };
304         struct page             **copyup_pages;
305         u32                     copyup_page_count;
306         spinlock_t              completion_lock;/* protects next_completion */
307         u32                     next_completion;
308         rbd_img_callback_t      callback;
309         u64                     xferred;/* aggregate bytes transferred */
310         int                     result; /* first nonzero obj_request result */
311
312         u32                     obj_request_count;
313         struct list_head        obj_requests;   /* rbd_obj_request structs */
314
315         struct kref             kref;
316 };
317
318 #define for_each_obj_request(ireq, oreq) \
319         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_from(ireq, oreq) \
321         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
322 #define for_each_obj_request_safe(ireq, oreq, n) \
323         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
324
325 struct rbd_mapping {
326         u64                     size;
327         u64                     features;
328         bool                    read_only;
329 };
330
331 /*
332  * a single device
333  */
334 struct rbd_device {
335         int                     dev_id;         /* blkdev unique id */
336
337         int                     major;          /* blkdev assigned major */
338         int                     minor;
339         struct gendisk          *disk;          /* blkdev's gendisk and rq */
340
341         u32                     image_format;   /* Either 1 or 2 */
342         struct rbd_client       *rbd_client;
343
344         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
345
346         spinlock_t              lock;           /* queue, flags, open_count */
347
348         struct rbd_image_header header;
349         unsigned long           flags;          /* possibly lock protected */
350         struct rbd_spec         *spec;
351         struct rbd_options      *opts;
352
353         struct ceph_object_id   header_oid;
354
355         struct ceph_file_layout layout;
356
357         struct ceph_osd_event   *watch_event;
358         struct rbd_obj_request  *watch_request;
359
360         struct rbd_spec         *parent_spec;
361         u64                     parent_overlap;
362         atomic_t                parent_ref;
363         struct rbd_device       *parent;
364
365         /* Block layer tags. */
366         struct blk_mq_tag_set   tag_set;
367
368         /* protects updating the header */
369         struct rw_semaphore     header_rwsem;
370
371         struct rbd_mapping      mapping;
372
373         struct list_head        node;
374
375         /* sysfs related */
376         struct device           dev;
377         unsigned long           open_count;     /* protected by lock */
378 };
379
380 /*
381  * Flag bits for rbd_dev->flags.  If atomicity is required,
382  * rbd_dev->lock is used to protect access.
383  *
384  * Currently, only the "removing" flag (which is coupled with the
385  * "open_count" field) requires atomic access.
386  */
387 enum rbd_dev_flags {
388         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
389         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
390 };
391
392 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
393
394 static LIST_HEAD(rbd_dev_list);    /* devices */
395 static DEFINE_SPINLOCK(rbd_dev_list_lock);
396
397 static LIST_HEAD(rbd_client_list);              /* clients */
398 static DEFINE_SPINLOCK(rbd_client_list_lock);
399
400 /* Slab caches for frequently-allocated structures */
401
402 static struct kmem_cache        *rbd_img_request_cache;
403 static struct kmem_cache        *rbd_obj_request_cache;
404 static struct kmem_cache        *rbd_segment_name_cache;
405
406 static int rbd_major;
407 static DEFINE_IDA(rbd_dev_id_ida);
408
409 static struct workqueue_struct *rbd_wq;
410
411 /*
412  * Default to false for now, as single-major requires >= 0.75 version of
413  * userspace rbd utility.
414  */
415 static bool single_major = false;
416 module_param(single_major, bool, S_IRUGO);
417 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
418
419 static int rbd_img_request_submit(struct rbd_img_request *img_request);
420
421 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
422                        size_t count);
423 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
424                           size_t count);
425 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
426                                     size_t count);
427 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
428                                        size_t count);
429 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
430 static void rbd_spec_put(struct rbd_spec *spec);
431
432 static int rbd_dev_id_to_minor(int dev_id)
433 {
434         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
435 }
436
437 static int minor_to_rbd_dev_id(int minor)
438 {
439         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
440 }
441
442 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
443 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
444 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
445 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
446
447 static struct attribute *rbd_bus_attrs[] = {
448         &bus_attr_add.attr,
449         &bus_attr_remove.attr,
450         &bus_attr_add_single_major.attr,
451         &bus_attr_remove_single_major.attr,
452         NULL,
453 };
454
455 static umode_t rbd_bus_is_visible(struct kobject *kobj,
456                                   struct attribute *attr, int index)
457 {
458         if (!single_major &&
459             (attr == &bus_attr_add_single_major.attr ||
460              attr == &bus_attr_remove_single_major.attr))
461                 return 0;
462
463         return attr->mode;
464 }
465
466 static const struct attribute_group rbd_bus_group = {
467         .attrs = rbd_bus_attrs,
468         .is_visible = rbd_bus_is_visible,
469 };
470 __ATTRIBUTE_GROUPS(rbd_bus);
471
472 static struct bus_type rbd_bus_type = {
473         .name           = "rbd",
474         .bus_groups     = rbd_bus_groups,
475 };
476
477 static void rbd_root_dev_release(struct device *dev)
478 {
479 }
480
481 static struct device rbd_root_dev = {
482         .init_name =    "rbd",
483         .release =      rbd_root_dev_release,
484 };
485
486 static __printf(2, 3)
487 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
488 {
489         struct va_format vaf;
490         va_list args;
491
492         va_start(args, fmt);
493         vaf.fmt = fmt;
494         vaf.va = &args;
495
496         if (!rbd_dev)
497                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
498         else if (rbd_dev->disk)
499                 printk(KERN_WARNING "%s: %s: %pV\n",
500                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
501         else if (rbd_dev->spec && rbd_dev->spec->image_name)
502                 printk(KERN_WARNING "%s: image %s: %pV\n",
503                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
504         else if (rbd_dev->spec && rbd_dev->spec->image_id)
505                 printk(KERN_WARNING "%s: id %s: %pV\n",
506                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
507         else    /* punt */
508                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
509                         RBD_DRV_NAME, rbd_dev, &vaf);
510         va_end(args);
511 }
512
513 #ifdef RBD_DEBUG
514 #define rbd_assert(expr)                                                \
515                 if (unlikely(!(expr))) {                                \
516                         printk(KERN_ERR "\nAssertion failure in %s() "  \
517                                                 "at line %d:\n\n"       \
518                                         "\trbd_assert(%s);\n\n",        \
519                                         __func__, __LINE__, #expr);     \
520                         BUG();                                          \
521                 }
522 #else /* !RBD_DEBUG */
523 #  define rbd_assert(expr)      ((void) 0)
524 #endif /* !RBD_DEBUG */
525
526 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
527 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
528 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
529 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
530
531 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
532 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
533 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
534 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
535 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
536                                         u64 snap_id);
537 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
538                                 u8 *order, u64 *snap_size);
539 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
540                 u64 *snap_features);
541
542 static int rbd_open(struct block_device *bdev, fmode_t mode)
543 {
544         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
545         bool removing = false;
546
547         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
548                 return -EROFS;
549
550         spin_lock_irq(&rbd_dev->lock);
551         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
552                 removing = true;
553         else
554                 rbd_dev->open_count++;
555         spin_unlock_irq(&rbd_dev->lock);
556         if (removing)
557                 return -ENOENT;
558
559         (void) get_device(&rbd_dev->dev);
560
561         return 0;
562 }
563
564 static void rbd_release(struct gendisk *disk, fmode_t mode)
565 {
566         struct rbd_device *rbd_dev = disk->private_data;
567         unsigned long open_count_before;
568
569         spin_lock_irq(&rbd_dev->lock);
570         open_count_before = rbd_dev->open_count--;
571         spin_unlock_irq(&rbd_dev->lock);
572         rbd_assert(open_count_before > 0);
573
574         put_device(&rbd_dev->dev);
575 }
576
577 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
578 {
579         int ret = 0;
580         int val;
581         bool ro;
582         bool ro_changed = false;
583
584         /* get_user() may sleep, so call it before taking rbd_dev->lock */
585         if (get_user(val, (int __user *)(arg)))
586                 return -EFAULT;
587
588         ro = val ? true : false;
589         /* Snapshot doesn't allow to write*/
590         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
591                 return -EROFS;
592
593         spin_lock_irq(&rbd_dev->lock);
594         /* prevent others open this device */
595         if (rbd_dev->open_count > 1) {
596                 ret = -EBUSY;
597                 goto out;
598         }
599
600         if (rbd_dev->mapping.read_only != ro) {
601                 rbd_dev->mapping.read_only = ro;
602                 ro_changed = true;
603         }
604
605 out:
606         spin_unlock_irq(&rbd_dev->lock);
607         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
608         if (ret == 0 && ro_changed)
609                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
610
611         return ret;
612 }
613
614 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
615                         unsigned int cmd, unsigned long arg)
616 {
617         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
618         int ret = 0;
619
620         switch (cmd) {
621         case BLKROSET:
622                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
623                 break;
624         default:
625                 ret = -ENOTTY;
626         }
627
628         return ret;
629 }
630
631 #ifdef CONFIG_COMPAT
632 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
633                                 unsigned int cmd, unsigned long arg)
634 {
635         return rbd_ioctl(bdev, mode, cmd, arg);
636 }
637 #endif /* CONFIG_COMPAT */
638
639 static const struct block_device_operations rbd_bd_ops = {
640         .owner                  = THIS_MODULE,
641         .open                   = rbd_open,
642         .release                = rbd_release,
643         .ioctl                  = rbd_ioctl,
644 #ifdef CONFIG_COMPAT
645         .compat_ioctl           = rbd_compat_ioctl,
646 #endif
647 };
648
649 /*
650  * Initialize an rbd client instance.  Success or not, this function
651  * consumes ceph_opts.  Caller holds client_mutex.
652  */
653 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
654 {
655         struct rbd_client *rbdc;
656         int ret = -ENOMEM;
657
658         dout("%s:\n", __func__);
659         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
660         if (!rbdc)
661                 goto out_opt;
662
663         kref_init(&rbdc->kref);
664         INIT_LIST_HEAD(&rbdc->node);
665
666         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
667         if (IS_ERR(rbdc->client))
668                 goto out_rbdc;
669         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
670
671         ret = ceph_open_session(rbdc->client);
672         if (ret < 0)
673                 goto out_client;
674
675         spin_lock(&rbd_client_list_lock);
676         list_add_tail(&rbdc->node, &rbd_client_list);
677         spin_unlock(&rbd_client_list_lock);
678
679         dout("%s: rbdc %p\n", __func__, rbdc);
680
681         return rbdc;
682 out_client:
683         ceph_destroy_client(rbdc->client);
684 out_rbdc:
685         kfree(rbdc);
686 out_opt:
687         if (ceph_opts)
688                 ceph_destroy_options(ceph_opts);
689         dout("%s: error %d\n", __func__, ret);
690
691         return ERR_PTR(ret);
692 }
693
694 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
695 {
696         kref_get(&rbdc->kref);
697
698         return rbdc;
699 }
700
701 /*
702  * Find a ceph client with specific addr and configuration.  If
703  * found, bump its reference count.
704  */
705 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
706 {
707         struct rbd_client *client_node;
708         bool found = false;
709
710         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
711                 return NULL;
712
713         spin_lock(&rbd_client_list_lock);
714         list_for_each_entry(client_node, &rbd_client_list, node) {
715                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
716                         __rbd_get_client(client_node);
717
718                         found = true;
719                         break;
720                 }
721         }
722         spin_unlock(&rbd_client_list_lock);
723
724         return found ? client_node : NULL;
725 }
726
727 /*
728  * (Per device) rbd map options
729  */
730 enum {
731         Opt_queue_depth,
732         Opt_last_int,
733         /* int args above */
734         Opt_last_string,
735         /* string args above */
736         Opt_read_only,
737         Opt_read_write,
738         Opt_err
739 };
740
741 static match_table_t rbd_opts_tokens = {
742         {Opt_queue_depth, "queue_depth=%d"},
743         /* int args above */
744         /* string args above */
745         {Opt_read_only, "read_only"},
746         {Opt_read_only, "ro"},          /* Alternate spelling */
747         {Opt_read_write, "read_write"},
748         {Opt_read_write, "rw"},         /* Alternate spelling */
749         {Opt_err, NULL}
750 };
751
752 struct rbd_options {
753         int     queue_depth;
754         bool    read_only;
755 };
756
757 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
758 #define RBD_READ_ONLY_DEFAULT   false
759
760 static int parse_rbd_opts_token(char *c, void *private)
761 {
762         struct rbd_options *rbd_opts = private;
763         substring_t argstr[MAX_OPT_ARGS];
764         int token, intval, ret;
765
766         token = match_token(c, rbd_opts_tokens, argstr);
767         if (token < Opt_last_int) {
768                 ret = match_int(&argstr[0], &intval);
769                 if (ret < 0) {
770                         pr_err("bad mount option arg (not int) at '%s'\n", c);
771                         return ret;
772                 }
773                 dout("got int token %d val %d\n", token, intval);
774         } else if (token > Opt_last_int && token < Opt_last_string) {
775                 dout("got string token %d val %s\n", token, argstr[0].from);
776         } else {
777                 dout("got token %d\n", token);
778         }
779
780         switch (token) {
781         case Opt_queue_depth:
782                 if (intval < 1) {
783                         pr_err("queue_depth out of range\n");
784                         return -EINVAL;
785                 }
786                 rbd_opts->queue_depth = intval;
787                 break;
788         case Opt_read_only:
789                 rbd_opts->read_only = true;
790                 break;
791         case Opt_read_write:
792                 rbd_opts->read_only = false;
793                 break;
794         default:
795                 /* libceph prints "bad option" msg */
796                 return -EINVAL;
797         }
798
799         return 0;
800 }
801
802 static char* obj_op_name(enum obj_operation_type op_type)
803 {
804         switch (op_type) {
805         case OBJ_OP_READ:
806                 return "read";
807         case OBJ_OP_WRITE:
808                 return "write";
809         case OBJ_OP_DISCARD:
810                 return "discard";
811         default:
812                 return "???";
813         }
814 }
815
816 /*
817  * Get a ceph client with specific addr and configuration, if one does
818  * not exist create it.  Either way, ceph_opts is consumed by this
819  * function.
820  */
821 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
822 {
823         struct rbd_client *rbdc;
824
825         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
826         rbdc = rbd_client_find(ceph_opts);
827         if (rbdc)       /* using an existing client */
828                 ceph_destroy_options(ceph_opts);
829         else
830                 rbdc = rbd_client_create(ceph_opts);
831         mutex_unlock(&client_mutex);
832
833         return rbdc;
834 }
835
836 /*
837  * Destroy ceph client
838  *
839  * Caller must hold rbd_client_list_lock.
840  */
841 static void rbd_client_release(struct kref *kref)
842 {
843         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
844
845         dout("%s: rbdc %p\n", __func__, rbdc);
846         spin_lock(&rbd_client_list_lock);
847         list_del(&rbdc->node);
848         spin_unlock(&rbd_client_list_lock);
849
850         ceph_destroy_client(rbdc->client);
851         kfree(rbdc);
852 }
853
854 /*
855  * Drop reference to ceph client node. If it's not referenced anymore, release
856  * it.
857  */
858 static void rbd_put_client(struct rbd_client *rbdc)
859 {
860         if (rbdc)
861                 kref_put(&rbdc->kref, rbd_client_release);
862 }
863
864 static bool rbd_image_format_valid(u32 image_format)
865 {
866         return image_format == 1 || image_format == 2;
867 }
868
869 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
870 {
871         size_t size;
872         u32 snap_count;
873
874         /* The header has to start with the magic rbd header text */
875         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
876                 return false;
877
878         /* The bio layer requires at least sector-sized I/O */
879
880         if (ondisk->options.order < SECTOR_SHIFT)
881                 return false;
882
883         /* If we use u64 in a few spots we may be able to loosen this */
884
885         if (ondisk->options.order > 8 * sizeof (int) - 1)
886                 return false;
887
888         /*
889          * The size of a snapshot header has to fit in a size_t, and
890          * that limits the number of snapshots.
891          */
892         snap_count = le32_to_cpu(ondisk->snap_count);
893         size = SIZE_MAX - sizeof (struct ceph_snap_context);
894         if (snap_count > size / sizeof (__le64))
895                 return false;
896
897         /*
898          * Not only that, but the size of the entire the snapshot
899          * header must also be representable in a size_t.
900          */
901         size -= snap_count * sizeof (__le64);
902         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
903                 return false;
904
905         return true;
906 }
907
908 /*
909  * Fill an rbd image header with information from the given format 1
910  * on-disk header.
911  */
912 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
913                                  struct rbd_image_header_ondisk *ondisk)
914 {
915         struct rbd_image_header *header = &rbd_dev->header;
916         bool first_time = header->object_prefix == NULL;
917         struct ceph_snap_context *snapc;
918         char *object_prefix = NULL;
919         char *snap_names = NULL;
920         u64 *snap_sizes = NULL;
921         u32 snap_count;
922         size_t size;
923         int ret = -ENOMEM;
924         u32 i;
925
926         /* Allocate this now to avoid having to handle failure below */
927
928         if (first_time) {
929                 size_t len;
930
931                 len = strnlen(ondisk->object_prefix,
932                                 sizeof (ondisk->object_prefix));
933                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
934                 if (!object_prefix)
935                         return -ENOMEM;
936                 memcpy(object_prefix, ondisk->object_prefix, len);
937                 object_prefix[len] = '\0';
938         }
939
940         /* Allocate the snapshot context and fill it in */
941
942         snap_count = le32_to_cpu(ondisk->snap_count);
943         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
944         if (!snapc)
945                 goto out_err;
946         snapc->seq = le64_to_cpu(ondisk->snap_seq);
947         if (snap_count) {
948                 struct rbd_image_snap_ondisk *snaps;
949                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
950
951                 /* We'll keep a copy of the snapshot names... */
952
953                 if (snap_names_len > (u64)SIZE_MAX)
954                         goto out_2big;
955                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
956                 if (!snap_names)
957                         goto out_err;
958
959                 /* ...as well as the array of their sizes. */
960
961                 size = snap_count * sizeof (*header->snap_sizes);
962                 snap_sizes = kmalloc(size, GFP_KERNEL);
963                 if (!snap_sizes)
964                         goto out_err;
965
966                 /*
967                  * Copy the names, and fill in each snapshot's id
968                  * and size.
969                  *
970                  * Note that rbd_dev_v1_header_info() guarantees the
971                  * ondisk buffer we're working with has
972                  * snap_names_len bytes beyond the end of the
973                  * snapshot id array, this memcpy() is safe.
974                  */
975                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
976                 snaps = ondisk->snaps;
977                 for (i = 0; i < snap_count; i++) {
978                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
979                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
980                 }
981         }
982
983         /* We won't fail any more, fill in the header */
984
985         if (first_time) {
986                 header->object_prefix = object_prefix;
987                 header->obj_order = ondisk->options.order;
988                 header->crypt_type = ondisk->options.crypt_type;
989                 header->comp_type = ondisk->options.comp_type;
990                 /* The rest aren't used for format 1 images */
991                 header->stripe_unit = 0;
992                 header->stripe_count = 0;
993                 header->features = 0;
994         } else {
995                 ceph_put_snap_context(header->snapc);
996                 kfree(header->snap_names);
997                 kfree(header->snap_sizes);
998         }
999
1000         /* The remaining fields always get updated (when we refresh) */
1001
1002         header->image_size = le64_to_cpu(ondisk->image_size);
1003         header->snapc = snapc;
1004         header->snap_names = snap_names;
1005         header->snap_sizes = snap_sizes;
1006
1007         return 0;
1008 out_2big:
1009         ret = -EIO;
1010 out_err:
1011         kfree(snap_sizes);
1012         kfree(snap_names);
1013         ceph_put_snap_context(snapc);
1014         kfree(object_prefix);
1015
1016         return ret;
1017 }
1018
1019 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1020 {
1021         const char *snap_name;
1022
1023         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1024
1025         /* Skip over names until we find the one we are looking for */
1026
1027         snap_name = rbd_dev->header.snap_names;
1028         while (which--)
1029                 snap_name += strlen(snap_name) + 1;
1030
1031         return kstrdup(snap_name, GFP_KERNEL);
1032 }
1033
1034 /*
1035  * Snapshot id comparison function for use with qsort()/bsearch().
