3 rbd.c -- Export ceph rados objects as a Linux block device
6 based on drivers/block/osdblk.c:
8 Copyright 2009 Red Hat, Inc.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 For usage instructions, please refer to:
27 Documentation/ABI/testing/sysfs-bus-rbd
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
46 #include "rbd_types.h"
48 #define RBD_DEBUG /* Activate rbd_assert() calls */
51 * The basic unit of block I/O is a sector. It is interpreted in a
52 * number of contexts in Linux (blk, bio, genhd), but the default is
53 * universally 512 bytes. These symbols are just slightly more
54 * meaningful than the bare numbers they represent.
56 #define SECTOR_SHIFT 9
57 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
60 * Increment the given counter and return its updated value.
61 * If the counter is already 0 it will not be incremented.
62 * If the counter is already at its maximum value returns
63 * -EINVAL without updating it.
65 static int atomic_inc_return_safe(atomic_t *v)
69 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70 if (counter <= (unsigned int)INT_MAX)
78 /* Decrement the counter. Return the resulting value, or -EINVAL */
79 static int atomic_dec_return_safe(atomic_t *v)
83 counter = atomic_dec_return(v);
92 #define RBD_DRV_NAME "rbd"
94 #define RBD_MINORS_PER_MAJOR 256
95 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
97 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
98 #define RBD_MAX_SNAP_NAME_LEN \
99 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
101 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
103 #define RBD_SNAP_HEAD_NAME "-"
105 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
107 /* This allows a single page to hold an image name sent by OSD */
108 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
109 #define RBD_IMAGE_ID_LEN_MAX 64
111 #define RBD_OBJ_PREFIX_LEN_MAX 64
115 #define RBD_FEATURE_LAYERING (1<<0)
116 #define RBD_FEATURE_STRIPINGV2 (1<<1)
117 #define RBD_FEATURES_ALL \
118 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
120 /* Features supported by this (client software) implementation. */
122 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
125 * An RBD device name will be "rbd#", where the "rbd" comes from
126 * RBD_DRV_NAME above, and # is a unique integer identifier.
127 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128 * enough to hold all possible device names.
130 #define DEV_NAME_LEN 32
131 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
134 * block device image metadata (in-memory version)
136 struct rbd_image_header {
137 /* These six fields never change for a given rbd image */
144 u64 features; /* Might be changeable someday? */
146 /* The remaining fields need to be updated occasionally */
148 struct ceph_snap_context *snapc;
149 char *snap_names; /* format 1 only */
150 u64 *snap_sizes; /* format 1 only */
154 * An rbd image specification.
156 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157 * identify an image. Each rbd_dev structure includes a pointer to
158 * an rbd_spec structure that encapsulates this identity.
160 * Each of the id's in an rbd_spec has an associated name. For a
161 * user-mapped image, the names are supplied and the id's associated
162 * with them are looked up. For a layered image, a parent image is
163 * defined by the tuple, and the names are looked up.
165 * An rbd_dev structure contains a parent_spec pointer which is
166 * non-null if the image it represents is a child in a layered
167 * image. This pointer will refer to the rbd_spec structure used
168 * by the parent rbd_dev for its own identity (i.e., the structure
169 * is shared between the parent and child).
171 * Since these structures are populated once, during the discovery
172 * phase of image construction, they are effectively immutable so
173 * we make no effort to synchronize access to them.
175 * Note that code herein does not assume the image name is known (it
176 * could be a null pointer).
180 const char *pool_name;
182 const char *image_id;
183 const char *image_name;
186 const char *snap_name;
192 * an instance of the client. multiple devices may share an rbd client.
195 struct ceph_client *client;
197 struct list_head node;
200 struct rbd_img_request;
201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
203 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
205 struct rbd_obj_request;
206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
208 enum obj_request_type {
209 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
213 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
214 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
215 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
216 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
219 struct rbd_obj_request {
220 const char *object_name;
221 u64 offset; /* object start byte */
222 u64 length; /* bytes from offset */
226 * An object request associated with an image will have its
227 * img_data flag set; a standalone object request will not.
229 * A standalone object request will have which == BAD_WHICH
230 * and a null obj_request pointer.
232 * An object request initiated in support of a layered image
233 * object (to check for its existence before a write) will
234 * have which == BAD_WHICH and a non-null obj_request pointer.
236 * Finally, an object request for rbd image data will have
237 * which != BAD_WHICH, and will have a non-null img_request
238 * pointer. The value of which will be in the range
239 * 0..(img_request->obj_request_count-1).
242 struct rbd_obj_request *obj_request; /* STAT op */
244 struct rbd_img_request *img_request;
246 /* links for img_request->obj_requests list */
247 struct list_head links;
250 u32 which; /* posn image request list */
252 enum obj_request_type type;
254 struct bio *bio_list;
260 struct page **copyup_pages;
261 u32 copyup_page_count;
263 struct ceph_osd_request *osd_req;
265 u64 xferred; /* bytes transferred */
268 rbd_obj_callback_t callback;
269 struct completion completion;
275 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
276 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
277 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
280 struct rbd_img_request {
281 struct rbd_device *rbd_dev;
282 u64 offset; /* starting image byte offset */
283 u64 length; /* byte count from offset */
286 u64 snap_id; /* for reads */
287 struct ceph_snap_context *snapc; /* for writes */
290 struct request *rq; /* block request */
291 struct rbd_obj_request *obj_request; /* obj req initiator */
293 struct page **copyup_pages;
294 u32 copyup_page_count;
295 spinlock_t completion_lock;/* protects next_completion */
297 rbd_img_callback_t callback;
298 u64 xferred;/* aggregate bytes transferred */
299 int result; /* first nonzero obj_request result */
301 u32 obj_request_count;
302 struct list_head obj_requests; /* rbd_obj_request structs */
307 #define for_each_obj_request(ireq, oreq) \
308 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_from(ireq, oreq) \
310 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_safe(ireq, oreq, n) \
312 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
324 int dev_id; /* blkdev unique id */
326 int major; /* blkdev assigned major */
328 struct gendisk *disk; /* blkdev's gendisk and rq */
330 u32 image_format; /* Either 1 or 2 */
331 struct rbd_client *rbd_client;
333 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
335 spinlock_t lock; /* queue, flags, open_count */
337 struct rbd_image_header header;
338 unsigned long flags; /* possibly lock protected */
339 struct rbd_spec *spec;
343 struct ceph_file_layout layout;
345 struct ceph_osd_event *watch_event;
346 struct rbd_obj_request *watch_request;
348 struct rbd_spec *parent_spec;
351 struct rbd_device *parent;
353 /* protects updating the header */
354 struct rw_semaphore header_rwsem;
356 struct rbd_mapping mapping;
358 struct list_head node;
362 unsigned long open_count; /* protected by lock */
366 * Flag bits for rbd_dev->flags. If atomicity is required,
367 * rbd_dev->lock is used to protect access.
369 * Currently, only the "removing" flag (which is coupled with the
370 * "open_count" field) requires atomic access.
373 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
374 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
377 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
379 static LIST_HEAD(rbd_dev_list); /* devices */
380 static DEFINE_SPINLOCK(rbd_dev_list_lock);
382 static LIST_HEAD(rbd_client_list); /* clients */
383 static DEFINE_SPINLOCK(rbd_client_list_lock);
385 /* Slab caches for frequently-allocated structures */
387 static struct kmem_cache *rbd_img_request_cache;
388 static struct kmem_cache *rbd_obj_request_cache;
389 static struct kmem_cache *rbd_segment_name_cache;
391 static int rbd_major;
392 static DEFINE_IDA(rbd_dev_id_ida);
395 * Default to false for now, as single-major requires >= 0.75 version of
396 * userspace rbd utility.
398 static bool single_major = false;
399 module_param(single_major, bool, S_IRUGO);
400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
402 static int rbd_img_request_submit(struct rbd_img_request *img_request);
404 static void rbd_dev_device_release(struct device *dev);
406 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415 static void rbd_spec_put(struct rbd_spec *spec);
417 static int rbd_dev_id_to_minor(int dev_id)
419 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
422 static int minor_to_rbd_dev_id(int minor)
424 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
432 static struct attribute *rbd_bus_attrs[] = {
434 &bus_attr_remove.attr,
435 &bus_attr_add_single_major.attr,
436 &bus_attr_remove_single_major.attr,
440 static umode_t rbd_bus_is_visible(struct kobject *kobj,
441 struct attribute *attr, int index)
444 (attr == &bus_attr_add_single_major.attr ||
445 attr == &bus_attr_remove_single_major.attr))
451 static const struct attribute_group rbd_bus_group = {
452 .attrs = rbd_bus_attrs,
453 .is_visible = rbd_bus_is_visible,
455 __ATTRIBUTE_GROUPS(rbd_bus);
457 static struct bus_type rbd_bus_type = {
459 .bus_groups = rbd_bus_groups,
462 static void rbd_root_dev_release(struct device *dev)
466 static struct device rbd_root_dev = {
468 .release = rbd_root_dev_release,
471 static __printf(2, 3)
472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
474 struct va_format vaf;
482 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483 else if (rbd_dev->disk)
484 printk(KERN_WARNING "%s: %s: %pV\n",
485 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486 else if (rbd_dev->spec && rbd_dev->spec->image_name)
487 printk(KERN_WARNING "%s: image %s: %pV\n",
488 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489 else if (rbd_dev->spec && rbd_dev->spec->image_id)
490 printk(KERN_WARNING "%s: id %s: %pV\n",
491 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
493 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494 RBD_DRV_NAME, rbd_dev, &vaf);
499 #define rbd_assert(expr) \
500 if (unlikely(!(expr))) { \
501 printk(KERN_ERR "\nAssertion failure in %s() " \
503 "\trbd_assert(%s);\n\n", \
504 __func__, __LINE__, #expr); \
507 #else /* !RBD_DEBUG */
508 # define rbd_assert(expr) ((void) 0)
509 #endif /* !RBD_DEBUG */
511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
515 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521 u8 *order, u64 *snap_size);
522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
526 static int rbd_open(struct block_device *bdev, fmode_t mode)
528 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529 bool removing = false;
531 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
534 spin_lock_irq(&rbd_dev->lock);
535 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
538 rbd_dev->open_count++;
539 spin_unlock_irq(&rbd_dev->lock);
543 (void) get_device(&rbd_dev->dev);
544 set_device_ro(bdev, rbd_dev->mapping.read_only);
549 static void rbd_release(struct gendisk *disk, fmode_t mode)
551 struct rbd_device *rbd_dev = disk->private_data;
552 unsigned long open_count_before;
554 spin_lock_irq(&rbd_dev->lock);
555 open_count_before = rbd_dev->open_count--;
556 spin_unlock_irq(&rbd_dev->lock);
557 rbd_assert(open_count_before > 0);
559 put_device(&rbd_dev->dev);
562 static const struct block_device_operations rbd_bd_ops = {
563 .owner = THIS_MODULE,
565 .release = rbd_release,
569 * Initialize an rbd client instance. Success or not, this function
570 * consumes ceph_opts. Caller holds client_mutex.
572 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
574 struct rbd_client *rbdc;
577 dout("%s:\n", __func__);
578 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
582 kref_init(&rbdc->kref);
583 INIT_LIST_HEAD(&rbdc->node);
585 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
586 if (IS_ERR(rbdc->client))
588 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
590 ret = ceph_open_session(rbdc->client);
594 spin_lock(&rbd_client_list_lock);
595 list_add_tail(&rbdc->node, &rbd_client_list);
596 spin_unlock(&rbd_client_list_lock);
598 dout("%s: rbdc %p\n", __func__, rbdc);
602 ceph_destroy_client(rbdc->client);
607 ceph_destroy_options(ceph_opts);
608 dout("%s: error %d\n", __func__, ret);
613 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
615 kref_get(&rbdc->kref);
621 * Find a ceph client with specific addr and configuration. If
622 * found, bump its reference count.
624 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
626 struct rbd_client *client_node;
629 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
632 spin_lock(&rbd_client_list_lock);
633 list_for_each_entry(client_node, &rbd_client_list, node) {
634 if (!ceph_compare_options(ceph_opts, client_node->client)) {
635 __rbd_get_client(client_node);
641 spin_unlock(&rbd_client_list_lock);
643 return found ? client_node : NULL;
653 /* string args above */
656 /* Boolean args above */
660 static match_table_t rbd_opts_tokens = {
662 /* string args above */
663 {Opt_read_only, "read_only"},
664 {Opt_read_only, "ro"}, /* Alternate spelling */
665 {Opt_read_write, "read_write"},
666 {Opt_read_write, "rw"}, /* Alternate spelling */
667 /* Boolean args above */
675 #define RBD_READ_ONLY_DEFAULT false
677 static int parse_rbd_opts_token(char *c, void *private)
679 struct rbd_options *rbd_opts = private;
680 substring_t argstr[MAX_OPT_ARGS];
681 int token, intval, ret;
683 token = match_token(c, rbd_opts_tokens, argstr);
687 if (token < Opt_last_int) {
688 ret = match_int(&argstr[0], &intval);
690 pr_err("bad mount option arg (not int) "
694 dout("got int token %d val %d\n", token, intval);
695 } else if (token > Opt_last_int && token < Opt_last_string) {
696 dout("got string token %d val %s\n", token,
698 } else if (token > Opt_last_string && token < Opt_last_bool) {
699 dout("got Boolean token %d\n", token);
701 dout("got token %d\n", token);
706 rbd_opts->read_only = true;
709 rbd_opts->read_only = false;
719 * Get a ceph client with specific addr and configuration, if one does
720 * not exist create it. Either way, ceph_opts is consumed by this
723 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
725 struct rbd_client *rbdc;
727 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
728 rbdc = rbd_client_find(ceph_opts);
729 if (rbdc) /* using an existing client */
730 ceph_destroy_options(ceph_opts);
732 rbdc = rbd_client_create(ceph_opts);
733 mutex_unlock(&client_mutex);
739 * Destroy ceph client
741 * Caller must hold rbd_client_list_lock.
