ALSA: hda - add PCI IDs for Intel Braswell
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45
46 #include "rbd_types.h"
47
48 #define RBD_DEBUG       /* Activate rbd_assert() calls */
49
50 /*
51  * The basic unit of block I/O is a sector.  It is interpreted in a
52  * number of contexts in Linux (blk, bio, genhd), but the default is
53  * universally 512 bytes.  These symbols are just slightly more
54  * meaningful than the bare numbers they represent.
55  */
56 #define SECTOR_SHIFT    9
57 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
58
59 /*
60  * Increment the given counter and return its updated value.
61  * If the counter is already 0 it will not be incremented.
62  * If the counter is already at its maximum value returns
63  * -EINVAL without updating it.
64  */
65 static int atomic_inc_return_safe(atomic_t *v)
66 {
67         unsigned int counter;
68
69         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70         if (counter <= (unsigned int)INT_MAX)
71                 return (int)counter;
72
73         atomic_dec(v);
74
75         return -EINVAL;
76 }
77
78 /* Decrement the counter.  Return the resulting value, or -EINVAL */
79 static int atomic_dec_return_safe(atomic_t *v)
80 {
81         int counter;
82
83         counter = atomic_dec_return(v);
84         if (counter >= 0)
85                 return counter;
86
87         atomic_inc(v);
88
89         return -EINVAL;
90 }
91
92 #define RBD_DRV_NAME "rbd"
93
94 #define RBD_MINORS_PER_MAJOR            256
95 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
96
97 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
98 #define RBD_MAX_SNAP_NAME_LEN   \
99                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
100
101 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
102
103 #define RBD_SNAP_HEAD_NAME      "-"
104
105 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
106
107 /* This allows a single page to hold an image name sent by OSD */
108 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
109 #define RBD_IMAGE_ID_LEN_MAX    64
110
111 #define RBD_OBJ_PREFIX_LEN_MAX  64
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING    (1<<0)
116 #define RBD_FEATURE_STRIPINGV2  (1<<1)
117 #define RBD_FEATURES_ALL \
118             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
119
120 /* Features supported by this (client software) implementation. */
121
122 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
123
124 /*
125  * An RBD device name will be "rbd#", where the "rbd" comes from
126  * RBD_DRV_NAME above, and # is a unique integer identifier.
127  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128  * enough to hold all possible device names.
129  */
130 #define DEV_NAME_LEN            32
131 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
132
133 /*
134  * block device image metadata (in-memory version)
135  */
136 struct rbd_image_header {
137         /* These six fields never change for a given rbd image */
138         char *object_prefix;
139         __u8 obj_order;
140         __u8 crypt_type;
141         __u8 comp_type;
142         u64 stripe_unit;
143         u64 stripe_count;
144         u64 features;           /* Might be changeable someday? */
145
146         /* The remaining fields need to be updated occasionally */
147         u64 image_size;
148         struct ceph_snap_context *snapc;
149         char *snap_names;       /* format 1 only */
150         u64 *snap_sizes;        /* format 1 only */
151 };
152
153 /*
154  * An rbd image specification.
155  *
156  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157  * identify an image.  Each rbd_dev structure includes a pointer to
158  * an rbd_spec structure that encapsulates this identity.
159  *
160  * Each of the id's in an rbd_spec has an associated name.  For a
161  * user-mapped image, the names are supplied and the id's associated
162  * with them are looked up.  For a layered image, a parent image is
163  * defined by the tuple, and the names are looked up.
164  *
165  * An rbd_dev structure contains a parent_spec pointer which is
166  * non-null if the image it represents is a child in a layered
167  * image.  This pointer will refer to the rbd_spec structure used
168  * by the parent rbd_dev for its own identity (i.e., the structure
169  * is shared between the parent and child).
170  *
171  * Since these structures are populated once, during the discovery
172  * phase of image construction, they are effectively immutable so
173  * we make no effort to synchronize access to them.
174  *
175  * Note that code herein does not assume the image name is known (it
176  * could be a null pointer).
177  */
178 struct rbd_spec {
179         u64             pool_id;
180         const char      *pool_name;
181
182         const char      *image_id;
183         const char      *image_name;
184
185         u64             snap_id;
186         const char      *snap_name;
187
188         struct kref     kref;
189 };
190
191 /*
192  * an instance of the client.  multiple devices may share an rbd client.
193  */
194 struct rbd_client {
195         struct ceph_client      *client;
196         struct kref             kref;
197         struct list_head        node;
198 };
199
200 struct rbd_img_request;
201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
202
203 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
204
205 struct rbd_obj_request;
206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
207
208 enum obj_request_type {
209         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
210 };
211
212 enum obj_req_flags {
213         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
214         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
215         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
216         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
217 };
218
219 struct rbd_obj_request {
220         const char              *object_name;
221         u64                     offset;         /* object start byte */
222         u64                     length;         /* bytes from offset */
223         unsigned long           flags;
224
225         /*
226          * An object request associated with an image will have its
227          * img_data flag set; a standalone object request will not.
228          *
229          * A standalone object request will have which == BAD_WHICH
230          * and a null obj_request pointer.
231          *
232          * An object request initiated in support of a layered image
233          * object (to check for its existence before a write) will
234          * have which == BAD_WHICH and a non-null obj_request pointer.
235          *
236          * Finally, an object request for rbd image data will have
237          * which != BAD_WHICH, and will have a non-null img_request
238          * pointer.  The value of which will be in the range
239          * 0..(img_request->obj_request_count-1).
240          */
241         union {
242                 struct rbd_obj_request  *obj_request;   /* STAT op */
243                 struct {
244                         struct rbd_img_request  *img_request;
245                         u64                     img_offset;
246                         /* links for img_request->obj_requests list */
247                         struct list_head        links;
248                 };
249         };
250         u32                     which;          /* posn image request list */
251
252         enum obj_request_type   type;
253         union {
254                 struct bio      *bio_list;
255                 struct {
256                         struct page     **pages;
257                         u32             page_count;
258                 };
259         };
260         struct page             **copyup_pages;
261         u32                     copyup_page_count;
262
263         struct ceph_osd_request *osd_req;
264
265         u64                     xferred;        /* bytes transferred */
266         int                     result;
267
268         rbd_obj_callback_t      callback;
269         struct completion       completion;
270
271         struct kref             kref;
272 };
273
274 enum img_req_flags {
275         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
276         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
277         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
278 };
279
280 struct rbd_img_request {
281         struct rbd_device       *rbd_dev;
282         u64                     offset; /* starting image byte offset */
283         u64                     length; /* byte count from offset */
284         unsigned long           flags;
285         union {
286                 u64                     snap_id;        /* for reads */
287                 struct ceph_snap_context *snapc;        /* for writes */
288         };
289         union {
290                 struct request          *rq;            /* block request */
291                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
292         };
293         struct page             **copyup_pages;
294         u32                     copyup_page_count;
295         spinlock_t              completion_lock;/* protects next_completion */
296         u32                     next_completion;
297         rbd_img_callback_t      callback;
298         u64                     xferred;/* aggregate bytes transferred */
299         int                     result; /* first nonzero obj_request result */
300
301         u32                     obj_request_count;
302         struct list_head        obj_requests;   /* rbd_obj_request structs */
303
304         struct kref             kref;
305 };
306
307 #define for_each_obj_request(ireq, oreq) \
308         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_from(ireq, oreq) \
310         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_safe(ireq, oreq, n) \
312         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
313
314 struct rbd_mapping {
315         u64                     size;
316         u64                     features;
317         bool                    read_only;
318 };
319
320 /*
321  * a single device
322  */
323 struct rbd_device {
324         int                     dev_id;         /* blkdev unique id */
325
326         int                     major;          /* blkdev assigned major */
327         int                     minor;
328         struct gendisk          *disk;          /* blkdev's gendisk and rq */
329
330         u32                     image_format;   /* Either 1 or 2 */
331         struct rbd_client       *rbd_client;
332
333         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
334
335         spinlock_t              lock;           /* queue, flags, open_count */
336
337         struct rbd_image_header header;
338         unsigned long           flags;          /* possibly lock protected */
339         struct rbd_spec         *spec;
340
341         char                    *header_name;
342
343         struct ceph_file_layout layout;
344
345         struct ceph_osd_event   *watch_event;
346         struct rbd_obj_request  *watch_request;
347
348         struct rbd_spec         *parent_spec;
349         u64                     parent_overlap;
350         atomic_t                parent_ref;
351         struct rbd_device       *parent;
352
353         /* protects updating the header */
354         struct rw_semaphore     header_rwsem;
355
356         struct rbd_mapping      mapping;
357
358         struct list_head        node;
359
360         /* sysfs related */
361         struct device           dev;
362         unsigned long           open_count;     /* protected by lock */
363 };
364
365 /*
366  * Flag bits for rbd_dev->flags.  If atomicity is required,
367  * rbd_dev->lock is used to protect access.
368  *
369  * Currently, only the "removing" flag (which is coupled with the
370  * "open_count" field) requires atomic access.
371  */
372 enum rbd_dev_flags {
373         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
374         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
375 };
376
377 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
378
379 static LIST_HEAD(rbd_dev_list);    /* devices */
380 static DEFINE_SPINLOCK(rbd_dev_list_lock);
381
382 static LIST_HEAD(rbd_client_list);              /* clients */
383 static DEFINE_SPINLOCK(rbd_client_list_lock);
384
385 /* Slab caches for frequently-allocated structures */
386
387 static struct kmem_cache        *rbd_img_request_cache;
388 static struct kmem_cache        *rbd_obj_request_cache;
389 static struct kmem_cache        *rbd_segment_name_cache;
390
391 static int rbd_major;
392 static DEFINE_IDA(rbd_dev_id_ida);
393
394 /*
395  * Default to false for now, as single-major requires >= 0.75 version of
396  * userspace rbd utility.
397  */
398 static bool single_major = false;
399 module_param(single_major, bool, S_IRUGO);
400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
401
402 static int rbd_img_request_submit(struct rbd_img_request *img_request);
403
404 static void rbd_dev_device_release(struct device *dev);
405
406 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
407                        size_t count);
408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
409                           size_t count);
410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
411                                     size_t count);
412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
413                                        size_t count);
414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415 static void rbd_spec_put(struct rbd_spec *spec);
416
417 static int rbd_dev_id_to_minor(int dev_id)
418 {
419         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
420 }
421
422 static int minor_to_rbd_dev_id(int minor)
423 {
424         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
425 }
426
427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
431
432 static struct attribute *rbd_bus_attrs[] = {
433         &bus_attr_add.attr,
434         &bus_attr_remove.attr,
435         &bus_attr_add_single_major.attr,
436         &bus_attr_remove_single_major.attr,
437         NULL,
438 };
439
440 static umode_t rbd_bus_is_visible(struct kobject *kobj,
441                                   struct attribute *attr, int index)
442 {
443         if (!single_major &&
444             (attr == &bus_attr_add_single_major.attr ||
445              attr == &bus_attr_remove_single_major.attr))
446                 return 0;
447
448         return attr->mode;
449 }
450
451 static const struct attribute_group rbd_bus_group = {
452         .attrs = rbd_bus_attrs,
453         .is_visible = rbd_bus_is_visible,
454 };
455 __ATTRIBUTE_GROUPS(rbd_bus);
456
457 static struct bus_type rbd_bus_type = {
458         .name           = "rbd",
459         .bus_groups     = rbd_bus_groups,
460 };
461
462 static void rbd_root_dev_release(struct device *dev)
463 {
464 }
465
466 static struct device rbd_root_dev = {
467         .init_name =    "rbd",
468         .release =      rbd_root_dev_release,
469 };
470
471 static __printf(2, 3)
472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
473 {
474         struct va_format vaf;
475         va_list args;
476
477         va_start(args, fmt);
478         vaf.fmt = fmt;
479         vaf.va = &args;
480
481         if (!rbd_dev)
482                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483         else if (rbd_dev->disk)
484                 printk(KERN_WARNING "%s: %s: %pV\n",
485                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486         else if (rbd_dev->spec && rbd_dev->spec->image_name)
487                 printk(KERN_WARNING "%s: image %s: %pV\n",
488                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489         else if (rbd_dev->spec && rbd_dev->spec->image_id)
490                 printk(KERN_WARNING "%s: id %s: %pV\n",
491                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
492         else    /* punt */
493                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494                         RBD_DRV_NAME, rbd_dev, &vaf);
495         va_end(args);
496 }
497
498 #ifdef RBD_DEBUG
499 #define rbd_assert(expr)                                                \
500                 if (unlikely(!(expr))) {                                \
501                         printk(KERN_ERR "\nAssertion failure in %s() "  \
502                                                 "at line %d:\n\n"       \
503                                         "\trbd_assert(%s);\n\n",        \
504                                         __func__, __LINE__, #expr);     \
505                         BUG();                                          \
506                 }
507 #else /* !RBD_DEBUG */
508 #  define rbd_assert(expr)      ((void) 0)
509 #endif /* !RBD_DEBUG */
510
511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
514
515 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
519                                         u64 snap_id);
520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521                                 u8 *order, u64 *snap_size);
522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
523                 u64 *snap_features);
524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
525
526 static int rbd_open(struct block_device *bdev, fmode_t mode)
527 {
528         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529         bool removing = false;
530
531         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
532                 return -EROFS;
533
534         spin_lock_irq(&rbd_dev->lock);
535         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
536                 removing = true;
537         else
538                 rbd_dev->open_count++;
539         spin_unlock_irq(&rbd_dev->lock);
540         if (removing)
541                 return -ENOENT;
542
543         (void) get_device(&rbd_dev->dev);
544         set_device_ro(bdev, rbd_dev->mapping.read_only);
545
546         return 0;
547 }
548
549 static void rbd_release(struct gendisk *disk, fmode_t mode)
550 {
551         struct rbd_device *rbd_dev = disk->private_data;
552         unsigned long open_count_before;
553
554         spin_lock_irq(&rbd_dev->lock);
555         open_count_before = rbd_dev->open_count--;
556         spin_unlock_irq(&rbd_dev->lock);
557         rbd_assert(open_count_before > 0);
558
559         put_device(&rbd_dev->dev);
560 }
561
562 static const struct block_device_operations rbd_bd_ops = {
563         .owner                  = THIS_MODULE,
564         .open                   = rbd_open,
565         .release                = rbd_release,
566 };
567
568 /*
569  * Initialize an rbd client instance.  Success or not, this function
570  * consumes ceph_opts.  Caller holds client_mutex.
571  */
572 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
573 {
574         struct rbd_client *rbdc;
575         int ret = -ENOMEM;
576
577         dout("%s:\n", __func__);
578         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
579         if (!rbdc)
580                 goto out_opt;
581
582         kref_init(&rbdc->kref);
583         INIT_LIST_HEAD(&rbdc->node);
584
585         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
586         if (IS_ERR(rbdc->client))
587                 goto out_rbdc;
588         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
589
590         ret = ceph_open_session(rbdc->client);
591         if (ret < 0)
592                 goto out_client;
593
594         spin_lock(&rbd_client_list_lock);
595         list_add_tail(&rbdc->node, &rbd_client_list);
596         spin_unlock(&rbd_client_list_lock);
597
598         dout("%s: rbdc %p\n", __func__, rbdc);
599
600         return rbdc;
601 out_client:
602         ceph_destroy_client(rbdc->client);
603 out_rbdc:
604         kfree(rbdc);
605 out_opt:
606         if (ceph_opts)
607                 ceph_destroy_options(ceph_opts);
608         dout("%s: error %d\n", __func__, ret);
609
610         return ERR_PTR(ret);
611 }
612
613 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
614 {
615         kref_get(&rbdc->kref);
616
617         return rbdc;
618 }
619
620 /*
621  * Find a ceph client with specific addr and configuration.  If
622  * found, bump its reference count.
623  */
624 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
625 {
626         struct rbd_client *client_node;
627         bool found = false;
628
629         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
630                 return NULL;
631
632         spin_lock(&rbd_client_list_lock);
633         list_for_each_entry(client_node, &rbd_client_list, node) {
634                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
635                         __rbd_get_client(client_node);
636
637                         found = true;
638                         break;
639                 }
640         }
641         spin_unlock(&rbd_client_list_lock);
642
643         return found ? client_node : NULL;
644 }
645
646 /*
647  * mount options
648  */
649 enum {
650         Opt_last_int,
651         /* int args above */
652         Opt_last_string,
653         /* string args above */
654         Opt_read_only,
655         Opt_read_write,
656         /* Boolean args above */
657         Opt_last_bool,
658 };
659
660 static match_table_t rbd_opts_tokens = {
661         /* int args above */
662         /* string args above */
663         {Opt_read_only, "read_only"},
664         {Opt_read_only, "ro"},          /* Alternate spelling */
665         {Opt_read_write, "read_write"},
666         {Opt_read_write, "rw"},         /* Alternate spelling */
667         /* Boolean args above */
668         {-1, NULL}
669 };
670
671 struct rbd_options {
672         bool    read_only;
673 };
674
675 #define RBD_READ_ONLY_DEFAULT   false
676
677 static int parse_rbd_opts_token(char *c, void *private)
678 {
679         struct rbd_options *rbd_opts = private;
680         substring_t argstr[MAX_OPT_ARGS];
681         int token, intval, ret;
682
683         token = match_token(c, rbd_opts_tokens, argstr);
684         if (token < 0)
685                 return -EINVAL;
686
687         if (token < Opt_last_int) {
688                 ret = match_int(&argstr[0], &intval);
689                 if (ret < 0) {
690                         pr_err("bad mount option arg (not int) "
691                                "at '%s'\n", c);
692                         return ret;
693                 }
694                 dout("got int token %d val %d\n", token, intval);
695         } else if (token > Opt_last_int && token < Opt_last_string) {
696                 dout("got string token %d val %s\n", token,
697                      argstr[0].from);
698         } else if (token > Opt_last_string && token < Opt_last_bool) {
699                 dout("got Boolean token %d\n", token);
700         } else {
701                 dout("got token %d\n", token);
702         }
703
704         switch (token) {
705         case Opt_read_only:
706                 rbd_opts->read_only = true;
707                 break;
708         case Opt_read_write:
709                 rbd_opts->read_only = false;
710                 break;
711         default:
712                 rbd_assert(false);
713                 break;
714         }
715         return 0;
716 }
717
718 /*
719  * Get a ceph client with specific addr and configuration, if one does
720  * not exist create it.  Either way, ceph_opts is consumed by this
721  * function.
722  */
723 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
724 {
725         struct rbd_client *rbdc;
726
727         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
728         rbdc = rbd_client_find(ceph_opts);
729         if (rbdc)       /* using an existing client */
730                 ceph_destroy_options(ceph_opts);
731         else
732                 rbdc = rbd_client_create(ceph_opts);
733         mutex_unlock(&client_mutex);
734
735         return rbdc;
736 }
737
738 /*
739  * Destroy ceph client
740  *
741  * Caller must hold rbd_client_list_lock.
742  */
743 static void rbd_client_release(struct kref *kref)
744 {
745         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
746
747         dout("%s: rbdc %p\n", __func__, rbdc);
748         spin_lock(&rbd_client_list_lock);
749         list_del(&rbdc->node);
750         spin_unlock(&rbd_client_list_lock);
751
752         ceph_destroy_client(rbdc->client);
753         kfree(rbdc);
754 }
755
756 /*
757  * Drop reference to ceph client node. If it's not referenced anymore, release
758  * it.