1036  * Note that result is for snapshots in *descending* order.
1037  */
1038 static int snapid_compare_reverse(const void *s1, const void *s2)
1039 {
1040         u64 snap_id1 = *(u64 *)s1;
1041         u64 snap_id2 = *(u64 *)s2;
1042
1043         if (snap_id1 < snap_id2)
1044                 return 1;
1045         return snap_id1 == snap_id2 ? 0 : -1;
1046 }
1047
1048 /*
1049  * Search a snapshot context to see if the given snapshot id is
1050  * present.
1051  *
1052  * Returns the position of the snapshot id in the array if it's found,
1053  * or BAD_SNAP_INDEX otherwise.
1054  *
1055  * Note: The snapshot array is in kept sorted (by the osd) in
1056  * reverse order, highest snapshot id first.
1057  */
1058 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1059 {
1060         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1061         u64 *found;
1062
1063         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1064                                 sizeof (snap_id), snapid_compare_reverse);
1065
1066         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1067 }
1068
1069 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1070                                         u64 snap_id)
1071 {
1072         u32 which;
1073         const char *snap_name;
1074
1075         which = rbd_dev_snap_index(rbd_dev, snap_id);
1076         if (which == BAD_SNAP_INDEX)
1077                 return ERR_PTR(-ENOENT);
1078
1079         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1080         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1081 }
1082
1083 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1084 {
1085         if (snap_id == CEPH_NOSNAP)
1086                 return RBD_SNAP_HEAD_NAME;
1087
1088         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1089         if (rbd_dev->image_format == 1)
1090                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1091
1092         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1093 }
1094
1095 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1096                                 u64 *snap_size)
1097 {
1098         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1099         if (snap_id == CEPH_NOSNAP) {
1100                 *snap_size = rbd_dev->header.image_size;
1101         } else if (rbd_dev->image_format == 1) {
1102                 u32 which;
1103
1104                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1105                 if (which == BAD_SNAP_INDEX)
1106                         return -ENOENT;
1107
1108                 *snap_size = rbd_dev->header.snap_sizes[which];
1109         } else {
1110                 u64 size = 0;
1111                 int ret;
1112
1113                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1114                 if (ret)
1115                         return ret;
1116
1117                 *snap_size = size;
1118         }
1119         return 0;
1120 }
1121
1122 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1123                         u64 *snap_features)
1124 {
1125         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1126         if (snap_id == CEPH_NOSNAP) {
1127                 *snap_features = rbd_dev->header.features;
1128         } else if (rbd_dev->image_format == 1) {
1129                 *snap_features = 0;     /* No features for format 1 */
1130         } else {
1131                 u64 features = 0;
1132                 int ret;
1133
1134                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1135                 if (ret)
1136                         return ret;
1137
1138                 *snap_features = features;
1139         }
1140         return 0;
1141 }
1142
1143 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1144 {
1145         u64 snap_id = rbd_dev->spec->snap_id;
1146         u64 size = 0;
1147         u64 features = 0;
1148         int ret;
1149
1150         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1151         if (ret)
1152                 return ret;
1153         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1154         if (ret)
1155                 return ret;
1156
1157         rbd_dev->mapping.size = size;
1158         rbd_dev->mapping.features = features;
1159
1160         return 0;
1161 }
1162
1163 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1164 {
1165         rbd_dev->mapping.size = 0;
1166         rbd_dev->mapping.features = 0;
1167 }
1168
1169 static void rbd_segment_name_free(const char *name)
1170 {
1171         /* The explicit cast here is needed to drop the const qualifier */
1172
1173         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1174 }
1175
1176 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1177 {
1178         char *name;
1179         u64 segment;
1180         int ret;
1181         char *name_format;
1182
1183         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1184         if (!name)
1185                 return NULL;
1186         segment = offset >> rbd_dev->header.obj_order;
1187         name_format = "%s.%012llx";
1188         if (rbd_dev->image_format == 2)
1189                 name_format = "%s.%016llx";
1190         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1191                         rbd_dev->header.object_prefix, segment);
1192         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1193                 pr_err("error formatting segment name for #%llu (%d)\n",
1194                         segment, ret);
1195                 rbd_segment_name_free(name);
1196                 name = NULL;
1197         }
1198
1199         return name;
1200 }
1201
1202 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1203 {
1204         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1205
1206         return offset & (segment_size - 1);
1207 }
1208
1209 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1210                                 u64 offset, u64 length)
1211 {
1212         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1213
1214         offset &= segment_size - 1;
1215
1216         rbd_assert(length <= U64_MAX - offset);
1217         if (offset + length > segment_size)
1218                 length = segment_size - offset;
1219
1220         return length;
1221 }
1222
1223 /*
1224  * returns the size of an object in the image
1225  */
1226 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1227 {
1228         return 1 << header->obj_order;
1229 }
1230
1231 /*
1232  * bio helpers
1233  */
1234
1235 static void bio_chain_put(struct bio *chain)
1236 {
1237         struct bio *tmp;
1238
1239         while (chain) {
1240                 tmp = chain;
1241                 chain = chain->bi_next;
1242                 bio_put(tmp);
1243         }
1244 }
1245
1246 /*
1247  * zeros a bio chain, starting at specific offset
1248  */
1249 static void zero_bio_chain(struct bio *chain, int start_ofs)
1250 {
1251         struct bio_vec bv;
1252         struct bvec_iter iter;
1253         unsigned long flags;
1254         void *buf;
1255         int pos = 0;
1256
1257         while (chain) {
1258                 bio_for_each_segment(bv, chain, iter) {
1259                         if (pos + bv.bv_len > start_ofs) {
1260                                 int remainder = max(start_ofs - pos, 0);
1261                                 buf = bvec_kmap_irq(&bv, &flags);
1262                                 memset(buf + remainder, 0,
1263                                        bv.bv_len - remainder);
1264                                 flush_dcache_page(bv.bv_page);
1265                                 bvec_kunmap_irq(buf, &flags);
1266                         }
1267                         pos += bv.bv_len;
1268                 }
1269
1270                 chain = chain->bi_next;
1271         }
1272 }
1273
1274 /*
1275  * similar to zero_bio_chain(), zeros data defined by a page array,
1276  * starting at the given byte offset from the start of the array and
1277  * continuing up to the given end offset.  The pages array is
1278  * assumed to be big enough to hold all bytes up to the end.
1279  */
1280 static void zero_pages(struct page **pages, u64 offset, u64 end)
1281 {
1282         struct page **page = &pages[offset >> PAGE_SHIFT];
1283
1284         rbd_assert(end > offset);
1285         rbd_assert(end - offset <= (u64)SIZE_MAX);
1286         while (offset < end) {
1287                 size_t page_offset;
1288                 size_t length;
1289                 unsigned long flags;
1290                 void *kaddr;
1291
1292                 page_offset = offset & ~PAGE_MASK;
1293                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1294                 local_irq_save(flags);
1295                 kaddr = kmap_atomic(*page);
1296                 memset(kaddr + page_offset, 0, length);
1297                 flush_dcache_page(*page);
1298                 kunmap_atomic(kaddr);
1299                 local_irq_restore(flags);
1300
1301                 offset += length;
1302                 page++;
1303         }
1304 }
1305
1306 /*
1307  * Clone a portion of a bio, starting at the given byte offset
1308  * and continuing for the number of bytes indicated.
1309  */
1310 static struct bio *bio_clone_range(struct bio *bio_src,
1311                                         unsigned int offset,
1312                                         unsigned int len,
1313                                         gfp_t gfpmask)
1314 {
1315         struct bio *bio;
1316
1317         bio = bio_clone(bio_src, gfpmask);
1318         if (!bio)
1319                 return NULL;    /* ENOMEM */
1320
1321         bio_advance(bio, offset);
1322         bio->bi_iter.bi_size = len;
1323
1324         return bio;
1325 }
1326
1327 /*
1328  * Clone a portion of a bio chain, starting at the given byte offset
1329  * into the first bio in the source chain and continuing for the
1330  * number of bytes indicated.  The result is another bio chain of
1331  * exactly the given length, or a null pointer on error.
1332  *
1333  * The bio_src and offset parameters are both in-out.  On entry they
1334  * refer to the first source bio and the offset into that bio where
1335  * the start of data to be cloned is located.
1336  *
1337  * On return, bio_src is updated to refer to the bio in the source
1338  * chain that contains first un-cloned byte, and *offset will
1339  * contain the offset of that byte within that bio.
1340  */
1341 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1342                                         unsigned int *offset,
1343                                         unsigned int len,
1344                                         gfp_t gfpmask)
1345 {
1346         struct bio *bi = *bio_src;
1347         unsigned int off = *offset;
1348         struct bio *chain = NULL;
1349         struct bio **end;
1350
1351         /* Build up a chain of clone bios up to the limit */
1352
1353         if (!bi || off >= bi->bi_iter.bi_size || !len)
1354                 return NULL;            /* Nothing to clone */
1355
1356         end = &chain;
1357         while (len) {
1358                 unsigned int bi_size;
1359                 struct bio *bio;
1360
1361                 if (!bi) {
1362                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1363                         goto out_err;   /* EINVAL; ran out of bio's */
1364                 }
1365                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1366                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1367                 if (!bio)
1368                         goto out_err;   /* ENOMEM */
1369
1370                 *end = bio;
1371                 end = &bio->bi_next;
1372
1373                 off += bi_size;
1374                 if (off == bi->bi_iter.bi_size) {
1375                         bi = bi->bi_next;
1376                         off = 0;
1377                 }
1378                 len -= bi_size;
1379         }
1380         *bio_src = bi;
1381         *offset = off;
1382
1383         return chain;
1384 out_err:
1385         bio_chain_put(chain);
1386
1387         return NULL;
1388 }
1389
1390 /*
1391  * The default/initial value for all object request flags is 0.  For
1392  * each flag, once its value is set to 1 it is never reset to 0
1393  * again.
1394  */
1395 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1396 {
1397         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1398                 struct rbd_device *rbd_dev;
1399
1400                 rbd_dev = obj_request->img_request->rbd_dev;
1401                 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1402                         obj_request);
1403         }
1404 }
1405
1406 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1407 {
1408         smp_mb();
1409         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1410 }
1411
1412 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1413 {
1414         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1415                 struct rbd_device *rbd_dev = NULL;
1416
1417                 if (obj_request_img_data_test(obj_request))
1418                         rbd_dev = obj_request->img_request->rbd_dev;
1419                 rbd_warn(rbd_dev, "obj_request %p already marked done",
1420                         obj_request);
1421         }
1422 }
1423
1424 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1425 {
1426         smp_mb();
1427         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1428 }
1429
1430 /*
1431  * This sets the KNOWN flag after (possibly) setting the EXISTS
1432  * flag.  The latter is set based on the "exists" value provided.
1433  *
1434  * Note that for our purposes once an object exists it never goes
1435  * away again.  It's possible that the response from two existence
1436  * checks are separated by the creation of the target object, and
1437  * the first ("doesn't exist") response arrives *after* the second
1438  * ("does exist").  In that case we ignore the second one.
1439  */
1440 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1441                                 bool exists)
1442 {
1443         if (exists)
1444                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1445         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1446         smp_mb();
1447 }
1448
1449 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1450 {
1451         smp_mb();
1452         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1453 }
1454
1455 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1456 {
1457         smp_mb();
1458         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1459 }
1460
1461 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1462 {
1463         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1464
1465         return obj_request->img_offset <
1466             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1467 }
1468
1469 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1470 {
1471         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1472                 atomic_read(&obj_request->kref.refcount));
1473         kref_get(&obj_request->kref);
1474 }
1475
1476 static void rbd_obj_request_destroy(struct kref *kref);
1477 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1478 {
1479         rbd_assert(obj_request != NULL);
1480         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1481                 atomic_read(&obj_request->kref.refcount));
1482         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1483 }
1484
1485 static void rbd_img_request_get(struct rbd_img_request *img_request)
1486 {
1487         dout("%s: img %p (was %d)\n", __func__, img_request,
1488              atomic_read(&img_request->kref.refcount));
1489         kref_get(&img_request->kref);
1490 }
1491
1492 static bool img_request_child_test(struct rbd_img_request *img_request);
1493 static void rbd_parent_request_destroy(struct kref *kref);
1494 static void rbd_img_request_destroy(struct kref *kref);
1495 static void rbd_img_request_put(struct rbd_img_request *img_request)
1496 {
1497         rbd_assert(img_request != NULL);
1498         dout("%s: img %p (was %d)\n", __func__, img_request,
1499                 atomic_read(&img_request->kref.refcount));
1500         if (img_request_child_test(img_request))
1501                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1502         else
1503                 kref_put(&img_request->kref, rbd_img_request_destroy);
1504 }
1505
1506 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1507                                         struct rbd_obj_request *obj_request)
1508 {
1509         rbd_assert(obj_request->img_request == NULL);
1510
1511         /* Image request now owns object's original reference */
1512         obj_request->img_request = img_request;
1513         obj_request->which = img_request->obj_request_count;
1514         rbd_assert(!obj_request_img_data_test(obj_request));
1515         obj_request_img_data_set(obj_request);
1516         rbd_assert(obj_request->which != BAD_WHICH);
1517         img_request->obj_request_count++;
1518         list_add_tail(&obj_request->links, &img_request->obj_requests);
1519         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1520                 obj_request->which);
1521 }
1522
1523 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1524                                         struct rbd_obj_request *obj_request)
1525 {
1526         rbd_assert(obj_request->which != BAD_WHICH);
1527
1528         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1529                 obj_request->which);
1530         list_del(&obj_request->links);
1531         rbd_assert(img_request->obj_request_count > 0);
1532         img_request->obj_request_count--;
1533         rbd_assert(obj_request->which == img_request->obj_request_count);
1534         obj_request->which = BAD_WHICH;
1535         rbd_assert(obj_request_img_data_test(obj_request));
1536         rbd_assert(obj_request->img_request == img_request);
1537         obj_request->img_request = NULL;
1538         obj_request->callback = NULL;
1539         rbd_obj_request_put(obj_request);
1540 }
1541
1542 static bool obj_request_type_valid(enum obj_request_type type)
1543 {
1544         switch (type) {
1545         case OBJ_REQUEST_NODATA:
1546         case OBJ_REQUEST_BIO:
1547         case OBJ_REQUEST_PAGES:
1548                 return true;
1549         default:
1550                 return false;
1551         }
1552 }
1553
1554 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1555                                 struct rbd_obj_request *obj_request)
1556 {
1557         dout("%s %p\n", __func__, obj_request);
1558         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1559 }
1560
1561 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1562 {
1563         dout("%s %p\n", __func__, obj_request);
1564         ceph_osdc_cancel_request(obj_request->osd_req);
1565 }
1566
1567 /*
1568  * Wait for an object request to complete.  If interrupted, cancel the
1569  * underlying osd request.
1570  *
1571  * @timeout: in jiffies, 0 means "wait forever"
1572  */
1573 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1574                                   unsigned long timeout)
1575 {
1576         long ret;
1577
1578         dout("%s %p\n", __func__, obj_request);
1579         ret = wait_for_completion_interruptible_timeout(
1580                                         &obj_request->completion,
1581                                         ceph_timeout_jiffies(timeout));
1582         if (ret <= 0) {
1583                 if (ret == 0)
1584                         ret = -ETIMEDOUT;
1585                 rbd_obj_request_end(obj_request);
1586         } else {
1587                 ret = 0;
1588         }
1589
1590         dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1591         return ret;
1592 }
1593
1594 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1595 {
1596         return __rbd_obj_request_wait(obj_request, 0);
1597 }
1598
1599 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request,
1600                                         unsigned long timeout)
1601 {
1602         return __rbd_obj_request_wait(obj_request, timeout);
1603 }
1604
1605 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1606 {
1607
1608         dout("%s: img %p\n", __func__, img_request);
1609
1610         /*
1611          * If no error occurred, compute the aggregate transfer
1612          * count for the image request.  We could instead use
1613          * atomic64_cmpxchg() to update it as each object request
1614          * completes; not clear which way is better off hand.
1615          */
1616         if (!img_request->result) {
1617                 struct rbd_obj_request *obj_request;
1618                 u64 xferred = 0;
1619
1620                 for_each_obj_request(img_request, obj_request)
1621                         xferred += obj_request->xferred;
1622                 img_request->xferred = xferred;
1623         }
1624
1625         if (img_request->callback)
1626                 img_request->callback(img_request);
1627         else
1628                 rbd_img_request_put(img_request);
1629 }
1630
1631 /*
1632  * The default/initial value for all image request flags is 0.  Each
1633  * is conditionally set to 1 at image request initialization time
1634  * and currently never change thereafter.
1635  */
1636 static void img_request_write_set(struct rbd_img_request *img_request)
1637 {
1638         set_bit(IMG_REQ_WRITE, &img_request->flags);
1639         smp_mb();
1640 }
1641
1642 static bool img_request_write_test(struct rbd_img_request *img_request)
1643 {
1644         smp_mb();
1645         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1646 }
1647
1648 /*
1649  * Set the discard flag when the img_request is an discard request
1650  */
1651 static void img_request_discard_set(struct rbd_img_request *img_request)
1652 {
1653         set_bit(IMG_REQ_DISCARD, &img_request->flags);
1654         smp_mb();
1655 }
1656
1657 static bool img_request_discard_test(struct rbd_img_request *img_request)
1658 {
1659         smp_mb();
1660         return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1661 }
1662
1663 static void img_request_child_set(struct rbd_img_request *img_request)
1664 {
1665         set_bit(IMG_REQ_CHILD, &img_request->flags);
1666         smp_mb();
1667 }
1668
1669 static void img_request_child_clear(struct rbd_img_request *img_request)
1670 {
1671         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1672         smp_mb();
1673 }
1674
1675 static bool img_request_child_test(struct rbd_img_request *img_request)
1676 {
1677         smp_mb();
1678         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1679 }
1680
1681 static void img_request_layered_set(struct rbd_img_request *img_request)
1682 {
1683         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1684         smp_mb();
1685 }
1686
1687 static void img_request_layered_clear(struct rbd_img_request *img_request)
1688 {
1689         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1690         smp_mb();
1691 }
1692
1693 static bool img_request_layered_test(struct rbd_img_request *img_request)
1694 {
1695         smp_mb();
1696         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1697 }
1698
1699 static enum obj_operation_type
1700 rbd_img_request_op_type(struct rbd_img_request *img_request)
1701 {
1702         if (img_request_write_test(img_request))
1703                 return OBJ_OP_WRITE;
1704         else if (img_request_discard_test(img_request))
1705                 return OBJ_OP_DISCARD;
1706         else
1707                 return OBJ_OP_READ;
1708 }
1709
1710 static void
1711 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1712 {
1713         u64 xferred = obj_request->xferred;
1714         u64 length = obj_request->length;
1715
1716         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1717                 obj_request, obj_request->img_request, obj_request->result,
1718                 xferred, length);
1719         /*
1720          * ENOENT means a hole in the image.  We zero-fill the entire
1721          * length of the request.  A short read also implies zero-fill
1722          * to the end of the request.  An error requires the whole
1723          * length of the request to be reported finished with an error
1724          * to the block layer.  In each case we update the xferred
1725          * count to indicate the whole request was satisfied.