743 static void rbd_client_release(struct kref *kref)
745 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
747 dout("%s: rbdc %p\n", __func__, rbdc);
748 spin_lock(&rbd_client_list_lock);
749 list_del(&rbdc->node);
750 spin_unlock(&rbd_client_list_lock);
752 ceph_destroy_client(rbdc->client);
757 * Drop reference to ceph client node. If it's not referenced anymore, release
760 static void rbd_put_client(struct rbd_client *rbdc)
763 kref_put(&rbdc->kref, rbd_client_release);
766 static bool rbd_image_format_valid(u32 image_format)
768 return image_format == 1 || image_format == 2;
771 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
776 /* The header has to start with the magic rbd header text */
777 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
780 /* The bio layer requires at least sector-sized I/O */
782 if (ondisk->options.order < SECTOR_SHIFT)
785 /* If we use u64 in a few spots we may be able to loosen this */
787 if (ondisk->options.order > 8 * sizeof (int) - 1)
791 * The size of a snapshot header has to fit in a size_t, and
792 * that limits the number of snapshots.
794 snap_count = le32_to_cpu(ondisk->snap_count);
795 size = SIZE_MAX - sizeof (struct ceph_snap_context);
796 if (snap_count > size / sizeof (__le64))
800 * Not only that, but the size of the entire the snapshot
801 * header must also be representable in a size_t.
803 size -= snap_count * sizeof (__le64);
804 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
811 * Fill an rbd image header with information from the given format 1
814 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
815 struct rbd_image_header_ondisk *ondisk)
817 struct rbd_image_header *header = &rbd_dev->header;
818 bool first_time = header->object_prefix == NULL;
819 struct ceph_snap_context *snapc;
820 char *object_prefix = NULL;
821 char *snap_names = NULL;
822 u64 *snap_sizes = NULL;
828 /* Allocate this now to avoid having to handle failure below */
833 len = strnlen(ondisk->object_prefix,
834 sizeof (ondisk->object_prefix));
835 object_prefix = kmalloc(len + 1, GFP_KERNEL);
838 memcpy(object_prefix, ondisk->object_prefix, len);
839 object_prefix[len] = '\0';
842 /* Allocate the snapshot context and fill it in */
844 snap_count = le32_to_cpu(ondisk->snap_count);
845 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
848 snapc->seq = le64_to_cpu(ondisk->snap_seq);
850 struct rbd_image_snap_ondisk *snaps;
851 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
853 /* We'll keep a copy of the snapshot names... */
855 if (snap_names_len > (u64)SIZE_MAX)
857 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
861 /* ...as well as the array of their sizes. */
863 size = snap_count * sizeof (*header->snap_sizes);
864 snap_sizes = kmalloc(size, GFP_KERNEL);
869 * Copy the names, and fill in each snapshot's id
872 * Note that rbd_dev_v1_header_info() guarantees the
873 * ondisk buffer we're working with has
874 * snap_names_len bytes beyond the end of the
875 * snapshot id array, this memcpy() is safe.
877 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
878 snaps = ondisk->snaps;
879 for (i = 0; i < snap_count; i++) {
880 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
881 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
885 /* We won't fail any more, fill in the header */
888 header->object_prefix = object_prefix;
889 header->obj_order = ondisk->options.order;
890 header->crypt_type = ondisk->options.crypt_type;
891 header->comp_type = ondisk->options.comp_type;
892 /* The rest aren't used for format 1 images */
893 header->stripe_unit = 0;
894 header->stripe_count = 0;
895 header->features = 0;
897 ceph_put_snap_context(header->snapc);
898 kfree(header->snap_names);
899 kfree(header->snap_sizes);
902 /* The remaining fields always get updated (when we refresh) */
904 header->image_size = le64_to_cpu(ondisk->image_size);
905 header->snapc = snapc;
906 header->snap_names = snap_names;
907 header->snap_sizes = snap_sizes;
909 /* Make sure mapping size is consistent with header info */
911 if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
912 if (rbd_dev->mapping.size != header->image_size)
913 rbd_dev->mapping.size = header->image_size;
921 ceph_put_snap_context(snapc);
922 kfree(object_prefix);
927 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
929 const char *snap_name;
931 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
933 /* Skip over names until we find the one we are looking for */
935 snap_name = rbd_dev->header.snap_names;
937 snap_name += strlen(snap_name) + 1;
939 return kstrdup(snap_name, GFP_KERNEL);
943 * Snapshot id comparison function for use with qsort()/bsearch().
944 * Note that result is for snapshots in *descending* order.
946 static int snapid_compare_reverse(const void *s1, const void *s2)
948 u64 snap_id1 = *(u64 *)s1;
949 u64 snap_id2 = *(u64 *)s2;
951 if (snap_id1 < snap_id2)
953 return snap_id1 == snap_id2 ? 0 : -1;
957 * Search a snapshot context to see if the given snapshot id is
960 * Returns the position of the snapshot id in the array if it's found,
961 * or BAD_SNAP_INDEX otherwise.
963 * Note: The snapshot array is in kept sorted (by the osd) in
964 * reverse order, highest snapshot id first.
966 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
968 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
971 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
972 sizeof (snap_id), snapid_compare_reverse);
974 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
977 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
981 const char *snap_name;
983 which = rbd_dev_snap_index(rbd_dev, snap_id);
984 if (which == BAD_SNAP_INDEX)
985 return ERR_PTR(-ENOENT);
987 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
988 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
991 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
993 if (snap_id == CEPH_NOSNAP)
994 return RBD_SNAP_HEAD_NAME;
996 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
997 if (rbd_dev->image_format == 1)
998 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1000 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1003 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1006 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1007 if (snap_id == CEPH_NOSNAP) {
1008 *snap_size = rbd_dev->header.image_size;
1009 } else if (rbd_dev->image_format == 1) {
1012 which = rbd_dev_snap_index(rbd_dev, snap_id);
1013 if (which == BAD_SNAP_INDEX)
1016 *snap_size = rbd_dev->header.snap_sizes[which];
1021 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1030 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1033 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1034 if (snap_id == CEPH_NOSNAP) {
1035 *snap_features = rbd_dev->header.features;
1036 } else if (rbd_dev->image_format == 1) {
1037 *snap_features = 0; /* No features for format 1 */
1042 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1046 *snap_features = features;
1051 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1053 u64 snap_id = rbd_dev->spec->snap_id;
1058 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1061 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1065 rbd_dev->mapping.size = size;
1066 rbd_dev->mapping.features = features;
1071 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1073 rbd_dev->mapping.size = 0;
1074 rbd_dev->mapping.features = 0;
1077 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1084 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1087 segment = offset >> rbd_dev->header.obj_order;
1088 name_format = "%s.%012llx";
1089 if (rbd_dev->image_format == 2)
1090 name_format = "%s.%016llx";
1091 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1092 rbd_dev->header.object_prefix, segment);
1093 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1094 pr_err("error formatting segment name for #%llu (%d)\n",
1103 static void rbd_segment_name_free(const char *name)
1105 /* The explicit cast here is needed to drop the const qualifier */
1107 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1110 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1112 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1114 return offset & (segment_size - 1);
1117 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1118 u64 offset, u64 length)
1120 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1122 offset &= segment_size - 1;
1124 rbd_assert(length <= U64_MAX - offset);
1125 if (offset + length > segment_size)
1126 length = segment_size - offset;
1132 * returns the size of an object in the image
1134 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1136 return 1 << header->obj_order;
1143 static void bio_chain_put(struct bio *chain)
1149 chain = chain->bi_next;
1155 * zeros a bio chain, starting at specific offset
1157 static void zero_bio_chain(struct bio *chain, int start_ofs)
1160 struct bvec_iter iter;
1161 unsigned long flags;
1166 bio_for_each_segment(bv, chain, iter) {
1167 if (pos + bv.bv_len > start_ofs) {
1168 int remainder = max(start_ofs - pos, 0);
1169 buf = bvec_kmap_irq(&bv, &flags);
1170 memset(buf + remainder, 0,
1171 bv.bv_len - remainder);
1172 flush_dcache_page(bv.bv_page);
1173 bvec_kunmap_irq(buf, &flags);
1178 chain = chain->bi_next;
1183 * similar to zero_bio_chain(), zeros data defined by a page array,
1184 * starting at the given byte offset from the start of the array and
1185 * continuing up to the given end offset. The pages array is
1186 * assumed to be big enough to hold all bytes up to the end.
1188 static void zero_pages(struct page **pages, u64 offset, u64 end)
1190 struct page **page = &pages[offset >> PAGE_SHIFT];
1192 rbd_assert(end > offset);
1193 rbd_assert(end - offset <= (u64)SIZE_MAX);
1194 while (offset < end) {
1197 unsigned long flags;
1200 page_offset = offset & ~PAGE_MASK;
1201 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1202 local_irq_save(flags);
1203 kaddr = kmap_atomic(*page);
1204 memset(kaddr + page_offset, 0, length);
1205 flush_dcache_page(*page);
1206 kunmap_atomic(kaddr);
1207 local_irq_restore(flags);
1215 * Clone a portion of a bio, starting at the given byte offset
1216 * and continuing for the number of bytes indicated.
1218 static struct bio *bio_clone_range(struct bio *bio_src,
1219 unsigned int offset,
1225 bio = bio_clone(bio_src, gfpmask);
1227 return NULL; /* ENOMEM */
1229 bio_advance(bio, offset);
1230 bio->bi_iter.bi_size = len;
1236 * Clone a portion of a bio chain, starting at the given byte offset
1237 * into the first bio in the source chain and continuing for the
1238 * number of bytes indicated. The result is another bio chain of
1239 * exactly the given length, or a null pointer on error.
1241 * The bio_src and offset parameters are both in-out. On entry they
1242 * refer to the first source bio and the offset into that bio where
1243 * the start of data to be cloned is located.
1245 * On return, bio_src is updated to refer to the bio in the source
1246 * chain that contains first un-cloned byte, and *offset will
1247 * contain the offset of that byte within that bio.
1249 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1250 unsigned int *offset,
1254 struct bio *bi = *bio_src;
1255 unsigned int off = *offset;
1256 struct bio *chain = NULL;
1259 /* Build up a chain of clone bios up to the limit */
1261 if (!bi || off >= bi->bi_iter.bi_size || !len)
1262 return NULL; /* Nothing to clone */
1266 unsigned int bi_size;
1270 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1271 goto out_err; /* EINVAL; ran out of bio's */
1273 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1274 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1276 goto out_err; /* ENOMEM */
1279 end = &bio->bi_next;
1282 if (off == bi->bi_iter.bi_size) {
1293 bio_chain_put(chain);
1299 * The default/initial value for all object request flags is 0. For
1300 * each flag, once its value is set to 1 it is never reset to 0
1303 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1305 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1306 struct rbd_device *rbd_dev;
1308 rbd_dev = obj_request->img_request->rbd_dev;
1309 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1314 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1317 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1320 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1322 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1323 struct rbd_device *rbd_dev = NULL;
1325 if (obj_request_img_data_test(obj_request))
1326 rbd_dev = obj_request->img_request->rbd_dev;
1327 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1332 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1335 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1339 * This sets the KNOWN flag after (possibly) setting the EXISTS
1340 * flag. The latter is set based on the "exists" value provided.
1342 * Note that for our purposes once an object exists it never goes
1343 * away again. It's possible that the response from two existence
1344 * checks are separated by the creation of the target object, and
1345 * the first ("doesn't exist") response arrives *after* the second
1346 * ("does exist"). In that case we ignore the second one.