759  */
760 static void rbd_put_client(struct rbd_client *rbdc)
761 {
762         if (rbdc)
763                 kref_put(&rbdc->kref, rbd_client_release);
764 }
765
766 static bool rbd_image_format_valid(u32 image_format)
767 {
768         return image_format == 1 || image_format == 2;
769 }
770
771 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
772 {
773         size_t size;
774         u32 snap_count;
775
776         /* The header has to start with the magic rbd header text */
777         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
778                 return false;
779
780         /* The bio layer requires at least sector-sized I/O */
781
782         if (ondisk->options.order < SECTOR_SHIFT)
783                 return false;
784
785         /* If we use u64 in a few spots we may be able to loosen this */
786
787         if (ondisk->options.order > 8 * sizeof (int) - 1)
788                 return false;
789
790         /*
791          * The size of a snapshot header has to fit in a size_t, and
792          * that limits the number of snapshots.
793          */
794         snap_count = le32_to_cpu(ondisk->snap_count);
795         size = SIZE_MAX - sizeof (struct ceph_snap_context);
796         if (snap_count > size / sizeof (__le64))
797                 return false;
798
799         /*
800          * Not only that, but the size of the entire the snapshot
801          * header must also be representable in a size_t.
802          */
803         size -= snap_count * sizeof (__le64);
804         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
805                 return false;
806
807         return true;
808 }
809
810 /*
811  * Fill an rbd image header with information from the given format 1
812  * on-disk header.
813  */
814 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
815                                  struct rbd_image_header_ondisk *ondisk)
816 {
817         struct rbd_image_header *header = &rbd_dev->header;
818         bool first_time = header->object_prefix == NULL;
819         struct ceph_snap_context *snapc;
820         char *object_prefix = NULL;
821         char *snap_names = NULL;
822         u64 *snap_sizes = NULL;
823         u32 snap_count;
824         size_t size;
825         int ret = -ENOMEM;
826         u32 i;
827
828         /* Allocate this now to avoid having to handle failure below */
829
830         if (first_time) {
831                 size_t len;
832
833                 len = strnlen(ondisk->object_prefix,
834                                 sizeof (ondisk->object_prefix));
835                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
836                 if (!object_prefix)
837                         return -ENOMEM;
838                 memcpy(object_prefix, ondisk->object_prefix, len);
839                 object_prefix[len] = '\0';
840         }
841
842         /* Allocate the snapshot context and fill it in */
843
844         snap_count = le32_to_cpu(ondisk->snap_count);
845         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
846         if (!snapc)
847                 goto out_err;
848         snapc->seq = le64_to_cpu(ondisk->snap_seq);
849         if (snap_count) {
850                 struct rbd_image_snap_ondisk *snaps;
851                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
852
853                 /* We'll keep a copy of the snapshot names... */
854
855                 if (snap_names_len > (u64)SIZE_MAX)
856                         goto out_2big;
857                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
858                 if (!snap_names)
859                         goto out_err;
860
861                 /* ...as well as the array of their sizes. */
862
863                 size = snap_count * sizeof (*header->snap_sizes);
864                 snap_sizes = kmalloc(size, GFP_KERNEL);
865                 if (!snap_sizes)
866                         goto out_err;
867
868                 /*
869                  * Copy the names, and fill in each snapshot's id
870                  * and size.
871                  *
872                  * Note that rbd_dev_v1_header_info() guarantees the
873                  * ondisk buffer we're working with has
874                  * snap_names_len bytes beyond the end of the
875                  * snapshot id array, this memcpy() is safe.
876                  */
877                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
878                 snaps = ondisk->snaps;
879                 for (i = 0; i < snap_count; i++) {
880                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
881                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
882                 }
883         }
884
885         /* We won't fail any more, fill in the header */
886
887         if (first_time) {
888                 header->object_prefix = object_prefix;
889                 header->obj_order = ondisk->options.order;
890                 header->crypt_type = ondisk->options.crypt_type;
891                 header->comp_type = ondisk->options.comp_type;
892                 /* The rest aren't used for format 1 images */
893                 header->stripe_unit = 0;
894                 header->stripe_count = 0;
895                 header->features = 0;
896         } else {
897                 ceph_put_snap_context(header->snapc);
898                 kfree(header->snap_names);
899                 kfree(header->snap_sizes);
900         }
901
902         /* The remaining fields always get updated (when we refresh) */
903
904         header->image_size = le64_to_cpu(ondisk->image_size);
905         header->snapc = snapc;
906         header->snap_names = snap_names;
907         header->snap_sizes = snap_sizes;
908
909         /* Make sure mapping size is consistent with header info */
910
911         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
912                 if (rbd_dev->mapping.size != header->image_size)
913                         rbd_dev->mapping.size = header->image_size;
914
915         return 0;
916 out_2big:
917         ret = -EIO;
918 out_err:
919         kfree(snap_sizes);
920         kfree(snap_names);
921         ceph_put_snap_context(snapc);
922         kfree(object_prefix);
923
924         return ret;
925 }
926
927 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
928 {
929         const char *snap_name;
930
931         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
932
933         /* Skip over names until we find the one we are looking for */
934
935         snap_name = rbd_dev->header.snap_names;
936         while (which--)
937                 snap_name += strlen(snap_name) + 1;
938
939         return kstrdup(snap_name, GFP_KERNEL);
940 }
941
942 /*
943  * Snapshot id comparison function for use with qsort()/bsearch().
944  * Note that result is for snapshots in *descending* order.
945  */
946 static int snapid_compare_reverse(const void *s1, const void *s2)
947 {
948         u64 snap_id1 = *(u64 *)s1;
949         u64 snap_id2 = *(u64 *)s2;
950
951         if (snap_id1 < snap_id2)
952                 return 1;
953         return snap_id1 == snap_id2 ? 0 : -1;
954 }
955
956 /*
957  * Search a snapshot context to see if the given snapshot id is
958  * present.
959  *
960  * Returns the position of the snapshot id in the array if it's found,
961  * or BAD_SNAP_INDEX otherwise.
962  *
963  * Note: The snapshot array is in kept sorted (by the osd) in
964  * reverse order, highest snapshot id first.
965  */
966 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
967 {
968         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
969         u64 *found;
970
971         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
972                                 sizeof (snap_id), snapid_compare_reverse);
973
974         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
975 }
976
977 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
978                                         u64 snap_id)
979 {
980         u32 which;
981         const char *snap_name;
982
983         which = rbd_dev_snap_index(rbd_dev, snap_id);
984         if (which == BAD_SNAP_INDEX)
985                 return ERR_PTR(-ENOENT);
986
987         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
988         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
989 }
990
991 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
992 {
993         if (snap_id == CEPH_NOSNAP)
994                 return RBD_SNAP_HEAD_NAME;
995
996         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
997         if (rbd_dev->image_format == 1)
998                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
999
1000         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1001 }
1002
1003 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1004                                 u64 *snap_size)
1005 {
1006         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1007         if (snap_id == CEPH_NOSNAP) {
1008                 *snap_size = rbd_dev->header.image_size;
1009         } else if (rbd_dev->image_format == 1) {
1010                 u32 which;
1011
1012                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1013                 if (which == BAD_SNAP_INDEX)
1014                         return -ENOENT;
1015
1016                 *snap_size = rbd_dev->header.snap_sizes[which];
1017         } else {
1018                 u64 size = 0;
1019                 int ret;
1020
1021                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1022                 if (ret)
1023                         return ret;
1024
1025                 *snap_size = size;
1026         }
1027         return 0;
1028 }
1029
1030 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1031                         u64 *snap_features)
1032 {
1033         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1034         if (snap_id == CEPH_NOSNAP) {
1035                 *snap_features = rbd_dev->header.features;
1036         } else if (rbd_dev->image_format == 1) {
1037                 *snap_features = 0;     /* No features for format 1 */
1038         } else {
1039                 u64 features = 0;
1040                 int ret;
1041
1042                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1043                 if (ret)
1044                         return ret;
1045
1046                 *snap_features = features;
1047         }
1048         return 0;
1049 }
1050
1051 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1052 {
1053         u64 snap_id = rbd_dev->spec->snap_id;
1054         u64 size = 0;
1055         u64 features = 0;
1056         int ret;
1057
1058         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1059         if (ret)
1060                 return ret;
1061         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1062         if (ret)
1063                 return ret;
1064
1065         rbd_dev->mapping.size = size;
1066         rbd_dev->mapping.features = features;
1067
1068         return 0;
1069 }
1070
1071 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1072 {
1073         rbd_dev->mapping.size = 0;
1074         rbd_dev->mapping.features = 0;
1075 }
1076
1077 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1078 {
1079         char *name;
1080         u64 segment;
1081         int ret;
1082         char *name_format;
1083
1084         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1085         if (!name)
1086                 return NULL;
1087         segment = offset >> rbd_dev->header.obj_order;
1088         name_format = "%s.%012llx";
1089         if (rbd_dev->image_format == 2)
1090                 name_format = "%s.%016llx";
1091         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1092                         rbd_dev->header.object_prefix, segment);
1093         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1094                 pr_err("error formatting segment name for #%llu (%d)\n",
1095                         segment, ret);
1096                 kfree(name);
1097                 name = NULL;
1098         }
1099
1100         return name;
1101 }
1102
1103 static void rbd_segment_name_free(const char *name)
1104 {
1105         /* The explicit cast here is needed to drop the const qualifier */
1106
1107         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1108 }
1109
1110 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1111 {
1112         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1113
1114         return offset & (segment_size - 1);
1115 }
1116
1117 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1118                                 u64 offset, u64 length)
1119 {
1120         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1121
1122         offset &= segment_size - 1;
1123
1124         rbd_assert(length <= U64_MAX - offset);
1125         if (offset + length > segment_size)
1126                 length = segment_size - offset;
1127
1128         return length;
1129 }
1130
1131 /*
1132  * returns the size of an object in the image
1133  */
1134 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1135 {
1136         return 1 << header->obj_order;
1137 }
1138
1139 /*
1140  * bio helpers
1141  */
1142
1143 static void bio_chain_put(struct bio *chain)
1144 {
1145         struct bio *tmp;
1146
1147         while (chain) {
1148                 tmp = chain;
1149                 chain = chain->bi_next;
1150                 bio_put(tmp);
1151         }
1152 }
1153
1154 /*
1155  * zeros a bio chain, starting at specific offset
1156  */
1157 static void zero_bio_chain(struct bio *chain, int start_ofs)
1158 {
1159         struct bio_vec bv;
1160         struct bvec_iter iter;
1161         unsigned long flags;
1162         void *buf;
1163         int pos = 0;
1164
1165         while (chain) {
1166                 bio_for_each_segment(bv, chain, iter) {
1167                         if (pos + bv.bv_len > start_ofs) {
1168                                 int remainder = max(start_ofs - pos, 0);
1169                                 buf = bvec_kmap_irq(&bv, &flags);
1170                                 memset(buf + remainder, 0,
1171                                        bv.bv_len - remainder);
1172                                 flush_dcache_page(bv.bv_page);
1173                                 bvec_kunmap_irq(buf, &flags);
1174                         }
1175                         pos += bv.bv_len;
1176                 }
1177
1178                 chain = chain->bi_next;
1179         }
1180 }
1181
1182 /*
1183  * similar to zero_bio_chain(), zeros data defined by a page array,
1184  * starting at the given byte offset from the start of the array and
1185  * continuing up to the given end offset.  The pages array is
1186  * assumed to be big enough to hold all bytes up to the end.
1187  */
1188 static void zero_pages(struct page **pages, u64 offset, u64 end)
1189 {
1190         struct page **page = &pages[offset >> PAGE_SHIFT];
1191
1192         rbd_assert(end > offset);
1193         rbd_assert(end - offset <= (u64)SIZE_MAX);
1194         while (offset < end) {
1195                 size_t page_offset;
1196                 size_t length;
1197                 unsigned long flags;
1198                 void *kaddr;
1199
1200                 page_offset = offset & ~PAGE_MASK;
1201                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1202                 local_irq_save(flags);
1203                 kaddr = kmap_atomic(*page);
1204                 memset(kaddr + page_offset, 0, length);
1205                 flush_dcache_page(*page);
1206                 kunmap_atomic(kaddr);
1207                 local_irq_restore(flags);
1208
1209                 offset += length;
1210                 page++;
1211         }
1212 }
1213
1214 /*
1215  * Clone a portion of a bio, starting at the given byte offset
1216  * and continuing for the number of bytes indicated.
1217  */
1218 static struct bio *bio_clone_range(struct bio *bio_src,
1219                                         unsigned int offset,
1220                                         unsigned int len,
1221                                         gfp_t gfpmask)
1222 {
1223         struct bio *bio;
1224
1225         bio = bio_clone(bio_src, gfpmask);
1226         if (!bio)
1227                 return NULL;    /* ENOMEM */
1228
1229         bio_advance(bio, offset);
1230         bio->bi_iter.bi_size = len;
1231
1232         return bio;
1233 }
1234
1235 /*
1236  * Clone a portion of a bio chain, starting at the given byte offset
1237  * into the first bio in the source chain and continuing for the
1238  * number of bytes indicated.  The result is another bio chain of
1239  * exactly the given length, or a null pointer on error.
1240  *
1241  * The bio_src and offset parameters are both in-out.  On entry they
1242  * refer to the first source bio and the offset into that bio where
1243  * the start of data to be cloned is located.
1244  *
1245  * On return, bio_src is updated to refer to the bio in the source
1246  * chain that contains first un-cloned byte, and *offset will
1247  * contain the offset of that byte within that bio.
1248  */
1249 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1250                                         unsigned int *offset,
1251                                         unsigned int len,
1252                                         gfp_t gfpmask)
1253 {
1254         struct bio *bi = *bio_src;
1255         unsigned int off = *offset;
1256         struct bio *chain = NULL;
1257         struct bio **end;
1258
1259         /* Build up a chain of clone bios up to the limit */
1260
1261         if (!bi || off >= bi->bi_iter.bi_size || !len)
1262                 return NULL;            /* Nothing to clone */
1263
1264         end = &chain;
1265         while (len) {
1266                 unsigned int bi_size;
1267                 struct bio *bio;
1268
1269                 if (!bi) {
1270                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1271                         goto out_err;   /* EINVAL; ran out of bio's */
1272                 }
1273                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1274                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1275                 if (!bio)
1276                         goto out_err;   /* ENOMEM */
1277
1278                 *end = bio;
1279                 end = &bio->bi_next;
1280
1281                 off += bi_size;
1282                 if (off == bi->bi_iter.bi_size) {
1283                         bi = bi->bi_next;
1284                         off = 0;
1285                 }
1286                 len -= bi_size;
1287         }
1288         *bio_src = bi;
1289         *offset = off;
1290
1291         return chain;
1292 out_err:
1293         bio_chain_put(chain);
1294
1295         return NULL;
1296 }
1297
1298 /*
1299  * The default/initial value for all object request flags is 0.  For
1300  * each flag, once its value is set to 1 it is never reset to 0
1301  * again.
1302  */
1303 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1304 {
1305         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1306                 struct rbd_device *rbd_dev;
1307
1308                 rbd_dev = obj_request->img_request->rbd_dev;
1309                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1310                         obj_request);
1311         }
1312 }
1313
1314 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1315 {
1316         smp_mb();
1317         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1318 }
1319
1320 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1321 {
1322         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1323                 struct rbd_device *rbd_dev = NULL;
1324
1325                 if (obj_request_img_data_test(obj_request))
1326                         rbd_dev = obj_request->img_request->rbd_dev;
1327                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1328                         obj_request);
1329         }
1330 }
1331
1332 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1333 {
1334         smp_mb();
1335         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1336 }
1337
1338 /*
1339  * This sets the KNOWN flag after (possibly) setting the EXISTS
1340  * flag.  The latter is set based on the "exists" value provided.
1341  *
1342  * Note that for our purposes once an object exists it never goes
1343  * away again.  It's possible that the response from two existence
1344  * checks are separated by the creation of the target object, and
1345  * the first ("doesn't exist") response arrives *after* the second
1346  * ("does exist").  In that case we ignore the second one.
1347  */
1348 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1349                                 bool exists)
1350 {
1351         if (exists)
1352                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1353         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1354         smp_mb();
1355 }
1356
1357 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1358 {
1359         smp_mb();
1360         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1361 }
1362
1363 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1364 {
1365         smp_mb();
1366         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1367 }
1368
1369 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1370 {
1371         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1372
1373         return obj_request->img_offset <
1374             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1375 }
1376
1377 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1378 {
1379         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1380                 atomic_read(&obj_request->kref.refcount));
1381         kref_get(&obj_request->kref);
1382 }
1383
1384 static void rbd_obj_request_destroy(struct kref *kref);
1385 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1386 {
1387         rbd_assert(obj_request != NULL);
1388         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1389                 atomic_read(&obj_request->kref.refcount));
1390         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1391 }
1392
1393 static void rbd_img_request_get(struct rbd_img_request *img_request)
1394 {
1395         dout("%s: img %p (was %d)\n", __func__, img_request,
1396              atomic_read(&img_request->kref.refcount));
1397         kref_get(&img_request->kref);
1398 }
1399
1400 static bool img_request_child_test(struct rbd_img_request *img_request);
1401 static void rbd_parent_request_destroy(struct kref *kref);
1402 static void rbd_img_request_destroy(struct kref *kref);
1403 static void rbd_img_request_put(struct rbd_img_request *img_request)
1404 {
1405         rbd_assert(img_request != NULL);
1406         dout("%s: img %p (was %d)\n", __func__, img_request,
1407                 atomic_read(&img_request->kref.refcount));
1408         if (img_request_child_test(img_request))
1409                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1410         else
1411                 kref_put(&img_request->kref, rbd_img_request_destroy);
1412 }
1413
1414 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1415                                         struct rbd_obj_request *obj_request)
1416 {
1417         rbd_assert(obj_request->img_request == NULL);
1418
1419         /* Image request now owns object's original reference */
1420         obj_request->img_request = img_request;
1421         obj_request->which = img_request->obj_request_count;
1422         rbd_assert(!obj_request_img_data_test(obj_request));
1423         obj_request_img_data_set(obj_request);
1424         rbd_assert(obj_request->which != BAD_WHICH);
1425         img_request->obj_request_count++;
1426         list_add_tail(&obj_request->links, &img_request->obj_requests);
1427         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1428                 obj_request->which);
1429 }
1430
1431 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1432                                         struct rbd_obj_request *obj_request)
1433 {
1434         rbd_assert(obj_request->which != BAD_WHICH);
1435
1436         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1437                 obj_request->which);
1438         list_del(&obj_request->links);
1439         rbd_assert(img_request->obj_request_count > 0);
1440         img_request->obj_request_count--;
1441         rbd_assert(obj_request->which == img_request->obj_request_count);
1442         obj_request->which = BAD_WHICH;
1443         rbd_assert(obj_request_img_data_test(obj_request));
1444         rbd_assert(obj_request->img_request == img_request);
1445         obj_request->img_request = NULL;
1446         obj_request->callback = NULL;
1447         rbd_obj_request_put(obj_request);
1448 }
1449
1450 static bool obj_request_type_valid(enum obj_request_type type)
1451 {
1452         switch (type) {
1453         case OBJ_REQUEST_NODATA:
1454         case OBJ_REQUEST_BIO:
1455         case OBJ_REQUEST_PAGES:
1456                 return true;
1457         default:
1458                 return false;
1459         }
1460 }
1461
1462 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1463                                 struct rbd_obj_request *obj_request)
1464 {
1465         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1466
1467         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1468 }
1469
1470 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1471 {
1472
1473         dout("%s: img %p\n", __func__, img_request);
1474
1475         /*
1476          * If no error occurred, compute the aggregate transfer
1477          * count for the image request.  We could instead use
1478          * atomic64_cmpxchg() to update it as each object request
1479          * completes; not clear which way is better off hand.