1726          */
1727         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1728         if (obj_request->result == -ENOENT) {
1729                 if (obj_request->type == OBJ_REQUEST_BIO)
1730                         zero_bio_chain(obj_request->bio_list, 0);
1731                 else
1732                         zero_pages(obj_request->pages, 0, length);
1733                 obj_request->result = 0;
1734         } else if (xferred < length && !obj_request->result) {
1735                 if (obj_request->type == OBJ_REQUEST_BIO)
1736                         zero_bio_chain(obj_request->bio_list, xferred);
1737                 else
1738                         zero_pages(obj_request->pages, xferred, length);
1739         }
1740         obj_request->xferred = length;
1741         obj_request_done_set(obj_request);
1742 }
1743
1744 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1745 {
1746         dout("%s: obj %p cb %p\n", __func__, obj_request,
1747                 obj_request->callback);
1748         if (obj_request->callback)
1749                 obj_request->callback(obj_request);
1750         else
1751                 complete_all(&obj_request->completion);
1752 }
1753
1754 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1755 {
1756         dout("%s: obj %p\n", __func__, obj_request);
1757         obj_request_done_set(obj_request);
1758 }
1759
1760 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1761 {
1762         struct rbd_img_request *img_request = NULL;
1763         struct rbd_device *rbd_dev = NULL;
1764         bool layered = false;
1765
1766         if (obj_request_img_data_test(obj_request)) {
1767                 img_request = obj_request->img_request;
1768                 layered = img_request && img_request_layered_test(img_request);
1769                 rbd_dev = img_request->rbd_dev;
1770         }
1771
1772         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1773                 obj_request, img_request, obj_request->result,
1774                 obj_request->xferred, obj_request->length);
1775         if (layered && obj_request->result == -ENOENT &&
1776                         obj_request->img_offset < rbd_dev->parent_overlap)
1777                 rbd_img_parent_read(obj_request);
1778         else if (img_request)
1779                 rbd_img_obj_request_read_callback(obj_request);
1780         else
1781                 obj_request_done_set(obj_request);
1782 }
1783
1784 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1785 {
1786         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1787                 obj_request->result, obj_request->length);
1788         /*
1789          * There is no such thing as a successful short write.  Set
1790          * it to our originally-requested length.
1791          */
1792         obj_request->xferred = obj_request->length;
1793         obj_request_done_set(obj_request);
1794 }
1795
1796 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1797 {
1798         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1799                 obj_request->result, obj_request->length);
1800         /*
1801          * There is no such thing as a successful short discard.  Set
1802          * it to our originally-requested length.
1803          */
1804         obj_request->xferred = obj_request->length;
1805         /* discarding a non-existent object is not a problem */
1806         if (obj_request->result == -ENOENT)
1807                 obj_request->result = 0;
1808         obj_request_done_set(obj_request);
1809 }
1810
1811 /*
1812  * For a simple stat call there's nothing to do.  We'll do more if
1813  * this is part of a write sequence for a layered image.
1814  */
1815 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1816 {
1817         dout("%s: obj %p\n", __func__, obj_request);
1818         obj_request_done_set(obj_request);
1819 }
1820
1821 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1822 {
1823         dout("%s: obj %p\n", __func__, obj_request);
1824
1825         if (obj_request_img_data_test(obj_request))
1826                 rbd_osd_copyup_callback(obj_request);
1827         else
1828                 obj_request_done_set(obj_request);
1829 }
1830
1831 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1832 {
1833         struct rbd_obj_request *obj_request = osd_req->r_priv;
1834         u16 opcode;
1835
1836         dout("%s: osd_req %p\n", __func__, osd_req);
1837         rbd_assert(osd_req == obj_request->osd_req);
1838         if (obj_request_img_data_test(obj_request)) {
1839                 rbd_assert(obj_request->img_request);
1840                 rbd_assert(obj_request->which != BAD_WHICH);
1841         } else {
1842                 rbd_assert(obj_request->which == BAD_WHICH);
1843         }
1844
1845         if (osd_req->r_result < 0)
1846                 obj_request->result = osd_req->r_result;
1847
1848         /*
1849          * We support a 64-bit length, but ultimately it has to be
1850          * passed to the block layer, which just supports a 32-bit
1851          * length field.
1852          */
1853         obj_request->xferred = osd_req->r_ops[0].outdata_len;
1854         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1855
1856         opcode = osd_req->r_ops[0].op;
1857         switch (opcode) {
1858         case CEPH_OSD_OP_READ:
1859                 rbd_osd_read_callback(obj_request);
1860                 break;
1861         case CEPH_OSD_OP_SETALLOCHINT:
1862                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1863                            osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1864                 /* fall through */
1865         case CEPH_OSD_OP_WRITE:
1866         case CEPH_OSD_OP_WRITEFULL:
1867                 rbd_osd_write_callback(obj_request);
1868                 break;
1869         case CEPH_OSD_OP_STAT:
1870                 rbd_osd_stat_callback(obj_request);
1871                 break;
1872         case CEPH_OSD_OP_DELETE:
1873         case CEPH_OSD_OP_TRUNCATE:
1874         case CEPH_OSD_OP_ZERO:
1875                 rbd_osd_discard_callback(obj_request);
1876                 break;
1877         case CEPH_OSD_OP_CALL:
1878                 rbd_osd_call_callback(obj_request);
1879                 break;
1880         case CEPH_OSD_OP_NOTIFY_ACK:
1881         case CEPH_OSD_OP_WATCH:
1882                 rbd_osd_trivial_callback(obj_request);
1883                 break;
1884         default:
1885                 rbd_warn(NULL, "%s: unsupported op %hu",
1886                         obj_request->object_name, (unsigned short) opcode);
1887                 break;
1888         }
1889
1890         if (obj_request_done_test(obj_request))
1891                 rbd_obj_request_complete(obj_request);
1892 }
1893
1894 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1895 {
1896         struct rbd_img_request *img_request = obj_request->img_request;
1897         struct ceph_osd_request *osd_req = obj_request->osd_req;
1898
1899         if (img_request)
1900                 osd_req->r_snapid = img_request->snap_id;
1901 }
1902
1903 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1904 {
1905         struct ceph_osd_request *osd_req = obj_request->osd_req;
1906
1907         osd_req->r_mtime = CURRENT_TIME;
1908         osd_req->r_data_offset = obj_request->offset;
1909 }
1910
1911 /*
1912  * Create an osd request.  A read request has one osd op (read).
1913  * A write request has either one (watch) or two (hint+write) osd ops.
1914  * (All rbd data writes are prefixed with an allocation hint op, but
1915  * technically osd watch is a write request, hence this distinction.)
1916  */
1917 static struct ceph_osd_request *rbd_osd_req_create(
1918                                         struct rbd_device *rbd_dev,
1919                                         enum obj_operation_type op_type,
1920                                         unsigned int num_ops,
1921                                         struct rbd_obj_request *obj_request)
1922 {
1923         struct ceph_snap_context *snapc = NULL;
1924         struct ceph_osd_client *osdc;
1925         struct ceph_osd_request *osd_req;
1926
1927         if (obj_request_img_data_test(obj_request) &&
1928                 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1929                 struct rbd_img_request *img_request = obj_request->img_request;
1930                 if (op_type == OBJ_OP_WRITE) {
1931                         rbd_assert(img_request_write_test(img_request));
1932                 } else {
1933                         rbd_assert(img_request_discard_test(img_request));
1934                 }
1935                 snapc = img_request->snapc;
1936         }
1937
1938         rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1939
1940         /* Allocate and initialize the request, for the num_ops ops */
1941
1942         osdc = &rbd_dev->rbd_client->client->osdc;
1943         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1944                                           GFP_NOIO);
1945         if (!osd_req)
1946                 goto fail;
1947
1948         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1949                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1950         else
1951                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1952
1953         osd_req->r_callback = rbd_osd_req_callback;
1954         osd_req->r_priv = obj_request;
1955
1956         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1957         if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s",
1958                              obj_request->object_name))
1959                 goto fail;
1960
1961         if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO))
1962                 goto fail;
1963
1964         return osd_req;
1965
1966 fail:
1967         ceph_osdc_put_request(osd_req);
1968         return NULL;
1969 }
1970
1971 /*
1972  * Create a copyup osd request based on the information in the object
1973  * request supplied.  A copyup request has two or three osd ops, a
1974  * copyup method call, potentially a hint op, and a write or truncate
1975  * or zero op.
1976  */
1977 static struct ceph_osd_request *
1978 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1979 {
1980         struct rbd_img_request *img_request;
1981         struct ceph_snap_context *snapc;
1982         struct rbd_device *rbd_dev;
1983         struct ceph_osd_client *osdc;
1984         struct ceph_osd_request *osd_req;
1985         int num_osd_ops = 3;
1986
1987         rbd_assert(obj_request_img_data_test(obj_request));
1988         img_request = obj_request->img_request;
1989         rbd_assert(img_request);
1990         rbd_assert(img_request_write_test(img_request) ||
1991                         img_request_discard_test(img_request));
1992
1993         if (img_request_discard_test(img_request))
1994                 num_osd_ops = 2;
1995
1996         /* Allocate and initialize the request, for all the ops */
1997
1998         snapc = img_request->snapc;
1999         rbd_dev = img_request->rbd_dev;
2000         osdc = &rbd_dev->rbd_client->client->osdc;
2001         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
2002                                                 false, GFP_NOIO);
2003         if (!osd_req)
2004                 goto fail;
2005
2006         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2007         osd_req->r_callback = rbd_osd_req_callback;
2008         osd_req->r_priv = obj_request;
2009
2010         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
2011         if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s",
2012                              obj_request->object_name))
2013                 goto fail;
2014
2015         if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO))
2016                 goto fail;
2017
2018         return osd_req;
2019
2020 fail:
2021         ceph_osdc_put_request(osd_req);
2022         return NULL;
2023 }
2024
2025
2026 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2027 {
2028         ceph_osdc_put_request(osd_req);
2029 }
2030
2031 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2032
2033 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2034                                                 u64 offset, u64 length,
2035                                                 enum obj_request_type type)
2036 {
2037         struct rbd_obj_request *obj_request;
2038         size_t size;
2039         char *name;
2040
2041         rbd_assert(obj_request_type_valid(type));
2042
2043         size = strlen(object_name) + 1;
2044         name = kmalloc(size, GFP_NOIO);
2045         if (!name)
2046                 return NULL;
2047
2048         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2049         if (!obj_request) {
2050                 kfree(name);
2051                 return NULL;
2052         }
2053
2054         obj_request->object_name = memcpy(name, object_name, size);
2055         obj_request->offset = offset;
2056         obj_request->length = length;
2057         obj_request->flags = 0;
2058         obj_request->which = BAD_WHICH;
2059         obj_request->type = type;
2060         INIT_LIST_HEAD(&obj_request->links);
2061         init_completion(&obj_request->completion);
2062         kref_init(&obj_request->kref);
2063
2064         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2065                 offset, length, (int)type, obj_request);
2066
2067         return obj_request;
2068 }
2069
2070 static void rbd_obj_request_destroy(struct kref *kref)
2071 {
2072         struct rbd_obj_request *obj_request;
2073
2074         obj_request = container_of(kref, struct rbd_obj_request, kref);
2075
2076         dout("%s: obj %p\n", __func__, obj_request);
2077
2078         rbd_assert(obj_request->img_request == NULL);
2079         rbd_assert(obj_request->which == BAD_WHICH);
2080
2081         if (obj_request->osd_req)
2082                 rbd_osd_req_destroy(obj_request->osd_req);
2083
2084         rbd_assert(obj_request_type_valid(obj_request->type));
2085         switch (obj_request->type) {
2086         case OBJ_REQUEST_NODATA:
2087                 break;          /* Nothing to do */
2088         case OBJ_REQUEST_BIO:
2089                 if (obj_request->bio_list)
2090                         bio_chain_put(obj_request->bio_list);
2091                 break;
2092         case OBJ_REQUEST_PAGES:
2093                 if (obj_request->pages)
2094                         ceph_release_page_vector(obj_request->pages,
2095                                                 obj_request->page_count);
2096                 break;
2097         }
2098
2099         kfree(obj_request->object_name);
2100         obj_request->object_name = NULL;
2101         kmem_cache_free(rbd_obj_request_cache, obj_request);
2102 }
2103
2104 /* It's OK to call this for a device with no parent */
2105
2106 static void rbd_spec_put(struct rbd_spec *spec);
2107 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2108 {
2109         rbd_dev_remove_parent(rbd_dev);
2110         rbd_spec_put(rbd_dev->parent_spec);
2111         rbd_dev->parent_spec = NULL;
2112         rbd_dev->parent_overlap = 0;
2113 }
2114
2115 /*
2116  * Parent image reference counting is used to determine when an
2117  * image's parent fields can be safely torn down--after there are no
2118  * more in-flight requests to the parent image.  When the last
2119  * reference is dropped, cleaning them up is safe.
2120  */
2121 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2122 {
2123         int counter;
2124
2125         if (!rbd_dev->parent_spec)
2126                 return;
2127
2128         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2129         if (counter > 0)
2130                 return;
2131
2132         /* Last reference; clean up parent data structures */
2133
2134         if (!counter)
2135                 rbd_dev_unparent(rbd_dev);
2136         else
2137                 rbd_warn(rbd_dev, "parent reference underflow");
2138 }
2139
2140 /*
2141  * If an image has a non-zero parent overlap, get a reference to its
2142  * parent.
2143  *
2144  * Returns true if the rbd device has a parent with a non-zero
2145  * overlap and a reference for it was successfully taken, or
2146  * false otherwise.
2147  */
2148 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2149 {
2150         int counter = 0;
2151
2152         if (!rbd_dev->parent_spec)
2153                 return false;
2154
2155         down_read(&rbd_dev->header_rwsem);
2156         if (rbd_dev->parent_overlap)
2157                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2158         up_read(&rbd_dev->header_rwsem);
2159
2160         if (counter < 0)
2161                 rbd_warn(rbd_dev, "parent reference overflow");
2162
2163         return counter > 0;
2164 }
2165
2166 /*
2167  * Caller is responsible for filling in the list of object requests
2168  * that comprises the image request, and the Linux request pointer
2169  * (if there is one).
2170  */
2171 static struct rbd_img_request *rbd_img_request_create(
2172                                         struct rbd_device *rbd_dev,
2173                                         u64 offset, u64 length,
2174                                         enum obj_operation_type op_type,
2175                                         struct ceph_snap_context *snapc)
2176 {
2177         struct rbd_img_request *img_request;
2178
2179         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2180         if (!img_request)
2181                 return NULL;
2182
2183         img_request->rq = NULL;
2184         img_request->rbd_dev = rbd_dev;
2185         img_request->offset = offset;
2186         img_request->length = length;
2187         img_request->flags = 0;
2188         if (op_type == OBJ_OP_DISCARD) {
2189                 img_request_discard_set(img_request);
2190                 img_request->snapc = snapc;
2191         } else if (op_type == OBJ_OP_WRITE) {
2192                 img_request_write_set(img_request);
2193                 img_request->snapc = snapc;
2194         } else {
2195                 img_request->snap_id = rbd_dev->spec->snap_id;
2196         }
2197         if (rbd_dev_parent_get(rbd_dev))
2198                 img_request_layered_set(img_request);
2199         spin_lock_init(&img_request->completion_lock);
2200         img_request->next_completion = 0;
2201         img_request->callback = NULL;
2202         img_request->result = 0;
2203         img_request->obj_request_count = 0;
2204         INIT_LIST_HEAD(&img_request->obj_requests);
2205         kref_init(&img_request->kref);
2206
2207         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2208                 obj_op_name(op_type), offset, length, img_request);
2209
2210         return img_request;
2211 }
2212
2213 static void rbd_img_request_destroy(struct kref *kref)
2214 {
2215         struct rbd_img_request *img_request;
2216         struct rbd_obj_request *obj_request;
2217         struct rbd_obj_request *next_obj_request;
2218
2219         img_request = container_of(kref, struct rbd_img_request, kref);
2220
2221         dout("%s: img %p\n", __func__, img_request);
2222
2223         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2224                 rbd_img_obj_request_del(img_request, obj_request);
2225         rbd_assert(img_request->obj_request_count == 0);
2226
2227         if (img_request_layered_test(img_request)) {
2228                 img_request_layered_clear(img_request);
2229                 rbd_dev_parent_put(img_request->rbd_dev);
2230         }
2231
2232         if (img_request_write_test(img_request) ||
2233                 img_request_discard_test(img_request))
2234                 ceph_put_snap_context(img_request->snapc);
2235
2236         kmem_cache_free(rbd_img_request_cache, img_request);
2237 }
2238
2239 static struct rbd_img_request *rbd_parent_request_create(
2240                                         struct rbd_obj_request *obj_request,
2241                                         u64 img_offset, u64 length)
2242 {
2243         struct rbd_img_request *parent_request;
2244         struct rbd_device *rbd_dev;
2245
2246         rbd_assert(obj_request->img_request);
2247         rbd_dev = obj_request->img_request->rbd_dev;
2248
2249         parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2250                                                 length, OBJ_OP_READ, NULL);
2251         if (!parent_request)
2252                 return NULL;
2253
2254         img_request_child_set(parent_request);
2255         rbd_obj_request_get(obj_request);
2256         parent_request->obj_request = obj_request;
2257
2258         return parent_request;
2259 }
2260
2261 static void rbd_parent_request_destroy(struct kref *kref)
2262 {
2263         struct rbd_img_request *parent_request;
2264         struct rbd_obj_request *orig_request;
2265
2266         parent_request = container_of(kref, struct rbd_img_request, kref);
2267         orig_request = parent_request->obj_request;
2268
2269         parent_request->obj_request = NULL;
2270         rbd_obj_request_put(orig_request);
2271         img_request_child_clear(parent_request);
2272
2273         rbd_img_request_destroy(kref);
2274 }
2275
2276 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2277 {
2278         struct rbd_img_request *img_request;
2279         unsigned int xferred;
2280         int result;
2281         bool more;
2282
2283         rbd_assert(obj_request_img_data_test(obj_request));
2284         img_request = obj_request->img_request;
2285
2286         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2287         xferred = (unsigned int)obj_request->xferred;
2288         result = obj_request->result;
2289         if (result) {
2290                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2291                 enum obj_operation_type op_type;
2292
2293                 if (img_request_discard_test(img_request))
2294                         op_type = OBJ_OP_DISCARD;
2295                 else if (img_request_write_test(img_request))
2296                         op_type = OBJ_OP_WRITE;
2297                 else
2298                         op_type = OBJ_OP_READ;
2299
2300                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2301                         obj_op_name(op_type), obj_request->length,
2302                         obj_request->img_offset, obj_request->offset);
2303                 rbd_warn(rbd_dev, "  result %d xferred %x",
2304                         result, xferred);
2305                 if (!img_request->result)
2306                         img_request->result = result;
2307                 /*
2308                  * Need to end I/O on the entire obj_request worth of
2309                  * bytes in case of error.
2310                  */
2311                 xferred = obj_request->length;
2312         }
2313
2314         /* Image object requests don't own their page array */
2315
2316         if (obj_request->type == OBJ_REQUEST_PAGES) {
2317                 obj_request->pages = NULL;
2318                 obj_request->page_count = 0;
2319         }
2320
2321         if (img_request_child_test(img_request)) {
2322                 rbd_assert(img_request->obj_request != NULL);
2323                 more = obj_request->which < img_request->obj_request_count - 1;
2324         } else {
2325                 rbd_assert(img_request->rq != NULL);
2326
2327                 more = blk_update_request(img_request->rq, result, xferred);
2328                 if (!more)
2329                         __blk_mq_end_request(img_request->rq, result);
2330         }
2331
2332         return more;
2333 }
2334
2335 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2336 {
2337         struct rbd_img_request *img_request;
2338         u32 which = obj_request->which;
2339         bool more = true;
2340
2341         rbd_assert(obj_request_img_data_test(obj_request));
2342         img_request = obj_request->img_request;
2343
2344         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2345         rbd_assert(img_request != NULL);
2346         rbd_assert(img_request->obj_request_count > 0);
2347         rbd_assert(which != BAD_WHICH);
2348         rbd_assert(which < img_request->obj_request_count);
2349
2350         spin_lock_irq(&img_request->completion_lock);
2351         if (which != img_request->next_completion)
2352                 goto out;
2353
2354         for_each_obj_request_from(img_request, obj_request) {
2355                 rbd_assert(more);
2356                 rbd_assert(which < img_request->obj_request_count);
2357
2358                 if (!obj_request_done_test(obj_request))
2359                         break;
2360                 more = rbd_img_obj_end_request(obj_request);
2361                 which++;
2362         }
2363
2364         rbd_assert(more ^ (which == img_request->obj_request_count));
2365         img_request->next_completion = which;
2366 out:
2367         spin_unlock_irq(&img_request->completion_lock);
2368         rbd_img_request_put(img_request);
2369
2370         if (!more)
2371                 rbd_img_request_complete(img_request);
2372 }
2373
2374 /*
2375  * Add individual osd ops to the given ceph_osd_request and prepare
2376  * them for submission. num_ops is the current number of
2377  * osd operations already to the object request.