1348 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1352 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1353 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1357 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1360 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1363 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1366 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1369 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1371 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1373 return obj_request->img_offset <
1374 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1377 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1379 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1380 atomic_read(&obj_request->kref.refcount));
1381 kref_get(&obj_request->kref);
1384 static void rbd_obj_request_destroy(struct kref *kref);
1385 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1387 rbd_assert(obj_request != NULL);
1388 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1389 atomic_read(&obj_request->kref.refcount));
1390 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1393 static void rbd_img_request_get(struct rbd_img_request *img_request)
1395 dout("%s: img %p (was %d)\n", __func__, img_request,
1396 atomic_read(&img_request->kref.refcount));
1397 kref_get(&img_request->kref);
1400 static bool img_request_child_test(struct rbd_img_request *img_request);
1401 static void rbd_parent_request_destroy(struct kref *kref);
1402 static void rbd_img_request_destroy(struct kref *kref);
1403 static void rbd_img_request_put(struct rbd_img_request *img_request)
1405 rbd_assert(img_request != NULL);
1406 dout("%s: img %p (was %d)\n", __func__, img_request,
1407 atomic_read(&img_request->kref.refcount));
1408 if (img_request_child_test(img_request))
1409 kref_put(&img_request->kref, rbd_parent_request_destroy);
1411 kref_put(&img_request->kref, rbd_img_request_destroy);
1414 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1415 struct rbd_obj_request *obj_request)
1417 rbd_assert(obj_request->img_request == NULL);
1419 /* Image request now owns object's original reference */
1420 obj_request->img_request = img_request;
1421 obj_request->which = img_request->obj_request_count;
1422 rbd_assert(!obj_request_img_data_test(obj_request));
1423 obj_request_img_data_set(obj_request);
1424 rbd_assert(obj_request->which != BAD_WHICH);
1425 img_request->obj_request_count++;
1426 list_add_tail(&obj_request->links, &img_request->obj_requests);
1427 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1428 obj_request->which);
1431 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1432 struct rbd_obj_request *obj_request)
1434 rbd_assert(obj_request->which != BAD_WHICH);
1436 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1437 obj_request->which);
1438 list_del(&obj_request->links);
1439 rbd_assert(img_request->obj_request_count > 0);
1440 img_request->obj_request_count--;
1441 rbd_assert(obj_request->which == img_request->obj_request_count);
1442 obj_request->which = BAD_WHICH;
1443 rbd_assert(obj_request_img_data_test(obj_request));
1444 rbd_assert(obj_request->img_request == img_request);
1445 obj_request->img_request = NULL;
1446 obj_request->callback = NULL;
1447 rbd_obj_request_put(obj_request);
1450 static bool obj_request_type_valid(enum obj_request_type type)
1453 case OBJ_REQUEST_NODATA:
1454 case OBJ_REQUEST_BIO:
1455 case OBJ_REQUEST_PAGES:
1462 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1463 struct rbd_obj_request *obj_request)
1465 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1467 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1470 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1473 dout("%s: img %p\n", __func__, img_request);
1476 * If no error occurred, compute the aggregate transfer
1477 * count for the image request. We could instead use
1478 * atomic64_cmpxchg() to update it as each object request
1479 * completes; not clear which way is better off hand.
1481 if (!img_request->result) {
1482 struct rbd_obj_request *obj_request;
1485 for_each_obj_request(img_request, obj_request)
1486 xferred += obj_request->xferred;
1487 img_request->xferred = xferred;
1490 if (img_request->callback)
1491 img_request->callback(img_request);
1493 rbd_img_request_put(img_request);
1496 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1498 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1500 dout("%s: obj %p\n", __func__, obj_request);
1502 return wait_for_completion_interruptible(&obj_request->completion);
1506 * The default/initial value for all image request flags is 0. Each
1507 * is conditionally set to 1 at image request initialization time
1508 * and currently never change thereafter.
1510 static void img_request_write_set(struct rbd_img_request *img_request)
1512 set_bit(IMG_REQ_WRITE, &img_request->flags);
1516 static bool img_request_write_test(struct rbd_img_request *img_request)
1519 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1522 static void img_request_child_set(struct rbd_img_request *img_request)
1524 set_bit(IMG_REQ_CHILD, &img_request->flags);
1528 static void img_request_child_clear(struct rbd_img_request *img_request)
1530 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1534 static bool img_request_child_test(struct rbd_img_request *img_request)
1537 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1540 static void img_request_layered_set(struct rbd_img_request *img_request)
1542 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1546 static void img_request_layered_clear(struct rbd_img_request *img_request)
1548 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1552 static bool img_request_layered_test(struct rbd_img_request *img_request)
1555 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1559 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1561 u64 xferred = obj_request->xferred;
1562 u64 length = obj_request->length;
1564 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1565 obj_request, obj_request->img_request, obj_request->result,
1568 * ENOENT means a hole in the image. We zero-fill the entire
1569 * length of the request. A short read also implies zero-fill
1570 * to the end of the request. An error requires the whole
1571 * length of the request to be reported finished with an error
1572 * to the block layer. In each case we update the xferred
1573 * count to indicate the whole request was satisfied.
1575 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1576 if (obj_request->result == -ENOENT) {
1577 if (obj_request->type == OBJ_REQUEST_BIO)
1578 zero_bio_chain(obj_request->bio_list, 0);
1580 zero_pages(obj_request->pages, 0, length);
1581 obj_request->result = 0;
1582 } else if (xferred < length && !obj_request->result) {
1583 if (obj_request->type == OBJ_REQUEST_BIO)
1584 zero_bio_chain(obj_request->bio_list, xferred);
1586 zero_pages(obj_request->pages, xferred, length);
1588 obj_request->xferred = length;
1589 obj_request_done_set(obj_request);
1592 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1594 dout("%s: obj %p cb %p\n", __func__, obj_request,
1595 obj_request->callback);
1596 if (obj_request->callback)
1597 obj_request->callback(obj_request);
1599 complete_all(&obj_request->completion);
1602 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1604 dout("%s: obj %p\n", __func__, obj_request);
1605 obj_request_done_set(obj_request);
1608 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1610 struct rbd_img_request *img_request = NULL;
1611 struct rbd_device *rbd_dev = NULL;
1612 bool layered = false;
1614 if (obj_request_img_data_test(obj_request)) {
1615 img_request = obj_request->img_request;
1616 layered = img_request && img_request_layered_test(img_request);
1617 rbd_dev = img_request->rbd_dev;
1620 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1621 obj_request, img_request, obj_request->result,
1622 obj_request->xferred, obj_request->length);
1623 if (layered && obj_request->result == -ENOENT &&
1624 obj_request->img_offset < rbd_dev->parent_overlap)
1625 rbd_img_parent_read(obj_request);
1626 else if (img_request)
1627 rbd_img_obj_request_read_callback(obj_request);
1629 obj_request_done_set(obj_request);
1632 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1634 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1635 obj_request->result, obj_request->length);
1637 * There is no such thing as a successful short write. Set
1638 * it to our originally-requested length.
1640 obj_request->xferred = obj_request->length;
1641 obj_request_done_set(obj_request);
1645 * For a simple stat call there's nothing to do. We'll do more if
1646 * this is part of a write sequence for a layered image.
1648 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1650 dout("%s: obj %p\n", __func__, obj_request);
1651 obj_request_done_set(obj_request);
1654 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1655 struct ceph_msg *msg)
1657 struct rbd_obj_request *obj_request = osd_req->r_priv;
1660 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1661 rbd_assert(osd_req == obj_request->osd_req);
1662 if (obj_request_img_data_test(obj_request)) {
1663 rbd_assert(obj_request->img_request);
1664 rbd_assert(obj_request->which != BAD_WHICH);
1666 rbd_assert(obj_request->which == BAD_WHICH);
1669 if (osd_req->r_result < 0)
1670 obj_request->result = osd_req->r_result;
1672 BUG_ON(osd_req->r_num_ops > 2);
1675 * We support a 64-bit length, but ultimately it has to be
1676 * passed to blk_end_request(), which takes an unsigned int.
1678 obj_request->xferred = osd_req->r_reply_op_len[0];
1679 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1680 opcode = osd_req->r_ops[0].op;
1682 case CEPH_OSD_OP_READ:
1683 rbd_osd_read_callback(obj_request);
1685 case CEPH_OSD_OP_WRITE:
1686 rbd_osd_write_callback(obj_request);
1688 case CEPH_OSD_OP_STAT:
1689 rbd_osd_stat_callback(obj_request);
1691 case CEPH_OSD_OP_CALL:
1692 case CEPH_OSD_OP_NOTIFY_ACK:
1693 case CEPH_OSD_OP_WATCH:
1694 rbd_osd_trivial_callback(obj_request);
1697 rbd_warn(NULL, "%s: unsupported op %hu\n",
1698 obj_request->object_name, (unsigned short) opcode);
1702 if (obj_request_done_test(obj_request))
1703 rbd_obj_request_complete(obj_request);
1706 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1708 struct rbd_img_request *img_request = obj_request->img_request;
1709 struct ceph_osd_request *osd_req = obj_request->osd_req;
1712 rbd_assert(osd_req != NULL);
1714 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1715 ceph_osdc_build_request(osd_req, obj_request->offset,
1716 NULL, snap_id, NULL);
1719 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1721 struct rbd_img_request *img_request = obj_request->img_request;
1722 struct ceph_osd_request *osd_req = obj_request->osd_req;
1723 struct ceph_snap_context *snapc;
1724 struct timespec mtime = CURRENT_TIME;
1726 rbd_assert(osd_req != NULL);
1728 snapc = img_request ? img_request->snapc : NULL;
1729 ceph_osdc_build_request(osd_req, obj_request->offset,
1730 snapc, CEPH_NOSNAP, &mtime);
1733 static struct ceph_osd_request *rbd_osd_req_create(
1734 struct rbd_device *rbd_dev,
1736 struct rbd_obj_request *obj_request)
1738 struct ceph_snap_context *snapc = NULL;
1739 struct ceph_osd_client *osdc;
1740 struct ceph_osd_request *osd_req;
1742 if (obj_request_img_data_test(obj_request)) {
1743 struct rbd_img_request *img_request = obj_request->img_request;
1745 rbd_assert(write_request ==
1746 img_request_write_test(img_request));
1748 snapc = img_request->snapc;
1751 /* Allocate and initialize the request, for the single op */
1753 osdc = &rbd_dev->rbd_client->client->osdc;
1754 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1756 return NULL; /* ENOMEM */
1759 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1761 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1763 osd_req->r_callback = rbd_osd_req_callback;
1764 osd_req->r_priv = obj_request;
1766 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1767 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1773 * Create a copyup osd request based on the information in the
1774 * object request supplied. A copyup request has two osd ops,
1775 * a copyup method call, and a "normal" write request.
1777 static struct ceph_osd_request *
1778 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1780 struct rbd_img_request *img_request;
1781 struct ceph_snap_context *snapc;
1782 struct rbd_device *rbd_dev;
1783 struct ceph_osd_client *osdc;
1784 struct ceph_osd_request *osd_req;
1786 rbd_assert(obj_request_img_data_test(obj_request));
1787 img_request = obj_request->img_request;
1788 rbd_assert(img_request);
1789 rbd_assert(img_request_write_test(img_request));
1791 /* Allocate and initialize the request, for the two ops */
1793 snapc = img_request->snapc;
1794 rbd_dev = img_request->rbd_dev;
1795 osdc = &rbd_dev->rbd_client->client->osdc;
1796 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1798 return NULL; /* ENOMEM */
1800 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1801 osd_req->r_callback = rbd_osd_req_callback;
1802 osd_req->r_priv = obj_request;
1804 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1805 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1811 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1813 ceph_osdc_put_request(osd_req);
1816 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1818 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1819 u64 offset, u64 length,
1820 enum obj_request_type type)
1822 struct rbd_obj_request *obj_request;
1826 rbd_assert(obj_request_type_valid(type));
1828 size = strlen(object_name) + 1;
1829 name = kmalloc(size, GFP_KERNEL);
1833 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1839 obj_request->object_name = memcpy(name, object_name, size);
1840 obj_request->offset = offset;
1841 obj_request->length = length;
1842 obj_request->flags = 0;
1843 obj_request->which = BAD_WHICH;
1844 obj_request->type = type;
1845 INIT_LIST_HEAD(&obj_request->links);
1846 init_completion(&obj_request->completion);
1847 kref_init(&obj_request->kref);
1849 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1850 offset, length, (int)type, obj_request);
1855 static void rbd_obj_request_destroy(struct kref *kref)
1857 struct rbd_obj_request *obj_request;
1859 obj_request = container_of(kref, struct rbd_obj_request, kref);
1861 dout("%s: obj %p\n", __func__, obj_request);
1863 rbd_assert(obj_request->img_request == NULL);
1864 rbd_assert(obj_request->which == BAD_WHICH);
1866 if (obj_request->osd_req)
1867 rbd_osd_req_destroy(obj_request->osd_req);
1869 rbd_assert(obj_request_type_valid(obj_request->type));
1870 switch (obj_request->type) {
1871 case OBJ_REQUEST_NODATA:
1872 break; /* Nothing to do */
1873 case OBJ_REQUEST_BIO:
1874 if (obj_request->bio_list)
1875 bio_chain_put(obj_request->bio_list);
1877 case OBJ_REQUEST_PAGES:
1878 if (obj_request->pages)
1879 ceph_release_page_vector(obj_request->pages,
1880 obj_request->page_count);
1884 kfree(obj_request->object_name);
1885 obj_request->object_name = NULL;
1886 kmem_cache_free(rbd_obj_request_cache, obj_request);
1889 /* It's OK to call this for a device with no parent */
1891 static void rbd_spec_put(struct rbd_spec *spec);
1892 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1894 rbd_dev_remove_parent(rbd_dev);
1895 rbd_spec_put(rbd_dev->parent_spec);
1896 rbd_dev->parent_spec = NULL;
1897 rbd_dev->parent_overlap = 0;
1901 * Parent image reference counting is used to determine when an
1902 * image's parent fields can be safely torn down--after there are no
1903 * more in-flight requests to the parent image. When the last
1904 * reference is dropped, cleaning them up is safe.