1480          */
1481         if (!img_request->result) {
1482                 struct rbd_obj_request *obj_request;
1483                 u64 xferred = 0;
1484
1485                 for_each_obj_request(img_request, obj_request)
1486                         xferred += obj_request->xferred;
1487                 img_request->xferred = xferred;
1488         }
1489
1490         if (img_request->callback)
1491                 img_request->callback(img_request);
1492         else
1493                 rbd_img_request_put(img_request);
1494 }
1495
1496 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1497
1498 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1499 {
1500         dout("%s: obj %p\n", __func__, obj_request);
1501
1502         return wait_for_completion_interruptible(&obj_request->completion);
1503 }
1504
1505 /*
1506  * The default/initial value for all image request flags is 0.  Each
1507  * is conditionally set to 1 at image request initialization time
1508  * and currently never change thereafter.
1509  */
1510 static void img_request_write_set(struct rbd_img_request *img_request)
1511 {
1512         set_bit(IMG_REQ_WRITE, &img_request->flags);
1513         smp_mb();
1514 }
1515
1516 static bool img_request_write_test(struct rbd_img_request *img_request)
1517 {
1518         smp_mb();
1519         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1520 }
1521
1522 static void img_request_child_set(struct rbd_img_request *img_request)
1523 {
1524         set_bit(IMG_REQ_CHILD, &img_request->flags);
1525         smp_mb();
1526 }
1527
1528 static void img_request_child_clear(struct rbd_img_request *img_request)
1529 {
1530         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1531         smp_mb();
1532 }
1533
1534 static bool img_request_child_test(struct rbd_img_request *img_request)
1535 {
1536         smp_mb();
1537         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1538 }
1539
1540 static void img_request_layered_set(struct rbd_img_request *img_request)
1541 {
1542         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1543         smp_mb();
1544 }
1545
1546 static void img_request_layered_clear(struct rbd_img_request *img_request)
1547 {
1548         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1549         smp_mb();
1550 }
1551
1552 static bool img_request_layered_test(struct rbd_img_request *img_request)
1553 {
1554         smp_mb();
1555         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1556 }
1557
1558 static void
1559 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1560 {
1561         u64 xferred = obj_request->xferred;
1562         u64 length = obj_request->length;
1563
1564         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1565                 obj_request, obj_request->img_request, obj_request->result,
1566                 xferred, length);
1567         /*
1568          * ENOENT means a hole in the image.  We zero-fill the entire
1569          * length of the request.  A short read also implies zero-fill
1570          * to the end of the request.  An error requires the whole
1571          * length of the request to be reported finished with an error
1572          * to the block layer.  In each case we update the xferred
1573          * count to indicate the whole request was satisfied.
1574          */
1575         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1576         if (obj_request->result == -ENOENT) {
1577                 if (obj_request->type == OBJ_REQUEST_BIO)
1578                         zero_bio_chain(obj_request->bio_list, 0);
1579                 else
1580                         zero_pages(obj_request->pages, 0, length);
1581                 obj_request->result = 0;
1582         } else if (xferred < length && !obj_request->result) {
1583                 if (obj_request->type == OBJ_REQUEST_BIO)
1584                         zero_bio_chain(obj_request->bio_list, xferred);
1585                 else
1586                         zero_pages(obj_request->pages, xferred, length);
1587         }
1588         obj_request->xferred = length;
1589         obj_request_done_set(obj_request);
1590 }
1591
1592 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1593 {
1594         dout("%s: obj %p cb %p\n", __func__, obj_request,
1595                 obj_request->callback);
1596         if (obj_request->callback)
1597                 obj_request->callback(obj_request);
1598         else
1599                 complete_all(&obj_request->completion);
1600 }
1601
1602 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1603 {
1604         dout("%s: obj %p\n", __func__, obj_request);
1605         obj_request_done_set(obj_request);
1606 }
1607
1608 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1609 {
1610         struct rbd_img_request *img_request = NULL;
1611         struct rbd_device *rbd_dev = NULL;
1612         bool layered = false;
1613
1614         if (obj_request_img_data_test(obj_request)) {
1615                 img_request = obj_request->img_request;
1616                 layered = img_request && img_request_layered_test(img_request);
1617                 rbd_dev = img_request->rbd_dev;
1618         }
1619
1620         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1621                 obj_request, img_request, obj_request->result,
1622                 obj_request->xferred, obj_request->length);
1623         if (layered && obj_request->result == -ENOENT &&
1624                         obj_request->img_offset < rbd_dev->parent_overlap)
1625                 rbd_img_parent_read(obj_request);
1626         else if (img_request)
1627                 rbd_img_obj_request_read_callback(obj_request);
1628         else
1629                 obj_request_done_set(obj_request);
1630 }
1631
1632 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1633 {
1634         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1635                 obj_request->result, obj_request->length);
1636         /*
1637          * There is no such thing as a successful short write.  Set
1638          * it to our originally-requested length.
1639          */
1640         obj_request->xferred = obj_request->length;
1641         obj_request_done_set(obj_request);
1642 }
1643
1644 /*
1645  * For a simple stat call there's nothing to do.  We'll do more if
1646  * this is part of a write sequence for a layered image.
1647  */
1648 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1649 {
1650         dout("%s: obj %p\n", __func__, obj_request);
1651         obj_request_done_set(obj_request);
1652 }
1653
1654 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1655                                 struct ceph_msg *msg)
1656 {
1657         struct rbd_obj_request *obj_request = osd_req->r_priv;
1658         u16 opcode;
1659
1660         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1661         rbd_assert(osd_req == obj_request->osd_req);
1662         if (obj_request_img_data_test(obj_request)) {
1663                 rbd_assert(obj_request->img_request);
1664                 rbd_assert(obj_request->which != BAD_WHICH);
1665         } else {
1666                 rbd_assert(obj_request->which == BAD_WHICH);
1667         }
1668
1669         if (osd_req->r_result < 0)
1670                 obj_request->result = osd_req->r_result;
1671
1672         BUG_ON(osd_req->r_num_ops > 2);
1673
1674         /*
1675          * We support a 64-bit length, but ultimately it has to be
1676          * passed to blk_end_request(), which takes an unsigned int.
1677          */
1678         obj_request->xferred = osd_req->r_reply_op_len[0];
1679         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1680         opcode = osd_req->r_ops[0].op;
1681         switch (opcode) {
1682         case CEPH_OSD_OP_READ:
1683                 rbd_osd_read_callback(obj_request);
1684                 break;
1685         case CEPH_OSD_OP_WRITE:
1686                 rbd_osd_write_callback(obj_request);
1687                 break;
1688         case CEPH_OSD_OP_STAT:
1689                 rbd_osd_stat_callback(obj_request);
1690                 break;
1691         case CEPH_OSD_OP_CALL:
1692         case CEPH_OSD_OP_NOTIFY_ACK:
1693         case CEPH_OSD_OP_WATCH:
1694                 rbd_osd_trivial_callback(obj_request);
1695                 break;
1696         default:
1697                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1698                         obj_request->object_name, (unsigned short) opcode);
1699                 break;
1700         }
1701
1702         if (obj_request_done_test(obj_request))
1703                 rbd_obj_request_complete(obj_request);
1704 }
1705
1706 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1707 {
1708         struct rbd_img_request *img_request = obj_request->img_request;
1709         struct ceph_osd_request *osd_req = obj_request->osd_req;
1710         u64 snap_id;
1711
1712         rbd_assert(osd_req != NULL);
1713
1714         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1715         ceph_osdc_build_request(osd_req, obj_request->offset,
1716                         NULL, snap_id, NULL);
1717 }
1718
1719 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1720 {
1721         struct rbd_img_request *img_request = obj_request->img_request;
1722         struct ceph_osd_request *osd_req = obj_request->osd_req;
1723         struct ceph_snap_context *snapc;
1724         struct timespec mtime = CURRENT_TIME;
1725
1726         rbd_assert(osd_req != NULL);
1727
1728         snapc = img_request ? img_request->snapc : NULL;
1729         ceph_osdc_build_request(osd_req, obj_request->offset,
1730                         snapc, CEPH_NOSNAP, &mtime);
1731 }
1732
1733 static struct ceph_osd_request *rbd_osd_req_create(
1734                                         struct rbd_device *rbd_dev,
1735                                         bool write_request,
1736                                         struct rbd_obj_request *obj_request)
1737 {
1738         struct ceph_snap_context *snapc = NULL;
1739         struct ceph_osd_client *osdc;
1740         struct ceph_osd_request *osd_req;
1741
1742         if (obj_request_img_data_test(obj_request)) {
1743                 struct rbd_img_request *img_request = obj_request->img_request;
1744
1745                 rbd_assert(write_request ==
1746                                 img_request_write_test(img_request));
1747                 if (write_request)
1748                         snapc = img_request->snapc;
1749         }
1750
1751         /* Allocate and initialize the request, for the single op */
1752
1753         osdc = &rbd_dev->rbd_client->client->osdc;
1754         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1755         if (!osd_req)
1756                 return NULL;    /* ENOMEM */
1757
1758         if (write_request)
1759                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1760         else
1761                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1762
1763         osd_req->r_callback = rbd_osd_req_callback;
1764         osd_req->r_priv = obj_request;
1765
1766         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1767         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1768
1769         return osd_req;
1770 }
1771
1772 /*
1773  * Create a copyup osd request based on the information in the
1774  * object request supplied.  A copyup request has two osd ops,
1775  * a copyup method call, and a "normal" write request.
1776  */
1777 static struct ceph_osd_request *
1778 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1779 {
1780         struct rbd_img_request *img_request;
1781         struct ceph_snap_context *snapc;
1782         struct rbd_device *rbd_dev;
1783         struct ceph_osd_client *osdc;
1784         struct ceph_osd_request *osd_req;
1785
1786         rbd_assert(obj_request_img_data_test(obj_request));
1787         img_request = obj_request->img_request;
1788         rbd_assert(img_request);
1789         rbd_assert(img_request_write_test(img_request));
1790
1791         /* Allocate and initialize the request, for the two ops */
1792
1793         snapc = img_request->snapc;
1794         rbd_dev = img_request->rbd_dev;
1795         osdc = &rbd_dev->rbd_client->client->osdc;
1796         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1797         if (!osd_req)
1798                 return NULL;    /* ENOMEM */
1799
1800         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1801         osd_req->r_callback = rbd_osd_req_callback;
1802         osd_req->r_priv = obj_request;
1803
1804         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1805         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1806
1807         return osd_req;
1808 }
1809
1810
1811 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1812 {
1813         ceph_osdc_put_request(osd_req);
1814 }
1815
1816 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1817
1818 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1819                                                 u64 offset, u64 length,
1820                                                 enum obj_request_type type)
1821 {
1822         struct rbd_obj_request *obj_request;
1823         size_t size;
1824         char *name;
1825
1826         rbd_assert(obj_request_type_valid(type));
1827
1828         size = strlen(object_name) + 1;
1829         name = kmalloc(size, GFP_KERNEL);
1830         if (!name)
1831                 return NULL;
1832
1833         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1834         if (!obj_request) {
1835                 kfree(name);
1836                 return NULL;
1837         }
1838
1839         obj_request->object_name = memcpy(name, object_name, size);
1840         obj_request->offset = offset;
1841         obj_request->length = length;
1842         obj_request->flags = 0;
1843         obj_request->which = BAD_WHICH;
1844         obj_request->type = type;
1845         INIT_LIST_HEAD(&obj_request->links);
1846         init_completion(&obj_request->completion);
1847         kref_init(&obj_request->kref);
1848
1849         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1850                 offset, length, (int)type, obj_request);
1851
1852         return obj_request;
1853 }
1854
1855 static void rbd_obj_request_destroy(struct kref *kref)
1856 {
1857         struct rbd_obj_request *obj_request;
1858
1859         obj_request = container_of(kref, struct rbd_obj_request, kref);
1860
1861         dout("%s: obj %p\n", __func__, obj_request);
1862
1863         rbd_assert(obj_request->img_request == NULL);
1864         rbd_assert(obj_request->which == BAD_WHICH);
1865
1866         if (obj_request->osd_req)
1867                 rbd_osd_req_destroy(obj_request->osd_req);
1868
1869         rbd_assert(obj_request_type_valid(obj_request->type));
1870         switch (obj_request->type) {
1871         case OBJ_REQUEST_NODATA:
1872                 break;          /* Nothing to do */
1873         case OBJ_REQUEST_BIO:
1874                 if (obj_request->bio_list)
1875                         bio_chain_put(obj_request->bio_list);
1876                 break;
1877         case OBJ_REQUEST_PAGES:
1878                 if (obj_request->pages)
1879                         ceph_release_page_vector(obj_request->pages,
1880                                                 obj_request->page_count);
1881                 break;
1882         }
1883
1884         kfree(obj_request->object_name);
1885         obj_request->object_name = NULL;
1886         kmem_cache_free(rbd_obj_request_cache, obj_request);
1887 }
1888
1889 /* It's OK to call this for a device with no parent */
1890
1891 static void rbd_spec_put(struct rbd_spec *spec);
1892 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1893 {
1894         rbd_dev_remove_parent(rbd_dev);
1895         rbd_spec_put(rbd_dev->parent_spec);
1896         rbd_dev->parent_spec = NULL;
1897         rbd_dev->parent_overlap = 0;
1898 }
1899
1900 /*
1901  * Parent image reference counting is used to determine when an
1902  * image's parent fields can be safely torn down--after there are no
1903  * more in-flight requests to the parent image.  When the last
1904  * reference is dropped, cleaning them up is safe.
1905  */
1906 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1907 {
1908         int counter;
1909
1910         if (!rbd_dev->parent_spec)
1911                 return;
1912
1913         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1914         if (counter > 0)
1915                 return;
1916
1917         /* Last reference; clean up parent data structures */
1918
1919         if (!counter)
1920                 rbd_dev_unparent(rbd_dev);
1921         else
1922                 rbd_warn(rbd_dev, "parent reference underflow\n");
1923 }
1924
1925 /*
1926  * If an image has a non-zero parent overlap, get a reference to its
1927  * parent.
1928  *
1929  * We must get the reference before checking for the overlap to
1930  * coordinate properly with zeroing the parent overlap in
1931  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1932  * drop it again if there is no overlap.
1933  *
1934  * Returns true if the rbd device has a parent with a non-zero
1935  * overlap and a reference for it was successfully taken, or
1936  * false otherwise.
1937  */
1938 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1939 {
1940         int counter;
1941
1942         if (!rbd_dev->parent_spec)
1943                 return false;
1944
1945         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1946         if (counter > 0 && rbd_dev->parent_overlap)
1947                 return true;
1948
1949         /* Image was flattened, but parent is not yet torn down */
1950
1951         if (counter < 0)
1952                 rbd_warn(rbd_dev, "parent reference overflow\n");
1953
1954         return false;
1955 }
1956
1957 /*
1958  * Caller is responsible for filling in the list of object requests
1959  * that comprises the image request, and the Linux request pointer
1960  * (if there is one).
1961  */
1962 static struct rbd_img_request *rbd_img_request_create(
1963                                         struct rbd_device *rbd_dev,
1964                                         u64 offset, u64 length,
1965                                         bool write_request)
1966 {
1967         struct rbd_img_request *img_request;
1968
1969         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1970         if (!img_request)
1971                 return NULL;
1972
1973         if (write_request) {
1974                 down_read(&rbd_dev->header_rwsem);
1975                 ceph_get_snap_context(rbd_dev->header.snapc);
1976                 up_read(&rbd_dev->header_rwsem);
1977         }
1978
1979         img_request->rq = NULL;
1980         img_request->rbd_dev = rbd_dev;
1981         img_request->offset = offset;
1982         img_request->length = length;
1983         img_request->flags = 0;
1984         if (write_request) {
1985                 img_request_write_set(img_request);
1986                 img_request->snapc = rbd_dev->header.snapc;
1987         } else {
1988                 img_request->snap_id = rbd_dev->spec->snap_id;
1989         }
1990         if (rbd_dev_parent_get(rbd_dev))
1991                 img_request_layered_set(img_request);
1992         spin_lock_init(&img_request->completion_lock);
1993         img_request->next_completion = 0;
1994         img_request->callback = NULL;
1995         img_request->result = 0;
1996         img_request->obj_request_count = 0;
1997         INIT_LIST_HEAD(&img_request->obj_requests);
1998         kref_init(&img_request->kref);
1999
2000         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2001                 write_request ? "write" : "read", offset, length,
2002                 img_request);
2003
2004         return img_request;
2005 }
2006
2007 static void rbd_img_request_destroy(struct kref *kref)
2008 {
2009         struct rbd_img_request *img_request;
2010         struct rbd_obj_request *obj_request;
2011         struct rbd_obj_request *next_obj_request;
2012
2013         img_request = container_of(kref, struct rbd_img_request, kref);
2014
2015         dout("%s: img %p\n", __func__, img_request);
2016
2017         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2018                 rbd_img_obj_request_del(img_request, obj_request);
2019         rbd_assert(img_request->obj_request_count == 0);
2020
2021         if (img_request_layered_test(img_request)) {
2022                 img_request_layered_clear(img_request);
2023                 rbd_dev_parent_put(img_request->rbd_dev);
2024         }
2025
2026         if (img_request_write_test(img_request))
2027                 ceph_put_snap_context(img_request->snapc);
2028
2029         kmem_cache_free(rbd_img_request_cache, img_request);
2030 }
2031
2032 static struct rbd_img_request *rbd_parent_request_create(
2033                                         struct rbd_obj_request *obj_request,
2034                                         u64 img_offset, u64 length)
2035 {
2036         struct rbd_img_request *parent_request;
2037         struct rbd_device *rbd_dev;
2038
2039         rbd_assert(obj_request->img_request);
2040         rbd_dev = obj_request->img_request->rbd_dev;
2041
2042         parent_request = rbd_img_request_create(rbd_dev->parent,
2043                                                 img_offset, length, false);
2044         if (!parent_request)
2045                 return NULL;
2046
2047         img_request_child_set(parent_request);
2048         rbd_obj_request_get(obj_request);
2049         parent_request->obj_request = obj_request;
2050
2051         return parent_request;
2052 }
2053
2054 static void rbd_parent_request_destroy(struct kref *kref)
2055 {
2056         struct rbd_img_request *parent_request;
2057         struct rbd_obj_request *orig_request;
2058
2059         parent_request = container_of(kref, struct rbd_img_request, kref);
2060         orig_request = parent_request->obj_request;
2061
2062         parent_request->obj_request = NULL;
2063         rbd_obj_request_put(orig_request);
2064         img_request_child_clear(parent_request);
2065
2066         rbd_img_request_destroy(kref);
2067 }
2068
2069 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2070 {
2071         struct rbd_img_request *img_request;
2072         unsigned int xferred;
2073         int result;
2074         bool more;
2075
2076         rbd_assert(obj_request_img_data_test(obj_request));
2077         img_request = obj_request->img_request;
2078
2079         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2080         xferred = (unsigned int)obj_request->xferred;
2081         result = obj_request->result;
2082         if (result) {
2083                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2084
2085                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2086                         img_request_write_test(img_request) ? "write" : "read",
2087                         obj_request->length, obj_request->img_offset,
2088                         obj_request->offset);
2089                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2090                         result, xferred);
2091                 if (!img_request->result)
2092                         img_request->result = result;
2093         }
2094
2095         /* Image object requests don't own their page array */
2096
2097         if (obj_request->type == OBJ_REQUEST_PAGES) {
2098                 obj_request->pages = NULL;
2099                 obj_request->page_count = 0;
2100         }
2101
2102         if (img_request_child_test(img_request)) {
2103                 rbd_assert(img_request->obj_request != NULL);
2104                 more = obj_request->which < img_request->obj_request_count - 1;
2105         } else {
2106                 rbd_assert(img_request->rq != NULL);
2107                 more = blk_end_request(img_request->rq, result, xferred);
2108         }
2109
2110         return more;
2111 }
2112
2113 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2114 {
2115         struct rbd_img_request *img_request;
2116         u32 which = obj_request->which;
2117         bool more = true;
2118
2119         rbd_assert(obj_request_img_data_test(obj_request));
2120         img_request = obj_request->img_request;
2121
2122         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2123         rbd_assert(img_request != NULL);
2124         rbd_assert(img_request->obj_request_count > 0);
2125         rbd_assert(which != BAD_WHICH);
2126         rbd_assert(which < img_request->obj_request_count);
2127
2128         spin_lock_irq(&img_request->completion_lock);
2129         if (which != img_request->next_completion)
2130                 goto out;
2131
2132         for_each_obj_request_from(img_request, obj_request) {
2133                 rbd_assert(more);
2134                 rbd_assert(which < img_request->obj_request_count);
2135
2136                 if (!obj_request_done_test(obj_request))
2137                         break;
2138                 more = rbd_img_obj_end_request(obj_request);
2139                 which++;
2140         }
2141
2142         rbd_assert(more ^ (which == img_request->obj_request_count));
2143         img_request->next_completion = which;
2144 out:
2145         spin_unlock_irq(&img_request->completion_lock);
2146         rbd_img_request_put(img_request);
2147
2148         if (!more)
2149                 rbd_img_request_complete(img_request);
2150 }
2151
2152 /*
2153  * Split up an image request into one or more object requests, each
2154  * to a different object.  The "type" parameter indicates whether
2155  * "data_desc" is the pointer to the head of a list of bio
2156  * structures, or the base of a page array.  In either case this
2157  * function assumes data_desc describes memory sufficient to hold
2158  * all data described by the image request.