2378  */
2379 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2380                                 struct ceph_osd_request *osd_request,
2381                                 enum obj_operation_type op_type,
2382                                 unsigned int num_ops)
2383 {
2384         struct rbd_img_request *img_request = obj_request->img_request;
2385         struct rbd_device *rbd_dev = img_request->rbd_dev;
2386         u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2387         u64 offset = obj_request->offset;
2388         u64 length = obj_request->length;
2389         u64 img_end;
2390         u16 opcode;
2391
2392         if (op_type == OBJ_OP_DISCARD) {
2393                 if (!offset && length == object_size &&
2394                     (!img_request_layered_test(img_request) ||
2395                      !obj_request_overlaps_parent(obj_request))) {
2396                         opcode = CEPH_OSD_OP_DELETE;
2397                 } else if ((offset + length == object_size)) {
2398                         opcode = CEPH_OSD_OP_TRUNCATE;
2399                 } else {
2400                         down_read(&rbd_dev->header_rwsem);
2401                         img_end = rbd_dev->header.image_size;
2402                         up_read(&rbd_dev->header_rwsem);
2403
2404                         if (obj_request->img_offset + length == img_end)
2405                                 opcode = CEPH_OSD_OP_TRUNCATE;
2406                         else
2407                                 opcode = CEPH_OSD_OP_ZERO;
2408                 }
2409         } else if (op_type == OBJ_OP_WRITE) {
2410                 if (!offset && length == object_size)
2411                         opcode = CEPH_OSD_OP_WRITEFULL;
2412                 else
2413                         opcode = CEPH_OSD_OP_WRITE;
2414                 osd_req_op_alloc_hint_init(osd_request, num_ops,
2415                                         object_size, object_size);
2416                 num_ops++;
2417         } else {
2418                 opcode = CEPH_OSD_OP_READ;
2419         }
2420
2421         if (opcode == CEPH_OSD_OP_DELETE)
2422                 osd_req_op_init(osd_request, num_ops, opcode, 0);
2423         else
2424                 osd_req_op_extent_init(osd_request, num_ops, opcode,
2425                                        offset, length, 0, 0);
2426
2427         if (obj_request->type == OBJ_REQUEST_BIO)
2428                 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2429                                         obj_request->bio_list, length);
2430         else if (obj_request->type == OBJ_REQUEST_PAGES)
2431                 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2432                                         obj_request->pages, length,
2433                                         offset & ~PAGE_MASK, false, false);
2434
2435         /* Discards are also writes */
2436         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2437                 rbd_osd_req_format_write(obj_request);
2438         else
2439                 rbd_osd_req_format_read(obj_request);
2440 }
2441
2442 /*
2443  * Split up an image request into one or more object requests, each
2444  * to a different object.  The "type" parameter indicates whether
2445  * "data_desc" is the pointer to the head of a list of bio
2446  * structures, or the base of a page array.  In either case this
2447  * function assumes data_desc describes memory sufficient to hold
2448  * all data described by the image request.
2449  */
2450 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2451                                         enum obj_request_type type,
2452                                         void *data_desc)
2453 {
2454         struct rbd_device *rbd_dev = img_request->rbd_dev;
2455         struct rbd_obj_request *obj_request = NULL;
2456         struct rbd_obj_request *next_obj_request;
2457         struct bio *bio_list = NULL;
2458         unsigned int bio_offset = 0;
2459         struct page **pages = NULL;
2460         enum obj_operation_type op_type;
2461         u64 img_offset;
2462         u64 resid;
2463
2464         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2465                 (int)type, data_desc);
2466
2467         img_offset = img_request->offset;
2468         resid = img_request->length;
2469         rbd_assert(resid > 0);
2470         op_type = rbd_img_request_op_type(img_request);
2471
2472         if (type == OBJ_REQUEST_BIO) {
2473                 bio_list = data_desc;
2474                 rbd_assert(img_offset ==
2475                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2476         } else if (type == OBJ_REQUEST_PAGES) {
2477                 pages = data_desc;
2478         }
2479
2480         while (resid) {
2481                 struct ceph_osd_request *osd_req;
2482                 const char *object_name;
2483                 u64 offset;
2484                 u64 length;
2485
2486                 object_name = rbd_segment_name(rbd_dev, img_offset);
2487                 if (!object_name)
2488                         goto out_unwind;
2489                 offset = rbd_segment_offset(rbd_dev, img_offset);
2490                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2491                 obj_request = rbd_obj_request_create(object_name,
2492                                                 offset, length, type);
2493                 /* object request has its own copy of the object name */
2494                 rbd_segment_name_free(object_name);
2495                 if (!obj_request)
2496                         goto out_unwind;
2497
2498                 /*
2499                  * set obj_request->img_request before creating the
2500                  * osd_request so that it gets the right snapc
2501                  */
2502                 rbd_img_obj_request_add(img_request, obj_request);
2503
2504                 if (type == OBJ_REQUEST_BIO) {
2505                         unsigned int clone_size;
2506
2507                         rbd_assert(length <= (u64)UINT_MAX);
2508                         clone_size = (unsigned int)length;
2509                         obj_request->bio_list =
2510                                         bio_chain_clone_range(&bio_list,
2511                                                                 &bio_offset,
2512                                                                 clone_size,
2513                                                                 GFP_NOIO);
2514                         if (!obj_request->bio_list)
2515                                 goto out_unwind;
2516                 } else if (type == OBJ_REQUEST_PAGES) {
2517                         unsigned int page_count;
2518
2519                         obj_request->pages = pages;
2520                         page_count = (u32)calc_pages_for(offset, length);
2521                         obj_request->page_count = page_count;
2522                         if ((offset + length) & ~PAGE_MASK)
2523                                 page_count--;   /* more on last page */
2524                         pages += page_count;
2525                 }
2526
2527                 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2528                                         (op_type == OBJ_OP_WRITE) ? 2 : 1,
2529                                         obj_request);
2530                 if (!osd_req)
2531                         goto out_unwind;
2532
2533                 obj_request->osd_req = osd_req;
2534                 obj_request->callback = rbd_img_obj_callback;
2535                 obj_request->img_offset = img_offset;
2536
2537                 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2538
2539                 rbd_img_request_get(img_request);
2540
2541                 img_offset += length;
2542                 resid -= length;
2543         }
2544
2545         return 0;
2546
2547 out_unwind:
2548         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2549                 rbd_img_obj_request_del(img_request, obj_request);
2550
2551         return -ENOMEM;
2552 }
2553
2554 static void
2555 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2556 {
2557         struct rbd_img_request *img_request;
2558         struct rbd_device *rbd_dev;
2559         struct page **pages;
2560         u32 page_count;
2561
2562         dout("%s: obj %p\n", __func__, obj_request);
2563
2564         rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2565                 obj_request->type == OBJ_REQUEST_NODATA);
2566         rbd_assert(obj_request_img_data_test(obj_request));
2567         img_request = obj_request->img_request;
2568         rbd_assert(img_request);
2569
2570         rbd_dev = img_request->rbd_dev;
2571         rbd_assert(rbd_dev);
2572
2573         pages = obj_request->copyup_pages;
2574         rbd_assert(pages != NULL);
2575         obj_request->copyup_pages = NULL;
2576         page_count = obj_request->copyup_page_count;
2577         rbd_assert(page_count);
2578         obj_request->copyup_page_count = 0;
2579         ceph_release_page_vector(pages, page_count);
2580
2581         /*
2582          * We want the transfer count to reflect the size of the
2583          * original write request.  There is no such thing as a
2584          * successful short write, so if the request was successful
2585          * we can just set it to the originally-requested length.
2586          */
2587         if (!obj_request->result)
2588                 obj_request->xferred = obj_request->length;
2589
2590         obj_request_done_set(obj_request);
2591 }
2592
2593 static void
2594 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2595 {
2596         struct rbd_obj_request *orig_request;
2597         struct ceph_osd_request *osd_req;
2598         struct ceph_osd_client *osdc;
2599         struct rbd_device *rbd_dev;
2600         struct page **pages;
2601         enum obj_operation_type op_type;
2602         u32 page_count;
2603         int img_result;
2604         u64 parent_length;
2605
2606         rbd_assert(img_request_child_test(img_request));
2607
2608         /* First get what we need from the image request */
2609
2610         pages = img_request->copyup_pages;
2611         rbd_assert(pages != NULL);
2612         img_request->copyup_pages = NULL;
2613         page_count = img_request->copyup_page_count;
2614         rbd_assert(page_count);
2615         img_request->copyup_page_count = 0;
2616
2617         orig_request = img_request->obj_request;
2618         rbd_assert(orig_request != NULL);
2619         rbd_assert(obj_request_type_valid(orig_request->type));
2620         img_result = img_request->result;
2621         parent_length = img_request->length;
2622         rbd_assert(parent_length == img_request->xferred);
2623         rbd_img_request_put(img_request);
2624
2625         rbd_assert(orig_request->img_request);
2626         rbd_dev = orig_request->img_request->rbd_dev;
2627         rbd_assert(rbd_dev);
2628
2629         /*
2630          * If the overlap has become 0 (most likely because the
2631          * image has been flattened) we need to free the pages
2632          * and re-submit the original write request.
2633          */
2634         if (!rbd_dev->parent_overlap) {
2635                 struct ceph_osd_client *osdc;
2636
2637                 ceph_release_page_vector(pages, page_count);
2638                 osdc = &rbd_dev->rbd_client->client->osdc;
2639                 img_result = rbd_obj_request_submit(osdc, orig_request);
2640                 if (!img_result)
2641                         return;
2642         }
2643
2644         if (img_result)
2645                 goto out_err;
2646
2647         /*
2648          * The original osd request is of no use to use any more.
2649          * We need a new one that can hold the three ops in a copyup
2650          * request.  Allocate the new copyup osd request for the
2651          * original request, and release the old one.
2652          */
2653         img_result = -ENOMEM;
2654         osd_req = rbd_osd_req_create_copyup(orig_request);
2655         if (!osd_req)
2656                 goto out_err;
2657         rbd_osd_req_destroy(orig_request->osd_req);
2658         orig_request->osd_req = osd_req;
2659         orig_request->copyup_pages = pages;
2660         orig_request->copyup_page_count = page_count;
2661
2662         /* Initialize the copyup op */
2663
2664         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2665         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2666                                                 false, false);
2667
2668         /* Add the other op(s) */
2669
2670         op_type = rbd_img_request_op_type(orig_request->img_request);
2671         rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2672
2673         /* All set, send it off. */
2674
2675         osdc = &rbd_dev->rbd_client->client->osdc;
2676         img_result = rbd_obj_request_submit(osdc, orig_request);
2677         if (!img_result)
2678                 return;
2679 out_err:
2680         /* Record the error code and complete the request */
2681
2682         orig_request->result = img_result;
2683         orig_request->xferred = 0;
2684         obj_request_done_set(orig_request);
2685         rbd_obj_request_complete(orig_request);
2686 }
2687
2688 /*
2689  * Read from the parent image the range of data that covers the
2690  * entire target of the given object request.  This is used for
2691  * satisfying a layered image write request when the target of an
2692  * object request from the image request does not exist.
2693  *
2694  * A page array big enough to hold the returned data is allocated
2695  * and supplied to rbd_img_request_fill() as the "data descriptor."
2696  * When the read completes, this page array will be transferred to
2697  * the original object request for the copyup operation.
2698  *
2699  * If an error occurs, record it as the result of the original
2700  * object request and mark it done so it gets completed.
2701  */
2702 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2703 {
2704         struct rbd_img_request *img_request = NULL;
2705         struct rbd_img_request *parent_request = NULL;
2706         struct rbd_device *rbd_dev;
2707         u64 img_offset;
2708         u64 length;
2709         struct page **pages = NULL;
2710         u32 page_count;
2711         int result;
2712
2713         rbd_assert(obj_request_img_data_test(obj_request));
2714         rbd_assert(obj_request_type_valid(obj_request->type));
2715
2716         img_request = obj_request->img_request;
2717         rbd_assert(img_request != NULL);
2718         rbd_dev = img_request->rbd_dev;
2719         rbd_assert(rbd_dev->parent != NULL);
2720
2721         /*
2722          * Determine the byte range covered by the object in the
2723          * child image to which the original request was to be sent.
2724          */
2725         img_offset = obj_request->img_offset - obj_request->offset;
2726         length = (u64)1 << rbd_dev->header.obj_order;
2727
2728         /*
2729          * There is no defined parent data beyond the parent
2730          * overlap, so limit what we read at that boundary if
2731          * necessary.
2732          */
2733         if (img_offset + length > rbd_dev->parent_overlap) {
2734                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2735                 length = rbd_dev->parent_overlap - img_offset;
2736         }
2737
2738         /*
2739          * Allocate a page array big enough to receive the data read
2740          * from the parent.
2741          */
2742         page_count = (u32)calc_pages_for(0, length);
2743         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2744         if (IS_ERR(pages)) {
2745                 result = PTR_ERR(pages);
2746                 pages = NULL;
2747                 goto out_err;
2748         }
2749
2750         result = -ENOMEM;
2751         parent_request = rbd_parent_request_create(obj_request,
2752                                                 img_offset, length);
2753         if (!parent_request)
2754                 goto out_err;
2755
2756         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2757         if (result)
2758                 goto out_err;
2759         parent_request->copyup_pages = pages;
2760         parent_request->copyup_page_count = page_count;
2761
2762         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2763         result = rbd_img_request_submit(parent_request);
2764         if (!result)
2765                 return 0;
2766
2767         parent_request->copyup_pages = NULL;
2768         parent_request->copyup_page_count = 0;
2769         parent_request->obj_request = NULL;
2770         rbd_obj_request_put(obj_request);
2771 out_err:
2772         if (pages)
2773                 ceph_release_page_vector(pages, page_count);
2774         if (parent_request)
2775                 rbd_img_request_put(parent_request);
2776         obj_request->result = result;
2777         obj_request->xferred = 0;
2778         obj_request_done_set(obj_request);
2779
2780         return result;
2781 }
2782
2783 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2784 {
2785         struct rbd_obj_request *orig_request;
2786         struct rbd_device *rbd_dev;
2787         int result;
2788
2789         rbd_assert(!obj_request_img_data_test(obj_request));
2790
2791         /*
2792          * All we need from the object request is the original
2793          * request and the result of the STAT op.  Grab those, then
2794          * we're done with the request.
2795          */
2796         orig_request = obj_request->obj_request;
2797         obj_request->obj_request = NULL;
2798         rbd_obj_request_put(orig_request);
2799         rbd_assert(orig_request);
2800         rbd_assert(orig_request->img_request);
2801
2802         result = obj_request->result;
2803         obj_request->result = 0;
2804
2805         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2806                 obj_request, orig_request, result,
2807                 obj_request->xferred, obj_request->length);
2808         rbd_obj_request_put(obj_request);
2809
2810         /*
2811          * If the overlap has become 0 (most likely because the
2812          * image has been flattened) we need to free the pages
2813          * and re-submit the original write request.
2814          */
2815         rbd_dev = orig_request->img_request->rbd_dev;
2816         if (!rbd_dev->parent_overlap) {
2817                 struct ceph_osd_client *osdc;
2818
2819                 osdc = &rbd_dev->rbd_client->client->osdc;
2820                 result = rbd_obj_request_submit(osdc, orig_request);
2821                 if (!result)
2822                         return;
2823         }
2824
2825         /*
2826          * Our only purpose here is to determine whether the object
2827          * exists, and we don't want to treat the non-existence as
2828          * an error.  If something else comes back, transfer the
2829          * error to the original request and complete it now.
2830          */
2831         if (!result) {
2832                 obj_request_existence_set(orig_request, true);
2833         } else if (result == -ENOENT) {
2834                 obj_request_existence_set(orig_request, false);
2835         } else if (result) {
2836                 orig_request->result = result;
2837                 goto out;
2838         }
2839
2840         /*
2841          * Resubmit the original request now that we have recorded
2842          * whether the target object exists.
2843          */
2844         orig_request->result = rbd_img_obj_request_submit(orig_request);
2845 out:
2846         if (orig_request->result)
2847                 rbd_obj_request_complete(orig_request);
2848 }
2849
2850 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2851 {
2852         struct rbd_obj_request *stat_request;
2853         struct rbd_device *rbd_dev;
2854         struct ceph_osd_client *osdc;
2855         struct page **pages = NULL;
2856         u32 page_count;
2857         size_t size;
2858         int ret;
2859
2860         /*
2861          * The response data for a STAT call consists of:
2862          *     le64 length;
2863          *     struct {
2864          *         le32 tv_sec;
2865          *         le32 tv_nsec;
2866          *     } mtime;
2867          */
2868         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2869         page_count = (u32)calc_pages_for(0, size);
2870         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2871         if (IS_ERR(pages))
2872                 return PTR_ERR(pages);
2873
2874         ret = -ENOMEM;
2875         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2876                                                         OBJ_REQUEST_PAGES);
2877         if (!stat_request)
2878                 goto out;
2879
2880         rbd_obj_request_get(obj_request);
2881         stat_request->obj_request = obj_request;
2882         stat_request->pages = pages;
2883         stat_request->page_count = page_count;
2884
2885         rbd_assert(obj_request->img_request);
2886         rbd_dev = obj_request->img_request->rbd_dev;
2887         stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2888                                                    stat_request);
2889         if (!stat_request->osd_req)
2890                 goto out;
2891         stat_request->callback = rbd_img_obj_exists_callback;
2892
2893         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2894         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2895                                         false, false);
2896         rbd_osd_req_format_read(stat_request);
2897
2898         osdc = &rbd_dev->rbd_client->client->osdc;
2899         ret = rbd_obj_request_submit(osdc, stat_request);
2900 out:
2901         if (ret)
2902                 rbd_obj_request_put(obj_request);
2903
2904         return ret;
2905 }
2906
2907 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2908 {
2909         struct rbd_img_request *img_request;
2910         struct rbd_device *rbd_dev;
2911
2912         rbd_assert(obj_request_img_data_test(obj_request));
2913
2914         img_request = obj_request->img_request;
2915         rbd_assert(img_request);
2916         rbd_dev = img_request->rbd_dev;
2917
2918         /* Reads */
2919         if (!img_request_write_test(img_request) &&
2920             !img_request_discard_test(img_request))
2921                 return true;
2922
2923         /* Non-layered writes */
2924         if (!img_request_layered_test(img_request))
2925                 return true;
2926
2927         /*
2928          * Layered writes outside of the parent overlap range don't
2929          * share any data with the parent.
2930          */
2931         if (!obj_request_overlaps_parent(obj_request))
2932                 return true;
2933
2934         /*
2935          * Entire-object layered writes - we will overwrite whatever
2936          * parent data there is anyway.
2937          */
2938         if (!obj_request->offset &&
2939             obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2940                 return true;
2941
2942         /*
2943          * If the object is known to already exist, its parent data has
2944          * already been copied.
2945          */
2946         if (obj_request_known_test(obj_request) &&
2947             obj_request_exists_test(obj_request))
2948                 return true;
2949
2950         return false;
2951 }
2952
2953 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2954 {
2955         if (img_obj_request_simple(obj_request)) {
2956                 struct rbd_device *rbd_dev;
2957                 struct ceph_osd_client *osdc;
2958
2959                 rbd_dev = obj_request->img_request->rbd_dev;
2960                 osdc = &rbd_dev->rbd_client->client->osdc;
2961
2962                 return rbd_obj_request_submit(osdc, obj_request);
2963         }
2964
2965         /*
2966          * It's a layered write.  The target object might exist but
2967          * we may not know that yet.  If we know it doesn't exist,
2968          * start by reading the data for the full target object from
2969          * the parent so we can use it for a copyup to the target.
2970          */
2971         if (obj_request_known_test(obj_request))
2972                 return rbd_img_obj_parent_read_full(obj_request);
2973
2974         /* We don't know whether the target exists.  Go find out. */
2975
2976         return rbd_img_obj_exists_submit(obj_request);
2977 }
2978
2979 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2980 {
2981         struct rbd_obj_request *obj_request;
2982         struct rbd_obj_request *next_obj_request;
2983         int ret = 0;
2984
2985         dout("%s: img %p\n", __func__, img_request);
2986
2987         rbd_img_request_get(img_request);
2988         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2989                 ret = rbd_img_obj_request_submit(obj_request);
2990                 if (ret)
2991                         goto out_put_ireq;
2992         }
2993
2994 out_put_ireq:
2995         rbd_img_request_put(img_request);
2996         return ret;
2997 }
2998
2999 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
3000 {
3001         struct rbd_obj_request *obj_request;
3002         struct rbd_device *rbd_dev;
3003         u64 obj_end;
3004         u64 img_xferred;
3005         int img_result;
3006
3007         rbd_assert(img_request_child_test(img_request));
3008
3009         /* First get what we need from the image request and release it */
3010
3011         obj_request = img_request->obj_request;
3012         img_xferred = img_request->xferred;
3013         img_result = img_request->result;
3014         rbd_img_request_put(img_request);
3015
3016         /*
3017          * If the overlap has become 0 (most likely because the
3018          * image has been flattened) we need to re-submit the
3019          * original request.