1906 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1910 if (!rbd_dev->parent_spec)
1913 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1917 /* Last reference; clean up parent data structures */
1920 rbd_dev_unparent(rbd_dev);
1922 rbd_warn(rbd_dev, "parent reference underflow\n");
1926 * If an image has a non-zero parent overlap, get a reference to its
1929 * We must get the reference before checking for the overlap to
1930 * coordinate properly with zeroing the parent overlap in
1931 * rbd_dev_v2_parent_info() when an image gets flattened. We
1932 * drop it again if there is no overlap.
1934 * Returns true if the rbd device has a parent with a non-zero
1935 * overlap and a reference for it was successfully taken, or
1938 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1942 if (!rbd_dev->parent_spec)
1945 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1946 if (counter > 0 && rbd_dev->parent_overlap)
1949 /* Image was flattened, but parent is not yet torn down */
1952 rbd_warn(rbd_dev, "parent reference overflow\n");
1958 * Caller is responsible for filling in the list of object requests
1959 * that comprises the image request, and the Linux request pointer
1960 * (if there is one).
1962 static struct rbd_img_request *rbd_img_request_create(
1963 struct rbd_device *rbd_dev,
1964 u64 offset, u64 length,
1967 struct rbd_img_request *img_request;
1969 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1973 if (write_request) {
1974 down_read(&rbd_dev->header_rwsem);
1975 ceph_get_snap_context(rbd_dev->header.snapc);
1976 up_read(&rbd_dev->header_rwsem);
1979 img_request->rq = NULL;
1980 img_request->rbd_dev = rbd_dev;
1981 img_request->offset = offset;
1982 img_request->length = length;
1983 img_request->flags = 0;
1984 if (write_request) {
1985 img_request_write_set(img_request);
1986 img_request->snapc = rbd_dev->header.snapc;
1988 img_request->snap_id = rbd_dev->spec->snap_id;
1990 if (rbd_dev_parent_get(rbd_dev))
1991 img_request_layered_set(img_request);
1992 spin_lock_init(&img_request->completion_lock);
1993 img_request->next_completion = 0;
1994 img_request->callback = NULL;
1995 img_request->result = 0;
1996 img_request->obj_request_count = 0;
1997 INIT_LIST_HEAD(&img_request->obj_requests);
1998 kref_init(&img_request->kref);
2000 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2001 write_request ? "write" : "read", offset, length,
2007 static void rbd_img_request_destroy(struct kref *kref)
2009 struct rbd_img_request *img_request;
2010 struct rbd_obj_request *obj_request;
2011 struct rbd_obj_request *next_obj_request;
2013 img_request = container_of(kref, struct rbd_img_request, kref);
2015 dout("%s: img %p\n", __func__, img_request);
2017 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2018 rbd_img_obj_request_del(img_request, obj_request);
2019 rbd_assert(img_request->obj_request_count == 0);
2021 if (img_request_layered_test(img_request)) {
2022 img_request_layered_clear(img_request);
2023 rbd_dev_parent_put(img_request->rbd_dev);
2026 if (img_request_write_test(img_request))
2027 ceph_put_snap_context(img_request->snapc);
2029 kmem_cache_free(rbd_img_request_cache, img_request);
2032 static struct rbd_img_request *rbd_parent_request_create(
2033 struct rbd_obj_request *obj_request,
2034 u64 img_offset, u64 length)
2036 struct rbd_img_request *parent_request;
2037 struct rbd_device *rbd_dev;
2039 rbd_assert(obj_request->img_request);
2040 rbd_dev = obj_request->img_request->rbd_dev;
2042 parent_request = rbd_img_request_create(rbd_dev->parent,
2043 img_offset, length, false);
2044 if (!parent_request)
2047 img_request_child_set(parent_request);
2048 rbd_obj_request_get(obj_request);
2049 parent_request->obj_request = obj_request;
2051 return parent_request;
2054 static void rbd_parent_request_destroy(struct kref *kref)
2056 struct rbd_img_request *parent_request;
2057 struct rbd_obj_request *orig_request;
2059 parent_request = container_of(kref, struct rbd_img_request, kref);
2060 orig_request = parent_request->obj_request;
2062 parent_request->obj_request = NULL;
2063 rbd_obj_request_put(orig_request);
2064 img_request_child_clear(parent_request);
2066 rbd_img_request_destroy(kref);
2069 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2071 struct rbd_img_request *img_request;
2072 unsigned int xferred;
2076 rbd_assert(obj_request_img_data_test(obj_request));
2077 img_request = obj_request->img_request;
2079 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2080 xferred = (unsigned int)obj_request->xferred;
2081 result = obj_request->result;
2083 struct rbd_device *rbd_dev = img_request->rbd_dev;
2085 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2086 img_request_write_test(img_request) ? "write" : "read",
2087 obj_request->length, obj_request->img_offset,
2088 obj_request->offset);
2089 rbd_warn(rbd_dev, " result %d xferred %x\n",
2091 if (!img_request->result)
2092 img_request->result = result;
2095 /* Image object requests don't own their page array */
2097 if (obj_request->type == OBJ_REQUEST_PAGES) {
2098 obj_request->pages = NULL;
2099 obj_request->page_count = 0;
2102 if (img_request_child_test(img_request)) {
2103 rbd_assert(img_request->obj_request != NULL);
2104 more = obj_request->which < img_request->obj_request_count - 1;
2106 rbd_assert(img_request->rq != NULL);
2107 more = blk_end_request(img_request->rq, result, xferred);
2113 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2115 struct rbd_img_request *img_request;
2116 u32 which = obj_request->which;
2119 rbd_assert(obj_request_img_data_test(obj_request));
2120 img_request = obj_request->img_request;
2122 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2123 rbd_assert(img_request != NULL);
2124 rbd_assert(img_request->obj_request_count > 0);
2125 rbd_assert(which != BAD_WHICH);
2126 rbd_assert(which < img_request->obj_request_count);
2128 spin_lock_irq(&img_request->completion_lock);
2129 if (which != img_request->next_completion)
2132 for_each_obj_request_from(img_request, obj_request) {
2134 rbd_assert(which < img_request->obj_request_count);
2136 if (!obj_request_done_test(obj_request))
2138 more = rbd_img_obj_end_request(obj_request);
2142 rbd_assert(more ^ (which == img_request->obj_request_count));
2143 img_request->next_completion = which;
2145 spin_unlock_irq(&img_request->completion_lock);
2146 rbd_img_request_put(img_request);
2149 rbd_img_request_complete(img_request);
2153 * Split up an image request into one or more object requests, each
2154 * to a different object. The "type" parameter indicates whether
2155 * "data_desc" is the pointer to the head of a list of bio
2156 * structures, or the base of a page array. In either case this
2157 * function assumes data_desc describes memory sufficient to hold
2158 * all data described by the image request.
2160 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2161 enum obj_request_type type,
2164 struct rbd_device *rbd_dev = img_request->rbd_dev;
2165 struct rbd_obj_request *obj_request = NULL;
2166 struct rbd_obj_request *next_obj_request;
2167 bool write_request = img_request_write_test(img_request);
2168 struct bio *bio_list = NULL;
2169 unsigned int bio_offset = 0;
2170 struct page **pages = NULL;
2175 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2176 (int)type, data_desc);
2178 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2179 img_offset = img_request->offset;
2180 resid = img_request->length;
2181 rbd_assert(resid > 0);
2183 if (type == OBJ_REQUEST_BIO) {
2184 bio_list = data_desc;
2185 rbd_assert(img_offset ==
2186 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2188 rbd_assert(type == OBJ_REQUEST_PAGES);
2193 struct ceph_osd_request *osd_req;
2194 const char *object_name;
2198 object_name = rbd_segment_name(rbd_dev, img_offset);
2201 offset = rbd_segment_offset(rbd_dev, img_offset);
2202 length = rbd_segment_length(rbd_dev, img_offset, resid);
2203 obj_request = rbd_obj_request_create(object_name,
2204 offset, length, type);
2205 /* object request has its own copy of the object name */
2206 rbd_segment_name_free(object_name);
2210 * set obj_request->img_request before creating the
2211 * osd_request so that it gets the right snapc
2213 rbd_img_obj_request_add(img_request, obj_request);
2215 if (type == OBJ_REQUEST_BIO) {
2216 unsigned int clone_size;
2218 rbd_assert(length <= (u64)UINT_MAX);
2219 clone_size = (unsigned int)length;
2220 obj_request->bio_list =
2221 bio_chain_clone_range(&bio_list,
2225 if (!obj_request->bio_list)
2228 unsigned int page_count;
2230 obj_request->pages = pages;
2231 page_count = (u32)calc_pages_for(offset, length);
2232 obj_request->page_count = page_count;
2233 if ((offset + length) & ~PAGE_MASK)
2234 page_count--; /* more on last page */
2235 pages += page_count;
2238 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2242 obj_request->osd_req = osd_req;
2243 obj_request->callback = rbd_img_obj_callback;
2244 rbd_img_request_get(img_request);
2246 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2248 if (type == OBJ_REQUEST_BIO)
2249 osd_req_op_extent_osd_data_bio(osd_req, 0,
2250 obj_request->bio_list, length);
2252 osd_req_op_extent_osd_data_pages(osd_req, 0,
2253 obj_request->pages, length,
2254 offset & ~PAGE_MASK, false, false);
2257 rbd_osd_req_format_write(obj_request);
2259 rbd_osd_req_format_read(obj_request);
2261 obj_request->img_offset = img_offset;
2263 img_offset += length;
2270 rbd_obj_request_put(obj_request);
2272 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2273 rbd_img_obj_request_del(img_request, obj_request);
2279 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2281 struct rbd_img_request *img_request;
2282 struct rbd_device *rbd_dev;
2283 struct page **pages;
2286 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2287 rbd_assert(obj_request_img_data_test(obj_request));
2288 img_request = obj_request->img_request;
2289 rbd_assert(img_request);
2291 rbd_dev = img_request->rbd_dev;
2292 rbd_assert(rbd_dev);
2294 pages = obj_request->copyup_pages;
2295 rbd_assert(pages != NULL);
2296 obj_request->copyup_pages = NULL;
2297 page_count = obj_request->copyup_page_count;
2298 rbd_assert(page_count);
2299 obj_request->copyup_page_count = 0;
2300 ceph_release_page_vector(pages, page_count);
2303 * We want the transfer count to reflect the size of the
2304 * original write request. There is no such thing as a
2305 * successful short write, so if the request was successful
2306 * we can just set it to the originally-requested length.
2308 if (!obj_request->result)
2309 obj_request->xferred = obj_request->length;
2311 /* Finish up with the normal image object callback */
2313 rbd_img_obj_callback(obj_request);
2317 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2319 struct rbd_obj_request *orig_request;
2320 struct ceph_osd_request *osd_req;
2321 struct ceph_osd_client *osdc;
2322 struct rbd_device *rbd_dev;
2323 struct page **pages;
2330 rbd_assert(img_request_child_test(img_request));
2332 /* First get what we need from the image request */
2334 pages = img_request->copyup_pages;
2335 rbd_assert(pages != NULL);
2336 img_request->copyup_pages = NULL;
2337 page_count = img_request->copyup_page_count;
2338 rbd_assert(page_count);
2339 img_request->copyup_page_count = 0;
2341 orig_request = img_request->obj_request;
2342 rbd_assert(orig_request != NULL);
2343 rbd_assert(obj_request_type_valid(orig_request->type));
2344 img_result = img_request->result;
2345 parent_length = img_request->length;
2346 rbd_assert(parent_length == img_request->xferred);
2347 rbd_img_request_put(img_request);
2349 rbd_assert(orig_request->img_request);
2350 rbd_dev = orig_request->img_request->rbd_dev;
2351 rbd_assert(rbd_dev);
2354 * If the overlap has become 0 (most likely because the
2355 * image has been flattened) we need to free the pages
2356 * and re-submit the original write request.
2358 if (!rbd_dev->parent_overlap) {
2359 struct ceph_osd_client *osdc;
2361 ceph_release_page_vector(pages, page_count);
2362 osdc = &rbd_dev->rbd_client->client->osdc;
2363 img_result = rbd_obj_request_submit(osdc, orig_request);
2372 * The original osd request is of no use to use any more.
2373 * We need a new one that can hold the two ops in a copyup
2374 * request. Allocate the new copyup osd request for the
2375 * original request, and release the old one.