2159  */
2160 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2161                                         enum obj_request_type type,
2162                                         void *data_desc)
2163 {
2164         struct rbd_device *rbd_dev = img_request->rbd_dev;
2165         struct rbd_obj_request *obj_request = NULL;
2166         struct rbd_obj_request *next_obj_request;
2167         bool write_request = img_request_write_test(img_request);
2168         struct bio *bio_list = NULL;
2169         unsigned int bio_offset = 0;
2170         struct page **pages = NULL;
2171         u64 img_offset;
2172         u64 resid;
2173         u16 opcode;
2174
2175         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2176                 (int)type, data_desc);
2177
2178         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2179         img_offset = img_request->offset;
2180         resid = img_request->length;
2181         rbd_assert(resid > 0);
2182
2183         if (type == OBJ_REQUEST_BIO) {
2184                 bio_list = data_desc;
2185                 rbd_assert(img_offset ==
2186                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2187         } else {
2188                 rbd_assert(type == OBJ_REQUEST_PAGES);
2189                 pages = data_desc;
2190         }
2191
2192         while (resid) {
2193                 struct ceph_osd_request *osd_req;
2194                 const char *object_name;
2195                 u64 offset;
2196                 u64 length;
2197
2198                 object_name = rbd_segment_name(rbd_dev, img_offset);
2199                 if (!object_name)
2200                         goto out_unwind;
2201                 offset = rbd_segment_offset(rbd_dev, img_offset);
2202                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2203                 obj_request = rbd_obj_request_create(object_name,
2204                                                 offset, length, type);
2205                 /* object request has its own copy of the object name */
2206                 rbd_segment_name_free(object_name);
2207                 if (!obj_request)
2208                         goto out_unwind;
2209                 /*
2210                  * set obj_request->img_request before creating the
2211                  * osd_request so that it gets the right snapc
2212                  */
2213                 rbd_img_obj_request_add(img_request, obj_request);
2214
2215                 if (type == OBJ_REQUEST_BIO) {
2216                         unsigned int clone_size;
2217
2218                         rbd_assert(length <= (u64)UINT_MAX);
2219                         clone_size = (unsigned int)length;
2220                         obj_request->bio_list =
2221                                         bio_chain_clone_range(&bio_list,
2222                                                                 &bio_offset,
2223                                                                 clone_size,
2224                                                                 GFP_ATOMIC);
2225                         if (!obj_request->bio_list)
2226                                 goto out_partial;
2227                 } else {
2228                         unsigned int page_count;
2229
2230                         obj_request->pages = pages;
2231                         page_count = (u32)calc_pages_for(offset, length);
2232                         obj_request->page_count = page_count;
2233                         if ((offset + length) & ~PAGE_MASK)
2234                                 page_count--;   /* more on last page */
2235                         pages += page_count;
2236                 }
2237
2238                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2239                                                 obj_request);
2240                 if (!osd_req)
2241                         goto out_partial;
2242                 obj_request->osd_req = osd_req;
2243                 obj_request->callback = rbd_img_obj_callback;
2244                 rbd_img_request_get(img_request);
2245
2246                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2247                                                 0, 0);
2248                 if (type == OBJ_REQUEST_BIO)
2249                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2250                                         obj_request->bio_list, length);
2251                 else
2252                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2253                                         obj_request->pages, length,
2254                                         offset & ~PAGE_MASK, false, false);
2255
2256                 if (write_request)
2257                         rbd_osd_req_format_write(obj_request);
2258                 else
2259                         rbd_osd_req_format_read(obj_request);
2260
2261                 obj_request->img_offset = img_offset;
2262
2263                 img_offset += length;
2264                 resid -= length;
2265         }
2266
2267         return 0;
2268
2269 out_partial:
2270         rbd_obj_request_put(obj_request);
2271 out_unwind:
2272         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2273                 rbd_img_obj_request_del(img_request, obj_request);
2274
2275         return -ENOMEM;
2276 }
2277
2278 static void
2279 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2280 {
2281         struct rbd_img_request *img_request;
2282         struct rbd_device *rbd_dev;
2283         struct page **pages;
2284         u32 page_count;
2285
2286         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2287         rbd_assert(obj_request_img_data_test(obj_request));
2288         img_request = obj_request->img_request;
2289         rbd_assert(img_request);
2290
2291         rbd_dev = img_request->rbd_dev;
2292         rbd_assert(rbd_dev);
2293
2294         pages = obj_request->copyup_pages;
2295         rbd_assert(pages != NULL);
2296         obj_request->copyup_pages = NULL;
2297         page_count = obj_request->copyup_page_count;
2298         rbd_assert(page_count);
2299         obj_request->copyup_page_count = 0;
2300         ceph_release_page_vector(pages, page_count);
2301
2302         /*
2303          * We want the transfer count to reflect the size of the
2304          * original write request.  There is no such thing as a
2305          * successful short write, so if the request was successful
2306          * we can just set it to the originally-requested length.
2307          */
2308         if (!obj_request->result)
2309                 obj_request->xferred = obj_request->length;
2310
2311         /* Finish up with the normal image object callback */
2312
2313         rbd_img_obj_callback(obj_request);
2314 }
2315
2316 static void
2317 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2318 {
2319         struct rbd_obj_request *orig_request;
2320         struct ceph_osd_request *osd_req;
2321         struct ceph_osd_client *osdc;
2322         struct rbd_device *rbd_dev;
2323         struct page **pages;
2324         u32 page_count;
2325         int img_result;
2326         u64 parent_length;
2327         u64 offset;
2328         u64 length;
2329
2330         rbd_assert(img_request_child_test(img_request));
2331
2332         /* First get what we need from the image request */
2333
2334         pages = img_request->copyup_pages;
2335         rbd_assert(pages != NULL);
2336         img_request->copyup_pages = NULL;
2337         page_count = img_request->copyup_page_count;
2338         rbd_assert(page_count);
2339         img_request->copyup_page_count = 0;
2340
2341         orig_request = img_request->obj_request;
2342         rbd_assert(orig_request != NULL);
2343         rbd_assert(obj_request_type_valid(orig_request->type));
2344         img_result = img_request->result;
2345         parent_length = img_request->length;
2346         rbd_assert(parent_length == img_request->xferred);
2347         rbd_img_request_put(img_request);
2348
2349         rbd_assert(orig_request->img_request);
2350         rbd_dev = orig_request->img_request->rbd_dev;
2351         rbd_assert(rbd_dev);
2352
2353         /*
2354          * If the overlap has become 0 (most likely because the
2355          * image has been flattened) we need to free the pages
2356          * and re-submit the original write request.
2357          */
2358         if (!rbd_dev->parent_overlap) {
2359                 struct ceph_osd_client *osdc;
2360
2361                 ceph_release_page_vector(pages, page_count);
2362                 osdc = &rbd_dev->rbd_client->client->osdc;
2363                 img_result = rbd_obj_request_submit(osdc, orig_request);
2364                 if (!img_result)
2365                         return;
2366         }
2367
2368         if (img_result)
2369                 goto out_err;
2370
2371         /*
2372          * The original osd request is of no use to use any more.
2373          * We need a new one that can hold the two ops in a copyup
2374          * request.  Allocate the new copyup osd request for the
2375          * original request, and release the old one.
2376          */
2377         img_result = -ENOMEM;
2378         osd_req = rbd_osd_req_create_copyup(orig_request);
2379         if (!osd_req)
2380                 goto out_err;
2381         rbd_osd_req_destroy(orig_request->osd_req);
2382         orig_request->osd_req = osd_req;
2383         orig_request->copyup_pages = pages;
2384         orig_request->copyup_page_count = page_count;
2385
2386         /* Initialize the copyup op */
2387
2388         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2389         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2390                                                 false, false);
2391
2392         /* Then the original write request op */
2393
2394         offset = orig_request->offset;
2395         length = orig_request->length;
2396         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2397                                         offset, length, 0, 0);
2398         if (orig_request->type == OBJ_REQUEST_BIO)
2399                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2400                                         orig_request->bio_list, length);
2401         else
2402                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2403                                         orig_request->pages, length,
2404                                         offset & ~PAGE_MASK, false, false);
2405
2406         rbd_osd_req_format_write(orig_request);
2407
2408         /* All set, send it off. */
2409
2410         orig_request->callback = rbd_img_obj_copyup_callback;
2411         osdc = &rbd_dev->rbd_client->client->osdc;
2412         img_result = rbd_obj_request_submit(osdc, orig_request);
2413         if (!img_result)
2414                 return;
2415 out_err:
2416         /* Record the error code and complete the request */
2417
2418         orig_request->result = img_result;
2419         orig_request->xferred = 0;
2420         obj_request_done_set(orig_request);
2421         rbd_obj_request_complete(orig_request);
2422 }
2423
2424 /*
2425  * Read from the parent image the range of data that covers the
2426  * entire target of the given object request.  This is used for
2427  * satisfying a layered image write request when the target of an
2428  * object request from the image request does not exist.
2429  *
2430  * A page array big enough to hold the returned data is allocated
2431  * and supplied to rbd_img_request_fill() as the "data descriptor."
2432  * When the read completes, this page array will be transferred to
2433  * the original object request for the copyup operation.
2434  *
2435  * If an error occurs, record it as the result of the original
2436  * object request and mark it done so it gets completed.
2437  */
2438 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2439 {
2440         struct rbd_img_request *img_request = NULL;
2441         struct rbd_img_request *parent_request = NULL;
2442         struct rbd_device *rbd_dev;
2443         u64 img_offset;
2444         u64 length;
2445         struct page **pages = NULL;
2446         u32 page_count;
2447         int result;
2448
2449         rbd_assert(obj_request_img_data_test(obj_request));
2450         rbd_assert(obj_request_type_valid(obj_request->type));
2451
2452         img_request = obj_request->img_request;
2453         rbd_assert(img_request != NULL);
2454         rbd_dev = img_request->rbd_dev;
2455         rbd_assert(rbd_dev->parent != NULL);
2456
2457         /*
2458          * Determine the byte range covered by the object in the
2459          * child image to which the original request was to be sent.
2460          */
2461         img_offset = obj_request->img_offset - obj_request->offset;
2462         length = (u64)1 << rbd_dev->header.obj_order;
2463
2464         /*
2465          * There is no defined parent data beyond the parent
2466          * overlap, so limit what we read at that boundary if
2467          * necessary.
2468          */
2469         if (img_offset + length > rbd_dev->parent_overlap) {
2470                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2471                 length = rbd_dev->parent_overlap - img_offset;
2472         }
2473
2474         /*
2475          * Allocate a page array big enough to receive the data read
2476          * from the parent.
2477          */
2478         page_count = (u32)calc_pages_for(0, length);
2479         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2480         if (IS_ERR(pages)) {
2481                 result = PTR_ERR(pages);
2482                 pages = NULL;
2483                 goto out_err;
2484         }
2485
2486         result = -ENOMEM;
2487         parent_request = rbd_parent_request_create(obj_request,
2488                                                 img_offset, length);
2489         if (!parent_request)
2490                 goto out_err;
2491
2492         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2493         if (result)
2494                 goto out_err;
2495         parent_request->copyup_pages = pages;
2496         parent_request->copyup_page_count = page_count;
2497
2498         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2499         result = rbd_img_request_submit(parent_request);
2500         if (!result)
2501                 return 0;
2502
2503         parent_request->copyup_pages = NULL;
2504         parent_request->copyup_page_count = 0;
2505         parent_request->obj_request = NULL;
2506         rbd_obj_request_put(obj_request);
2507 out_err:
2508         if (pages)
2509                 ceph_release_page_vector(pages, page_count);
2510         if (parent_request)
2511                 rbd_img_request_put(parent_request);
2512         obj_request->result = result;
2513         obj_request->xferred = 0;
2514         obj_request_done_set(obj_request);
2515
2516         return result;
2517 }
2518
2519 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2520 {
2521         struct rbd_obj_request *orig_request;
2522         struct rbd_device *rbd_dev;
2523         int result;
2524
2525         rbd_assert(!obj_request_img_data_test(obj_request));
2526
2527         /*
2528          * All we need from the object request is the original
2529          * request and the result of the STAT op.  Grab those, then
2530          * we're done with the request.
2531          */
2532         orig_request = obj_request->obj_request;
2533         obj_request->obj_request = NULL;
2534         rbd_obj_request_put(orig_request);
2535         rbd_assert(orig_request);
2536         rbd_assert(orig_request->img_request);
2537
2538         result = obj_request->result;
2539         obj_request->result = 0;
2540
2541         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2542                 obj_request, orig_request, result,
2543                 obj_request->xferred, obj_request->length);
2544         rbd_obj_request_put(obj_request);
2545
2546         /*
2547          * If the overlap has become 0 (most likely because the
2548          * image has been flattened) we need to free the pages
2549          * and re-submit the original write request.
2550          */
2551         rbd_dev = orig_request->img_request->rbd_dev;
2552         if (!rbd_dev->parent_overlap) {
2553                 struct ceph_osd_client *osdc;
2554
2555                 osdc = &rbd_dev->rbd_client->client->osdc;
2556                 result = rbd_obj_request_submit(osdc, orig_request);
2557                 if (!result)
2558                         return;
2559         }
2560
2561         /*
2562          * Our only purpose here is to determine whether the object
2563          * exists, and we don't want to treat the non-existence as
2564          * an error.  If something else comes back, transfer the
2565          * error to the original request and complete it now.
2566          */
2567         if (!result) {
2568                 obj_request_existence_set(orig_request, true);
2569         } else if (result == -ENOENT) {
2570                 obj_request_existence_set(orig_request, false);
2571         } else if (result) {
2572                 orig_request->result = result;
2573                 goto out;
2574         }
2575
2576         /*
2577          * Resubmit the original request now that we have recorded
2578          * whether the target object exists.
2579          */
2580         orig_request->result = rbd_img_obj_request_submit(orig_request);
2581 out:
2582         if (orig_request->result)
2583                 rbd_obj_request_complete(orig_request);
2584 }
2585
2586 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2587 {
2588         struct rbd_obj_request *stat_request;
2589         struct rbd_device *rbd_dev;
2590         struct ceph_osd_client *osdc;
2591         struct page **pages = NULL;
2592         u32 page_count;
2593         size_t size;
2594         int ret;
2595
2596         /*
2597          * The response data for a STAT call consists of:
2598          *     le64 length;
2599          *     struct {
2600          *         le32 tv_sec;
2601          *         le32 tv_nsec;
2602          *     } mtime;
2603          */
2604         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2605         page_count = (u32)calc_pages_for(0, size);
2606         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2607         if (IS_ERR(pages))
2608                 return PTR_ERR(pages);
2609
2610         ret = -ENOMEM;
2611         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2612                                                         OBJ_REQUEST_PAGES);
2613         if (!stat_request)
2614                 goto out;
2615
2616         rbd_obj_request_get(obj_request);
2617         stat_request->obj_request = obj_request;
2618         stat_request->pages = pages;
2619         stat_request->page_count = page_count;
2620
2621         rbd_assert(obj_request->img_request);
2622         rbd_dev = obj_request->img_request->rbd_dev;
2623         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2624                                                 stat_request);
2625         if (!stat_request->osd_req)
2626                 goto out;
2627         stat_request->callback = rbd_img_obj_exists_callback;
2628
2629         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2630         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2631                                         false, false);
2632         rbd_osd_req_format_read(stat_request);
2633
2634         osdc = &rbd_dev->rbd_client->client->osdc;
2635         ret = rbd_obj_request_submit(osdc, stat_request);
2636 out:
2637         if (ret)
2638                 rbd_obj_request_put(obj_request);
2639
2640         return ret;
2641 }
2642
2643 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2644 {
2645         struct rbd_img_request *img_request;
2646         struct rbd_device *rbd_dev;
2647         bool known;
2648
2649         rbd_assert(obj_request_img_data_test(obj_request));
2650
2651         img_request = obj_request->img_request;
2652         rbd_assert(img_request);
2653         rbd_dev = img_request->rbd_dev;
2654
2655         /*
2656          * Only writes to layered images need special handling.
2657          * Reads and non-layered writes are simple object requests.
2658          * Layered writes that start beyond the end of the overlap
2659          * with the parent have no parent data, so they too are
2660          * simple object requests.  Finally, if the target object is
2661          * known to already exist, its parent data has already been
2662          * copied, so a write to the object can also be handled as a
2663          * simple object request.
2664          */
2665         if (!img_request_write_test(img_request) ||
2666                 !img_request_layered_test(img_request) ||
2667                 !obj_request_overlaps_parent(obj_request) ||
2668                 ((known = obj_request_known_test(obj_request)) &&
2669                         obj_request_exists_test(obj_request))) {
2670
2671                 struct rbd_device *rbd_dev;
2672                 struct ceph_osd_client *osdc;
2673
2674                 rbd_dev = obj_request->img_request->rbd_dev;
2675                 osdc = &rbd_dev->rbd_client->client->osdc;
2676
2677                 return rbd_obj_request_submit(osdc, obj_request);
2678         }
2679
2680         /*
2681          * It's a layered write.  The target object might exist but
2682          * we may not know that yet.  If we know it doesn't exist,
2683          * start by reading the data for the full target object from
2684          * the parent so we can use it for a copyup to the target.
2685          */
2686         if (known)
2687                 return rbd_img_obj_parent_read_full(obj_request);
2688
2689         /* We don't know whether the target exists.  Go find out. */
2690
2691         return rbd_img_obj_exists_submit(obj_request);
2692 }
2693
2694 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2695 {
2696         struct rbd_obj_request *obj_request;
2697         struct rbd_obj_request *next_obj_request;
2698
2699         dout("%s: img %p\n", __func__, img_request);
2700         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2701                 int ret;
2702
2703                 ret = rbd_img_obj_request_submit(obj_request);
2704                 if (ret)
2705                         return ret;
2706         }
2707
2708         return 0;
2709 }
2710
2711 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2712 {
2713         struct rbd_obj_request *obj_request;
2714         struct rbd_device *rbd_dev;
2715         u64 obj_end;
2716         u64 img_xferred;
2717         int img_result;
2718
2719         rbd_assert(img_request_child_test(img_request));
2720
2721         /* First get what we need from the image request and release it */
2722
2723         obj_request = img_request->obj_request;
2724         img_xferred = img_request->xferred;
2725         img_result = img_request->result;
2726         rbd_img_request_put(img_request);
2727
2728         /*
2729          * If the overlap has become 0 (most likely because the
2730          * image has been flattened) we need to re-submit the
2731          * original request.