3020          */
3021         rbd_assert(obj_request);
3022         rbd_assert(obj_request->img_request);
3023         rbd_dev = obj_request->img_request->rbd_dev;
3024         if (!rbd_dev->parent_overlap) {
3025                 struct ceph_osd_client *osdc;
3026
3027                 osdc = &rbd_dev->rbd_client->client->osdc;
3028                 img_result = rbd_obj_request_submit(osdc, obj_request);
3029                 if (!img_result)
3030                         return;
3031         }
3032
3033         obj_request->result = img_result;
3034         if (obj_request->result)
3035                 goto out;
3036
3037         /*
3038          * We need to zero anything beyond the parent overlap
3039          * boundary.  Since rbd_img_obj_request_read_callback()
3040          * will zero anything beyond the end of a short read, an
3041          * easy way to do this is to pretend the data from the
3042          * parent came up short--ending at the overlap boundary.
3043          */
3044         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3045         obj_end = obj_request->img_offset + obj_request->length;
3046         if (obj_end > rbd_dev->parent_overlap) {
3047                 u64 xferred = 0;
3048
3049                 if (obj_request->img_offset < rbd_dev->parent_overlap)
3050                         xferred = rbd_dev->parent_overlap -
3051                                         obj_request->img_offset;
3052
3053                 obj_request->xferred = min(img_xferred, xferred);
3054         } else {
3055                 obj_request->xferred = img_xferred;
3056         }
3057 out:
3058         rbd_img_obj_request_read_callback(obj_request);
3059         rbd_obj_request_complete(obj_request);
3060 }
3061
3062 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3063 {
3064         struct rbd_img_request *img_request;
3065         int result;
3066
3067         rbd_assert(obj_request_img_data_test(obj_request));
3068         rbd_assert(obj_request->img_request != NULL);
3069         rbd_assert(obj_request->result == (s32) -ENOENT);
3070         rbd_assert(obj_request_type_valid(obj_request->type));
3071
3072         /* rbd_read_finish(obj_request, obj_request->length); */
3073         img_request = rbd_parent_request_create(obj_request,
3074                                                 obj_request->img_offset,
3075                                                 obj_request->length);
3076         result = -ENOMEM;
3077         if (!img_request)
3078                 goto out_err;
3079
3080         if (obj_request->type == OBJ_REQUEST_BIO)
3081                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3082                                                 obj_request->bio_list);
3083         else
3084                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3085                                                 obj_request->pages);
3086         if (result)
3087                 goto out_err;
3088
3089         img_request->callback = rbd_img_parent_read_callback;
3090         result = rbd_img_request_submit(img_request);
3091         if (result)
3092                 goto out_err;
3093
3094         return;
3095 out_err:
3096         if (img_request)
3097                 rbd_img_request_put(img_request);
3098         obj_request->result = result;
3099         obj_request->xferred = 0;
3100         obj_request_done_set(obj_request);
3101 }
3102
3103 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3104 {
3105         struct rbd_obj_request *obj_request;
3106         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3107         int ret;
3108
3109         obj_request = rbd_obj_request_create(rbd_dev->header_oid.name, 0, 0,
3110                                                         OBJ_REQUEST_NODATA);
3111         if (!obj_request)
3112                 return -ENOMEM;
3113
3114         ret = -ENOMEM;
3115         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3116                                                   obj_request);
3117         if (!obj_request->osd_req)
3118                 goto out;
3119
3120         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3121                                         notify_id, 0, 0);
3122         rbd_osd_req_format_read(obj_request);
3123
3124         ret = rbd_obj_request_submit(osdc, obj_request);
3125         if (ret)
3126                 goto out;
3127         ret = rbd_obj_request_wait(obj_request);
3128 out:
3129         rbd_obj_request_put(obj_request);
3130
3131         return ret;
3132 }
3133
3134 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3135 {
3136         struct rbd_device *rbd_dev = (struct rbd_device *)data;
3137         int ret;
3138
3139         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3140                 rbd_dev->header_oid.name, (unsigned long long)notify_id,
3141                 (unsigned int)opcode);
3142
3143         /*
3144          * Until adequate refresh error handling is in place, there is
3145          * not much we can do here, except warn.
3146          *
3147          * See http://tracker.ceph.com/issues/5040
3148          */
3149         ret = rbd_dev_refresh(rbd_dev);
3150         if (ret)
3151                 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3152
3153         ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3154         if (ret)
3155                 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3156 }
3157
3158 /*
3159  * Send a (un)watch request and wait for the ack.  Return a request
3160  * with a ref held on success or error.
3161  */
3162 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3163                                                 struct rbd_device *rbd_dev,
3164                                                 bool watch)
3165 {
3166         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3167         struct ceph_options *opts = osdc->client->options;
3168         struct rbd_obj_request *obj_request;
3169         int ret;
3170
3171         obj_request = rbd_obj_request_create(rbd_dev->header_oid.name, 0, 0,
3172                                              OBJ_REQUEST_NODATA);
3173         if (!obj_request)
3174                 return ERR_PTR(-ENOMEM);
3175
3176         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3177                                                   obj_request);
3178         if (!obj_request->osd_req) {
3179                 ret = -ENOMEM;
3180                 goto out;
3181         }
3182
3183         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3184                               rbd_dev->watch_event->cookie, 0, watch);
3185         rbd_osd_req_format_write(obj_request);
3186
3187         if (watch)
3188                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3189
3190         ret = rbd_obj_request_submit(osdc, obj_request);
3191         if (ret)
3192                 goto out;
3193
3194         ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout);
3195         if (ret)
3196                 goto out;
3197
3198         ret = obj_request->result;
3199         if (ret) {
3200                 if (watch)
3201                         rbd_obj_request_end(obj_request);
3202                 goto out;
3203         }
3204
3205         return obj_request;
3206
3207 out:
3208         rbd_obj_request_put(obj_request);
3209         return ERR_PTR(ret);
3210 }
3211
3212 /*
3213  * Initiate a watch request, synchronously.
3214  */
3215 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3216 {
3217         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3218         struct rbd_obj_request *obj_request;
3219         int ret;
3220
3221         rbd_assert(!rbd_dev->watch_event);
3222         rbd_assert(!rbd_dev->watch_request);
3223
3224         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3225                                      &rbd_dev->watch_event);
3226         if (ret < 0)
3227                 return ret;
3228
3229         obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3230         if (IS_ERR(obj_request)) {
3231                 ceph_osdc_cancel_event(rbd_dev->watch_event);
3232                 rbd_dev->watch_event = NULL;
3233                 return PTR_ERR(obj_request);
3234         }
3235
3236         /*
3237          * A watch request is set to linger, so the underlying osd
3238          * request won't go away until we unregister it.  We retain
3239          * a pointer to the object request during that time (in
3240          * rbd_dev->watch_request), so we'll keep a reference to it.
3241          * We'll drop that reference after we've unregistered it in
3242          * rbd_dev_header_unwatch_sync().
3243          */
3244         rbd_dev->watch_request = obj_request;
3245
3246         return 0;
3247 }
3248
3249 /*
3250  * Tear down a watch request, synchronously.
3251  */
3252 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3253 {
3254         struct rbd_obj_request *obj_request;
3255
3256         rbd_assert(rbd_dev->watch_event);
3257         rbd_assert(rbd_dev->watch_request);
3258
3259         rbd_obj_request_end(rbd_dev->watch_request);
3260         rbd_obj_request_put(rbd_dev->watch_request);
3261         rbd_dev->watch_request = NULL;
3262
3263         obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3264         if (!IS_ERR(obj_request))
3265                 rbd_obj_request_put(obj_request);
3266         else
3267                 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3268                          PTR_ERR(obj_request));
3269
3270         ceph_osdc_cancel_event(rbd_dev->watch_event);
3271         rbd_dev->watch_event = NULL;
3272
3273         dout("%s flushing notifies\n", __func__);
3274         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3275 }
3276
3277 /*
3278  * Synchronous osd object method call.  Returns the number of bytes
3279  * returned in the outbound buffer, or a negative error code.
3280  */
3281 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3282                              const char *object_name,
3283                              const char *class_name,
3284                              const char *method_name,
3285                              const void *outbound,
3286                              size_t outbound_size,
3287                              void *inbound,
3288                              size_t inbound_size)
3289 {
3290         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3291         struct rbd_obj_request *obj_request;
3292         struct page **pages;
3293         u32 page_count;
3294         int ret;
3295
3296         /*
3297          * Method calls are ultimately read operations.  The result
3298          * should placed into the inbound buffer provided.  They
3299          * also supply outbound data--parameters for the object
3300          * method.  Currently if this is present it will be a
3301          * snapshot id.
3302          */
3303         page_count = (u32)calc_pages_for(0, inbound_size);
3304         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3305         if (IS_ERR(pages))
3306                 return PTR_ERR(pages);
3307
3308         ret = -ENOMEM;
3309         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3310                                                         OBJ_REQUEST_PAGES);
3311         if (!obj_request)
3312                 goto out;
3313
3314         obj_request->pages = pages;
3315         obj_request->page_count = page_count;
3316
3317         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3318                                                   obj_request);
3319         if (!obj_request->osd_req)
3320                 goto out;
3321
3322         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3323                                         class_name, method_name);
3324         if (outbound_size) {
3325                 struct ceph_pagelist *pagelist;
3326
3327                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3328                 if (!pagelist)
3329                         goto out;
3330
3331                 ceph_pagelist_init(pagelist);
3332                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3333                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3334                                                 pagelist);
3335         }
3336         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3337                                         obj_request->pages, inbound_size,
3338                                         0, false, false);
3339         rbd_osd_req_format_read(obj_request);
3340
3341         ret = rbd_obj_request_submit(osdc, obj_request);
3342         if (ret)
3343                 goto out;
3344         ret = rbd_obj_request_wait(obj_request);
3345         if (ret)
3346                 goto out;
3347
3348         ret = obj_request->result;
3349         if (ret < 0)
3350                 goto out;
3351
3352         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3353         ret = (int)obj_request->xferred;
3354         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3355 out:
3356         if (obj_request)
3357                 rbd_obj_request_put(obj_request);
3358         else
3359                 ceph_release_page_vector(pages, page_count);
3360
3361         return ret;
3362 }
3363
3364 static void rbd_queue_workfn(struct work_struct *work)
3365 {
3366         struct request *rq = blk_mq_rq_from_pdu(work);
3367         struct rbd_device *rbd_dev = rq->q->queuedata;
3368         struct rbd_img_request *img_request;
3369         struct ceph_snap_context *snapc = NULL;
3370         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3371         u64 length = blk_rq_bytes(rq);
3372         enum obj_operation_type op_type;
3373         u64 mapping_size;
3374         int result;
3375
3376         if (rq->cmd_type != REQ_TYPE_FS) {
3377                 dout("%s: non-fs request type %d\n", __func__,
3378                         (int) rq->cmd_type);
3379                 result = -EIO;
3380                 goto err;
3381         }
3382
3383         if (rq->cmd_flags & REQ_DISCARD)
3384                 op_type = OBJ_OP_DISCARD;
3385         else if (rq->cmd_flags & REQ_WRITE)
3386                 op_type = OBJ_OP_WRITE;
3387         else
3388                 op_type = OBJ_OP_READ;
3389
3390         /* Ignore/skip any zero-length requests */
3391
3392         if (!length) {
3393                 dout("%s: zero-length request\n", __func__);
3394                 result = 0;
3395                 goto err_rq;
3396         }
3397
3398         /* Only reads are allowed to a read-only device */
3399
3400         if (op_type != OBJ_OP_READ) {
3401                 if (rbd_dev->mapping.read_only) {
3402                         result = -EROFS;
3403                         goto err_rq;
3404                 }
3405                 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3406         }
3407
3408         /*
3409          * Quit early if the mapped snapshot no longer exists.  It's
3410          * still possible the snapshot will have disappeared by the
3411          * time our request arrives at the osd, but there's no sense in
3412          * sending it if we already know.
3413          */
3414         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3415                 dout("request for non-existent snapshot");
3416                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3417                 result = -ENXIO;
3418                 goto err_rq;
3419         }
3420
3421         if (offset && length > U64_MAX - offset + 1) {
3422                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3423                          length);
3424                 result = -EINVAL;
3425                 goto err_rq;    /* Shouldn't happen */
3426         }
3427
3428         blk_mq_start_request(rq);
3429
3430         down_read(&rbd_dev->header_rwsem);
3431         mapping_size = rbd_dev->mapping.size;
3432         if (op_type != OBJ_OP_READ) {
3433                 snapc = rbd_dev->header.snapc;
3434                 ceph_get_snap_context(snapc);
3435         }
3436         up_read(&rbd_dev->header_rwsem);
3437
3438         if (offset + length > mapping_size) {
3439                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3440                          length, mapping_size);
3441                 result = -EIO;
3442                 goto err_rq;
3443         }
3444
3445         img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3446                                              snapc);
3447         if (!img_request) {
3448                 result = -ENOMEM;
3449                 goto err_rq;
3450         }
3451         img_request->rq = rq;
3452         snapc = NULL; /* img_request consumes a ref */
3453
3454         if (op_type == OBJ_OP_DISCARD)
3455                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3456                                               NULL);
3457         else
3458                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3459                                               rq->bio);
3460         if (result)
3461                 goto err_img_request;
3462
3463         result = rbd_img_request_submit(img_request);
3464         if (result)
3465                 goto err_img_request;
3466
3467         return;
3468
3469 err_img_request:
3470         rbd_img_request_put(img_request);
3471 err_rq:
3472         if (result)
3473                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3474                          obj_op_name(op_type), length, offset, result);
3475         ceph_put_snap_context(snapc);
3476 err:
3477         blk_mq_end_request(rq, result);
3478 }
3479
3480 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3481                 const struct blk_mq_queue_data *bd)
3482 {
3483         struct request *rq = bd->rq;
3484         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3485
3486         queue_work(rbd_wq, work);
3487         return BLK_MQ_RQ_QUEUE_OK;
3488 }
3489
3490 static void rbd_free_disk(struct rbd_device *rbd_dev)
3491 {
3492         struct gendisk *disk = rbd_dev->disk;
3493
3494         if (!disk)
3495                 return;
3496
3497         rbd_dev->disk = NULL;
3498         if (disk->flags & GENHD_FL_UP) {
3499                 del_gendisk(disk);
3500                 if (disk->queue)
3501                         blk_cleanup_queue(disk->queue);
3502                 blk_mq_free_tag_set(&rbd_dev->tag_set);
3503         }
3504         put_disk(disk);
3505 }
3506
3507 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3508                                 const char *object_name,
3509                                 u64 offset, u64 length, void *buf)
3510
3511 {
3512         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3513         struct rbd_obj_request *obj_request;
3514         struct page **pages = NULL;
3515         u32 page_count;
3516         size_t size;
3517         int ret;
3518
3519         page_count = (u32) calc_pages_for(offset, length);
3520         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3521         if (IS_ERR(pages))
3522                 return PTR_ERR(pages);
3523
3524         ret = -ENOMEM;
3525         obj_request = rbd_obj_request_create(object_name, offset, length,
3526                                                         OBJ_REQUEST_PAGES);
3527         if (!obj_request)
3528                 goto out;
3529
3530         obj_request->pages = pages;
3531         obj_request->page_count = page_count;
3532
3533         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3534                                                   obj_request);
3535         if (!obj_request->osd_req)
3536                 goto out;
3537
3538         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3539                                         offset, length, 0, 0);
3540         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3541                                         obj_request->pages,
3542                                         obj_request->length,
3543                                         obj_request->offset & ~PAGE_MASK,
3544                                         false, false);
3545         rbd_osd_req_format_read(obj_request);
3546
3547         ret = rbd_obj_request_submit(osdc, obj_request);
3548         if (ret)
3549                 goto out;
3550         ret = rbd_obj_request_wait(obj_request);
3551         if (ret)
3552                 goto out;
3553
3554         ret = obj_request->result;
3555         if (ret < 0)
3556                 goto out;
3557
3558         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3559         size = (size_t) obj_request->xferred;
3560         ceph_copy_from_page_vector(pages, buf, 0, size);
3561         rbd_assert(size <= (size_t)INT_MAX);
3562         ret = (int)size;
3563 out:
3564         if (obj_request)
3565                 rbd_obj_request_put(obj_request);
3566         else
3567                 ceph_release_page_vector(pages, page_count);
3568
3569         return ret;
3570 }
3571
3572 /*
3573  * Read the complete header for the given rbd device.  On successful
3574  * return, the rbd_dev->header field will contain up-to-date
3575  * information about the image.
3576  */
3577 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3578 {
3579         struct rbd_image_header_ondisk *ondisk = NULL;
3580         u32 snap_count = 0;
3581         u64 names_size = 0;
3582         u32 want_count;
3583         int ret;
3584
3585         /*
3586          * The complete header will include an array of its 64-bit
3587          * snapshot ids, followed by the names of those snapshots as
3588          * a contiguous block of NUL-terminated strings.  Note that
3589          * the number of snapshots could change by the time we read
3590          * it in, in which case we re-read it.
3591          */
3592         do {
3593                 size_t size;
3594
3595                 kfree(ondisk);
3596
3597                 size = sizeof (*ondisk);
3598                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3599                 size += names_size;
3600                 ondisk = kmalloc(size, GFP_KERNEL);
3601                 if (!ondisk)
3602                         return -ENOMEM;
3603
3604                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_oid.name,
3605                                        0, size, ondisk);
3606                 if (ret < 0)
3607                         goto out;
3608                 if ((size_t)ret < size) {
3609                         ret = -ENXIO;
3610                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3611                                 size, ret);
3612                         goto out;
3613                 }
3614                 if (!rbd_dev_ondisk_valid(ondisk)) {
3615                         ret = -ENXIO;
3616                         rbd_warn(rbd_dev, "invalid header");
3617                         goto out;
3618                 }
3619
3620                 names_size = le64_to_cpu(ondisk->snap_names_len);
3621                 want_count = snap_count;
3622                 snap_count = le32_to_cpu(ondisk->snap_count);
3623         } while (snap_count != want_count);
3624
3625         ret = rbd_header_from_disk(rbd_dev, ondisk);
3626 out:
3627         kfree(ondisk);
3628
3629         return ret;
3630 }
3631
3632 /*
3633  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3634  * has disappeared from the (just updated) snapshot context.
3635  */
3636 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3637 {
3638         u64 snap_id;
3639
3640         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3641                 return;
3642
3643         snap_id = rbd_dev->spec->snap_id;
3644         if (snap_id == CEPH_NOSNAP)
3645                 return;
3646
3647         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3648                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3649 }
3650
3651 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3652 {
3653         sector_t size;
3654
3655         /*
3656          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
3657          * try to update its size.  If REMOVING is set, updating size
3658          * is just useless work since the device can't be opened.
3659          */
3660         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
3661             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
3662                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3663                 dout("setting size to %llu sectors", (unsigned long long)size);
3664                 set_capacity(rbd_dev->disk, size);
3665                 revalidate_disk(rbd_dev->disk);
3666         }
3667 }
3668
3669 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3670 {
3671         u64 mapping_size;
3672         int ret;
3673
3674         down_write(&rbd_dev->header_rwsem);
3675         mapping_size = rbd_dev->mapping.size;
3676
3677         ret = rbd_dev_header_info(rbd_dev);
3678         if (ret)
3679                 goto out;
3680
3681         /*
3682          * If there is a parent, see if it has disappeared due to the
3683          * mapped image getting flattened.