2377 img_result = -ENOMEM;
2378 osd_req = rbd_osd_req_create_copyup(orig_request);
2381 rbd_osd_req_destroy(orig_request->osd_req);
2382 orig_request->osd_req = osd_req;
2383 orig_request->copyup_pages = pages;
2384 orig_request->copyup_page_count = page_count;
2386 /* Initialize the copyup op */
2388 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2389 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2392 /* Then the original write request op */
2394 offset = orig_request->offset;
2395 length = orig_request->length;
2396 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2397 offset, length, 0, 0);
2398 if (orig_request->type == OBJ_REQUEST_BIO)
2399 osd_req_op_extent_osd_data_bio(osd_req, 1,
2400 orig_request->bio_list, length);
2402 osd_req_op_extent_osd_data_pages(osd_req, 1,
2403 orig_request->pages, length,
2404 offset & ~PAGE_MASK, false, false);
2406 rbd_osd_req_format_write(orig_request);
2408 /* All set, send it off. */
2410 orig_request->callback = rbd_img_obj_copyup_callback;
2411 osdc = &rbd_dev->rbd_client->client->osdc;
2412 img_result = rbd_obj_request_submit(osdc, orig_request);
2416 /* Record the error code and complete the request */
2418 orig_request->result = img_result;
2419 orig_request->xferred = 0;
2420 obj_request_done_set(orig_request);
2421 rbd_obj_request_complete(orig_request);
2425 * Read from the parent image the range of data that covers the
2426 * entire target of the given object request. This is used for
2427 * satisfying a layered image write request when the target of an
2428 * object request from the image request does not exist.
2430 * A page array big enough to hold the returned data is allocated
2431 * and supplied to rbd_img_request_fill() as the "data descriptor."
2432 * When the read completes, this page array will be transferred to
2433 * the original object request for the copyup operation.
2435 * If an error occurs, record it as the result of the original
2436 * object request and mark it done so it gets completed.
2438 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2440 struct rbd_img_request *img_request = NULL;
2441 struct rbd_img_request *parent_request = NULL;
2442 struct rbd_device *rbd_dev;
2445 struct page **pages = NULL;
2449 rbd_assert(obj_request_img_data_test(obj_request));
2450 rbd_assert(obj_request_type_valid(obj_request->type));
2452 img_request = obj_request->img_request;
2453 rbd_assert(img_request != NULL);
2454 rbd_dev = img_request->rbd_dev;
2455 rbd_assert(rbd_dev->parent != NULL);
2458 * Determine the byte range covered by the object in the
2459 * child image to which the original request was to be sent.
2461 img_offset = obj_request->img_offset - obj_request->offset;
2462 length = (u64)1 << rbd_dev->header.obj_order;
2465 * There is no defined parent data beyond the parent
2466 * overlap, so limit what we read at that boundary if
2469 if (img_offset + length > rbd_dev->parent_overlap) {
2470 rbd_assert(img_offset < rbd_dev->parent_overlap);
2471 length = rbd_dev->parent_overlap - img_offset;
2475 * Allocate a page array big enough to receive the data read
2478 page_count = (u32)calc_pages_for(0, length);
2479 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2480 if (IS_ERR(pages)) {
2481 result = PTR_ERR(pages);
2487 parent_request = rbd_parent_request_create(obj_request,
2488 img_offset, length);
2489 if (!parent_request)
2492 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2495 parent_request->copyup_pages = pages;
2496 parent_request->copyup_page_count = page_count;
2498 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2499 result = rbd_img_request_submit(parent_request);
2503 parent_request->copyup_pages = NULL;
2504 parent_request->copyup_page_count = 0;
2505 parent_request->obj_request = NULL;
2506 rbd_obj_request_put(obj_request);
2509 ceph_release_page_vector(pages, page_count);
2511 rbd_img_request_put(parent_request);
2512 obj_request->result = result;
2513 obj_request->xferred = 0;
2514 obj_request_done_set(obj_request);
2519 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2521 struct rbd_obj_request *orig_request;
2522 struct rbd_device *rbd_dev;
2525 rbd_assert(!obj_request_img_data_test(obj_request));
2528 * All we need from the object request is the original
2529 * request and the result of the STAT op. Grab those, then
2530 * we're done with the request.
2532 orig_request = obj_request->obj_request;
2533 obj_request->obj_request = NULL;
2534 rbd_obj_request_put(orig_request);
2535 rbd_assert(orig_request);
2536 rbd_assert(orig_request->img_request);
2538 result = obj_request->result;
2539 obj_request->result = 0;
2541 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2542 obj_request, orig_request, result,
2543 obj_request->xferred, obj_request->length);
2544 rbd_obj_request_put(obj_request);
2547 * If the overlap has become 0 (most likely because the
2548 * image has been flattened) we need to free the pages
2549 * and re-submit the original write request.
2551 rbd_dev = orig_request->img_request->rbd_dev;
2552 if (!rbd_dev->parent_overlap) {
2553 struct ceph_osd_client *osdc;
2555 osdc = &rbd_dev->rbd_client->client->osdc;
2556 result = rbd_obj_request_submit(osdc, orig_request);
2562 * Our only purpose here is to determine whether the object
2563 * exists, and we don't want to treat the non-existence as
2564 * an error. If something else comes back, transfer the
2565 * error to the original request and complete it now.
2568 obj_request_existence_set(orig_request, true);
2569 } else if (result == -ENOENT) {
2570 obj_request_existence_set(orig_request, false);
2571 } else if (result) {
2572 orig_request->result = result;
2577 * Resubmit the original request now that we have recorded
2578 * whether the target object exists.
2580 orig_request->result = rbd_img_obj_request_submit(orig_request);
2582 if (orig_request->result)
2583 rbd_obj_request_complete(orig_request);
2586 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2588 struct rbd_obj_request *stat_request;
2589 struct rbd_device *rbd_dev;
2590 struct ceph_osd_client *osdc;
2591 struct page **pages = NULL;
2597 * The response data for a STAT call consists of:
2604 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2605 page_count = (u32)calc_pages_for(0, size);
2606 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2608 return PTR_ERR(pages);
2611 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2616 rbd_obj_request_get(obj_request);
2617 stat_request->obj_request = obj_request;
2618 stat_request->pages = pages;
2619 stat_request->page_count = page_count;
2621 rbd_assert(obj_request->img_request);
2622 rbd_dev = obj_request->img_request->rbd_dev;
2623 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2625 if (!stat_request->osd_req)
2627 stat_request->callback = rbd_img_obj_exists_callback;
2629 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2630 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2632 rbd_osd_req_format_read(stat_request);
2634 osdc = &rbd_dev->rbd_client->client->osdc;
2635 ret = rbd_obj_request_submit(osdc, stat_request);
2638 rbd_obj_request_put(obj_request);
2643 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2645 struct rbd_img_request *img_request;
2646 struct rbd_device *rbd_dev;
2649 rbd_assert(obj_request_img_data_test(obj_request));
2651 img_request = obj_request->img_request;
2652 rbd_assert(img_request);
2653 rbd_dev = img_request->rbd_dev;
2656 * Only writes to layered images need special handling.
2657 * Reads and non-layered writes are simple object requests.
2658 * Layered writes that start beyond the end of the overlap
2659 * with the parent have no parent data, so they too are
2660 * simple object requests. Finally, if the target object is
2661 * known to already exist, its parent data has already been
2662 * copied, so a write to the object can also be handled as a
2663 * simple object request.
2665 if (!img_request_write_test(img_request) ||
2666 !img_request_layered_test(img_request) ||
2667 !obj_request_overlaps_parent(obj_request) ||
2668 ((known = obj_request_known_test(obj_request)) &&
2669 obj_request_exists_test(obj_request))) {
2671 struct rbd_device *rbd_dev;
2672 struct ceph_osd_client *osdc;
2674 rbd_dev = obj_request->img_request->rbd_dev;
2675 osdc = &rbd_dev->rbd_client->client->osdc;
2677 return rbd_obj_request_submit(osdc, obj_request);
2681 * It's a layered write. The target object might exist but
2682 * we may not know that yet. If we know it doesn't exist,
2683 * start by reading the data for the full target object from
2684 * the parent so we can use it for a copyup to the target.
2687 return rbd_img_obj_parent_read_full(obj_request);
2689 /* We don't know whether the target exists. Go find out. */
2691 return rbd_img_obj_exists_submit(obj_request);
2694 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2696 struct rbd_obj_request *obj_request;
2697 struct rbd_obj_request *next_obj_request;
2699 dout("%s: img %p\n", __func__, img_request);
2700 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2703 ret = rbd_img_obj_request_submit(obj_request);
2711 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2713 struct rbd_obj_request *obj_request;
2714 struct rbd_device *rbd_dev;
2719 rbd_assert(img_request_child_test(img_request));
2721 /* First get what we need from the image request and release it */
2723 obj_request = img_request->obj_request;
2724 img_xferred = img_request->xferred;
2725 img_result = img_request->result;
2726 rbd_img_request_put(img_request);
2729 * If the overlap has become 0 (most likely because the
2730 * image has been flattened) we need to re-submit the
2733 rbd_assert(obj_request);
2734 rbd_assert(obj_request->img_request);
2735 rbd_dev = obj_request->img_request->rbd_dev;
2736 if (!rbd_dev->parent_overlap) {
2737 struct ceph_osd_client *osdc;
2739 osdc = &rbd_dev->rbd_client->client->osdc;
2740 img_result = rbd_obj_request_submit(osdc, obj_request);
2745 obj_request->result = img_result;
2746 if (obj_request->result)
2750 * We need to zero anything beyond the parent overlap
2751 * boundary. Since rbd_img_obj_request_read_callback()
2752 * will zero anything beyond the end of a short read, an
2753 * easy way to do this is to pretend the data from the
2754 * parent came up short--ending at the overlap boundary.
2756 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2757 obj_end = obj_request->img_offset + obj_request->length;
2758 if (obj_end > rbd_dev->parent_overlap) {
2761 if (obj_request->img_offset < rbd_dev->parent_overlap)
2762 xferred = rbd_dev->parent_overlap -
2763 obj_request->img_offset;
2765 obj_request->xferred = min(img_xferred, xferred);
2767 obj_request->xferred = img_xferred;
2770 rbd_img_obj_request_read_callback(obj_request);
2771 rbd_obj_request_complete(obj_request);
2774 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2776 struct rbd_img_request *img_request;
2779 rbd_assert(obj_request_img_data_test(obj_request));
2780 rbd_assert(obj_request->img_request != NULL);
2781 rbd_assert(obj_request->result == (s32) -ENOENT);
2782 rbd_assert(obj_request_type_valid(obj_request->type));
2784 /* rbd_read_finish(obj_request, obj_request->length); */
2785 img_request = rbd_parent_request_create(obj_request,
2786 obj_request->img_offset,
2787 obj_request->length);
2792 if (obj_request->type == OBJ_REQUEST_BIO)
2793 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2794 obj_request->bio_list);
2796 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2797 obj_request->pages);
2801 img_request->callback = rbd_img_parent_read_callback;
2802 result = rbd_img_request_submit(img_request);
2809 rbd_img_request_put(img_request);
2810 obj_request->result = result;
2811 obj_request->xferred = 0;
2812 obj_request_done_set(obj_request);
2815 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2817 struct rbd_obj_request *obj_request;
2818 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2821 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2822 OBJ_REQUEST_NODATA);
2827 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2828 if (!obj_request->osd_req)
2831 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2833 rbd_osd_req_format_read(obj_request);
2835 ret = rbd_obj_request_submit(osdc, obj_request);
2838 ret = rbd_obj_request_wait(obj_request);
2840 rbd_obj_request_put(obj_request);
2845 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2847 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2853 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2854 rbd_dev->header_name, (unsigned long long)notify_id,
2855 (unsigned int)opcode);
2856 ret = rbd_dev_refresh(rbd_dev);
2858 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2860 rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2864 * Request sync osd watch/unwatch. The value of "start" determines
2865 * whether a watch request is being initiated or torn down.
2867 static int __rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2869 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2870 struct rbd_obj_request *obj_request;
2873 rbd_assert(start ^ !!rbd_dev->watch_event);
2874 rbd_assert(start ^ !!rbd_dev->watch_request);
2877 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2878 &rbd_dev->watch_event);
2881 rbd_assert(rbd_dev->watch_event != NULL);
2885 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2886 OBJ_REQUEST_NODATA);
2890 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2891 if (!obj_request->osd_req)
2895 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2897 ceph_osdc_unregister_linger_request(osdc,
2898 rbd_dev->watch_request->osd_req);
2900 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2901 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2902 rbd_osd_req_format_write(obj_request);
2904 ret = rbd_obj_request_submit(osdc, obj_request);
2907 ret = rbd_obj_request_wait(obj_request);
2910 ret = obj_request->result;
2915 * A watch request is set to linger, so the underlying osd
2916 * request won't go away until we unregister it. We retain
2917 * a pointer to the object request during that time (in
2918 * rbd_dev->watch_request), so we'll keep a reference to
2919 * it. We'll drop that reference (below) after we've
2923 rbd_dev->watch_request = obj_request;
2928 /* We have successfully torn down the watch request */
2930 rbd_obj_request_put(rbd_dev->watch_request);
2931 rbd_dev->watch_request = NULL;
2933 /* Cancel the event if we're tearing down, or on error */
2934 ceph_osdc_cancel_event(rbd_dev->watch_event);
2935 rbd_dev->watch_event = NULL;
2937 rbd_obj_request_put(obj_request);
2942 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
2944 return __rbd_dev_header_watch_sync(rbd_dev, true);
2947 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
2951 ret = __rbd_dev_header_watch_sync(rbd_dev, false);
2953 rbd_warn(rbd_dev, "unable to tear down watch request: %d\n",
2959 * Synchronous osd object method call. Returns the number of bytes
2960 * returned in the outbound buffer, or a negative error code.