2732          */
2733         rbd_assert(obj_request);
2734         rbd_assert(obj_request->img_request);
2735         rbd_dev = obj_request->img_request->rbd_dev;
2736         if (!rbd_dev->parent_overlap) {
2737                 struct ceph_osd_client *osdc;
2738
2739                 osdc = &rbd_dev->rbd_client->client->osdc;
2740                 img_result = rbd_obj_request_submit(osdc, obj_request);
2741                 if (!img_result)
2742                         return;
2743         }
2744
2745         obj_request->result = img_result;
2746         if (obj_request->result)
2747                 goto out;
2748
2749         /*
2750          * We need to zero anything beyond the parent overlap
2751          * boundary.  Since rbd_img_obj_request_read_callback()
2752          * will zero anything beyond the end of a short read, an
2753          * easy way to do this is to pretend the data from the
2754          * parent came up short--ending at the overlap boundary.
2755          */
2756         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2757         obj_end = obj_request->img_offset + obj_request->length;
2758         if (obj_end > rbd_dev->parent_overlap) {
2759                 u64 xferred = 0;
2760
2761                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2762                         xferred = rbd_dev->parent_overlap -
2763                                         obj_request->img_offset;
2764
2765                 obj_request->xferred = min(img_xferred, xferred);
2766         } else {
2767                 obj_request->xferred = img_xferred;
2768         }
2769 out:
2770         rbd_img_obj_request_read_callback(obj_request);
2771         rbd_obj_request_complete(obj_request);
2772 }
2773
2774 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2775 {
2776         struct rbd_img_request *img_request;
2777         int result;
2778
2779         rbd_assert(obj_request_img_data_test(obj_request));
2780         rbd_assert(obj_request->img_request != NULL);
2781         rbd_assert(obj_request->result == (s32) -ENOENT);
2782         rbd_assert(obj_request_type_valid(obj_request->type));
2783
2784         /* rbd_read_finish(obj_request, obj_request->length); */
2785         img_request = rbd_parent_request_create(obj_request,
2786                                                 obj_request->img_offset,
2787                                                 obj_request->length);
2788         result = -ENOMEM;
2789         if (!img_request)
2790                 goto out_err;
2791
2792         if (obj_request->type == OBJ_REQUEST_BIO)
2793                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2794                                                 obj_request->bio_list);
2795         else
2796                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2797                                                 obj_request->pages);
2798         if (result)
2799                 goto out_err;
2800
2801         img_request->callback = rbd_img_parent_read_callback;
2802         result = rbd_img_request_submit(img_request);
2803         if (result)
2804                 goto out_err;
2805
2806         return;
2807 out_err:
2808         if (img_request)
2809                 rbd_img_request_put(img_request);
2810         obj_request->result = result;
2811         obj_request->xferred = 0;
2812         obj_request_done_set(obj_request);
2813 }
2814
2815 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2816 {
2817         struct rbd_obj_request *obj_request;
2818         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2819         int ret;
2820
2821         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2822                                                         OBJ_REQUEST_NODATA);
2823         if (!obj_request)
2824                 return -ENOMEM;
2825
2826         ret = -ENOMEM;
2827         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2828         if (!obj_request->osd_req)
2829                 goto out;
2830
2831         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2832                                         notify_id, 0, 0);
2833         rbd_osd_req_format_read(obj_request);
2834
2835         ret = rbd_obj_request_submit(osdc, obj_request);
2836         if (ret)
2837                 goto out;
2838         ret = rbd_obj_request_wait(obj_request);
2839 out:
2840         rbd_obj_request_put(obj_request);
2841
2842         return ret;
2843 }
2844
2845 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2846 {
2847         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2848         int ret;
2849
2850         if (!rbd_dev)
2851                 return;
2852
2853         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2854                 rbd_dev->header_name, (unsigned long long)notify_id,
2855                 (unsigned int)opcode);
2856         ret = rbd_dev_refresh(rbd_dev);
2857         if (ret)
2858                 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2859
2860         rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2861 }
2862
2863 /*
2864  * Request sync osd watch/unwatch.  The value of "start" determines
2865  * whether a watch request is being initiated or torn down.
2866  */
2867 static int __rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2868 {
2869         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2870         struct rbd_obj_request *obj_request;
2871         int ret;
2872
2873         rbd_assert(start ^ !!rbd_dev->watch_event);
2874         rbd_assert(start ^ !!rbd_dev->watch_request);
2875
2876         if (start) {
2877                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2878                                                 &rbd_dev->watch_event);
2879                 if (ret < 0)
2880                         return ret;
2881                 rbd_assert(rbd_dev->watch_event != NULL);
2882         }
2883
2884         ret = -ENOMEM;
2885         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2886                                                         OBJ_REQUEST_NODATA);
2887         if (!obj_request)
2888                 goto out_cancel;
2889
2890         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2891         if (!obj_request->osd_req)
2892                 goto out_cancel;
2893
2894         if (start)
2895                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2896         else
2897                 ceph_osdc_unregister_linger_request(osdc,
2898                                         rbd_dev->watch_request->osd_req);
2899
2900         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2901                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2902         rbd_osd_req_format_write(obj_request);
2903
2904         ret = rbd_obj_request_submit(osdc, obj_request);
2905         if (ret)
2906                 goto out_cancel;
2907         ret = rbd_obj_request_wait(obj_request);
2908         if (ret)
2909                 goto out_cancel;
2910         ret = obj_request->result;
2911         if (ret)
2912                 goto out_cancel;
2913
2914         /*
2915          * A watch request is set to linger, so the underlying osd
2916          * request won't go away until we unregister it.  We retain
2917          * a pointer to the object request during that time (in
2918          * rbd_dev->watch_request), so we'll keep a reference to
2919          * it.  We'll drop that reference (below) after we've
2920          * unregistered it.
2921          */
2922         if (start) {
2923                 rbd_dev->watch_request = obj_request;
2924
2925                 return 0;
2926         }
2927
2928         /* We have successfully torn down the watch request */
2929
2930         rbd_obj_request_put(rbd_dev->watch_request);
2931         rbd_dev->watch_request = NULL;
2932 out_cancel:
2933         /* Cancel the event if we're tearing down, or on error */
2934         ceph_osdc_cancel_event(rbd_dev->watch_event);
2935         rbd_dev->watch_event = NULL;
2936         if (obj_request)
2937                 rbd_obj_request_put(obj_request);
2938
2939         return ret;
2940 }
2941
2942 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
2943 {
2944         return __rbd_dev_header_watch_sync(rbd_dev, true);
2945 }
2946
2947 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
2948 {
2949         int ret;
2950
2951         ret = __rbd_dev_header_watch_sync(rbd_dev, false);
2952         if (ret) {
2953                 rbd_warn(rbd_dev, "unable to tear down watch request: %d\n",
2954                          ret);
2955         }
2956 }
2957
2958 /*
2959  * Synchronous osd object method call.  Returns the number of bytes
2960  * returned in the outbound buffer, or a negative error code.
2961  */
2962 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2963                              const char *object_name,
2964                              const char *class_name,
2965                              const char *method_name,
2966                              const void *outbound,
2967                              size_t outbound_size,
2968                              void *inbound,
2969                              size_t inbound_size)
2970 {
2971         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2972         struct rbd_obj_request *obj_request;
2973         struct page **pages;
2974         u32 page_count;
2975         int ret;
2976
2977         /*
2978          * Method calls are ultimately read operations.  The result
2979          * should placed into the inbound buffer provided.  They
2980          * also supply outbound data--parameters for the object
2981          * method.  Currently if this is present it will be a
2982          * snapshot id.
2983          */
2984         page_count = (u32)calc_pages_for(0, inbound_size);
2985         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2986         if (IS_ERR(pages))
2987                 return PTR_ERR(pages);
2988
2989         ret = -ENOMEM;
2990         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2991                                                         OBJ_REQUEST_PAGES);
2992         if (!obj_request)
2993                 goto out;
2994
2995         obj_request->pages = pages;
2996         obj_request->page_count = page_count;
2997
2998         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2999         if (!obj_request->osd_req)
3000                 goto out;
3001
3002         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3003                                         class_name, method_name);
3004         if (outbound_size) {
3005                 struct ceph_pagelist *pagelist;
3006
3007                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3008                 if (!pagelist)
3009                         goto out;
3010
3011                 ceph_pagelist_init(pagelist);
3012                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3013                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3014                                                 pagelist);
3015         }
3016         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3017                                         obj_request->pages, inbound_size,
3018                                         0, false, false);
3019         rbd_osd_req_format_read(obj_request);
3020
3021         ret = rbd_obj_request_submit(osdc, obj_request);
3022         if (ret)
3023                 goto out;
3024         ret = rbd_obj_request_wait(obj_request);
3025         if (ret)
3026                 goto out;
3027
3028         ret = obj_request->result;
3029         if (ret < 0)
3030                 goto out;
3031
3032         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3033         ret = (int)obj_request->xferred;
3034         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3035 out:
3036         if (obj_request)
3037                 rbd_obj_request_put(obj_request);
3038         else
3039                 ceph_release_page_vector(pages, page_count);
3040
3041         return ret;
3042 }
3043
3044 static void rbd_request_fn(struct request_queue *q)
3045                 __releases(q->queue_lock) __acquires(q->queue_lock)
3046 {
3047         struct rbd_device *rbd_dev = q->queuedata;
3048         bool read_only = rbd_dev->mapping.read_only;
3049         struct request *rq;
3050         int result;
3051
3052         while ((rq = blk_fetch_request(q))) {
3053                 bool write_request = rq_data_dir(rq) == WRITE;
3054                 struct rbd_img_request *img_request;
3055                 u64 offset;
3056                 u64 length;
3057
3058                 /* Ignore any non-FS requests that filter through. */
3059
3060                 if (rq->cmd_type != REQ_TYPE_FS) {
3061                         dout("%s: non-fs request type %d\n", __func__,
3062                                 (int) rq->cmd_type);
3063                         __blk_end_request_all(rq, 0);
3064                         continue;
3065                 }
3066
3067                 /* Ignore/skip any zero-length requests */
3068
3069                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3070                 length = (u64) blk_rq_bytes(rq);
3071
3072                 if (!length) {
3073                         dout("%s: zero-length request\n", __func__);
3074                         __blk_end_request_all(rq, 0);
3075                         continue;
3076                 }
3077
3078                 spin_unlock_irq(q->queue_lock);
3079
3080                 /* Disallow writes to a read-only device */
3081
3082                 if (write_request) {
3083                         result = -EROFS;
3084                         if (read_only)
3085                                 goto end_request;
3086                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3087                 }
3088
3089                 /*
3090                  * Quit early if the mapped snapshot no longer
3091                  * exists.  It's still possible the snapshot will
3092                  * have disappeared by the time our request arrives
3093                  * at the osd, but there's no sense in sending it if
3094                  * we already know.
3095                  */
3096                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3097                         dout("request for non-existent snapshot");
3098                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3099                         result = -ENXIO;
3100                         goto end_request;
3101                 }
3102
3103                 result = -EINVAL;
3104                 if (offset && length > U64_MAX - offset + 1) {
3105                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3106                                 offset, length);
3107                         goto end_request;       /* Shouldn't happen */
3108                 }
3109
3110                 result = -EIO;
3111                 if (offset + length > rbd_dev->mapping.size) {
3112                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3113                                 offset, length, rbd_dev->mapping.size);
3114                         goto end_request;
3115                 }
3116
3117                 result = -ENOMEM;
3118                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3119                                                         write_request);
3120                 if (!img_request)
3121                         goto end_request;
3122
3123                 img_request->rq = rq;
3124
3125                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3126                                                 rq->bio);
3127                 if (!result)
3128                         result = rbd_img_request_submit(img_request);
3129                 if (result)
3130                         rbd_img_request_put(img_request);
3131 end_request:
3132                 spin_lock_irq(q->queue_lock);
3133                 if (result < 0) {
3134                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3135                                 write_request ? "write" : "read",
3136                                 length, offset, result);
3137
3138                         __blk_end_request_all(rq, result);
3139                 }
3140         }
3141 }
3142
3143 /*
3144  * a queue callback. Makes sure that we don't create a bio that spans across
3145  * multiple osd objects. One exception would be with a single page bios,
3146  * which we handle later at bio_chain_clone_range()
3147  */
3148 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3149                           struct bio_vec *bvec)
3150 {
3151         struct rbd_device *rbd_dev = q->queuedata;
3152         sector_t sector_offset;
3153         sector_t sectors_per_obj;
3154         sector_t obj_sector_offset;
3155         int ret;
3156
3157         /*
3158          * Find how far into its rbd object the partition-relative
3159          * bio start sector is to offset relative to the enclosing
3160          * device.
3161          */
3162         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3163         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3164         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3165
3166         /*
3167          * Compute the number of bytes from that offset to the end
3168          * of the object.  Account for what's already used by the bio.
3169          */
3170         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3171         if (ret > bmd->bi_size)
3172                 ret -= bmd->bi_size;
3173         else
3174                 ret = 0;
3175
3176         /*
3177          * Don't send back more than was asked for.  And if the bio
3178          * was empty, let the whole thing through because:  "Note
3179          * that a block device *must* allow a single page to be
3180          * added to an empty bio."
3181          */
3182         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3183         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3184                 ret = (int) bvec->bv_len;
3185
3186         return ret;
3187 }
3188
3189 static void rbd_free_disk(struct rbd_device *rbd_dev)
3190 {
3191         struct gendisk *disk = rbd_dev->disk;
3192
3193         if (!disk)
3194                 return;
3195
3196         rbd_dev->disk = NULL;
3197         if (disk->flags & GENHD_FL_UP) {
3198                 del_gendisk(disk);
3199                 if (disk->queue)
3200                         blk_cleanup_queue(disk->queue);
3201         }
3202         put_disk(disk);
3203 }
3204
3205 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3206                                 const char *object_name,
3207                                 u64 offset, u64 length, void *buf)
3208
3209 {
3210         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3211         struct rbd_obj_request *obj_request;
3212         struct page **pages = NULL;
3213         u32 page_count;
3214         size_t size;
3215         int ret;
3216
3217         page_count = (u32) calc_pages_for(offset, length);
3218         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3219         if (IS_ERR(pages))
3220                 ret = PTR_ERR(pages);
3221
3222         ret = -ENOMEM;
3223         obj_request = rbd_obj_request_create(object_name, offset, length,
3224                                                         OBJ_REQUEST_PAGES);
3225         if (!obj_request)
3226                 goto out;
3227
3228         obj_request->pages = pages;
3229         obj_request->page_count = page_count;
3230
3231         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3232         if (!obj_request->osd_req)
3233                 goto out;
3234
3235         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3236                                         offset, length, 0, 0);
3237         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3238                                         obj_request->pages,
3239                                         obj_request->length,
3240                                         obj_request->offset & ~PAGE_MASK,
3241                                         false, false);
3242         rbd_osd_req_format_read(obj_request);
3243
3244         ret = rbd_obj_request_submit(osdc, obj_request);
3245         if (ret)
3246                 goto out;
3247         ret = rbd_obj_request_wait(obj_request);
3248         if (ret)
3249                 goto out;
3250
3251         ret = obj_request->result;
3252         if (ret < 0)
3253                 goto out;
3254
3255         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3256         size = (size_t) obj_request->xferred;
3257         ceph_copy_from_page_vector(pages, buf, 0, size);
3258         rbd_assert(size <= (size_t)INT_MAX);
3259         ret = (int)size;
3260 out:
3261         if (obj_request)
3262                 rbd_obj_request_put(obj_request);
3263         else
3264                 ceph_release_page_vector(pages, page_count);
3265
3266         return ret;
3267 }
3268
3269 /*
3270  * Read the complete header for the given rbd device.  On successful
3271  * return, the rbd_dev->header field will contain up-to-date
3272  * information about the image.
3273  */
3274 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3275 {
3276         struct rbd_image_header_ondisk *ondisk = NULL;
3277         u32 snap_count = 0;
3278         u64 names_size = 0;
3279         u32 want_count;
3280         int ret;
3281
3282         /*
3283          * The complete header will include an array of its 64-bit
3284          * snapshot ids, followed by the names of those snapshots as
3285          * a contiguous block of NUL-terminated strings.  Note that
3286          * the number of snapshots could change by the time we read
3287          * it in, in which case we re-read it.
3288          */
3289         do {
3290                 size_t size;
3291
3292                 kfree(ondisk);
3293
3294                 size = sizeof (*ondisk);
3295                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3296                 size += names_size;
3297                 ondisk = kmalloc(size, GFP_KERNEL);
3298                 if (!ondisk)
3299                         return -ENOMEM;
3300
3301                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3302                                        0, size, ondisk);
3303                 if (ret < 0)
3304                         goto out;
3305                 if ((size_t)ret < size) {
3306                         ret = -ENXIO;
3307                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3308                                 size, ret);
3309                         goto out;
3310                 }
3311                 if (!rbd_dev_ondisk_valid(ondisk)) {
3312                         ret = -ENXIO;
3313                         rbd_warn(rbd_dev, "invalid header");
3314                         goto out;
3315                 }
3316
3317                 names_size = le64_to_cpu(ondisk->snap_names_len);
3318                 want_count = snap_count;
3319                 snap_count = le32_to_cpu(ondisk->snap_count);
3320         } while (snap_count != want_count);
3321
3322         ret = rbd_header_from_disk(rbd_dev, ondisk);
3323 out:
3324         kfree(ondisk);
3325
3326         return ret;
3327 }
3328
3329 /*
3330  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3331  * has disappeared from the (just updated) snapshot context.
3332  */
3333 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3334 {
3335         u64 snap_id;
3336
3337         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3338                 return;
3339
3340         snap_id = rbd_dev->spec->snap_id;
3341         if (snap_id == CEPH_NOSNAP)
3342                 return;
3343
3344         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3345                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3346 }
3347
3348 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3349 {
3350         sector_t size;
3351         bool removing;
3352
3353         /*
3354          * Don't hold the lock while doing disk operations,
3355          * or lock ordering will conflict with the bdev mutex via:
3356          * rbd_add() -> blkdev_get() -> rbd_open()
3357          */
3358         spin_lock_irq(&rbd_dev->lock);
3359         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3360         spin_unlock_irq(&rbd_dev->lock);
3361         /*
3362          * If the device is being removed, rbd_dev->disk has
3363          * been destroyed, so don't try to update its size
3364          */
3365         if (!removing) {
3366                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3367                 dout("setting size to %llu sectors", (unsigned long long)size);
3368                 set_capacity(rbd_dev->disk, size);
3369                 revalidate_disk(rbd_dev->disk);
3370         }
3371 }
3372
3373 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3374 {
3375         u64 mapping_size;
3376         int ret;
3377
3378         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3379         down_write(&rbd_dev->header_rwsem);
3380         mapping_size = rbd_dev->mapping.size;
3381         if (rbd_dev->image_format == 1)
3382                 ret = rbd_dev_v1_header_info(rbd_dev);
3383         else
3384                 ret = rbd_dev_v2_header_info(rbd_dev);
3385
3386         /* If it's a mapped snapshot, validate its EXISTS flag */
3387
3388         rbd_exists_validate(rbd_dev);
3389         up_write(&rbd_dev->header_rwsem);
3390
3391         if (mapping_size != rbd_dev->mapping.size) {
3392                 rbd_dev_update_size(rbd_dev);
3393         }
3394
3395         return ret;
3396 }
3397
3398 static int rbd_init_disk(struct rbd_device *rbd_dev)
3399 {
3400         struct gendisk *disk;
3401         struct request_queue *q;
3402         u64 segment_size;
3403
3404         /* create gendisk info */
3405         disk = alloc_disk(single_major ?