3684          */
3685         if (rbd_dev->parent) {
3686                 ret = rbd_dev_v2_parent_info(rbd_dev);
3687                 if (ret)
3688                         goto out;
3689         }
3690
3691         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3692                 rbd_dev->mapping.size = rbd_dev->header.image_size;
3693         } else {
3694                 /* validate mapped snapshot's EXISTS flag */
3695                 rbd_exists_validate(rbd_dev);
3696         }
3697
3698 out:
3699         up_write(&rbd_dev->header_rwsem);
3700         if (!ret && mapping_size != rbd_dev->mapping.size)
3701                 rbd_dev_update_size(rbd_dev);
3702
3703         return ret;
3704 }
3705
3706 static int rbd_init_request(void *data, struct request *rq,
3707                 unsigned int hctx_idx, unsigned int request_idx,
3708                 unsigned int numa_node)
3709 {
3710         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3711
3712         INIT_WORK(work, rbd_queue_workfn);
3713         return 0;
3714 }
3715
3716 static struct blk_mq_ops rbd_mq_ops = {
3717         .queue_rq       = rbd_queue_rq,
3718         .map_queue      = blk_mq_map_queue,
3719         .init_request   = rbd_init_request,
3720 };
3721
3722 static int rbd_init_disk(struct rbd_device *rbd_dev)
3723 {
3724         struct gendisk *disk;
3725         struct request_queue *q;
3726         u64 segment_size;
3727         int err;
3728
3729         /* create gendisk info */
3730         disk = alloc_disk(single_major ?
3731                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3732                           RBD_MINORS_PER_MAJOR);
3733         if (!disk)
3734                 return -ENOMEM;
3735
3736         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3737                  rbd_dev->dev_id);
3738         disk->major = rbd_dev->major;
3739         disk->first_minor = rbd_dev->minor;
3740         if (single_major)
3741                 disk->flags |= GENHD_FL_EXT_DEVT;
3742         disk->fops = &rbd_bd_ops;
3743         disk->private_data = rbd_dev;
3744
3745         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3746         rbd_dev->tag_set.ops = &rbd_mq_ops;
3747         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3748         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3749         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3750         rbd_dev->tag_set.nr_hw_queues = 1;
3751         rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3752
3753         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3754         if (err)
3755                 goto out_disk;
3756
3757         q = blk_mq_init_queue(&rbd_dev->tag_set);
3758         if (IS_ERR(q)) {
3759                 err = PTR_ERR(q);
3760                 goto out_tag_set;
3761         }
3762
3763         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3764         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3765
3766         /* set io sizes to object size */
3767         segment_size = rbd_obj_bytes(&rbd_dev->header);
3768         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3769         q->limits.max_sectors = queue_max_hw_sectors(q);
3770         blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
3771         blk_queue_max_segment_size(q, segment_size);
3772         blk_queue_io_min(q, segment_size);
3773         blk_queue_io_opt(q, segment_size);
3774
3775         /* enable the discard support */
3776         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3777         q->limits.discard_granularity = segment_size;
3778         q->limits.discard_alignment = segment_size;
3779         blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
3780         q->limits.discard_zeroes_data = 1;
3781
3782         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
3783                 q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
3784
3785         disk->queue = q;
3786
3787         q->queuedata = rbd_dev;
3788
3789         rbd_dev->disk = disk;
3790
3791         return 0;
3792 out_tag_set:
3793         blk_mq_free_tag_set(&rbd_dev->tag_set);
3794 out_disk:
3795         put_disk(disk);
3796         return err;
3797 }
3798
3799 /*
3800   sysfs
3801 */
3802
3803 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3804 {
3805         return container_of(dev, struct rbd_device, dev);
3806 }
3807
3808 static ssize_t rbd_size_show(struct device *dev,
3809                              struct device_attribute *attr, char *buf)
3810 {
3811         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3812
3813         return sprintf(buf, "%llu\n",
3814                 (unsigned long long)rbd_dev->mapping.size);
3815 }
3816
3817 /*
3818  * Note this shows the features for whatever's mapped, which is not
3819  * necessarily the base image.
3820  */
3821 static ssize_t rbd_features_show(struct device *dev,
3822                              struct device_attribute *attr, char *buf)
3823 {
3824         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3825
3826         return sprintf(buf, "0x%016llx\n",
3827                         (unsigned long long)rbd_dev->mapping.features);
3828 }
3829
3830 static ssize_t rbd_major_show(struct device *dev,
3831                               struct device_attribute *attr, char *buf)
3832 {
3833         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3834
3835         if (rbd_dev->major)
3836                 return sprintf(buf, "%d\n", rbd_dev->major);
3837
3838         return sprintf(buf, "(none)\n");
3839 }
3840
3841 static ssize_t rbd_minor_show(struct device *dev,
3842                               struct device_attribute *attr, char *buf)
3843 {
3844         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3845
3846         return sprintf(buf, "%d\n", rbd_dev->minor);
3847 }
3848
3849 static ssize_t rbd_client_id_show(struct device *dev,
3850                                   struct device_attribute *attr, char *buf)
3851 {
3852         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3853
3854         return sprintf(buf, "client%lld\n",
3855                         ceph_client_id(rbd_dev->rbd_client->client));
3856 }
3857
3858 static ssize_t rbd_pool_show(struct device *dev,
3859                              struct device_attribute *attr, char *buf)
3860 {
3861         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3862
3863         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3864 }
3865
3866 static ssize_t rbd_pool_id_show(struct device *dev,
3867                              struct device_attribute *attr, char *buf)
3868 {
3869         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3870
3871         return sprintf(buf, "%llu\n",
3872                         (unsigned long long) rbd_dev->spec->pool_id);
3873 }
3874
3875 static ssize_t rbd_name_show(struct device *dev,
3876                              struct device_attribute *attr, char *buf)
3877 {
3878         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3879
3880         if (rbd_dev->spec->image_name)
3881                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3882
3883         return sprintf(buf, "(unknown)\n");
3884 }
3885
3886 static ssize_t rbd_image_id_show(struct device *dev,
3887                              struct device_attribute *attr, char *buf)
3888 {
3889         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3890
3891         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3892 }
3893
3894 /*
3895  * Shows the name of the currently-mapped snapshot (or
3896  * RBD_SNAP_HEAD_NAME for the base image).
3897  */
3898 static ssize_t rbd_snap_show(struct device *dev,
3899                              struct device_attribute *attr,
3900                              char *buf)
3901 {
3902         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3903
3904         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3905 }
3906
3907 /*
3908  * For a v2 image, shows the chain of parent images, separated by empty
3909  * lines.  For v1 images or if there is no parent, shows "(no parent
3910  * image)".
3911  */
3912 static ssize_t rbd_parent_show(struct device *dev,
3913                                struct device_attribute *attr,
3914                                char *buf)
3915 {
3916         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3917         ssize_t count = 0;
3918
3919         if (!rbd_dev->parent)
3920                 return sprintf(buf, "(no parent image)\n");
3921
3922         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3923                 struct rbd_spec *spec = rbd_dev->parent_spec;
3924
3925                 count += sprintf(&buf[count], "%s"
3926                             "pool_id %llu\npool_name %s\n"
3927                             "image_id %s\nimage_name %s\n"
3928                             "snap_id %llu\nsnap_name %s\n"
3929                             "overlap %llu\n",
3930                             !count ? "" : "\n", /* first? */
3931                             spec->pool_id, spec->pool_name,
3932                             spec->image_id, spec->image_name ?: "(unknown)",
3933                             spec->snap_id, spec->snap_name,
3934                             rbd_dev->parent_overlap);
3935         }
3936
3937         return count;
3938 }
3939
3940 static ssize_t rbd_image_refresh(struct device *dev,
3941                                  struct device_attribute *attr,
3942                                  const char *buf,
3943                                  size_t size)
3944 {
3945         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3946         int ret;
3947
3948         ret = rbd_dev_refresh(rbd_dev);
3949         if (ret)
3950                 return ret;
3951
3952         return size;
3953 }
3954
3955 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3956 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3957 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3958 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3959 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3960 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3961 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3962 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3963 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3964 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3965 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3966 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3967
3968 static struct attribute *rbd_attrs[] = {
3969         &dev_attr_size.attr,
3970         &dev_attr_features.attr,
3971         &dev_attr_major.attr,
3972         &dev_attr_minor.attr,
3973         &dev_attr_client_id.attr,
3974         &dev_attr_pool.attr,
3975         &dev_attr_pool_id.attr,
3976         &dev_attr_name.attr,
3977         &dev_attr_image_id.attr,
3978         &dev_attr_current_snap.attr,
3979         &dev_attr_parent.attr,
3980         &dev_attr_refresh.attr,
3981         NULL
3982 };
3983
3984 static struct attribute_group rbd_attr_group = {
3985         .attrs = rbd_attrs,
3986 };
3987
3988 static const struct attribute_group *rbd_attr_groups[] = {
3989         &rbd_attr_group,
3990         NULL
3991 };
3992
3993 static void rbd_dev_release(struct device *dev);
3994
3995 static struct device_type rbd_device_type = {
3996         .name           = "rbd",
3997         .groups         = rbd_attr_groups,
3998         .release        = rbd_dev_release,
3999 };
4000
4001 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4002 {
4003         kref_get(&spec->kref);
4004
4005         return spec;
4006 }
4007
4008 static void rbd_spec_free(struct kref *kref);
4009 static void rbd_spec_put(struct rbd_spec *spec)
4010 {
4011         if (spec)
4012                 kref_put(&spec->kref, rbd_spec_free);
4013 }
4014
4015 static struct rbd_spec *rbd_spec_alloc(void)
4016 {
4017         struct rbd_spec *spec;
4018
4019         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4020         if (!spec)
4021                 return NULL;
4022
4023         spec->pool_id = CEPH_NOPOOL;
4024         spec->snap_id = CEPH_NOSNAP;
4025         kref_init(&spec->kref);
4026
4027         return spec;
4028 }
4029
4030 static void rbd_spec_free(struct kref *kref)
4031 {
4032         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4033
4034         kfree(spec->pool_name);
4035         kfree(spec->image_id);
4036         kfree(spec->image_name);
4037         kfree(spec->snap_name);
4038         kfree(spec);
4039 }
4040
4041 static void rbd_dev_release(struct device *dev)
4042 {
4043         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4044         bool need_put = !!rbd_dev->opts;
4045
4046         ceph_oid_destroy(&rbd_dev->header_oid);
4047
4048         rbd_put_client(rbd_dev->rbd_client);
4049         rbd_spec_put(rbd_dev->spec);
4050         kfree(rbd_dev->opts);
4051         kfree(rbd_dev);
4052
4053         /*
4054          * This is racy, but way better than putting module outside of
4055          * the release callback.  The race window is pretty small, so
4056          * doing something similar to dm (dm-builtin.c) is overkill.
4057          */
4058         if (need_put)
4059                 module_put(THIS_MODULE);
4060 }
4061
4062 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4063                                          struct rbd_spec *spec,
4064                                          struct rbd_options *opts)
4065 {
4066         struct rbd_device *rbd_dev;
4067
4068         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4069         if (!rbd_dev)
4070                 return NULL;
4071
4072         spin_lock_init(&rbd_dev->lock);
4073         rbd_dev->flags = 0;
4074         atomic_set(&rbd_dev->parent_ref, 0);
4075         INIT_LIST_HEAD(&rbd_dev->node);
4076         init_rwsem(&rbd_dev->header_rwsem);
4077
4078         ceph_oid_init(&rbd_dev->header_oid);
4079
4080         rbd_dev->dev.bus = &rbd_bus_type;
4081         rbd_dev->dev.type = &rbd_device_type;
4082         rbd_dev->dev.parent = &rbd_root_dev;
4083         device_initialize(&rbd_dev->dev);
4084
4085         rbd_dev->rbd_client = rbdc;
4086         rbd_dev->spec = spec;
4087         rbd_dev->opts = opts;
4088
4089         /* Initialize the layout used for all rbd requests */
4090
4091         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4092         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4093         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4094         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4095
4096         /*
4097          * If this is a mapping rbd_dev (as opposed to a parent one),
4098          * pin our module.  We have a ref from do_rbd_add(), so use
4099          * __module_get().
4100          */
4101         if (rbd_dev->opts)
4102                 __module_get(THIS_MODULE);
4103
4104         return rbd_dev;
4105 }
4106
4107 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4108 {
4109         if (rbd_dev)
4110                 put_device(&rbd_dev->dev);
4111 }
4112
4113 /*
4114  * Get the size and object order for an image snapshot, or if
4115  * snap_id is CEPH_NOSNAP, gets this information for the base
4116  * image.
4117  */
4118 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4119                                 u8 *order, u64 *snap_size)
4120 {
4121         __le64 snapid = cpu_to_le64(snap_id);
4122         int ret;
4123         struct {
4124                 u8 order;
4125                 __le64 size;
4126         } __attribute__ ((packed)) size_buf = { 0 };
4127
4128         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4129                                 "rbd", "get_size",
4130                                 &snapid, sizeof (snapid),
4131                                 &size_buf, sizeof (size_buf));
4132         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4133         if (ret < 0)
4134                 return ret;
4135         if (ret < sizeof (size_buf))
4136                 return -ERANGE;
4137
4138         if (order) {
4139                 *order = size_buf.order;
4140                 dout("  order %u", (unsigned int)*order);
4141         }
4142         *snap_size = le64_to_cpu(size_buf.size);
4143
4144         dout("  snap_id 0x%016llx snap_size = %llu\n",
4145                 (unsigned long long)snap_id,
4146                 (unsigned long long)*snap_size);
4147
4148         return 0;
4149 }
4150
4151 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4152 {
4153         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4154                                         &rbd_dev->header.obj_order,
4155                                         &rbd_dev->header.image_size);
4156 }
4157
4158 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4159 {
4160         void *reply_buf;
4161         int ret;
4162         void *p;
4163
4164         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4165         if (!reply_buf)
4166                 return -ENOMEM;
4167
4168         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4169                                 "rbd", "get_object_prefix", NULL, 0,
4170                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4171         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4172         if (ret < 0)
4173                 goto out;
4174
4175         p = reply_buf;
4176         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4177                                                 p + ret, NULL, GFP_NOIO);
4178         ret = 0;
4179
4180         if (IS_ERR(rbd_dev->header.object_prefix)) {
4181                 ret = PTR_ERR(rbd_dev->header.object_prefix);
4182                 rbd_dev->header.object_prefix = NULL;
4183         } else {
4184                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4185         }
4186 out:
4187         kfree(reply_buf);
4188
4189         return ret;
4190 }
4191
4192 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4193                 u64 *snap_features)
4194 {
4195         __le64 snapid = cpu_to_le64(snap_id);
4196         struct {
4197                 __le64 features;
4198                 __le64 incompat;
4199         } __attribute__ ((packed)) features_buf = { 0 };
4200         u64 unsup;
4201         int ret;
4202
4203         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4204                                 "rbd", "get_features",
4205                                 &snapid, sizeof (snapid),
4206                                 &features_buf, sizeof (features_buf));
4207         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4208         if (ret < 0)
4209                 return ret;
4210         if (ret < sizeof (features_buf))
4211                 return -ERANGE;
4212
4213         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4214         if (unsup) {
4215                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4216                          unsup);
4217                 return -ENXIO;
4218         }
4219
4220         *snap_features = le64_to_cpu(features_buf.features);
4221
4222         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4223                 (unsigned long long)snap_id,
4224                 (unsigned long long)*snap_features,
4225                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4226
4227         return 0;
4228 }
4229
4230 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4231 {
4232         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4233                                                 &rbd_dev->header.features);
4234 }
4235
4236 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4237 {
4238         struct rbd_spec *parent_spec;
4239         size_t size;
4240         void *reply_buf = NULL;
4241         __le64 snapid;
4242         void *p;
4243         void *end;
4244         u64 pool_id;
4245         char *image_id;
4246         u64 snap_id;
4247         u64 overlap;
4248         int ret;
4249
4250         parent_spec = rbd_spec_alloc();
4251         if (!parent_spec)
4252                 return -ENOMEM;
4253
4254         size = sizeof (__le64) +                                /* pool_id */
4255                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4256                 sizeof (__le64) +                               /* snap_id */
4257                 sizeof (__le64);                                /* overlap */
4258         reply_buf = kmalloc(size, GFP_KERNEL);
4259         if (!reply_buf) {
4260                 ret = -ENOMEM;
4261                 goto out_err;
4262         }
4263
4264         snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4265         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4266                                 "rbd", "get_parent",
4267                                 &snapid, sizeof (snapid),
4268                                 reply_buf, size);
4269         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4270         if (ret < 0)
4271                 goto out_err;
4272
4273         p = reply_buf;
4274         end = reply_buf + ret;
4275         ret = -ERANGE;
4276         ceph_decode_64_safe(&p, end, pool_id, out_err);
4277         if (pool_id == CEPH_NOPOOL) {
4278                 /*
4279                  * Either the parent never existed, or we have
4280                  * record of it but the image got flattened so it no
4281                  * longer has a parent.  When the parent of a
4282                  * layered image disappears we immediately set the
4283                  * overlap to 0.  The effect of this is that all new
4284                  * requests will be treated as if the image had no
4285                  * parent.
4286                  */
4287                 if (rbd_dev->parent_overlap) {
4288                         rbd_dev->parent_overlap = 0;
4289                         rbd_dev_parent_put(rbd_dev);
4290                         pr_info("%s: clone image has been flattened\n",
4291                                 rbd_dev->disk->disk_name);
4292                 }
4293
4294                 goto out;       /* No parent?  No problem. */
4295         }
4296
4297         /* The ceph file layout needs to fit pool id in 32 bits */
4298
4299         ret = -EIO;
4300         if (pool_id > (u64)U32_MAX) {
4301                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4302                         (unsigned long long)pool_id, U32_MAX);
4303                 goto out_err;
4304         }
4305
4306         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4307         if (IS_ERR(image_id)) {
4308                 ret = PTR_ERR(image_id);
4309                 goto out_err;
4310         }
4311         ceph_decode_64_safe(&p, end, snap_id, out_err);
4312         ceph_decode_64_safe(&p, end, overlap, out_err);
4313
4314         /*
4315          * The parent won't change (except when the clone is
4316          * flattened, already handled that).  So we only need to
4317          * record the parent spec we have not already done so.
4318          */
4319         if (!rbd_dev->parent_spec) {
4320                 parent_spec->pool_id = pool_id;
4321                 parent_spec->image_id = image_id;
4322                 parent_spec->snap_id = snap_id;
4323                 rbd_dev->parent_spec = parent_spec;
4324                 parent_spec = NULL;     /* rbd_dev now owns this */
4325         } else {
4326                 kfree(image_id);
4327         }
4328
4329         /*
4330          * We always update the parent overlap.  If it's zero we issue
4331          * a warning, as we will proceed as if there was no parent.
4332          */
4333         if (!overlap) {
4334                 if (parent_spec) {
4335                         /* refresh, careful to warn just once */
4336                         if (rbd_dev->parent_overlap)
4337                                 rbd_warn(rbd_dev,
4338                                     "clone now standalone (overlap became 0)");
4339                 } else {
4340                         /* initial probe */
4341                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4342                 }
4343         }
4344         rbd_dev->parent_overlap = overlap;
4345
4346 out:
4347         ret = 0;
4348 out_err:
4349         kfree(reply_buf);
4350         rbd_spec_put(parent_spec);
4351
4352         return ret;
4353 }
4354
4355 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4356 {
4357         struct {
4358                 __le64 stripe_unit;
4359                 __le64 stripe_count;
4360         } __attribute__ ((packed)) striping_info_buf = { 0 };
4361         size_t size = sizeof (striping_info_buf);
4362         void *p;
4363         u64 obj_size;
4364         u64 stripe_unit;
4365         u64 stripe_count;
4366         int ret;
4367
4368         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4369                                 "rbd", "get_stripe_unit_count", NULL, 0,
4370                                 (char *)&striping_info_buf, size);
4371         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4372         if (ret < 0)
4373                 return ret;
4374         if (ret < size)
4375                 return -ERANGE;
4376
4377         /*
4378          * We don't actually support the "fancy striping" feature
4379          * (STRIPINGV2) yet, but if the striping sizes are the
4380          * defaults the behavior is the same as before.  So find
4381          * out, and only fail if the image has non-default values.