2962 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2963 const char *object_name,
2964 const char *class_name,
2965 const char *method_name,
2966 const void *outbound,
2967 size_t outbound_size,
2969 size_t inbound_size)
2971 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2972 struct rbd_obj_request *obj_request;
2973 struct page **pages;
2978 * Method calls are ultimately read operations. The result
2979 * should placed into the inbound buffer provided. They
2980 * also supply outbound data--parameters for the object
2981 * method. Currently if this is present it will be a
2984 page_count = (u32)calc_pages_for(0, inbound_size);
2985 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2987 return PTR_ERR(pages);
2990 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2995 obj_request->pages = pages;
2996 obj_request->page_count = page_count;
2998 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2999 if (!obj_request->osd_req)
3002 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3003 class_name, method_name);
3004 if (outbound_size) {
3005 struct ceph_pagelist *pagelist;
3007 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3011 ceph_pagelist_init(pagelist);
3012 ceph_pagelist_append(pagelist, outbound, outbound_size);
3013 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3016 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3017 obj_request->pages, inbound_size,
3019 rbd_osd_req_format_read(obj_request);
3021 ret = rbd_obj_request_submit(osdc, obj_request);
3024 ret = rbd_obj_request_wait(obj_request);
3028 ret = obj_request->result;
3032 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3033 ret = (int)obj_request->xferred;
3034 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3037 rbd_obj_request_put(obj_request);
3039 ceph_release_page_vector(pages, page_count);
3044 static void rbd_request_fn(struct request_queue *q)
3045 __releases(q->queue_lock) __acquires(q->queue_lock)
3047 struct rbd_device *rbd_dev = q->queuedata;
3048 bool read_only = rbd_dev->mapping.read_only;
3052 while ((rq = blk_fetch_request(q))) {
3053 bool write_request = rq_data_dir(rq) == WRITE;
3054 struct rbd_img_request *img_request;
3058 /* Ignore any non-FS requests that filter through. */
3060 if (rq->cmd_type != REQ_TYPE_FS) {
3061 dout("%s: non-fs request type %d\n", __func__,
3062 (int) rq->cmd_type);
3063 __blk_end_request_all(rq, 0);
3067 /* Ignore/skip any zero-length requests */
3069 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3070 length = (u64) blk_rq_bytes(rq);
3073 dout("%s: zero-length request\n", __func__);
3074 __blk_end_request_all(rq, 0);
3078 spin_unlock_irq(q->queue_lock);
3080 /* Disallow writes to a read-only device */
3082 if (write_request) {
3086 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3090 * Quit early if the mapped snapshot no longer
3091 * exists. It's still possible the snapshot will
3092 * have disappeared by the time our request arrives
3093 * at the osd, but there's no sense in sending it if
3096 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3097 dout("request for non-existent snapshot");
3098 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3104 if (offset && length > U64_MAX - offset + 1) {
3105 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3107 goto end_request; /* Shouldn't happen */
3111 if (offset + length > rbd_dev->mapping.size) {
3112 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3113 offset, length, rbd_dev->mapping.size);
3118 img_request = rbd_img_request_create(rbd_dev, offset, length,
3123 img_request->rq = rq;
3125 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3128 result = rbd_img_request_submit(img_request);
3130 rbd_img_request_put(img_request);
3132 spin_lock_irq(q->queue_lock);
3134 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3135 write_request ? "write" : "read",
3136 length, offset, result);
3138 __blk_end_request_all(rq, result);
3144 * a queue callback. Makes sure that we don't create a bio that spans across
3145 * multiple osd objects. One exception would be with a single page bios,
3146 * which we handle later at bio_chain_clone_range()
3148 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3149 struct bio_vec *bvec)
3151 struct rbd_device *rbd_dev = q->queuedata;
3152 sector_t sector_offset;
3153 sector_t sectors_per_obj;
3154 sector_t obj_sector_offset;
3158 * Find how far into its rbd object the partition-relative
3159 * bio start sector is to offset relative to the enclosing
3162 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3163 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3164 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3167 * Compute the number of bytes from that offset to the end
3168 * of the object. Account for what's already used by the bio.
3170 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3171 if (ret > bmd->bi_size)
3172 ret -= bmd->bi_size;
3177 * Don't send back more than was asked for. And if the bio
3178 * was empty, let the whole thing through because: "Note
3179 * that a block device *must* allow a single page to be
3180 * added to an empty bio."
3182 rbd_assert(bvec->bv_len <= PAGE_SIZE);
3183 if (ret > (int) bvec->bv_len || !bmd->bi_size)
3184 ret = (int) bvec->bv_len;
3189 static void rbd_free_disk(struct rbd_device *rbd_dev)
3191 struct gendisk *disk = rbd_dev->disk;
3196 rbd_dev->disk = NULL;
3197 if (disk->flags & GENHD_FL_UP) {
3200 blk_cleanup_queue(disk->queue);
3205 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3206 const char *object_name,
3207 u64 offset, u64 length, void *buf)
3210 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3211 struct rbd_obj_request *obj_request;
3212 struct page **pages = NULL;
3217 page_count = (u32) calc_pages_for(offset, length);
3218 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3220 ret = PTR_ERR(pages);
3223 obj_request = rbd_obj_request_create(object_name, offset, length,
3228 obj_request->pages = pages;
3229 obj_request->page_count = page_count;
3231 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3232 if (!obj_request->osd_req)
3235 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3236 offset, length, 0, 0);
3237 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3239 obj_request->length,
3240 obj_request->offset & ~PAGE_MASK,
3242 rbd_osd_req_format_read(obj_request);
3244 ret = rbd_obj_request_submit(osdc, obj_request);
3247 ret = rbd_obj_request_wait(obj_request);
3251 ret = obj_request->result;
3255 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3256 size = (size_t) obj_request->xferred;
3257 ceph_copy_from_page_vector(pages, buf, 0, size);
3258 rbd_assert(size <= (size_t)INT_MAX);
3262 rbd_obj_request_put(obj_request);
3264 ceph_release_page_vector(pages, page_count);
3270 * Read the complete header for the given rbd device. On successful
3271 * return, the rbd_dev->header field will contain up-to-date
3272 * information about the image.
3274 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3276 struct rbd_image_header_ondisk *ondisk = NULL;
3283 * The complete header will include an array of its 64-bit
3284 * snapshot ids, followed by the names of those snapshots as
3285 * a contiguous block of NUL-terminated strings. Note that
3286 * the number of snapshots could change by the time we read
3287 * it in, in which case we re-read it.
3294 size = sizeof (*ondisk);
3295 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3297 ondisk = kmalloc(size, GFP_KERNEL);
3301 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3305 if ((size_t)ret < size) {
3307 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3311 if (!rbd_dev_ondisk_valid(ondisk)) {
3313 rbd_warn(rbd_dev, "invalid header");
3317 names_size = le64_to_cpu(ondisk->snap_names_len);
3318 want_count = snap_count;
3319 snap_count = le32_to_cpu(ondisk->snap_count);
3320 } while (snap_count != want_count);
3322 ret = rbd_header_from_disk(rbd_dev, ondisk);
3330 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3331 * has disappeared from the (just updated) snapshot context.
3333 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3337 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3340 snap_id = rbd_dev->spec->snap_id;
3341 if (snap_id == CEPH_NOSNAP)
3344 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3345 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3348 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3354 * Don't hold the lock while doing disk operations,
3355 * or lock ordering will conflict with the bdev mutex via:
3356 * rbd_add() -> blkdev_get() -> rbd_open()
3358 spin_lock_irq(&rbd_dev->lock);
3359 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3360 spin_unlock_irq(&rbd_dev->lock);
3362 * If the device is being removed, rbd_dev->disk has
3363 * been destroyed, so don't try to update its size
3366 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3367 dout("setting size to %llu sectors", (unsigned long long)size);
3368 set_capacity(rbd_dev->disk, size);
3369 revalidate_disk(rbd_dev->disk);
3373 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3378 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3379 down_write(&rbd_dev->header_rwsem);
3380 mapping_size = rbd_dev->mapping.size;
3381 if (rbd_dev->image_format == 1)
3382 ret = rbd_dev_v1_header_info(rbd_dev);
3384 ret = rbd_dev_v2_header_info(rbd_dev);
3386 /* If it's a mapped snapshot, validate its EXISTS flag */
3388 rbd_exists_validate(rbd_dev);
3389 up_write(&rbd_dev->header_rwsem);
3391 if (mapping_size != rbd_dev->mapping.size) {
3392 rbd_dev_update_size(rbd_dev);
3398 static int rbd_init_disk(struct rbd_device *rbd_dev)
3400 struct gendisk *disk;
3401 struct request_queue *q;
3404 /* create gendisk info */
3405 disk = alloc_disk(single_major ?
3406 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3407 RBD_MINORS_PER_MAJOR);
3411 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3413 disk->major = rbd_dev->major;
3414 disk->first_minor = rbd_dev->minor;
3416 disk->flags |= GENHD_FL_EXT_DEVT;
3417 disk->fops = &rbd_bd_ops;
3418 disk->private_data = rbd_dev;
3420 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3424 /* We use the default size, but let's be explicit about it. */
3425 blk_queue_physical_block_size(q, SECTOR_SIZE);
3427 /* set io sizes to object size */
3428 segment_size = rbd_obj_bytes(&rbd_dev->header);
3429 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3430 blk_queue_max_segment_size(q, segment_size);
3431 blk_queue_io_min(q, segment_size);
3432 blk_queue_io_opt(q, segment_size);
3434 blk_queue_merge_bvec(q, rbd_merge_bvec);
3437 q->queuedata = rbd_dev;
3439 rbd_dev->disk = disk;
3452 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3454 return container_of(dev, struct rbd_device, dev);
3457 static ssize_t rbd_size_show(struct device *dev,
3458 struct device_attribute *attr, char *buf)
3460 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3462 return sprintf(buf, "%llu\n",
3463 (unsigned long long)rbd_dev->mapping.size);
3467 * Note this shows the features for whatever's mapped, which is not
3468 * necessarily the base image.
3470 static ssize_t rbd_features_show(struct device *dev,
3471 struct device_attribute *attr, char *buf)
3473 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3475 return sprintf(buf, "0x%016llx\n",
3476 (unsigned long long)rbd_dev->mapping.features);
3479 static ssize_t rbd_major_show(struct device *dev,
3480 struct device_attribute *attr, char *buf)
3482 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3485 return sprintf(buf, "%d\n", rbd_dev->major);
3487 return sprintf(buf, "(none)\n");
3490 static ssize_t rbd_minor_show(struct device *dev,
3491 struct device_attribute *attr, char *buf)
3493 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3495 return sprintf(buf, "%d\n", rbd_dev->minor);
3498 static ssize_t rbd_client_id_show(struct device *dev,
3499 struct device_attribute *attr, char *buf)
3501 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3503 return sprintf(buf, "client%lld\n",
3504 ceph_client_id(rbd_dev->rbd_client->client));
3507 static ssize_t rbd_pool_show(struct device *dev,
3508 struct device_attribute *attr, char *buf)
3510 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3512 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3515 static ssize_t rbd_pool_id_show(struct device *dev,
3516 struct device_attribute *attr, char *buf)
3518 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3520 return sprintf(buf, "%llu\n",
3521 (unsigned long long) rbd_dev->spec->pool_id);
3524 static ssize_t rbd_name_show(struct device *dev,
3525 struct device_attribute *attr, char *buf)
3527 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3529 if (rbd_dev->spec->image_name)
3530 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3532 return sprintf(buf, "(unknown)\n");
3535 static ssize_t rbd_image_id_show(struct device *dev,
3536 struct device_attribute *attr, char *buf)
3538 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3540 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3544 * Shows the name of the currently-mapped snapshot (or
3545 * RBD_SNAP_HEAD_NAME for the base image).
3547 static ssize_t rbd_snap_show(struct device *dev,
3548 struct device_attribute *attr,
3551 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3553 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3557 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3558 * for the parent image. If there is no parent, simply shows
3559 * "(no parent image)".