3406                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3407                           RBD_MINORS_PER_MAJOR);
3408         if (!disk)
3409                 return -ENOMEM;
3410
3411         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3412                  rbd_dev->dev_id);
3413         disk->major = rbd_dev->major;
3414         disk->first_minor = rbd_dev->minor;
3415         if (single_major)
3416                 disk->flags |= GENHD_FL_EXT_DEVT;
3417         disk->fops = &rbd_bd_ops;
3418         disk->private_data = rbd_dev;
3419
3420         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3421         if (!q)
3422                 goto out_disk;
3423
3424         /* We use the default size, but let's be explicit about it. */
3425         blk_queue_physical_block_size(q, SECTOR_SIZE);
3426
3427         /* set io sizes to object size */
3428         segment_size = rbd_obj_bytes(&rbd_dev->header);
3429         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3430         blk_queue_max_segment_size(q, segment_size);
3431         blk_queue_io_min(q, segment_size);
3432         blk_queue_io_opt(q, segment_size);
3433
3434         blk_queue_merge_bvec(q, rbd_merge_bvec);
3435         disk->queue = q;
3436
3437         q->queuedata = rbd_dev;
3438
3439         rbd_dev->disk = disk;
3440
3441         return 0;
3442 out_disk:
3443         put_disk(disk);
3444
3445         return -ENOMEM;
3446 }
3447
3448 /*
3449   sysfs
3450 */
3451
3452 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3453 {
3454         return container_of(dev, struct rbd_device, dev);
3455 }
3456
3457 static ssize_t rbd_size_show(struct device *dev,
3458                              struct device_attribute *attr, char *buf)
3459 {
3460         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3461
3462         return sprintf(buf, "%llu\n",
3463                 (unsigned long long)rbd_dev->mapping.size);
3464 }
3465
3466 /*
3467  * Note this shows the features for whatever's mapped, which is not
3468  * necessarily the base image.
3469  */
3470 static ssize_t rbd_features_show(struct device *dev,
3471                              struct device_attribute *attr, char *buf)
3472 {
3473         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3474
3475         return sprintf(buf, "0x%016llx\n",
3476                         (unsigned long long)rbd_dev->mapping.features);
3477 }
3478
3479 static ssize_t rbd_major_show(struct device *dev,
3480                               struct device_attribute *attr, char *buf)
3481 {
3482         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3483
3484         if (rbd_dev->major)
3485                 return sprintf(buf, "%d\n", rbd_dev->major);
3486
3487         return sprintf(buf, "(none)\n");
3488 }
3489
3490 static ssize_t rbd_minor_show(struct device *dev,
3491                               struct device_attribute *attr, char *buf)
3492 {
3493         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3494
3495         return sprintf(buf, "%d\n", rbd_dev->minor);
3496 }
3497
3498 static ssize_t rbd_client_id_show(struct device *dev,
3499                                   struct device_attribute *attr, char *buf)
3500 {
3501         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3502
3503         return sprintf(buf, "client%lld\n",
3504                         ceph_client_id(rbd_dev->rbd_client->client));
3505 }
3506
3507 static ssize_t rbd_pool_show(struct device *dev,
3508                              struct device_attribute *attr, char *buf)
3509 {
3510         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3511
3512         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3513 }
3514
3515 static ssize_t rbd_pool_id_show(struct device *dev,
3516                              struct device_attribute *attr, char *buf)
3517 {
3518         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3519
3520         return sprintf(buf, "%llu\n",
3521                         (unsigned long long) rbd_dev->spec->pool_id);
3522 }
3523
3524 static ssize_t rbd_name_show(struct device *dev,
3525                              struct device_attribute *attr, char *buf)
3526 {
3527         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3528
3529         if (rbd_dev->spec->image_name)
3530                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3531
3532         return sprintf(buf, "(unknown)\n");
3533 }
3534
3535 static ssize_t rbd_image_id_show(struct device *dev,
3536                              struct device_attribute *attr, char *buf)
3537 {
3538         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3539
3540         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3541 }
3542
3543 /*
3544  * Shows the name of the currently-mapped snapshot (or
3545  * RBD_SNAP_HEAD_NAME for the base image).
3546  */
3547 static ssize_t rbd_snap_show(struct device *dev,
3548                              struct device_attribute *attr,
3549                              char *buf)
3550 {
3551         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3552
3553         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3554 }
3555
3556 /*
3557  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3558  * for the parent image.  If there is no parent, simply shows
3559  * "(no parent image)".
3560  */
3561 static ssize_t rbd_parent_show(struct device *dev,
3562                              struct device_attribute *attr,
3563                              char *buf)
3564 {
3565         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3566         struct rbd_spec *spec = rbd_dev->parent_spec;
3567         int count;
3568         char *bufp = buf;
3569
3570         if (!spec)
3571                 return sprintf(buf, "(no parent image)\n");
3572
3573         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3574                         (unsigned long long) spec->pool_id, spec->pool_name);
3575         if (count < 0)
3576                 return count;
3577         bufp += count;
3578
3579         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3580                         spec->image_name ? spec->image_name : "(unknown)");
3581         if (count < 0)
3582                 return count;
3583         bufp += count;
3584
3585         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3586                         (unsigned long long) spec->snap_id, spec->snap_name);
3587         if (count < 0)
3588                 return count;
3589         bufp += count;
3590
3591         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3592         if (count < 0)
3593                 return count;
3594         bufp += count;
3595
3596         return (ssize_t) (bufp - buf);
3597 }
3598
3599 static ssize_t rbd_image_refresh(struct device *dev,
3600                                  struct device_attribute *attr,
3601                                  const char *buf,
3602                                  size_t size)
3603 {
3604         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3605         int ret;
3606
3607         ret = rbd_dev_refresh(rbd_dev);
3608         if (ret)
3609                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3610
3611         return ret < 0 ? ret : size;
3612 }
3613
3614 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3615 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3616 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3617 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3618 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3619 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3620 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3621 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3622 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3623 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3624 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3625 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3626
3627 static struct attribute *rbd_attrs[] = {
3628         &dev_attr_size.attr,
3629         &dev_attr_features.attr,
3630         &dev_attr_major.attr,
3631         &dev_attr_minor.attr,
3632         &dev_attr_client_id.attr,
3633         &dev_attr_pool.attr,
3634         &dev_attr_pool_id.attr,
3635         &dev_attr_name.attr,
3636         &dev_attr_image_id.attr,
3637         &dev_attr_current_snap.attr,
3638         &dev_attr_parent.attr,
3639         &dev_attr_refresh.attr,
3640         NULL
3641 };
3642
3643 static struct attribute_group rbd_attr_group = {
3644         .attrs = rbd_attrs,
3645 };
3646
3647 static const struct attribute_group *rbd_attr_groups[] = {
3648         &rbd_attr_group,
3649         NULL
3650 };
3651
3652 static void rbd_sysfs_dev_release(struct device *dev)
3653 {
3654 }
3655
3656 static struct device_type rbd_device_type = {
3657         .name           = "rbd",
3658         .groups         = rbd_attr_groups,
3659         .release        = rbd_sysfs_dev_release,
3660 };
3661
3662 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3663 {
3664         kref_get(&spec->kref);
3665
3666         return spec;
3667 }
3668
3669 static void rbd_spec_free(struct kref *kref);
3670 static void rbd_spec_put(struct rbd_spec *spec)
3671 {
3672         if (spec)
3673                 kref_put(&spec->kref, rbd_spec_free);
3674 }
3675
3676 static struct rbd_spec *rbd_spec_alloc(void)
3677 {
3678         struct rbd_spec *spec;
3679
3680         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3681         if (!spec)
3682                 return NULL;
3683         kref_init(&spec->kref);
3684
3685         return spec;
3686 }
3687
3688 static void rbd_spec_free(struct kref *kref)
3689 {
3690         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3691
3692         kfree(spec->pool_name);
3693         kfree(spec->image_id);
3694         kfree(spec->image_name);
3695         kfree(spec->snap_name);
3696         kfree(spec);
3697 }
3698
3699 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3700                                 struct rbd_spec *spec)
3701 {
3702         struct rbd_device *rbd_dev;
3703
3704         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3705         if (!rbd_dev)
3706                 return NULL;
3707
3708         spin_lock_init(&rbd_dev->lock);
3709         rbd_dev->flags = 0;
3710         atomic_set(&rbd_dev->parent_ref, 0);
3711         INIT_LIST_HEAD(&rbd_dev->node);
3712         init_rwsem(&rbd_dev->header_rwsem);
3713
3714         rbd_dev->spec = spec;
3715         rbd_dev->rbd_client = rbdc;
3716
3717         /* Initialize the layout used for all rbd requests */
3718
3719         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3720         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3721         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3722         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3723
3724         return rbd_dev;
3725 }
3726
3727 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3728 {
3729         rbd_put_client(rbd_dev->rbd_client);
3730         rbd_spec_put(rbd_dev->spec);
3731         kfree(rbd_dev);
3732 }
3733
3734 /*
3735  * Get the size and object order for an image snapshot, or if
3736  * snap_id is CEPH_NOSNAP, gets this information for the base
3737  * image.
3738  */
3739 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3740                                 u8 *order, u64 *snap_size)
3741 {
3742         __le64 snapid = cpu_to_le64(snap_id);
3743         int ret;
3744         struct {
3745                 u8 order;
3746                 __le64 size;
3747         } __attribute__ ((packed)) size_buf = { 0 };
3748
3749         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3750                                 "rbd", "get_size",
3751                                 &snapid, sizeof (snapid),
3752                                 &size_buf, sizeof (size_buf));
3753         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3754         if (ret < 0)
3755                 return ret;
3756         if (ret < sizeof (size_buf))
3757                 return -ERANGE;
3758
3759         if (order) {
3760                 *order = size_buf.order;
3761                 dout("  order %u", (unsigned int)*order);
3762         }
3763         *snap_size = le64_to_cpu(size_buf.size);
3764
3765         dout("  snap_id 0x%016llx snap_size = %llu\n",
3766                 (unsigned long long)snap_id,
3767                 (unsigned long long)*snap_size);
3768
3769         return 0;
3770 }
3771
3772 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3773 {
3774         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3775                                         &rbd_dev->header.obj_order,
3776                                         &rbd_dev->header.image_size);
3777 }
3778
3779 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3780 {
3781         void *reply_buf;
3782         int ret;
3783         void *p;
3784
3785         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3786         if (!reply_buf)
3787                 return -ENOMEM;
3788
3789         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3790                                 "rbd", "get_object_prefix", NULL, 0,
3791                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3792         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3793         if (ret < 0)
3794                 goto out;
3795
3796         p = reply_buf;
3797         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3798                                                 p + ret, NULL, GFP_NOIO);
3799         ret = 0;
3800
3801         if (IS_ERR(rbd_dev->header.object_prefix)) {
3802                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3803                 rbd_dev->header.object_prefix = NULL;
3804         } else {
3805                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3806         }
3807 out:
3808         kfree(reply_buf);
3809
3810         return ret;
3811 }
3812
3813 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3814                 u64 *snap_features)
3815 {
3816         __le64 snapid = cpu_to_le64(snap_id);
3817         struct {
3818                 __le64 features;
3819                 __le64 incompat;
3820         } __attribute__ ((packed)) features_buf = { 0 };
3821         u64 incompat;
3822         int ret;
3823
3824         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3825                                 "rbd", "get_features",
3826                                 &snapid, sizeof (snapid),
3827                                 &features_buf, sizeof (features_buf));
3828         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3829         if (ret < 0)
3830                 return ret;
3831         if (ret < sizeof (features_buf))
3832                 return -ERANGE;
3833
3834         incompat = le64_to_cpu(features_buf.incompat);
3835         if (incompat & ~RBD_FEATURES_SUPPORTED)
3836                 return -ENXIO;
3837
3838         *snap_features = le64_to_cpu(features_buf.features);
3839
3840         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3841                 (unsigned long long)snap_id,
3842                 (unsigned long long)*snap_features,
3843                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3844
3845         return 0;
3846 }
3847
3848 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3849 {
3850         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3851                                                 &rbd_dev->header.features);
3852 }
3853
3854 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3855 {
3856         struct rbd_spec *parent_spec;
3857         size_t size;
3858         void *reply_buf = NULL;
3859         __le64 snapid;
3860         void *p;
3861         void *end;
3862         u64 pool_id;
3863         char *image_id;
3864         u64 snap_id;
3865         u64 overlap;
3866         int ret;
3867
3868         parent_spec = rbd_spec_alloc();
3869         if (!parent_spec)
3870                 return -ENOMEM;
3871
3872         size = sizeof (__le64) +                                /* pool_id */
3873                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3874                 sizeof (__le64) +                               /* snap_id */
3875                 sizeof (__le64);                                /* overlap */
3876         reply_buf = kmalloc(size, GFP_KERNEL);
3877         if (!reply_buf) {
3878                 ret = -ENOMEM;
3879                 goto out_err;
3880         }
3881
3882         snapid = cpu_to_le64(CEPH_NOSNAP);
3883         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3884                                 "rbd", "get_parent",
3885                                 &snapid, sizeof (snapid),
3886                                 reply_buf, size);
3887         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3888         if (ret < 0)
3889                 goto out_err;
3890
3891         p = reply_buf;
3892         end = reply_buf + ret;
3893         ret = -ERANGE;
3894         ceph_decode_64_safe(&p, end, pool_id, out_err);
3895         if (pool_id == CEPH_NOPOOL) {
3896                 /*
3897                  * Either the parent never existed, or we have
3898                  * record of it but the image got flattened so it no
3899                  * longer has a parent.  When the parent of a
3900                  * layered image disappears we immediately set the
3901                  * overlap to 0.  The effect of this is that all new
3902                  * requests will be treated as if the image had no
3903                  * parent.
3904                  */
3905                 if (rbd_dev->parent_overlap) {
3906                         rbd_dev->parent_overlap = 0;
3907                         smp_mb();
3908                         rbd_dev_parent_put(rbd_dev);
3909                         pr_info("%s: clone image has been flattened\n",
3910                                 rbd_dev->disk->disk_name);
3911                 }
3912
3913                 goto out;       /* No parent?  No problem. */
3914         }
3915
3916         /* The ceph file layout needs to fit pool id in 32 bits */
3917
3918         ret = -EIO;
3919         if (pool_id > (u64)U32_MAX) {
3920                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3921                         (unsigned long long)pool_id, U32_MAX);
3922                 goto out_err;
3923         }
3924
3925         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3926         if (IS_ERR(image_id)) {
3927                 ret = PTR_ERR(image_id);
3928                 goto out_err;
3929         }
3930         ceph_decode_64_safe(&p, end, snap_id, out_err);
3931         ceph_decode_64_safe(&p, end, overlap, out_err);
3932
3933         /*
3934          * The parent won't change (except when the clone is
3935          * flattened, already handled that).  So we only need to
3936          * record the parent spec we have not already done so.
3937          */
3938         if (!rbd_dev->parent_spec) {
3939                 parent_spec->pool_id = pool_id;
3940                 parent_spec->image_id = image_id;
3941                 parent_spec->snap_id = snap_id;
3942                 rbd_dev->parent_spec = parent_spec;
3943                 parent_spec = NULL;     /* rbd_dev now owns this */
3944         }
3945
3946         /*
3947          * We always update the parent overlap.  If it's zero we
3948          * treat it specially.
3949          */
3950         rbd_dev->parent_overlap = overlap;
3951         smp_mb();
3952         if (!overlap) {
3953
3954                 /* A null parent_spec indicates it's the initial probe */
3955
3956                 if (parent_spec) {
3957                         /*
3958                          * The overlap has become zero, so the clone
3959                          * must have been resized down to 0 at some
3960                          * point.  Treat this the same as a flatten.
3961                          */
3962                         rbd_dev_parent_put(rbd_dev);
3963                         pr_info("%s: clone image now standalone\n",
3964                                 rbd_dev->disk->disk_name);
3965                 } else {
3966                         /*
3967                          * For the initial probe, if we find the
3968                          * overlap is zero we just pretend there was
3969                          * no parent image.
3970                          */
3971                         rbd_warn(rbd_dev, "ignoring parent of "
3972                                                 "clone with overlap 0\n");
3973                 }
3974         }
3975 out:
3976         ret = 0;
3977 out_err:
3978         kfree(reply_buf);
3979         rbd_spec_put(parent_spec);
3980
3981         return ret;
3982 }
3983
3984 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3985 {
3986         struct {
3987                 __le64 stripe_unit;
3988                 __le64 stripe_count;
3989         } __attribute__ ((packed)) striping_info_buf = { 0 };
3990         size_t size = sizeof (striping_info_buf);
3991         void *p;
3992         u64 obj_size;
3993         u64 stripe_unit;
3994         u64 stripe_count;
3995         int ret;
3996
3997         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3998                                 "rbd", "get_stripe_unit_count", NULL, 0,
3999                                 (char *)&striping_info_buf, size);
4000         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4001         if (ret < 0)
4002                 return ret;
4003         if (ret < size)
4004                 return -ERANGE;
4005
4006         /*
4007          * We don't actually support the "fancy striping" feature
4008          * (STRIPINGV2) yet, but if the striping sizes are the
4009          * defaults the behavior is the same as before.  So find
4010          * out, and only fail if the image has non-default values.
4011          */
4012         ret = -EINVAL;
4013         obj_size = (u64)1 << rbd_dev->header.obj_order;
4014         p = &striping_info_buf;
4015         stripe_unit = ceph_decode_64(&p);
4016         if (stripe_unit != obj_size) {
4017                 rbd_warn(rbd_dev, "unsupported stripe unit "
4018                                 "(got %llu want %llu)",
4019                                 stripe_unit, obj_size);
4020                 return -EINVAL;
4021         }
4022         stripe_count = ceph_decode_64(&p);
4023         if (stripe_count != 1) {
4024                 rbd_warn(rbd_dev, "unsupported stripe count "
4025                                 "(got %llu want 1)", stripe_count);
4026                 return -EINVAL;
4027         }
4028         rbd_dev->header.stripe_unit = stripe_unit;
4029         rbd_dev->header.stripe_count = stripe_count;
4030
4031         return 0;
4032 }
4033
4034 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4035 {
4036         size_t image_id_size;
4037         char *image_id;
4038         void *p;
4039         void *end;
4040         size_t size;
4041         void *reply_buf = NULL;
4042         size_t len = 0;
4043         char *image_name = NULL;
4044         int ret;
4045
4046         rbd_assert(!rbd_dev->spec->image_name);
4047
4048         len = strlen(rbd_dev->spec->image_id);
4049         image_id_size = sizeof (__le32) + len;
4050         image_id = kmalloc(image_id_size, GFP_KERNEL);
4051         if (!image_id)
4052                 return NULL;
4053
4054         p = image_id;
4055         end = image_id + image_id_size;
4056         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4057
4058         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4059         reply_buf = kmalloc(size, GFP_KERNEL);
4060         if (!reply_buf)
4061                 goto out;
4062
4063         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4064                                 "rbd", "dir_get_name",
4065                                 image_id, image_id_size,
4066                                 reply_buf, size);
4067         if (ret < 0)
4068                 goto out;
4069         p = reply_buf;
4070         end = reply_buf + ret;
4071
4072         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4073         if (IS_ERR(image_name))
4074                 image_name = NULL;
4075         else
4076                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4077 out:
4078         kfree(reply_buf);
4079         kfree(image_id);
4080
4081         return image_name;
4082 }
4083
4084 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4085 {
4086         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4087         const char *snap_name;
4088         u32 which = 0;
4089
4090         /* Skip over names until we find the one we are looking for */
4091
4092         snap_name = rbd_dev->header.snap_names;
4093         while (which < snapc->num_snaps) {
4094                 if (!strcmp(name, snap_name))
4095                         return snapc->snaps[which];
4096                 snap_name += strlen(snap_name) + 1;
4097                 which++;
4098         }
4099         return CEPH_NOSNAP;
4100 }
4101
4102 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4103 {
4104         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4105         u32 which;
4106         bool found = false;
4107         u64 snap_id;
4108
4109         for (which = 0; !found && which < snapc->num_snaps; which++) {
4110                 const char *snap_name;
4111
4112                 snap_id = snapc->snaps[which];
4113                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4114                 if (IS_ERR(snap_name)) {
4115                         /* ignore no-longer existing snapshots */
4116                         if (PTR_ERR(snap_name) == -ENOENT)
4117                                 continue;
4118                         else
4119                                 break;
4120                 }
4121                 found = !strcmp(name, snap_name);
4122                 kfree(snap_name);
4123         }
4124         return found ? snap_id : CEPH_NOSNAP;
4125 }
4126
4127 /*
4128  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4129  * no snapshot by that name is found, or if an error occurs.