4382          */
4383         ret = -EINVAL;
4384         obj_size = (u64)1 << rbd_dev->header.obj_order;
4385         p = &striping_info_buf;
4386         stripe_unit = ceph_decode_64(&p);
4387         if (stripe_unit != obj_size) {
4388                 rbd_warn(rbd_dev, "unsupported stripe unit "
4389                                 "(got %llu want %llu)",
4390                                 stripe_unit, obj_size);
4391                 return -EINVAL;
4392         }
4393         stripe_count = ceph_decode_64(&p);
4394         if (stripe_count != 1) {
4395                 rbd_warn(rbd_dev, "unsupported stripe count "
4396                                 "(got %llu want 1)", stripe_count);
4397                 return -EINVAL;
4398         }
4399         rbd_dev->header.stripe_unit = stripe_unit;
4400         rbd_dev->header.stripe_count = stripe_count;
4401
4402         return 0;
4403 }
4404
4405 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4406 {
4407         size_t image_id_size;
4408         char *image_id;
4409         void *p;
4410         void *end;
4411         size_t size;
4412         void *reply_buf = NULL;
4413         size_t len = 0;
4414         char *image_name = NULL;
4415         int ret;
4416
4417         rbd_assert(!rbd_dev->spec->image_name);
4418
4419         len = strlen(rbd_dev->spec->image_id);
4420         image_id_size = sizeof (__le32) + len;
4421         image_id = kmalloc(image_id_size, GFP_KERNEL);
4422         if (!image_id)
4423                 return NULL;
4424
4425         p = image_id;
4426         end = image_id + image_id_size;
4427         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4428
4429         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4430         reply_buf = kmalloc(size, GFP_KERNEL);
4431         if (!reply_buf)
4432                 goto out;
4433
4434         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4435                                 "rbd", "dir_get_name",
4436                                 image_id, image_id_size,
4437                                 reply_buf, size);
4438         if (ret < 0)
4439                 goto out;
4440         p = reply_buf;
4441         end = reply_buf + ret;
4442
4443         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4444         if (IS_ERR(image_name))
4445                 image_name = NULL;
4446         else
4447                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4448 out:
4449         kfree(reply_buf);
4450         kfree(image_id);
4451
4452         return image_name;
4453 }
4454
4455 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4456 {
4457         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4458         const char *snap_name;
4459         u32 which = 0;
4460
4461         /* Skip over names until we find the one we are looking for */
4462
4463         snap_name = rbd_dev->header.snap_names;
4464         while (which < snapc->num_snaps) {
4465                 if (!strcmp(name, snap_name))
4466                         return snapc->snaps[which];
4467                 snap_name += strlen(snap_name) + 1;
4468                 which++;
4469         }
4470         return CEPH_NOSNAP;
4471 }
4472
4473 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4474 {
4475         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4476         u32 which;
4477         bool found = false;
4478         u64 snap_id;
4479
4480         for (which = 0; !found && which < snapc->num_snaps; which++) {
4481                 const char *snap_name;
4482
4483                 snap_id = snapc->snaps[which];
4484                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4485                 if (IS_ERR(snap_name)) {
4486                         /* ignore no-longer existing snapshots */
4487                         if (PTR_ERR(snap_name) == -ENOENT)
4488                                 continue;
4489                         else
4490                                 break;
4491                 }
4492                 found = !strcmp(name, snap_name);
4493                 kfree(snap_name);
4494         }
4495         return found ? snap_id : CEPH_NOSNAP;
4496 }
4497
4498 /*
4499  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4500  * no snapshot by that name is found, or if an error occurs.
4501  */
4502 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4503 {
4504         if (rbd_dev->image_format == 1)
4505                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4506
4507         return rbd_v2_snap_id_by_name(rbd_dev, name);
4508 }
4509
4510 /*
4511  * An image being mapped will have everything but the snap id.
4512  */
4513 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4514 {
4515         struct rbd_spec *spec = rbd_dev->spec;
4516
4517         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4518         rbd_assert(spec->image_id && spec->image_name);
4519         rbd_assert(spec->snap_name);
4520
4521         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4522                 u64 snap_id;
4523
4524                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4525                 if (snap_id == CEPH_NOSNAP)
4526                         return -ENOENT;
4527
4528                 spec->snap_id = snap_id;
4529         } else {
4530                 spec->snap_id = CEPH_NOSNAP;
4531         }
4532
4533         return 0;
4534 }
4535
4536 /*
4537  * A parent image will have all ids but none of the names.
4538  *
4539  * All names in an rbd spec are dynamically allocated.  It's OK if we
4540  * can't figure out the name for an image id.
4541  */
4542 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4543 {
4544         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4545         struct rbd_spec *spec = rbd_dev->spec;
4546         const char *pool_name;
4547         const char *image_name;
4548         const char *snap_name;
4549         int ret;
4550
4551         rbd_assert(spec->pool_id != CEPH_NOPOOL);
4552         rbd_assert(spec->image_id);
4553         rbd_assert(spec->snap_id != CEPH_NOSNAP);
4554
4555         /* Get the pool name; we have to make our own copy of this */
4556
4557         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4558         if (!pool_name) {
4559                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4560                 return -EIO;
4561         }
4562         pool_name = kstrdup(pool_name, GFP_KERNEL);
4563         if (!pool_name)
4564                 return -ENOMEM;
4565
4566         /* Fetch the image name; tolerate failure here */
4567
4568         image_name = rbd_dev_image_name(rbd_dev);
4569         if (!image_name)
4570                 rbd_warn(rbd_dev, "unable to get image name");
4571
4572         /* Fetch the snapshot name */
4573
4574         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4575         if (IS_ERR(snap_name)) {
4576                 ret = PTR_ERR(snap_name);
4577                 goto out_err;
4578         }
4579
4580         spec->pool_name = pool_name;
4581         spec->image_name = image_name;
4582         spec->snap_name = snap_name;
4583
4584         return 0;
4585
4586 out_err:
4587         kfree(image_name);
4588         kfree(pool_name);
4589         return ret;
4590 }
4591
4592 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4593 {
4594         size_t size;
4595         int ret;
4596         void *reply_buf;
4597         void *p;
4598         void *end;
4599         u64 seq;
4600         u32 snap_count;
4601         struct ceph_snap_context *snapc;
4602         u32 i;
4603
4604         /*
4605          * We'll need room for the seq value (maximum snapshot id),
4606          * snapshot count, and array of that many snapshot ids.
4607          * For now we have a fixed upper limit on the number we're
4608          * prepared to receive.
4609          */
4610         size = sizeof (__le64) + sizeof (__le32) +
4611                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4612         reply_buf = kzalloc(size, GFP_KERNEL);
4613         if (!reply_buf)
4614                 return -ENOMEM;
4615
4616         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4617                                 "rbd", "get_snapcontext", NULL, 0,
4618                                 reply_buf, size);
4619         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4620         if (ret < 0)
4621                 goto out;
4622
4623         p = reply_buf;
4624         end = reply_buf + ret;
4625         ret = -ERANGE;
4626         ceph_decode_64_safe(&p, end, seq, out);
4627         ceph_decode_32_safe(&p, end, snap_count, out);
4628
4629         /*
4630          * Make sure the reported number of snapshot ids wouldn't go
4631          * beyond the end of our buffer.  But before checking that,
4632          * make sure the computed size of the snapshot context we
4633          * allocate is representable in a size_t.
4634          */
4635         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4636                                  / sizeof (u64)) {
4637                 ret = -EINVAL;
4638                 goto out;
4639         }
4640         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4641                 goto out;
4642         ret = 0;
4643
4644         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4645         if (!snapc) {
4646                 ret = -ENOMEM;
4647                 goto out;
4648         }
4649         snapc->seq = seq;
4650         for (i = 0; i < snap_count; i++)
4651                 snapc->snaps[i] = ceph_decode_64(&p);
4652
4653         ceph_put_snap_context(rbd_dev->header.snapc);
4654         rbd_dev->header.snapc = snapc;
4655
4656         dout("  snap context seq = %llu, snap_count = %u\n",
4657                 (unsigned long long)seq, (unsigned int)snap_count);
4658 out:
4659         kfree(reply_buf);
4660
4661         return ret;
4662 }
4663
4664 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4665                                         u64 snap_id)
4666 {
4667         size_t size;
4668         void *reply_buf;
4669         __le64 snapid;
4670         int ret;
4671         void *p;
4672         void *end;
4673         char *snap_name;
4674
4675         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4676         reply_buf = kmalloc(size, GFP_KERNEL);
4677         if (!reply_buf)
4678                 return ERR_PTR(-ENOMEM);
4679
4680         snapid = cpu_to_le64(snap_id);
4681         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4682                                 "rbd", "get_snapshot_name",
4683                                 &snapid, sizeof (snapid),
4684                                 reply_buf, size);
4685         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4686         if (ret < 0) {
4687                 snap_name = ERR_PTR(ret);
4688                 goto out;
4689         }
4690
4691         p = reply_buf;
4692         end = reply_buf + ret;
4693         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4694         if (IS_ERR(snap_name))
4695                 goto out;
4696
4697         dout("  snap_id 0x%016llx snap_name = %s\n",
4698                 (unsigned long long)snap_id, snap_name);
4699 out:
4700         kfree(reply_buf);
4701
4702         return snap_name;
4703 }
4704
4705 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4706 {
4707         bool first_time = rbd_dev->header.object_prefix == NULL;
4708         int ret;
4709
4710         ret = rbd_dev_v2_image_size(rbd_dev);
4711         if (ret)
4712                 return ret;
4713
4714         if (first_time) {
4715                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4716                 if (ret)
4717                         return ret;
4718         }
4719
4720         ret = rbd_dev_v2_snap_context(rbd_dev);
4721         if (ret && first_time) {
4722                 kfree(rbd_dev->header.object_prefix);
4723                 rbd_dev->header.object_prefix = NULL;
4724         }
4725
4726         return ret;
4727 }
4728
4729 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4730 {
4731         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4732
4733         if (rbd_dev->image_format == 1)
4734                 return rbd_dev_v1_header_info(rbd_dev);
4735
4736         return rbd_dev_v2_header_info(rbd_dev);
4737 }
4738
4739 /*
4740  * Get a unique rbd identifier for the given new rbd_dev, and add
4741  * the rbd_dev to the global list.
4742  */
4743 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4744 {
4745         int new_dev_id;
4746
4747         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4748                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4749                                     GFP_KERNEL);
4750         if (new_dev_id < 0)
4751                 return new_dev_id;
4752
4753         rbd_dev->dev_id = new_dev_id;
4754
4755         spin_lock(&rbd_dev_list_lock);
4756         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4757         spin_unlock(&rbd_dev_list_lock);
4758
4759         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4760
4761         return 0;
4762 }
4763
4764 /*
4765  * Remove an rbd_dev from the global list, and record that its
4766  * identifier is no longer in use.
4767  */
4768 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4769 {
4770         spin_lock(&rbd_dev_list_lock);
4771         list_del_init(&rbd_dev->node);
4772         spin_unlock(&rbd_dev_list_lock);
4773
4774         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4775
4776         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4777 }
4778
4779 /*
4780  * Skips over white space at *buf, and updates *buf to point to the
4781  * first found non-space character (if any). Returns the length of
4782  * the token (string of non-white space characters) found.  Note
4783  * that *buf must be terminated with '\0'.
4784  */
4785 static inline size_t next_token(const char **buf)
4786 {
4787         /*
4788         * These are the characters that produce nonzero for
4789         * isspace() in the "C" and "POSIX" locales.
4790         */
4791         const char *spaces = " \f\n\r\t\v";
4792
4793         *buf += strspn(*buf, spaces);   /* Find start of token */
4794
4795         return strcspn(*buf, spaces);   /* Return token length */
4796 }
4797
4798 /*
4799  * Finds the next token in *buf, dynamically allocates a buffer big
4800  * enough to hold a copy of it, and copies the token into the new
4801  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4802  * that a duplicate buffer is created even for a zero-length token.
4803  *
4804  * Returns a pointer to the newly-allocated duplicate, or a null
4805  * pointer if memory for the duplicate was not available.  If
4806  * the lenp argument is a non-null pointer, the length of the token
4807  * (not including the '\0') is returned in *lenp.
4808  *
4809  * If successful, the *buf pointer will be updated to point beyond
4810  * the end of the found token.
4811  *
4812  * Note: uses GFP_KERNEL for allocation.
4813  */
4814 static inline char *dup_token(const char **buf, size_t *lenp)
4815 {
4816         char *dup;
4817         size_t len;
4818
4819         len = next_token(buf);
4820         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4821         if (!dup)
4822                 return NULL;
4823         *(dup + len) = '\0';
4824         *buf += len;
4825
4826         if (lenp)
4827                 *lenp = len;
4828
4829         return dup;
4830 }
4831
4832 /*
4833  * Parse the options provided for an "rbd add" (i.e., rbd image
4834  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4835  * and the data written is passed here via a NUL-terminated buffer.
4836  * Returns 0 if successful or an error code otherwise.
4837  *
4838  * The information extracted from these options is recorded in
4839  * the other parameters which return dynamically-allocated
4840  * structures:
4841  *  ceph_opts
4842  *      The address of a pointer that will refer to a ceph options
4843  *      structure.  Caller must release the returned pointer using
4844  *      ceph_destroy_options() when it is no longer needed.
4845  *  rbd_opts
4846  *      Address of an rbd options pointer.  Fully initialized by
4847  *      this function; caller must release with kfree().
4848  *  spec
4849  *      Address of an rbd image specification pointer.  Fully
4850  *      initialized by this function based on parsed options.
4851  *      Caller must release with rbd_spec_put().
4852  *
4853  * The options passed take this form:
4854  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4855  * where:
4856  *  <mon_addrs>
4857  *      A comma-separated list of one or more monitor addresses.
4858  *      A monitor address is an ip address, optionally followed
4859  *      by a port number (separated by a colon).
4860  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4861  *  <options>
4862  *      A comma-separated list of ceph and/or rbd options.
4863  *  <pool_name>
4864  *      The name of the rados pool containing the rbd image.
4865  *  <image_name>
4866  *      The name of the image in that pool to map.
4867  *  <snap_id>
4868  *      An optional snapshot id.  If provided, the mapping will
4869  *      present data from the image at the time that snapshot was
4870  *      created.  The image head is used if no snapshot id is
4871  *      provided.  Snapshot mappings are always read-only.
4872  */
4873 static int rbd_add_parse_args(const char *buf,
4874                                 struct ceph_options **ceph_opts,
4875                                 struct rbd_options **opts,
4876                                 struct rbd_spec **rbd_spec)
4877 {
4878         size_t len;
4879         char *options;
4880         const char *mon_addrs;
4881         char *snap_name;
4882         size_t mon_addrs_size;
4883         struct rbd_spec *spec = NULL;
4884         struct rbd_options *rbd_opts = NULL;
4885         struct ceph_options *copts;
4886         int ret;
4887
4888         /* The first four tokens are required */
4889
4890         len = next_token(&buf);
4891         if (!len) {
4892                 rbd_warn(NULL, "no monitor address(es) provided");
4893                 return -EINVAL;
4894         }
4895         mon_addrs = buf;
4896         mon_addrs_size = len + 1;
4897         buf += len;
4898
4899         ret = -EINVAL;
4900         options = dup_token(&buf, NULL);
4901         if (!options)
4902                 return -ENOMEM;
4903         if (!*options) {
4904                 rbd_warn(NULL, "no options provided");
4905                 goto out_err;
4906         }
4907
4908         spec = rbd_spec_alloc();
4909         if (!spec)
4910                 goto out_mem;
4911
4912         spec->pool_name = dup_token(&buf, NULL);
4913         if (!spec->pool_name)
4914                 goto out_mem;
4915         if (!*spec->pool_name) {
4916                 rbd_warn(NULL, "no pool name provided");
4917                 goto out_err;
4918         }
4919
4920         spec->image_name = dup_token(&buf, NULL);
4921         if (!spec->image_name)
4922                 goto out_mem;
4923         if (!*spec->image_name) {
4924                 rbd_warn(NULL, "no image name provided");
4925                 goto out_err;
4926         }
4927
4928         /*
4929          * Snapshot name is optional; default is to use "-"
4930          * (indicating the head/no snapshot).
4931          */
4932         len = next_token(&buf);
4933         if (!len) {
4934                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4935                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4936         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4937                 ret = -ENAMETOOLONG;
4938                 goto out_err;
4939         }
4940         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4941         if (!snap_name)
4942                 goto out_mem;
4943         *(snap_name + len) = '\0';
4944         spec->snap_name = snap_name;
4945
4946         /* Initialize all rbd options to the defaults */
4947
4948         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4949         if (!rbd_opts)
4950                 goto out_mem;
4951
4952         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4953         rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
4954
4955         copts = ceph_parse_options(options, mon_addrs,
4956                                         mon_addrs + mon_addrs_size - 1,
4957                                         parse_rbd_opts_token, rbd_opts);
4958         if (IS_ERR(copts)) {
4959                 ret = PTR_ERR(copts);
4960                 goto out_err;
4961         }
4962         kfree(options);
4963
4964         *ceph_opts = copts;
4965         *opts = rbd_opts;
4966         *rbd_spec = spec;
4967
4968         return 0;
4969 out_mem:
4970         ret = -ENOMEM;
4971 out_err:
4972         kfree(rbd_opts);
4973         rbd_spec_put(spec);
4974         kfree(options);
4975
4976         return ret;
4977 }
4978
4979 /*
4980  * Return pool id (>= 0) or a negative error code.
4981  */
4982 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4983 {
4984         struct ceph_options *opts = rbdc->client->options;
4985         u64 newest_epoch;
4986         int tries = 0;
4987         int ret;
4988
4989 again:
4990         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4991         if (ret == -ENOENT && tries++ < 1) {
4992                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4993                                                &newest_epoch);
4994                 if (ret < 0)
4995                         return ret;
4996
4997                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4998                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
4999                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5000                                                      newest_epoch,
5001                                                      opts->mount_timeout);
5002                         goto again;
5003                 } else {
5004                         /* the osdmap we have is new enough */
5005                         return -ENOENT;
5006                 }
5007         }
5008
5009         return ret;
5010 }
5011
5012 /*
5013  * An rbd format 2 image has a unique identifier, distinct from the
5014  * name given to it by the user.  Internally, that identifier is
5015  * what's used to specify the names of objects related to the image.
5016  *
5017  * A special "rbd id" object is used to map an rbd image name to its
5018  * id.  If that object doesn't exist, then there is no v2 rbd image
5019  * with the supplied name.
5020  *
5021  * This function will record the given rbd_dev's image_id field if
5022  * it can be determined, and in that case will return 0.  If any
5023  * errors occur a negative errno will be returned and the rbd_dev's
5024  * image_id field will be unchanged (and should be NULL).
5025  */
5026 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5027 {
5028         int ret;
5029         size_t size;
5030         char *object_name;
5031         void *response;
5032         char *image_id;
5033
5034         /*
5035          * When probing a parent image, the image id is already
5036          * known (and the image name likely is not).  There's no
5037          * need to fetch the image id again in this case.  We
5038          * do still need to set the image format though.
5039          */
5040         if (rbd_dev->spec->image_id) {
5041                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5042
5043                 return 0;
5044         }
5045
5046         /*
5047          * First, see if the format 2 image id file exists, and if
5048          * so, get the image's persistent id from it.
5049          */
5050         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5051         object_name = kmalloc(size, GFP_NOIO);
5052         if (!object_name)
5053                 return -ENOMEM;
5054         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5055         dout("rbd id object name is %s\n", object_name);
5056
5057         /* Response will be an encoded string, which includes a length */
5058
5059         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5060         response = kzalloc(size, GFP_NOIO);
5061         if (!response) {
5062                 ret = -ENOMEM;
5063                 goto out;
5064         }
5065
5066         /* If it doesn't exist we'll assume it's a format 1 image */
5067
5068         ret = rbd_obj_method_sync(rbd_dev, object_name,
5069                                 "rbd", "get_id", NULL, 0,
5070                                 response, RBD_IMAGE_ID_LEN_MAX);
5071         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5072         if (ret == -ENOENT) {
5073                 image_id = kstrdup("", GFP_KERNEL);
5074                 ret = image_id ? 0 : -ENOMEM;
5075                 if (!ret)
5076                         rbd_dev->image_format = 1;
5077         } else if (ret >= 0) {
5078                 void *p = response;
5079
5080                 image_id = ceph_extract_encoded_string(&p, p + ret,
5081                                                 NULL, GFP_NOIO);
5082                 ret = PTR_ERR_OR_ZERO(image_id);
5083                 if (!ret)
5084                         rbd_dev->image_format = 2;
5085         }
5086
5087         if (!ret) {
5088                 rbd_dev->spec->image_id = image_id;
5089                 dout("image_id is %s\n", image_id);
5090         }
5091 out:
5092         kfree(response);
5093         kfree(object_name);
5094
5095         return ret;
5096 }
5097
5098 /*
5099  * Undo whatever state changes are made by v1 or v2 header info
5100  * call.