3561 static ssize_t rbd_parent_show(struct device *dev,
3562 struct device_attribute *attr,
3565 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3566 struct rbd_spec *spec = rbd_dev->parent_spec;
3571 return sprintf(buf, "(no parent image)\n");
3573 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3574 (unsigned long long) spec->pool_id, spec->pool_name);
3579 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3580 spec->image_name ? spec->image_name : "(unknown)");
3585 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3586 (unsigned long long) spec->snap_id, spec->snap_name);
3591 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3596 return (ssize_t) (bufp - buf);
3599 static ssize_t rbd_image_refresh(struct device *dev,
3600 struct device_attribute *attr,
3604 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3607 ret = rbd_dev_refresh(rbd_dev);
3609 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3611 return ret < 0 ? ret : size;
3614 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3615 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3616 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3617 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3618 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3619 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3620 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3621 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3622 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3623 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3624 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3625 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3627 static struct attribute *rbd_attrs[] = {
3628 &dev_attr_size.attr,
3629 &dev_attr_features.attr,
3630 &dev_attr_major.attr,
3631 &dev_attr_minor.attr,
3632 &dev_attr_client_id.attr,
3633 &dev_attr_pool.attr,
3634 &dev_attr_pool_id.attr,
3635 &dev_attr_name.attr,
3636 &dev_attr_image_id.attr,
3637 &dev_attr_current_snap.attr,
3638 &dev_attr_parent.attr,
3639 &dev_attr_refresh.attr,
3643 static struct attribute_group rbd_attr_group = {
3647 static const struct attribute_group *rbd_attr_groups[] = {
3652 static void rbd_sysfs_dev_release(struct device *dev)
3656 static struct device_type rbd_device_type = {
3658 .groups = rbd_attr_groups,
3659 .release = rbd_sysfs_dev_release,
3662 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3664 kref_get(&spec->kref);
3669 static void rbd_spec_free(struct kref *kref);
3670 static void rbd_spec_put(struct rbd_spec *spec)
3673 kref_put(&spec->kref, rbd_spec_free);
3676 static struct rbd_spec *rbd_spec_alloc(void)
3678 struct rbd_spec *spec;
3680 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3683 kref_init(&spec->kref);
3688 static void rbd_spec_free(struct kref *kref)
3690 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3692 kfree(spec->pool_name);
3693 kfree(spec->image_id);
3694 kfree(spec->image_name);
3695 kfree(spec->snap_name);
3699 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3700 struct rbd_spec *spec)
3702 struct rbd_device *rbd_dev;
3704 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3708 spin_lock_init(&rbd_dev->lock);
3710 atomic_set(&rbd_dev->parent_ref, 0);
3711 INIT_LIST_HEAD(&rbd_dev->node);
3712 init_rwsem(&rbd_dev->header_rwsem);
3714 rbd_dev->spec = spec;
3715 rbd_dev->rbd_client = rbdc;
3717 /* Initialize the layout used for all rbd requests */
3719 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3720 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3721 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3722 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3727 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3729 rbd_put_client(rbd_dev->rbd_client);
3730 rbd_spec_put(rbd_dev->spec);
3735 * Get the size and object order for an image snapshot, or if
3736 * snap_id is CEPH_NOSNAP, gets this information for the base
3739 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3740 u8 *order, u64 *snap_size)
3742 __le64 snapid = cpu_to_le64(snap_id);
3747 } __attribute__ ((packed)) size_buf = { 0 };
3749 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3751 &snapid, sizeof (snapid),
3752 &size_buf, sizeof (size_buf));
3753 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3756 if (ret < sizeof (size_buf))
3760 *order = size_buf.order;
3761 dout(" order %u", (unsigned int)*order);
3763 *snap_size = le64_to_cpu(size_buf.size);
3765 dout(" snap_id 0x%016llx snap_size = %llu\n",
3766 (unsigned long long)snap_id,
3767 (unsigned long long)*snap_size);
3772 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3774 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3775 &rbd_dev->header.obj_order,
3776 &rbd_dev->header.image_size);
3779 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3785 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3789 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3790 "rbd", "get_object_prefix", NULL, 0,
3791 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3792 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3797 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3798 p + ret, NULL, GFP_NOIO);
3801 if (IS_ERR(rbd_dev->header.object_prefix)) {
3802 ret = PTR_ERR(rbd_dev->header.object_prefix);
3803 rbd_dev->header.object_prefix = NULL;
3805 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3813 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3816 __le64 snapid = cpu_to_le64(snap_id);
3820 } __attribute__ ((packed)) features_buf = { 0 };
3824 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3825 "rbd", "get_features",
3826 &snapid, sizeof (snapid),
3827 &features_buf, sizeof (features_buf));
3828 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3831 if (ret < sizeof (features_buf))
3834 incompat = le64_to_cpu(features_buf.incompat);
3835 if (incompat & ~RBD_FEATURES_SUPPORTED)
3838 *snap_features = le64_to_cpu(features_buf.features);
3840 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3841 (unsigned long long)snap_id,
3842 (unsigned long long)*snap_features,
3843 (unsigned long long)le64_to_cpu(features_buf.incompat));
3848 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3850 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3851 &rbd_dev->header.features);
3854 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3856 struct rbd_spec *parent_spec;
3858 void *reply_buf = NULL;
3868 parent_spec = rbd_spec_alloc();
3872 size = sizeof (__le64) + /* pool_id */
3873 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3874 sizeof (__le64) + /* snap_id */
3875 sizeof (__le64); /* overlap */
3876 reply_buf = kmalloc(size, GFP_KERNEL);
3882 snapid = cpu_to_le64(CEPH_NOSNAP);
3883 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3884 "rbd", "get_parent",
3885 &snapid, sizeof (snapid),
3887 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3892 end = reply_buf + ret;
3894 ceph_decode_64_safe(&p, end, pool_id, out_err);
3895 if (pool_id == CEPH_NOPOOL) {
3897 * Either the parent never existed, or we have
3898 * record of it but the image got flattened so it no
3899 * longer has a parent. When the parent of a
3900 * layered image disappears we immediately set the
3901 * overlap to 0. The effect of this is that all new
3902 * requests will be treated as if the image had no
3905 if (rbd_dev->parent_overlap) {
3906 rbd_dev->parent_overlap = 0;
3908 rbd_dev_parent_put(rbd_dev);
3909 pr_info("%s: clone image has been flattened\n",
3910 rbd_dev->disk->disk_name);
3913 goto out; /* No parent? No problem. */
3916 /* The ceph file layout needs to fit pool id in 32 bits */
3919 if (pool_id > (u64)U32_MAX) {
3920 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3921 (unsigned long long)pool_id, U32_MAX);
3925 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3926 if (IS_ERR(image_id)) {
3927 ret = PTR_ERR(image_id);
3930 ceph_decode_64_safe(&p, end, snap_id, out_err);
3931 ceph_decode_64_safe(&p, end, overlap, out_err);
3934 * The parent won't change (except when the clone is
3935 * flattened, already handled that). So we only need to
3936 * record the parent spec we have not already done so.
3938 if (!rbd_dev->parent_spec) {
3939 parent_spec->pool_id = pool_id;
3940 parent_spec->image_id = image_id;
3941 parent_spec->snap_id = snap_id;
3942 rbd_dev->parent_spec = parent_spec;
3943 parent_spec = NULL; /* rbd_dev now owns this */
3947 * We always update the parent overlap. If it's zero we
3948 * treat it specially.
3950 rbd_dev->parent_overlap = overlap;
3954 /* A null parent_spec indicates it's the initial probe */
3958 * The overlap has become zero, so the clone
3959 * must have been resized down to 0 at some
3960 * point. Treat this the same as a flatten.
3962 rbd_dev_parent_put(rbd_dev);
3963 pr_info("%s: clone image now standalone\n",
3964 rbd_dev->disk->disk_name);
3967 * For the initial probe, if we find the
3968 * overlap is zero we just pretend there was
3971 rbd_warn(rbd_dev, "ignoring parent of "
3972 "clone with overlap 0\n");
3979 rbd_spec_put(parent_spec);
3984 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3988 __le64 stripe_count;
3989 } __attribute__ ((packed)) striping_info_buf = { 0 };
3990 size_t size = sizeof (striping_info_buf);
3997 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3998 "rbd", "get_stripe_unit_count", NULL, 0,
3999 (char *)&striping_info_buf, size);
4000 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4007 * We don't actually support the "fancy striping" feature
4008 * (STRIPINGV2) yet, but if the striping sizes are the
4009 * defaults the behavior is the same as before. So find
4010 * out, and only fail if the image has non-default values.
4013 obj_size = (u64)1 << rbd_dev->header.obj_order;
4014 p = &striping_info_buf;
4015 stripe_unit = ceph_decode_64(&p);
4016 if (stripe_unit != obj_size) {
4017 rbd_warn(rbd_dev, "unsupported stripe unit "
4018 "(got %llu want %llu)",
4019 stripe_unit, obj_size);
4022 stripe_count = ceph_decode_64(&p);
4023 if (stripe_count != 1) {
4024 rbd_warn(rbd_dev, "unsupported stripe count "
4025 "(got %llu want 1)", stripe_count);
4028 rbd_dev->header.stripe_unit = stripe_unit;
4029 rbd_dev->header.stripe_count = stripe_count;
4034 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4036 size_t image_id_size;
4041 void *reply_buf = NULL;
4043 char *image_name = NULL;
4046 rbd_assert(!rbd_dev->spec->image_name);
4048 len = strlen(rbd_dev->spec->image_id);
4049 image_id_size = sizeof (__le32) + len;
4050 image_id = kmalloc(image_id_size, GFP_KERNEL);
4055 end = image_id + image_id_size;
4056 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4058 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4059 reply_buf = kmalloc(size, GFP_KERNEL);
4063 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4064 "rbd", "dir_get_name",
4065 image_id, image_id_size,
4070 end = reply_buf + ret;
4072 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4073 if (IS_ERR(image_name))
4076 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4084 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4086 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4087 const char *snap_name;
4090 /* Skip over names until we find the one we are looking for */
4092 snap_name = rbd_dev->header.snap_names;
4093 while (which < snapc->num_snaps) {
4094 if (!strcmp(name, snap_name))
4095 return snapc->snaps[which];
4096 snap_name += strlen(snap_name) + 1;
4102 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4104 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4109 for (which = 0; !found && which < snapc->num_snaps; which++) {
4110 const char *snap_name;
4112 snap_id = snapc->snaps[which];
4113 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4114 if (IS_ERR(snap_name)) {
4115 /* ignore no-longer existing snapshots */
4116 if (PTR_ERR(snap_name) == -ENOENT)
4121 found = !strcmp(name, snap_name);
4124 return found ? snap_id : CEPH_NOSNAP;
4128 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4129 * no snapshot by that name is found, or if an error occurs.
4131 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4133 if (rbd_dev->image_format == 1)
4134 return rbd_v1_snap_id_by_name(rbd_dev, name);
4136 return rbd_v2_snap_id_by_name(rbd_dev, name);
4140 * When an rbd image has a parent image, it is identified by the
4141 * pool, image, and snapshot ids (not names). This function fills
4142 * in the names for those ids. (It's OK if we can't figure out the
4143 * name for an image id, but the pool and snapshot ids should always
4144 * exist and have names.) All names in an rbd spec are dynamically
4147 * When an image being mapped (not a parent) is probed, we have the
4148 * pool name and pool id, image name and image id, and the snapshot
4149 * name. The only thing we're missing is the snapshot id.
4151 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4153 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4154 struct rbd_spec *spec = rbd_dev->spec;
4155 const char *pool_name;
4156 const char *image_name;
4157 const char *snap_name;
4161 * An image being mapped will have the pool name (etc.), but
4162 * we need to look up the snapshot id.
4164 if (spec->pool_name) {
4165 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4168 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4169 if (snap_id == CEPH_NOSNAP)
4171 spec->snap_id = snap_id;
4173 spec->snap_id = CEPH_NOSNAP;
4179 /* Get the pool name; we have to make our own copy of this */
4181 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4183 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4186 pool_name = kstrdup(pool_name, GFP_KERNEL);
4190 /* Fetch the image name; tolerate failure here */
4192 image_name = rbd_dev_image_name(rbd_dev);
4194 rbd_warn(rbd_dev, "unable to get image name");
4196 /* Look up the snapshot name, and make a copy */
4198 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4199 if (IS_ERR(snap_name)) {
4200 ret = PTR_ERR(snap_name);
4204 spec->pool_name = pool_name;
4205 spec->image_name = image_name;
4206 spec->snap_name = snap_name;
4216 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4225 struct ceph_snap_context *snapc;
4229 * We'll need room for the seq value (maximum snapshot id),
4230 * snapshot count, and array of that many snapshot ids.
4231 * For now we have a fixed upper limit on the number we're
4232 * prepared to receive.
4234 size = sizeof (__le64) + sizeof (__le32) +
4235 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4236 reply_buf = kzalloc(size, GFP_KERNEL);
4240 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4241 "rbd", "get_snapcontext", NULL, 0,
4243 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4248 end = reply_buf + ret;
4250 ceph_decode_64_safe(&p, end, seq, out);
4251 ceph_decode_32_safe(&p, end, snap_count, out);
4254 * Make sure the reported number of snapshot ids wouldn't go
4255 * beyond the end of our buffer. But before checking that,
4256 * make sure the computed size of the snapshot context we
4257 * allocate is representable in a size_t.