4130  */
4131 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4132 {
4133         if (rbd_dev->image_format == 1)
4134                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4135
4136         return rbd_v2_snap_id_by_name(rbd_dev, name);
4137 }
4138
4139 /*
4140  * When an rbd image has a parent image, it is identified by the
4141  * pool, image, and snapshot ids (not names).  This function fills
4142  * in the names for those ids.  (It's OK if we can't figure out the
4143  * name for an image id, but the pool and snapshot ids should always
4144  * exist and have names.)  All names in an rbd spec are dynamically
4145  * allocated.
4146  *
4147  * When an image being mapped (not a parent) is probed, we have the
4148  * pool name and pool id, image name and image id, and the snapshot
4149  * name.  The only thing we're missing is the snapshot id.
4150  */
4151 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4152 {
4153         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4154         struct rbd_spec *spec = rbd_dev->spec;
4155         const char *pool_name;
4156         const char *image_name;
4157         const char *snap_name;
4158         int ret;
4159
4160         /*
4161          * An image being mapped will have the pool name (etc.), but
4162          * we need to look up the snapshot id.
4163          */
4164         if (spec->pool_name) {
4165                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4166                         u64 snap_id;
4167
4168                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4169                         if (snap_id == CEPH_NOSNAP)
4170                                 return -ENOENT;
4171                         spec->snap_id = snap_id;
4172                 } else {
4173                         spec->snap_id = CEPH_NOSNAP;
4174                 }
4175
4176                 return 0;
4177         }
4178
4179         /* Get the pool name; we have to make our own copy of this */
4180
4181         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4182         if (!pool_name) {
4183                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4184                 return -EIO;
4185         }
4186         pool_name = kstrdup(pool_name, GFP_KERNEL);
4187         if (!pool_name)
4188                 return -ENOMEM;
4189
4190         /* Fetch the image name; tolerate failure here */
4191
4192         image_name = rbd_dev_image_name(rbd_dev);
4193         if (!image_name)
4194                 rbd_warn(rbd_dev, "unable to get image name");
4195
4196         /* Look up the snapshot name, and make a copy */
4197
4198         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4199         if (IS_ERR(snap_name)) {
4200                 ret = PTR_ERR(snap_name);
4201                 goto out_err;
4202         }
4203
4204         spec->pool_name = pool_name;
4205         spec->image_name = image_name;
4206         spec->snap_name = snap_name;
4207
4208         return 0;
4209 out_err:
4210         kfree(image_name);
4211         kfree(pool_name);
4212
4213         return ret;
4214 }
4215
4216 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4217 {
4218         size_t size;
4219         int ret;
4220         void *reply_buf;
4221         void *p;
4222         void *end;
4223         u64 seq;
4224         u32 snap_count;
4225         struct ceph_snap_context *snapc;
4226         u32 i;
4227
4228         /*
4229          * We'll need room for the seq value (maximum snapshot id),
4230          * snapshot count, and array of that many snapshot ids.
4231          * For now we have a fixed upper limit on the number we're
4232          * prepared to receive.
4233          */
4234         size = sizeof (__le64) + sizeof (__le32) +
4235                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4236         reply_buf = kzalloc(size, GFP_KERNEL);
4237         if (!reply_buf)
4238                 return -ENOMEM;
4239
4240         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4241                                 "rbd", "get_snapcontext", NULL, 0,
4242                                 reply_buf, size);
4243         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4244         if (ret < 0)
4245                 goto out;
4246
4247         p = reply_buf;
4248         end = reply_buf + ret;
4249         ret = -ERANGE;
4250         ceph_decode_64_safe(&p, end, seq, out);
4251         ceph_decode_32_safe(&p, end, snap_count, out);
4252
4253         /*
4254          * Make sure the reported number of snapshot ids wouldn't go
4255          * beyond the end of our buffer.  But before checking that,
4256          * make sure the computed size of the snapshot context we
4257          * allocate is representable in a size_t.
4258          */
4259         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4260                                  / sizeof (u64)) {
4261                 ret = -EINVAL;
4262                 goto out;
4263         }
4264         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4265                 goto out;
4266         ret = 0;
4267
4268         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4269         if (!snapc) {
4270                 ret = -ENOMEM;
4271                 goto out;
4272         }
4273         snapc->seq = seq;
4274         for (i = 0; i < snap_count; i++)
4275                 snapc->snaps[i] = ceph_decode_64(&p);
4276
4277         ceph_put_snap_context(rbd_dev->header.snapc);
4278         rbd_dev->header.snapc = snapc;
4279
4280         dout("  snap context seq = %llu, snap_count = %u\n",
4281                 (unsigned long long)seq, (unsigned int)snap_count);
4282 out:
4283         kfree(reply_buf);
4284
4285         return ret;
4286 }
4287
4288 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4289                                         u64 snap_id)
4290 {
4291         size_t size;
4292         void *reply_buf;
4293         __le64 snapid;
4294         int ret;
4295         void *p;
4296         void *end;
4297         char *snap_name;
4298
4299         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4300         reply_buf = kmalloc(size, GFP_KERNEL);
4301         if (!reply_buf)
4302                 return ERR_PTR(-ENOMEM);
4303
4304         snapid = cpu_to_le64(snap_id);
4305         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4306                                 "rbd", "get_snapshot_name",
4307                                 &snapid, sizeof (snapid),
4308                                 reply_buf, size);
4309         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4310         if (ret < 0) {
4311                 snap_name = ERR_PTR(ret);
4312                 goto out;
4313         }
4314
4315         p = reply_buf;
4316         end = reply_buf + ret;
4317         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4318         if (IS_ERR(snap_name))
4319                 goto out;
4320
4321         dout("  snap_id 0x%016llx snap_name = %s\n",
4322                 (unsigned long long)snap_id, snap_name);
4323 out:
4324         kfree(reply_buf);
4325
4326         return snap_name;
4327 }
4328
4329 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4330 {
4331         bool first_time = rbd_dev->header.object_prefix == NULL;
4332         int ret;
4333
4334         ret = rbd_dev_v2_image_size(rbd_dev);
4335         if (ret)
4336                 return ret;
4337
4338         if (first_time) {
4339                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4340                 if (ret)
4341                         return ret;
4342         }
4343
4344         /*
4345          * If the image supports layering, get the parent info.  We
4346          * need to probe the first time regardless.  Thereafter we
4347          * only need to if there's a parent, to see if it has
4348          * disappeared due to the mapped image getting flattened.
4349          */
4350         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4351                         (first_time || rbd_dev->parent_spec)) {
4352                 bool warn;
4353
4354                 ret = rbd_dev_v2_parent_info(rbd_dev);
4355                 if (ret)
4356                         return ret;
4357
4358                 /*
4359                  * Print a warning if this is the initial probe and
4360                  * the image has a parent.  Don't print it if the
4361                  * image now being probed is itself a parent.  We
4362                  * can tell at this point because we won't know its
4363                  * pool name yet (just its pool id).
4364                  */
4365                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4366                 if (first_time && warn)
4367                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4368                                         "is EXPERIMENTAL!");
4369         }
4370
4371         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4372                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4373                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4374
4375         ret = rbd_dev_v2_snap_context(rbd_dev);
4376         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4377
4378         return ret;
4379 }
4380
4381 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4382 {
4383         struct device *dev;
4384         int ret;
4385
4386         dev = &rbd_dev->dev;
4387         dev->bus = &rbd_bus_type;
4388         dev->type = &rbd_device_type;
4389         dev->parent = &rbd_root_dev;
4390         dev->release = rbd_dev_device_release;
4391         dev_set_name(dev, "%d", rbd_dev->dev_id);
4392         ret = device_register(dev);
4393
4394         return ret;
4395 }
4396
4397 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4398 {
4399         device_unregister(&rbd_dev->dev);
4400 }
4401
4402 /*
4403  * Get a unique rbd identifier for the given new rbd_dev, and add
4404  * the rbd_dev to the global list.
4405  */
4406 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4407 {
4408         int new_dev_id;
4409
4410         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4411                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4412                                     GFP_KERNEL);
4413         if (new_dev_id < 0)
4414                 return new_dev_id;
4415
4416         rbd_dev->dev_id = new_dev_id;
4417
4418         spin_lock(&rbd_dev_list_lock);
4419         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4420         spin_unlock(&rbd_dev_list_lock);
4421
4422         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4423
4424         return 0;
4425 }
4426
4427 /*
4428  * Remove an rbd_dev from the global list, and record that its
4429  * identifier is no longer in use.
4430  */
4431 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4432 {
4433         spin_lock(&rbd_dev_list_lock);
4434         list_del_init(&rbd_dev->node);
4435         spin_unlock(&rbd_dev_list_lock);
4436
4437         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4438
4439         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4440 }
4441
4442 /*
4443  * Skips over white space at *buf, and updates *buf to point to the
4444  * first found non-space character (if any). Returns the length of
4445  * the token (string of non-white space characters) found.  Note
4446  * that *buf must be terminated with '\0'.
4447  */
4448 static inline size_t next_token(const char **buf)
4449 {
4450         /*
4451         * These are the characters that produce nonzero for
4452         * isspace() in the "C" and "POSIX" locales.
4453         */
4454         const char *spaces = " \f\n\r\t\v";
4455
4456         *buf += strspn(*buf, spaces);   /* Find start of token */
4457
4458         return strcspn(*buf, spaces);   /* Return token length */
4459 }
4460
4461 /*
4462  * Finds the next token in *buf, and if the provided token buffer is
4463  * big enough, copies the found token into it.  The result, if
4464  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4465  * must be terminated with '\0' on entry.
4466  *
4467  * Returns the length of the token found (not including the '\0').
4468  * Return value will be 0 if no token is found, and it will be >=
4469  * token_size if the token would not fit.
4470  *
4471  * The *buf pointer will be updated to point beyond the end of the
4472  * found token.  Note that this occurs even if the token buffer is
4473  * too small to hold it.
4474  */
4475 static inline size_t copy_token(const char **buf,
4476                                 char *token,
4477                                 size_t token_size)
4478 {
4479         size_t len;
4480
4481         len = next_token(buf);
4482         if (len < token_size) {
4483                 memcpy(token, *buf, len);
4484                 *(token + len) = '\0';
4485         }
4486         *buf += len;
4487
4488         return len;
4489 }
4490
4491 /*
4492  * Finds the next token in *buf, dynamically allocates a buffer big
4493  * enough to hold a copy of it, and copies the token into the new
4494  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4495  * that a duplicate buffer is created even for a zero-length token.
4496  *
4497  * Returns a pointer to the newly-allocated duplicate, or a null
4498  * pointer if memory for the duplicate was not available.  If
4499  * the lenp argument is a non-null pointer, the length of the token
4500  * (not including the '\0') is returned in *lenp.
4501  *
4502  * If successful, the *buf pointer will be updated to point beyond
4503  * the end of the found token.
4504  *
4505  * Note: uses GFP_KERNEL for allocation.
4506  */
4507 static inline char *dup_token(const char **buf, size_t *lenp)
4508 {
4509         char *dup;
4510         size_t len;
4511
4512         len = next_token(buf);
4513         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4514         if (!dup)
4515                 return NULL;
4516         *(dup + len) = '\0';
4517         *buf += len;
4518
4519         if (lenp)
4520                 *lenp = len;
4521
4522         return dup;
4523 }
4524
4525 /*
4526  * Parse the options provided for an "rbd add" (i.e., rbd image
4527  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4528  * and the data written is passed here via a NUL-terminated buffer.
4529  * Returns 0 if successful or an error code otherwise.
4530  *
4531  * The information extracted from these options is recorded in
4532  * the other parameters which return dynamically-allocated
4533  * structures:
4534  *  ceph_opts
4535  *      The address of a pointer that will refer to a ceph options
4536  *      structure.  Caller must release the returned pointer using
4537  *      ceph_destroy_options() when it is no longer needed.
4538  *  rbd_opts
4539  *      Address of an rbd options pointer.  Fully initialized by
4540  *      this function; caller must release with kfree().
4541  *  spec
4542  *      Address of an rbd image specification pointer.  Fully
4543  *      initialized by this function based on parsed options.
4544  *      Caller must release with rbd_spec_put().
4545  *
4546  * The options passed take this form:
4547  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4548  * where:
4549  *  <mon_addrs>
4550  *      A comma-separated list of one or more monitor addresses.
4551  *      A monitor address is an ip address, optionally followed
4552  *      by a port number (separated by a colon).
4553  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4554  *  <options>
4555  *      A comma-separated list of ceph and/or rbd options.
4556  *  <pool_name>
4557  *      The name of the rados pool containing the rbd image.
4558  *  <image_name>
4559  *      The name of the image in that pool to map.
4560  *  <snap_id>
4561  *      An optional snapshot id.  If provided, the mapping will
4562  *      present data from the image at the time that snapshot was
4563  *      created.  The image head is used if no snapshot id is
4564  *      provided.  Snapshot mappings are always read-only.
4565  */
4566 static int rbd_add_parse_args(const char *buf,
4567                                 struct ceph_options **ceph_opts,
4568                                 struct rbd_options **opts,
4569                                 struct rbd_spec **rbd_spec)
4570 {
4571         size_t len;
4572         char *options;
4573         const char *mon_addrs;
4574         char *snap_name;
4575         size_t mon_addrs_size;
4576         struct rbd_spec *spec = NULL;
4577         struct rbd_options *rbd_opts = NULL;
4578         struct ceph_options *copts;
4579         int ret;
4580
4581         /* The first four tokens are required */
4582
4583         len = next_token(&buf);
4584         if (!len) {
4585                 rbd_warn(NULL, "no monitor address(es) provided");
4586                 return -EINVAL;
4587         }
4588         mon_addrs = buf;
4589         mon_addrs_size = len + 1;
4590         buf += len;
4591
4592         ret = -EINVAL;
4593         options = dup_token(&buf, NULL);
4594         if (!options)
4595                 return -ENOMEM;
4596         if (!*options) {
4597                 rbd_warn(NULL, "no options provided");
4598                 goto out_err;
4599         }
4600
4601         spec = rbd_spec_alloc();
4602         if (!spec)
4603                 goto out_mem;
4604
4605         spec->pool_name = dup_token(&buf, NULL);
4606         if (!spec->pool_name)
4607                 goto out_mem;
4608         if (!*spec->pool_name) {
4609                 rbd_warn(NULL, "no pool name provided");
4610                 goto out_err;
4611         }
4612
4613         spec->image_name = dup_token(&buf, NULL);
4614         if (!spec->image_name)
4615                 goto out_mem;
4616         if (!*spec->image_name) {
4617                 rbd_warn(NULL, "no image name provided");
4618                 goto out_err;
4619         }
4620
4621         /*
4622          * Snapshot name is optional; default is to use "-"
4623          * (indicating the head/no snapshot).
4624          */
4625         len = next_token(&buf);
4626         if (!len) {
4627                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4628                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4629         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4630                 ret = -ENAMETOOLONG;
4631                 goto out_err;
4632         }
4633         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4634         if (!snap_name)
4635                 goto out_mem;
4636         *(snap_name + len) = '\0';
4637         spec->snap_name = snap_name;
4638
4639         /* Initialize all rbd options to the defaults */
4640
4641         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4642         if (!rbd_opts)
4643                 goto out_mem;
4644
4645         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4646
4647         copts = ceph_parse_options(options, mon_addrs,
4648                                         mon_addrs + mon_addrs_size - 1,
4649                                         parse_rbd_opts_token, rbd_opts);
4650         if (IS_ERR(copts)) {
4651                 ret = PTR_ERR(copts);
4652                 goto out_err;
4653         }
4654         kfree(options);
4655
4656         *ceph_opts = copts;
4657         *opts = rbd_opts;
4658         *rbd_spec = spec;
4659
4660         return 0;
4661 out_mem:
4662         ret = -ENOMEM;
4663 out_err:
4664         kfree(rbd_opts);
4665         rbd_spec_put(spec);
4666         kfree(options);
4667
4668         return ret;
4669 }
4670
4671 /*
4672  * An rbd format 2 image has a unique identifier, distinct from the
4673  * name given to it by the user.  Internally, that identifier is
4674  * what's used to specify the names of objects related to the image.
4675  *
4676  * A special "rbd id" object is used to map an rbd image name to its
4677  * id.  If that object doesn't exist, then there is no v2 rbd image
4678  * with the supplied name.
4679  *
4680  * This function will record the given rbd_dev's image_id field if
4681  * it can be determined, and in that case will return 0.  If any
4682  * errors occur a negative errno will be returned and the rbd_dev's
4683  * image_id field will be unchanged (and should be NULL).
4684  */
4685 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4686 {
4687         int ret;
4688         size_t size;
4689         char *object_name;
4690         void *response;
4691         char *image_id;
4692
4693         /*
4694          * When probing a parent image, the image id is already
4695          * known (and the image name likely is not).  There's no
4696          * need to fetch the image id again in this case.  We
4697          * do still need to set the image format though.
4698          */
4699         if (rbd_dev->spec->image_id) {
4700                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4701
4702                 return 0;
4703         }
4704
4705         /*
4706          * First, see if the format 2 image id file exists, and if
4707          * so, get the image's persistent id from it.
4708          */
4709         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4710         object_name = kmalloc(size, GFP_NOIO);
4711         if (!object_name)
4712                 return -ENOMEM;
4713         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4714         dout("rbd id object name is %s\n", object_name);
4715
4716         /* Response will be an encoded string, which includes a length */
4717
4718         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4719         response = kzalloc(size, GFP_NOIO);
4720         if (!response) {
4721                 ret = -ENOMEM;
4722                 goto out;
4723         }
4724
4725         /* If it doesn't exist we'll assume it's a format 1 image */
4726
4727         ret = rbd_obj_method_sync(rbd_dev, object_name,
4728                                 "rbd", "get_id", NULL, 0,
4729                                 response, RBD_IMAGE_ID_LEN_MAX);
4730         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4731         if (ret == -ENOENT) {
4732                 image_id = kstrdup("", GFP_KERNEL);
4733                 ret = image_id ? 0 : -ENOMEM;
4734                 if (!ret)
4735                         rbd_dev->image_format = 1;
4736         } else if (ret > sizeof (__le32)) {
4737                 void *p = response;
4738
4739                 image_id = ceph_extract_encoded_string(&p, p + ret,
4740                                                 NULL, GFP_NOIO);
4741                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4742                 if (!ret)
4743                         rbd_dev->image_format = 2;
4744         } else {
4745                 ret = -EINVAL;
4746         }
4747
4748         if (!ret) {
4749                 rbd_dev->spec->image_id = image_id;
4750                 dout("image_id is %s\n", image_id);
4751         }
4752 out:
4753         kfree(response);
4754         kfree(object_name);
4755
4756         return ret;
4757 }
4758
4759 /*
4760  * Undo whatever state changes are made by v1 or v2 header info
4761  * call.