5101  */
5102 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5103 {
5104         struct rbd_image_header *header;
5105
5106         rbd_dev_parent_put(rbd_dev);
5107
5108         /* Free dynamic fields from the header, then zero it out */
5109
5110         header = &rbd_dev->header;
5111         ceph_put_snap_context(header->snapc);
5112         kfree(header->snap_sizes);
5113         kfree(header->snap_names);
5114         kfree(header->object_prefix);
5115         memset(header, 0, sizeof (*header));
5116 }
5117
5118 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5119 {
5120         int ret;
5121
5122         ret = rbd_dev_v2_object_prefix(rbd_dev);
5123         if (ret)
5124                 goto out_err;
5125
5126         /*
5127          * Get the and check features for the image.  Currently the
5128          * features are assumed to never change.
5129          */
5130         ret = rbd_dev_v2_features(rbd_dev);
5131         if (ret)
5132                 goto out_err;
5133
5134         /* If the image supports fancy striping, get its parameters */
5135
5136         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5137                 ret = rbd_dev_v2_striping_info(rbd_dev);
5138                 if (ret < 0)
5139                         goto out_err;
5140         }
5141         /* No support for crypto and compression type format 2 images */
5142
5143         return 0;
5144 out_err:
5145         rbd_dev->header.features = 0;
5146         kfree(rbd_dev->header.object_prefix);
5147         rbd_dev->header.object_prefix = NULL;
5148
5149         return ret;
5150 }
5151
5152 /*
5153  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5154  * rbd_dev_image_probe() recursion depth, which means it's also the
5155  * length of the already discovered part of the parent chain.
5156  */
5157 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5158 {
5159         struct rbd_device *parent = NULL;
5160         int ret;
5161
5162         if (!rbd_dev->parent_spec)
5163                 return 0;
5164
5165         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5166                 pr_info("parent chain is too long (%d)\n", depth);
5167                 ret = -EINVAL;
5168                 goto out_err;
5169         }
5170
5171         parent = rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec,
5172                                 NULL);
5173         if (!parent) {
5174                 ret = -ENOMEM;
5175                 goto out_err;
5176         }
5177
5178         /*
5179          * Images related by parent/child relationships always share
5180          * rbd_client and spec/parent_spec, so bump their refcounts.
5181          */
5182         __rbd_get_client(rbd_dev->rbd_client);
5183         rbd_spec_get(rbd_dev->parent_spec);
5184
5185         ret = rbd_dev_image_probe(parent, depth);
5186         if (ret < 0)
5187                 goto out_err;
5188
5189         rbd_dev->parent = parent;
5190         atomic_set(&rbd_dev->parent_ref, 1);
5191         return 0;
5192
5193 out_err:
5194         rbd_dev_unparent(rbd_dev);
5195         rbd_dev_destroy(parent);
5196         return ret;
5197 }
5198
5199 /*
5200  * rbd_dev->header_rwsem must be locked for write and will be unlocked
5201  * upon return.
5202  */
5203 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5204 {
5205         int ret;
5206
5207         /* Get an id and fill in device name. */
5208
5209         ret = rbd_dev_id_get(rbd_dev);
5210         if (ret)
5211                 goto err_out_unlock;
5212
5213         BUILD_BUG_ON(DEV_NAME_LEN
5214                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5215         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5216
5217         /* Record our major and minor device numbers. */
5218
5219         if (!single_major) {
5220                 ret = register_blkdev(0, rbd_dev->name);
5221                 if (ret < 0)
5222                         goto err_out_id;
5223
5224                 rbd_dev->major = ret;
5225                 rbd_dev->minor = 0;
5226         } else {
5227                 rbd_dev->major = rbd_major;
5228                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5229         }
5230
5231         /* Set up the blkdev mapping. */
5232
5233         ret = rbd_init_disk(rbd_dev);
5234         if (ret)
5235                 goto err_out_blkdev;
5236
5237         ret = rbd_dev_mapping_set(rbd_dev);
5238         if (ret)
5239                 goto err_out_disk;
5240
5241         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5242         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5243
5244         dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5245         ret = device_add(&rbd_dev->dev);
5246         if (ret)
5247                 goto err_out_mapping;
5248
5249         /* Everything's ready.  Announce the disk to the world. */
5250
5251         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5252         up_write(&rbd_dev->header_rwsem);
5253
5254         add_disk(rbd_dev->disk);
5255         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5256                 (unsigned long long) rbd_dev->mapping.size);
5257
5258         return ret;
5259
5260 err_out_mapping:
5261         rbd_dev_mapping_clear(rbd_dev);
5262 err_out_disk:
5263         rbd_free_disk(rbd_dev);
5264 err_out_blkdev:
5265         if (!single_major)
5266                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5267 err_out_id:
5268         rbd_dev_id_put(rbd_dev);
5269 err_out_unlock:
5270         up_write(&rbd_dev->header_rwsem);
5271         return ret;
5272 }
5273
5274 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5275 {
5276         struct rbd_spec *spec = rbd_dev->spec;
5277         int ret;
5278
5279         /* Record the header object name for this rbd image. */
5280
5281         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5282
5283         if (rbd_dev->image_format == 1)
5284                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5285                                        spec->image_name, RBD_SUFFIX);
5286         else
5287                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5288                                        RBD_HEADER_PREFIX, spec->image_id);
5289
5290         return ret;
5291 }
5292
5293 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5294 {
5295         rbd_dev_unprobe(rbd_dev);
5296         rbd_dev->image_format = 0;
5297         kfree(rbd_dev->spec->image_id);
5298         rbd_dev->spec->image_id = NULL;
5299
5300         rbd_dev_destroy(rbd_dev);
5301 }
5302
5303 /*
5304  * Probe for the existence of the header object for the given rbd
5305  * device.  If this image is the one being mapped (i.e., not a
5306  * parent), initiate a watch on its header object before using that
5307  * object to get detailed information about the rbd image.
5308  */
5309 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5310 {
5311         int ret;
5312
5313         /*
5314          * Get the id from the image id object.  Unless there's an
5315          * error, rbd_dev->spec->image_id will be filled in with
5316          * a dynamically-allocated string, and rbd_dev->image_format
5317          * will be set to either 1 or 2.
5318          */
5319         ret = rbd_dev_image_id(rbd_dev);
5320         if (ret)
5321                 return ret;
5322
5323         ret = rbd_dev_header_name(rbd_dev);
5324         if (ret)
5325                 goto err_out_format;
5326
5327         if (!depth) {
5328                 ret = rbd_dev_header_watch_sync(rbd_dev);
5329                 if (ret) {
5330                         if (ret == -ENOENT)
5331                                 pr_info("image %s/%s does not exist\n",
5332                                         rbd_dev->spec->pool_name,
5333                                         rbd_dev->spec->image_name);
5334                         goto err_out_format;
5335                 }
5336         }
5337
5338         ret = rbd_dev_header_info(rbd_dev);
5339         if (ret)
5340                 goto err_out_watch;
5341
5342         /*
5343          * If this image is the one being mapped, we have pool name and
5344          * id, image name and id, and snap name - need to fill snap id.
5345          * Otherwise this is a parent image, identified by pool, image
5346          * and snap ids - need to fill in names for those ids.
5347          */
5348         if (!depth)
5349                 ret = rbd_spec_fill_snap_id(rbd_dev);
5350         else
5351                 ret = rbd_spec_fill_names(rbd_dev);
5352         if (ret) {
5353                 if (ret == -ENOENT)
5354                         pr_info("snap %s/%s@%s does not exist\n",
5355                                 rbd_dev->spec->pool_name,
5356                                 rbd_dev->spec->image_name,
5357                                 rbd_dev->spec->snap_name);
5358                 goto err_out_probe;
5359         }
5360
5361         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5362                 ret = rbd_dev_v2_parent_info(rbd_dev);
5363                 if (ret)
5364                         goto err_out_probe;
5365
5366                 /*
5367                  * Need to warn users if this image is the one being
5368                  * mapped and has a parent.
5369                  */
5370                 if (!depth && rbd_dev->parent_spec)
5371                         rbd_warn(rbd_dev,
5372                                  "WARNING: kernel layering is EXPERIMENTAL!");
5373         }
5374
5375         ret = rbd_dev_probe_parent(rbd_dev, depth);
5376         if (ret)
5377                 goto err_out_probe;
5378
5379         dout("discovered format %u image, header name is %s\n",
5380                 rbd_dev->image_format, rbd_dev->header_oid.name);
5381         return 0;
5382
5383 err_out_probe:
5384         rbd_dev_unprobe(rbd_dev);
5385 err_out_watch:
5386         if (!depth)
5387                 rbd_dev_header_unwatch_sync(rbd_dev);
5388 err_out_format:
5389         rbd_dev->image_format = 0;
5390         kfree(rbd_dev->spec->image_id);
5391         rbd_dev->spec->image_id = NULL;
5392         return ret;
5393 }
5394
5395 static ssize_t do_rbd_add(struct bus_type *bus,
5396                           const char *buf,
5397                           size_t count)
5398 {
5399         struct rbd_device *rbd_dev = NULL;
5400         struct ceph_options *ceph_opts = NULL;
5401         struct rbd_options *rbd_opts = NULL;
5402         struct rbd_spec *spec = NULL;
5403         struct rbd_client *rbdc;
5404         bool read_only;
5405         int rc;
5406
5407         if (!try_module_get(THIS_MODULE))
5408                 return -ENODEV;
5409
5410         /* parse add command */
5411         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5412         if (rc < 0)
5413                 goto out;
5414
5415         rbdc = rbd_get_client(ceph_opts);
5416         if (IS_ERR(rbdc)) {
5417                 rc = PTR_ERR(rbdc);
5418                 goto err_out_args;
5419         }
5420
5421         /* pick the pool */
5422         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5423         if (rc < 0) {
5424                 if (rc == -ENOENT)
5425                         pr_info("pool %s does not exist\n", spec->pool_name);
5426                 goto err_out_client;
5427         }
5428         spec->pool_id = (u64)rc;
5429
5430         /* The ceph file layout needs to fit pool id in 32 bits */
5431
5432         if (spec->pool_id > (u64)U32_MAX) {
5433                 rbd_warn(NULL, "pool id too large (%llu > %u)",
5434                                 (unsigned long long)spec->pool_id, U32_MAX);
5435                 rc = -EIO;
5436                 goto err_out_client;
5437         }
5438
5439         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5440         if (!rbd_dev) {
5441                 rc = -ENOMEM;
5442                 goto err_out_client;
5443         }
5444         rbdc = NULL;            /* rbd_dev now owns this */
5445         spec = NULL;            /* rbd_dev now owns this */
5446         rbd_opts = NULL;        /* rbd_dev now owns this */
5447
5448         down_write(&rbd_dev->header_rwsem);
5449         rc = rbd_dev_image_probe(rbd_dev, 0);
5450         if (rc < 0)
5451                 goto err_out_rbd_dev;
5452
5453         /* If we are mapping a snapshot it must be marked read-only */
5454
5455         read_only = rbd_dev->opts->read_only;
5456         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5457                 read_only = true;
5458         rbd_dev->mapping.read_only = read_only;
5459
5460         rc = rbd_dev_device_setup(rbd_dev);
5461         if (rc) {
5462                 /*
5463                  * rbd_dev_header_unwatch_sync() can't be moved into
5464                  * rbd_dev_image_release() without refactoring, see
5465                  * commit 1f3ef78861ac.
5466                  */
5467                 rbd_dev_header_unwatch_sync(rbd_dev);
5468                 rbd_dev_image_release(rbd_dev);
5469                 goto out;
5470         }
5471
5472         rc = count;
5473 out:
5474         module_put(THIS_MODULE);
5475         return rc;
5476
5477 err_out_rbd_dev:
5478         up_write(&rbd_dev->header_rwsem);
5479         rbd_dev_destroy(rbd_dev);
5480 err_out_client:
5481         rbd_put_client(rbdc);
5482 err_out_args:
5483         rbd_spec_put(spec);
5484         kfree(rbd_opts);
5485         goto out;
5486 }
5487
5488 static ssize_t rbd_add(struct bus_type *bus,
5489                        const char *buf,
5490                        size_t count)
5491 {
5492         if (single_major)
5493                 return -EINVAL;
5494
5495         return do_rbd_add(bus, buf, count);
5496 }
5497
5498 static ssize_t rbd_add_single_major(struct bus_type *bus,
5499                                     const char *buf,
5500                                     size_t count)
5501 {
5502         return do_rbd_add(bus, buf, count);
5503 }
5504
5505 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5506 {
5507         rbd_free_disk(rbd_dev);
5508         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5509         device_del(&rbd_dev->dev);
5510         rbd_dev_mapping_clear(rbd_dev);
5511         if (!single_major)
5512                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5513         rbd_dev_id_put(rbd_dev);
5514 }
5515
5516 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5517 {
5518         while (rbd_dev->parent) {
5519                 struct rbd_device *first = rbd_dev;
5520                 struct rbd_device *second = first->parent;
5521                 struct rbd_device *third;
5522
5523                 /*
5524                  * Follow to the parent with no grandparent and
5525                  * remove it.
5526                  */
5527                 while (second && (third = second->parent)) {
5528                         first = second;
5529                         second = third;
5530                 }
5531                 rbd_assert(second);
5532                 rbd_dev_image_release(second);
5533                 first->parent = NULL;
5534                 first->parent_overlap = 0;
5535
5536                 rbd_assert(first->parent_spec);
5537                 rbd_spec_put(first->parent_spec);
5538                 first->parent_spec = NULL;
5539         }
5540 }
5541
5542 static ssize_t do_rbd_remove(struct bus_type *bus,
5543                              const char *buf,
5544                              size_t count)
5545 {
5546         struct rbd_device *rbd_dev = NULL;
5547         struct list_head *tmp;
5548         int dev_id;
5549         unsigned long ul;
5550         bool already = false;
5551         int ret;
5552
5553         ret = kstrtoul(buf, 10, &ul);
5554         if (ret)
5555                 return ret;
5556
5557         /* convert to int; abort if we lost anything in the conversion */
5558         dev_id = (int)ul;
5559         if (dev_id != ul)
5560                 return -EINVAL;
5561
5562         ret = -ENOENT;
5563         spin_lock(&rbd_dev_list_lock);
5564         list_for_each(tmp, &rbd_dev_list) {
5565                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5566                 if (rbd_dev->dev_id == dev_id) {
5567                         ret = 0;
5568                         break;
5569                 }
5570         }
5571         if (!ret) {
5572                 spin_lock_irq(&rbd_dev->lock);
5573                 if (rbd_dev->open_count)
5574                         ret = -EBUSY;
5575                 else
5576                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5577                                                         &rbd_dev->flags);
5578                 spin_unlock_irq(&rbd_dev->lock);
5579         }
5580         spin_unlock(&rbd_dev_list_lock);
5581         if (ret < 0 || already)
5582                 return ret;
5583
5584         rbd_dev_header_unwatch_sync(rbd_dev);
5585
5586         /*
5587          * Don't free anything from rbd_dev->disk until after all
5588          * notifies are completely processed. Otherwise
5589          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5590          * in a potential use after free of rbd_dev->disk or rbd_dev.
5591          */
5592         rbd_dev_device_release(rbd_dev);
5593         rbd_dev_image_release(rbd_dev);
5594
5595         return count;
5596 }
5597
5598 static ssize_t rbd_remove(struct bus_type *bus,
5599                           const char *buf,
5600                           size_t count)
5601 {
5602         if (single_major)
5603                 return -EINVAL;
5604
5605         return do_rbd_remove(bus, buf, count);
5606 }
5607
5608 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5609                                        const char *buf,
5610                                        size_t count)
5611 {
5612         return do_rbd_remove(bus, buf, count);
5613 }
5614
5615 /*
5616  * create control files in sysfs
5617  * /sys/bus/rbd/...
5618  */
5619 static int rbd_sysfs_init(void)
5620 {
5621         int ret;
5622
5623         ret = device_register(&rbd_root_dev);
5624         if (ret < 0)
5625                 return ret;
5626
5627         ret = bus_register(&rbd_bus_type);
5628         if (ret < 0)
5629                 device_unregister(&rbd_root_dev);
5630
5631         return ret;
5632 }
5633
5634 static void rbd_sysfs_cleanup(void)
5635 {
5636         bus_unregister(&rbd_bus_type);
5637         device_unregister(&rbd_root_dev);
5638 }
5639
5640 static int rbd_slab_init(void)
5641 {
5642         rbd_assert(!rbd_img_request_cache);
5643         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
5644         if (!rbd_img_request_cache)
5645                 return -ENOMEM;
5646
5647         rbd_assert(!rbd_obj_request_cache);
5648         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
5649         if (!rbd_obj_request_cache)
5650                 goto out_err;
5651
5652         rbd_assert(!rbd_segment_name_cache);
5653         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5654                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5655         if (rbd_segment_name_cache)
5656                 return 0;
5657 out_err:
5658         kmem_cache_destroy(rbd_obj_request_cache);
5659         rbd_obj_request_cache = NULL;
5660
5661         kmem_cache_destroy(rbd_img_request_cache);
5662         rbd_img_request_cache = NULL;
5663
5664         return -ENOMEM;
5665 }
5666
5667 static void rbd_slab_exit(void)
5668 {
5669         rbd_assert(rbd_segment_name_cache);
5670         kmem_cache_destroy(rbd_segment_name_cache);
5671         rbd_segment_name_cache = NULL;
5672
5673         rbd_assert(rbd_obj_request_cache);
5674         kmem_cache_destroy(rbd_obj_request_cache);
5675         rbd_obj_request_cache = NULL;
5676
5677         rbd_assert(rbd_img_request_cache);
5678         kmem_cache_destroy(rbd_img_request_cache);
5679         rbd_img_request_cache = NULL;
5680 }
5681
5682 static int __init rbd_init(void)
5683 {
5684         int rc;
5685
5686         if (!libceph_compatible(NULL)) {
5687                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5688                 return -EINVAL;
5689         }
5690
5691         rc = rbd_slab_init();
5692         if (rc)
5693                 return rc;
5694
5695         /*
5696          * The number of active work items is limited by the number of
5697          * rbd devices * queue depth, so leave @max_active at default.
5698          */
5699         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5700         if (!rbd_wq) {
5701                 rc = -ENOMEM;
5702                 goto err_out_slab;
5703         }
5704
5705         if (single_major) {
5706                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5707                 if (rbd_major < 0) {
5708                         rc = rbd_major;
5709                         goto err_out_wq;
5710                 }
5711         }
5712
5713         rc = rbd_sysfs_init();
5714         if (rc)
5715                 goto err_out_blkdev;
5716
5717         if (single_major)
5718                 pr_info("loaded (major %d)\n", rbd_major);
5719         else
5720                 pr_info("loaded\n");
5721
5722         return 0;
5723
5724 err_out_blkdev:
5725         if (single_major)
5726                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5727 err_out_wq:
5728         destroy_workqueue(rbd_wq);
5729 err_out_slab:
5730         rbd_slab_exit();
5731         return rc;
5732 }
5733
5734 static void __exit rbd_exit(void)
5735 {
5736         ida_destroy(&rbd_dev_id_ida);
5737         rbd_sysfs_cleanup();
5738         if (single_major)
5739                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5740         destroy_workqueue(rbd_wq);
5741         rbd_slab_exit();
5742 }
5743
5744 module_init(rbd_init);
5745 module_exit(rbd_exit);
5746
5747 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5748 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5749 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5750 /* following authorship retained from original osdblk.c */
5751 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5752
5753 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5754 MODULE_LICENSE("GPL");