4762  */
4763 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4764 {
4765         struct rbd_image_header *header;
4766
4767         /* Drop parent reference unless it's already been done (or none) */
4768
4769         if (rbd_dev->parent_overlap)
4770                 rbd_dev_parent_put(rbd_dev);
4771
4772         /* Free dynamic fields from the header, then zero it out */
4773
4774         header = &rbd_dev->header;
4775         ceph_put_snap_context(header->snapc);
4776         kfree(header->snap_sizes);
4777         kfree(header->snap_names);
4778         kfree(header->object_prefix);
4779         memset(header, 0, sizeof (*header));
4780 }
4781
4782 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4783 {
4784         int ret;
4785
4786         ret = rbd_dev_v2_object_prefix(rbd_dev);
4787         if (ret)
4788                 goto out_err;
4789
4790         /*
4791          * Get the and check features for the image.  Currently the
4792          * features are assumed to never change.
4793          */
4794         ret = rbd_dev_v2_features(rbd_dev);
4795         if (ret)
4796                 goto out_err;
4797
4798         /* If the image supports fancy striping, get its parameters */
4799
4800         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4801                 ret = rbd_dev_v2_striping_info(rbd_dev);
4802                 if (ret < 0)
4803                         goto out_err;
4804         }
4805         /* No support for crypto and compression type format 2 images */
4806
4807         return 0;
4808 out_err:
4809         rbd_dev->header.features = 0;
4810         kfree(rbd_dev->header.object_prefix);
4811         rbd_dev->header.object_prefix = NULL;
4812
4813         return ret;
4814 }
4815
4816 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4817 {
4818         struct rbd_device *parent = NULL;
4819         struct rbd_spec *parent_spec;
4820         struct rbd_client *rbdc;
4821         int ret;
4822
4823         if (!rbd_dev->parent_spec)
4824                 return 0;
4825         /*
4826          * We need to pass a reference to the client and the parent
4827          * spec when creating the parent rbd_dev.  Images related by
4828          * parent/child relationships always share both.
4829          */
4830         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4831         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4832
4833         ret = -ENOMEM;
4834         parent = rbd_dev_create(rbdc, parent_spec);
4835         if (!parent)
4836                 goto out_err;
4837
4838         ret = rbd_dev_image_probe(parent, false);
4839         if (ret < 0)
4840                 goto out_err;
4841         rbd_dev->parent = parent;
4842         atomic_set(&rbd_dev->parent_ref, 1);
4843
4844         return 0;
4845 out_err:
4846         if (parent) {
4847                 rbd_dev_unparent(rbd_dev);
4848                 kfree(rbd_dev->header_name);
4849                 rbd_dev_destroy(parent);
4850         } else {
4851                 rbd_put_client(rbdc);
4852                 rbd_spec_put(parent_spec);
4853         }
4854
4855         return ret;
4856 }
4857
4858 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4859 {
4860         int ret;
4861
4862         /* Get an id and fill in device name. */
4863
4864         ret = rbd_dev_id_get(rbd_dev);
4865         if (ret)
4866                 return ret;
4867
4868         BUILD_BUG_ON(DEV_NAME_LEN
4869                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4870         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4871
4872         /* Record our major and minor device numbers. */
4873
4874         if (!single_major) {
4875                 ret = register_blkdev(0, rbd_dev->name);
4876                 if (ret < 0)
4877                         goto err_out_id;
4878
4879                 rbd_dev->major = ret;
4880                 rbd_dev->minor = 0;
4881         } else {
4882                 rbd_dev->major = rbd_major;
4883                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
4884         }
4885
4886         /* Set up the blkdev mapping. */
4887
4888         ret = rbd_init_disk(rbd_dev);
4889         if (ret)
4890                 goto err_out_blkdev;
4891
4892         ret = rbd_dev_mapping_set(rbd_dev);
4893         if (ret)
4894                 goto err_out_disk;
4895         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4896
4897         ret = rbd_bus_add_dev(rbd_dev);
4898         if (ret)
4899                 goto err_out_mapping;
4900
4901         /* Everything's ready.  Announce the disk to the world. */
4902
4903         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4904         add_disk(rbd_dev->disk);
4905
4906         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4907                 (unsigned long long) rbd_dev->mapping.size);
4908
4909         return ret;
4910
4911 err_out_mapping:
4912         rbd_dev_mapping_clear(rbd_dev);
4913 err_out_disk:
4914         rbd_free_disk(rbd_dev);
4915 err_out_blkdev:
4916         if (!single_major)
4917                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4918 err_out_id:
4919         rbd_dev_id_put(rbd_dev);
4920         rbd_dev_mapping_clear(rbd_dev);
4921
4922         return ret;
4923 }
4924
4925 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4926 {
4927         struct rbd_spec *spec = rbd_dev->spec;
4928         size_t size;
4929
4930         /* Record the header object name for this rbd image. */
4931
4932         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4933
4934         if (rbd_dev->image_format == 1)
4935                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4936         else
4937                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4938
4939         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4940         if (!rbd_dev->header_name)
4941                 return -ENOMEM;
4942
4943         if (rbd_dev->image_format == 1)
4944                 sprintf(rbd_dev->header_name, "%s%s",
4945                         spec->image_name, RBD_SUFFIX);
4946         else
4947                 sprintf(rbd_dev->header_name, "%s%s",
4948                         RBD_HEADER_PREFIX, spec->image_id);
4949         return 0;
4950 }
4951
4952 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4953 {
4954         rbd_dev_unprobe(rbd_dev);
4955         kfree(rbd_dev->header_name);
4956         rbd_dev->header_name = NULL;
4957         rbd_dev->image_format = 0;
4958         kfree(rbd_dev->spec->image_id);
4959         rbd_dev->spec->image_id = NULL;
4960
4961         rbd_dev_destroy(rbd_dev);
4962 }
4963
4964 /*
4965  * Probe for the existence of the header object for the given rbd
4966  * device.  If this image is the one being mapped (i.e., not a
4967  * parent), initiate a watch on its header object before using that
4968  * object to get detailed information about the rbd image.
4969  */
4970 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4971 {
4972         int ret;
4973
4974         /*
4975          * Get the id from the image id object.  Unless there's an
4976          * error, rbd_dev->spec->image_id will be filled in with
4977          * a dynamically-allocated string, and rbd_dev->image_format
4978          * will be set to either 1 or 2.
4979          */
4980         ret = rbd_dev_image_id(rbd_dev);
4981         if (ret)
4982                 return ret;
4983         rbd_assert(rbd_dev->spec->image_id);
4984         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4985
4986         ret = rbd_dev_header_name(rbd_dev);
4987         if (ret)
4988                 goto err_out_format;
4989
4990         if (mapping) {
4991                 ret = rbd_dev_header_watch_sync(rbd_dev);
4992                 if (ret)
4993                         goto out_header_name;
4994         }
4995
4996         if (rbd_dev->image_format == 1)
4997                 ret = rbd_dev_v1_header_info(rbd_dev);
4998         else
4999                 ret = rbd_dev_v2_header_info(rbd_dev);
5000         if (ret)
5001                 goto err_out_watch;
5002
5003         ret = rbd_dev_spec_update(rbd_dev);
5004         if (ret)
5005                 goto err_out_probe;
5006
5007         ret = rbd_dev_probe_parent(rbd_dev);
5008         if (ret)
5009                 goto err_out_probe;
5010
5011         dout("discovered format %u image, header name is %s\n",
5012                 rbd_dev->image_format, rbd_dev->header_name);
5013
5014         return 0;
5015 err_out_probe:
5016         rbd_dev_unprobe(rbd_dev);
5017 err_out_watch:
5018         if (mapping)
5019                 rbd_dev_header_unwatch_sync(rbd_dev);
5020 out_header_name:
5021         kfree(rbd_dev->header_name);
5022         rbd_dev->header_name = NULL;
5023 err_out_format:
5024         rbd_dev->image_format = 0;
5025         kfree(rbd_dev->spec->image_id);
5026         rbd_dev->spec->image_id = NULL;
5027
5028         dout("probe failed, returning %d\n", ret);
5029
5030         return ret;
5031 }
5032
5033 static ssize_t do_rbd_add(struct bus_type *bus,
5034                           const char *buf,
5035                           size_t count)
5036 {
5037         struct rbd_device *rbd_dev = NULL;
5038         struct ceph_options *ceph_opts = NULL;
5039         struct rbd_options *rbd_opts = NULL;
5040         struct rbd_spec *spec = NULL;
5041         struct rbd_client *rbdc;
5042         struct ceph_osd_client *osdc;
5043         bool read_only;
5044         int rc = -ENOMEM;
5045
5046         if (!try_module_get(THIS_MODULE))
5047                 return -ENODEV;
5048
5049         /* parse add command */
5050         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5051         if (rc < 0)
5052                 goto err_out_module;
5053         read_only = rbd_opts->read_only;
5054         kfree(rbd_opts);
5055         rbd_opts = NULL;        /* done with this */
5056
5057         rbdc = rbd_get_client(ceph_opts);
5058         if (IS_ERR(rbdc)) {
5059                 rc = PTR_ERR(rbdc);
5060                 goto err_out_args;
5061         }
5062
5063         /* pick the pool */
5064         osdc = &rbdc->client->osdc;
5065         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5066         if (rc < 0)
5067                 goto err_out_client;
5068         spec->pool_id = (u64)rc;
5069
5070         /* The ceph file layout needs to fit pool id in 32 bits */
5071
5072         if (spec->pool_id > (u64)U32_MAX) {
5073                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5074                                 (unsigned long long)spec->pool_id, U32_MAX);
5075                 rc = -EIO;
5076                 goto err_out_client;
5077         }
5078
5079         rbd_dev = rbd_dev_create(rbdc, spec);
5080         if (!rbd_dev)
5081                 goto err_out_client;
5082         rbdc = NULL;            /* rbd_dev now owns this */
5083         spec = NULL;            /* rbd_dev now owns this */
5084
5085         rc = rbd_dev_image_probe(rbd_dev, true);
5086         if (rc < 0)
5087                 goto err_out_rbd_dev;
5088
5089         /* If we are mapping a snapshot it must be marked read-only */
5090
5091         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5092                 read_only = true;
5093         rbd_dev->mapping.read_only = read_only;
5094
5095         rc = rbd_dev_device_setup(rbd_dev);
5096         if (rc) {
5097                 /*
5098                  * rbd_dev_header_unwatch_sync() can't be moved into
5099                  * rbd_dev_image_release() without refactoring, see
5100                  * commit 1f3ef78861ac.
5101                  */
5102                 rbd_dev_header_unwatch_sync(rbd_dev);
5103                 rbd_dev_image_release(rbd_dev);
5104                 goto err_out_module;
5105         }
5106
5107         return count;
5108
5109 err_out_rbd_dev:
5110         rbd_dev_destroy(rbd_dev);
5111 err_out_client:
5112         rbd_put_client(rbdc);
5113 err_out_args:
5114         rbd_spec_put(spec);
5115 err_out_module:
5116         module_put(THIS_MODULE);
5117
5118         dout("Error adding device %s\n", buf);
5119
5120         return (ssize_t)rc;
5121 }
5122
5123 static ssize_t rbd_add(struct bus_type *bus,
5124                        const char *buf,
5125                        size_t count)
5126 {
5127         if (single_major)
5128                 return -EINVAL;
5129
5130         return do_rbd_add(bus, buf, count);
5131 }
5132
5133 static ssize_t rbd_add_single_major(struct bus_type *bus,
5134                                     const char *buf,
5135                                     size_t count)
5136 {
5137         return do_rbd_add(bus, buf, count);
5138 }
5139
5140 static void rbd_dev_device_release(struct device *dev)
5141 {
5142         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5143
5144         rbd_free_disk(rbd_dev);
5145         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5146         rbd_dev_mapping_clear(rbd_dev);
5147         if (!single_major)
5148                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5149         rbd_dev_id_put(rbd_dev);
5150         rbd_dev_mapping_clear(rbd_dev);
5151 }
5152
5153 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5154 {
5155         while (rbd_dev->parent) {
5156                 struct rbd_device *first = rbd_dev;
5157                 struct rbd_device *second = first->parent;
5158                 struct rbd_device *third;
5159
5160                 /*
5161                  * Follow to the parent with no grandparent and
5162                  * remove it.
5163                  */
5164                 while (second && (third = second->parent)) {
5165                         first = second;
5166                         second = third;
5167                 }
5168                 rbd_assert(second);
5169                 rbd_dev_image_release(second);
5170                 first->parent = NULL;
5171                 first->parent_overlap = 0;
5172
5173                 rbd_assert(first->parent_spec);
5174                 rbd_spec_put(first->parent_spec);
5175                 first->parent_spec = NULL;
5176         }
5177 }
5178
5179 static ssize_t do_rbd_remove(struct bus_type *bus,
5180                              const char *buf,
5181                              size_t count)
5182 {
5183         struct rbd_device *rbd_dev = NULL;
5184         struct list_head *tmp;
5185         int dev_id;
5186         unsigned long ul;
5187         bool already = false;
5188         int ret;
5189
5190         ret = kstrtoul(buf, 10, &ul);
5191         if (ret)
5192                 return ret;
5193
5194         /* convert to int; abort if we lost anything in the conversion */
5195         dev_id = (int)ul;
5196         if (dev_id != ul)
5197                 return -EINVAL;
5198
5199         ret = -ENOENT;
5200         spin_lock(&rbd_dev_list_lock);
5201         list_for_each(tmp, &rbd_dev_list) {
5202                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5203                 if (rbd_dev->dev_id == dev_id) {
5204                         ret = 0;
5205                         break;
5206                 }
5207         }
5208         if (!ret) {
5209                 spin_lock_irq(&rbd_dev->lock);
5210                 if (rbd_dev->open_count)
5211                         ret = -EBUSY;
5212                 else
5213                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5214                                                         &rbd_dev->flags);
5215                 spin_unlock_irq(&rbd_dev->lock);
5216         }
5217         spin_unlock(&rbd_dev_list_lock);
5218         if (ret < 0 || already)
5219                 return ret;
5220
5221         rbd_dev_header_unwatch_sync(rbd_dev);
5222         /*
5223          * flush remaining watch callbacks - these must be complete
5224          * before the osd_client is shutdown
5225          */
5226         dout("%s: flushing notifies", __func__);
5227         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5228
5229         /*
5230          * Don't free anything from rbd_dev->disk until after all
5231          * notifies are completely processed. Otherwise
5232          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5233          * in a potential use after free of rbd_dev->disk or rbd_dev.
5234          */
5235         rbd_bus_del_dev(rbd_dev);
5236         rbd_dev_image_release(rbd_dev);
5237         module_put(THIS_MODULE);
5238
5239         return count;
5240 }
5241
5242 static ssize_t rbd_remove(struct bus_type *bus,
5243                           const char *buf,
5244                           size_t count)
5245 {
5246         if (single_major)
5247                 return -EINVAL;
5248
5249         return do_rbd_remove(bus, buf, count);
5250 }
5251
5252 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5253                                        const char *buf,
5254                                        size_t count)
5255 {
5256         return do_rbd_remove(bus, buf, count);
5257 }
5258
5259 /*
5260  * create control files in sysfs
5261  * /sys/bus/rbd/...
5262  */
5263 static int rbd_sysfs_init(void)
5264 {
5265         int ret;
5266
5267         ret = device_register(&rbd_root_dev);
5268         if (ret < 0)
5269                 return ret;
5270
5271         ret = bus_register(&rbd_bus_type);
5272         if (ret < 0)
5273                 device_unregister(&rbd_root_dev);
5274
5275         return ret;
5276 }
5277
5278 static void rbd_sysfs_cleanup(void)
5279 {
5280         bus_unregister(&rbd_bus_type);
5281         device_unregister(&rbd_root_dev);
5282 }
5283
5284 static int rbd_slab_init(void)
5285 {
5286         rbd_assert(!rbd_img_request_cache);
5287         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5288                                         sizeof (struct rbd_img_request),
5289                                         __alignof__(struct rbd_img_request),
5290                                         0, NULL);
5291         if (!rbd_img_request_cache)
5292                 return -ENOMEM;
5293
5294         rbd_assert(!rbd_obj_request_cache);
5295         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5296                                         sizeof (struct rbd_obj_request),
5297                                         __alignof__(struct rbd_obj_request),
5298                                         0, NULL);
5299         if (!rbd_obj_request_cache)
5300                 goto out_err;
5301
5302         rbd_assert(!rbd_segment_name_cache);
5303         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5304                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5305         if (rbd_segment_name_cache)
5306                 return 0;
5307 out_err:
5308         if (rbd_obj_request_cache) {
5309                 kmem_cache_destroy(rbd_obj_request_cache);
5310                 rbd_obj_request_cache = NULL;
5311         }
5312
5313         kmem_cache_destroy(rbd_img_request_cache);
5314         rbd_img_request_cache = NULL;
5315
5316         return -ENOMEM;
5317 }
5318
5319 static void rbd_slab_exit(void)
5320 {
5321         rbd_assert(rbd_segment_name_cache);
5322         kmem_cache_destroy(rbd_segment_name_cache);
5323         rbd_segment_name_cache = NULL;
5324
5325         rbd_assert(rbd_obj_request_cache);
5326         kmem_cache_destroy(rbd_obj_request_cache);
5327         rbd_obj_request_cache = NULL;
5328
5329         rbd_assert(rbd_img_request_cache);
5330         kmem_cache_destroy(rbd_img_request_cache);
5331         rbd_img_request_cache = NULL;
5332 }
5333
5334 static int __init rbd_init(void)
5335 {
5336         int rc;
5337
5338         if (!libceph_compatible(NULL)) {
5339                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5340                 return -EINVAL;
5341         }
5342
5343         rc = rbd_slab_init();
5344         if (rc)
5345                 return rc;
5346
5347         if (single_major) {
5348                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5349                 if (rbd_major < 0) {
5350                         rc = rbd_major;
5351                         goto err_out_slab;
5352                 }
5353         }
5354
5355         rc = rbd_sysfs_init();
5356         if (rc)
5357                 goto err_out_blkdev;
5358
5359         if (single_major)
5360                 pr_info("loaded (major %d)\n", rbd_major);
5361         else
5362                 pr_info("loaded\n");
5363
5364         return 0;
5365
5366 err_out_blkdev:
5367         if (single_major)
5368                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5369 err_out_slab:
5370         rbd_slab_exit();
5371         return rc;
5372 }
5373
5374 static void __exit rbd_exit(void)
5375 {
5376         rbd_sysfs_cleanup();
5377         if (single_major)
5378                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5379         rbd_slab_exit();
5380 }
5381
5382 module_init(rbd_init);
5383 module_exit(rbd_exit);
5384
5385 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5386 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5387 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5388 /* following authorship retained from original osdblk.c */
5389 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5390
5391 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5392 MODULE_LICENSE("GPL");