4259 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4264 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4268 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4274 for (i = 0; i < snap_count; i++)
4275 snapc->snaps[i] = ceph_decode_64(&p);
4277 ceph_put_snap_context(rbd_dev->header.snapc);
4278 rbd_dev->header.snapc = snapc;
4280 dout(" snap context seq = %llu, snap_count = %u\n",
4281 (unsigned long long)seq, (unsigned int)snap_count);
4288 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4299 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4300 reply_buf = kmalloc(size, GFP_KERNEL);
4302 return ERR_PTR(-ENOMEM);
4304 snapid = cpu_to_le64(snap_id);
4305 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4306 "rbd", "get_snapshot_name",
4307 &snapid, sizeof (snapid),
4309 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4311 snap_name = ERR_PTR(ret);
4316 end = reply_buf + ret;
4317 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4318 if (IS_ERR(snap_name))
4321 dout(" snap_id 0x%016llx snap_name = %s\n",
4322 (unsigned long long)snap_id, snap_name);
4329 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4331 bool first_time = rbd_dev->header.object_prefix == NULL;
4334 ret = rbd_dev_v2_image_size(rbd_dev);
4339 ret = rbd_dev_v2_header_onetime(rbd_dev);
4345 * If the image supports layering, get the parent info. We
4346 * need to probe the first time regardless. Thereafter we
4347 * only need to if there's a parent, to see if it has
4348 * disappeared due to the mapped image getting flattened.
4350 if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4351 (first_time || rbd_dev->parent_spec)) {
4354 ret = rbd_dev_v2_parent_info(rbd_dev);
4359 * Print a warning if this is the initial probe and
4360 * the image has a parent. Don't print it if the
4361 * image now being probed is itself a parent. We
4362 * can tell at this point because we won't know its
4363 * pool name yet (just its pool id).
4365 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4366 if (first_time && warn)
4367 rbd_warn(rbd_dev, "WARNING: kernel layering "
4368 "is EXPERIMENTAL!");
4371 if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4372 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4373 rbd_dev->mapping.size = rbd_dev->header.image_size;
4375 ret = rbd_dev_v2_snap_context(rbd_dev);
4376 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4381 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4386 dev = &rbd_dev->dev;
4387 dev->bus = &rbd_bus_type;
4388 dev->type = &rbd_device_type;
4389 dev->parent = &rbd_root_dev;
4390 dev->release = rbd_dev_device_release;
4391 dev_set_name(dev, "%d", rbd_dev->dev_id);
4392 ret = device_register(dev);
4397 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4399 device_unregister(&rbd_dev->dev);
4403 * Get a unique rbd identifier for the given new rbd_dev, and add
4404 * the rbd_dev to the global list.
4406 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4410 new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4411 0, minor_to_rbd_dev_id(1 << MINORBITS),
4416 rbd_dev->dev_id = new_dev_id;
4418 spin_lock(&rbd_dev_list_lock);
4419 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4420 spin_unlock(&rbd_dev_list_lock);
4422 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4428 * Remove an rbd_dev from the global list, and record that its
4429 * identifier is no longer in use.
4431 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4433 spin_lock(&rbd_dev_list_lock);
4434 list_del_init(&rbd_dev->node);
4435 spin_unlock(&rbd_dev_list_lock);
4437 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4439 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4443 * Skips over white space at *buf, and updates *buf to point to the
4444 * first found non-space character (if any). Returns the length of
4445 * the token (string of non-white space characters) found. Note
4446 * that *buf must be terminated with '\0'.
4448 static inline size_t next_token(const char **buf)
4451 * These are the characters that produce nonzero for
4452 * isspace() in the "C" and "POSIX" locales.
4454 const char *spaces = " \f\n\r\t\v";
4456 *buf += strspn(*buf, spaces); /* Find start of token */
4458 return strcspn(*buf, spaces); /* Return token length */
4462 * Finds the next token in *buf, and if the provided token buffer is
4463 * big enough, copies the found token into it. The result, if
4464 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4465 * must be terminated with '\0' on entry.
4467 * Returns the length of the token found (not including the '\0').
4468 * Return value will be 0 if no token is found, and it will be >=
4469 * token_size if the token would not fit.
4471 * The *buf pointer will be updated to point beyond the end of the
4472 * found token. Note that this occurs even if the token buffer is
4473 * too small to hold it.
4475 static inline size_t copy_token(const char **buf,
4481 len = next_token(buf);
4482 if (len < token_size) {
4483 memcpy(token, *buf, len);
4484 *(token + len) = '\0';
4492 * Finds the next token in *buf, dynamically allocates a buffer big
4493 * enough to hold a copy of it, and copies the token into the new
4494 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4495 * that a duplicate buffer is created even for a zero-length token.
4497 * Returns a pointer to the newly-allocated duplicate, or a null
4498 * pointer if memory for the duplicate was not available. If
4499 * the lenp argument is a non-null pointer, the length of the token
4500 * (not including the '\0') is returned in *lenp.
4502 * If successful, the *buf pointer will be updated to point beyond
4503 * the end of the found token.
4505 * Note: uses GFP_KERNEL for allocation.
4507 static inline char *dup_token(const char **buf, size_t *lenp)
4512 len = next_token(buf);
4513 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4516 *(dup + len) = '\0';
4526 * Parse the options provided for an "rbd add" (i.e., rbd image
4527 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4528 * and the data written is passed here via a NUL-terminated buffer.
4529 * Returns 0 if successful or an error code otherwise.
4531 * The information extracted from these options is recorded in
4532 * the other parameters which return dynamically-allocated
4535 * The address of a pointer that will refer to a ceph options
4536 * structure. Caller must release the returned pointer using
4537 * ceph_destroy_options() when it is no longer needed.
4539 * Address of an rbd options pointer. Fully initialized by
4540 * this function; caller must release with kfree().
4542 * Address of an rbd image specification pointer. Fully
4543 * initialized by this function based on parsed options.
4544 * Caller must release with rbd_spec_put().
4546 * The options passed take this form:
4547 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4550 * A comma-separated list of one or more monitor addresses.
4551 * A monitor address is an ip address, optionally followed
4552 * by a port number (separated by a colon).
4553 * I.e.: ip1[:port1][,ip2[:port2]...]
4555 * A comma-separated list of ceph and/or rbd options.
4557 * The name of the rados pool containing the rbd image.
4559 * The name of the image in that pool to map.
4561 * An optional snapshot id. If provided, the mapping will
4562 * present data from the image at the time that snapshot was
4563 * created. The image head is used if no snapshot id is
4564 * provided. Snapshot mappings are always read-only.
4566 static int rbd_add_parse_args(const char *buf,
4567 struct ceph_options **ceph_opts,
4568 struct rbd_options **opts,
4569 struct rbd_spec **rbd_spec)
4573 const char *mon_addrs;
4575 size_t mon_addrs_size;
4576 struct rbd_spec *spec = NULL;
4577 struct rbd_options *rbd_opts = NULL;
4578 struct ceph_options *copts;
4581 /* The first four tokens are required */
4583 len = next_token(&buf);
4585 rbd_warn(NULL, "no monitor address(es) provided");
4589 mon_addrs_size = len + 1;
4593 options = dup_token(&buf, NULL);
4597 rbd_warn(NULL, "no options provided");
4601 spec = rbd_spec_alloc();
4605 spec->pool_name = dup_token(&buf, NULL);
4606 if (!spec->pool_name)
4608 if (!*spec->pool_name) {
4609 rbd_warn(NULL, "no pool name provided");
4613 spec->image_name = dup_token(&buf, NULL);
4614 if (!spec->image_name)
4616 if (!*spec->image_name) {
4617 rbd_warn(NULL, "no image name provided");
4622 * Snapshot name is optional; default is to use "-"
4623 * (indicating the head/no snapshot).
4625 len = next_token(&buf);
4627 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4628 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4629 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4630 ret = -ENAMETOOLONG;
4633 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4636 *(snap_name + len) = '\0';
4637 spec->snap_name = snap_name;
4639 /* Initialize all rbd options to the defaults */
4641 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4645 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4647 copts = ceph_parse_options(options, mon_addrs,
4648 mon_addrs + mon_addrs_size - 1,
4649 parse_rbd_opts_token, rbd_opts);
4650 if (IS_ERR(copts)) {
4651 ret = PTR_ERR(copts);
4672 * An rbd format 2 image has a unique identifier, distinct from the
4673 * name given to it by the user. Internally, that identifier is
4674 * what's used to specify the names of objects related to the image.
4676 * A special "rbd id" object is used to map an rbd image name to its
4677 * id. If that object doesn't exist, then there is no v2 rbd image
4678 * with the supplied name.
4680 * This function will record the given rbd_dev's image_id field if
4681 * it can be determined, and in that case will return 0. If any
4682 * errors occur a negative errno will be returned and the rbd_dev's
4683 * image_id field will be unchanged (and should be NULL).
4685 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4694 * When probing a parent image, the image id is already
4695 * known (and the image name likely is not). There's no
4696 * need to fetch the image id again in this case. We
4697 * do still need to set the image format though.
4699 if (rbd_dev->spec->image_id) {
4700 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4706 * First, see if the format 2 image id file exists, and if
4707 * so, get the image's persistent id from it.
4709 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4710 object_name = kmalloc(size, GFP_NOIO);
4713 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4714 dout("rbd id object name is %s\n", object_name);
4716 /* Response will be an encoded string, which includes a length */
4718 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4719 response = kzalloc(size, GFP_NOIO);
4725 /* If it doesn't exist we'll assume it's a format 1 image */
4727 ret = rbd_obj_method_sync(rbd_dev, object_name,
4728 "rbd", "get_id", NULL, 0,
4729 response, RBD_IMAGE_ID_LEN_MAX);
4730 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4731 if (ret == -ENOENT) {
4732 image_id = kstrdup("", GFP_KERNEL);
4733 ret = image_id ? 0 : -ENOMEM;
4735 rbd_dev->image_format = 1;
4736 } else if (ret > sizeof (__le32)) {
4739 image_id = ceph_extract_encoded_string(&p, p + ret,
4741 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4743 rbd_dev->image_format = 2;
4749 rbd_dev->spec->image_id = image_id;
4750 dout("image_id is %s\n", image_id);
4760 * Undo whatever state changes are made by v1 or v2 header info
4763 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4765 struct rbd_image_header *header;
4767 /* Drop parent reference unless it's already been done (or none) */
4769 if (rbd_dev->parent_overlap)
4770 rbd_dev_parent_put(rbd_dev);
4772 /* Free dynamic fields from the header, then zero it out */
4774 header = &rbd_dev->header;
4775 ceph_put_snap_context(header->snapc);
4776 kfree(header->snap_sizes);
4777 kfree(header->snap_names);
4778 kfree(header->object_prefix);
4779 memset(header, 0, sizeof (*header));
4782 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4786 ret = rbd_dev_v2_object_prefix(rbd_dev);
4791 * Get the and check features for the image. Currently the
4792 * features are assumed to never change.
4794 ret = rbd_dev_v2_features(rbd_dev);
4798 /* If the image supports fancy striping, get its parameters */
4800 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4801 ret = rbd_dev_v2_striping_info(rbd_dev);
4805 /* No support for crypto and compression type format 2 images */
4809 rbd_dev->header.features = 0;
4810 kfree(rbd_dev->header.object_prefix);
4811 rbd_dev->header.object_prefix = NULL;
4816 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4818 struct rbd_device *parent = NULL;
4819 struct rbd_spec *parent_spec;
4820 struct rbd_client *rbdc;
4823 if (!rbd_dev->parent_spec)
4826 * We need to pass a reference to the client and the parent
4827 * spec when creating the parent rbd_dev. Images related by
4828 * parent/child relationships always share both.
4830 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4831 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4834 parent = rbd_dev_create(rbdc, parent_spec);
4838 ret = rbd_dev_image_probe(parent, false);
4841 rbd_dev->parent = parent;
4842 atomic_set(&rbd_dev->parent_ref, 1);
4847 rbd_dev_unparent(rbd_dev);
4848 kfree(rbd_dev->header_name);
4849 rbd_dev_destroy(parent);
4851 rbd_put_client(rbdc);
4852 rbd_spec_put(parent_spec);
4858 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4862 /* Get an id and fill in device name. */
4864 ret = rbd_dev_id_get(rbd_dev);
4868 BUILD_BUG_ON(DEV_NAME_LEN
4869 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4870 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4872 /* Record our major and minor device numbers. */
4874 if (!single_major) {
4875 ret = register_blkdev(0, rbd_dev->name);
4879 rbd_dev->major = ret;
4882 rbd_dev->major = rbd_major;
4883 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
4886 /* Set up the blkdev mapping. */
4888 ret = rbd_init_disk(rbd_dev);
4890 goto err_out_blkdev;
4892 ret = rbd_dev_mapping_set(rbd_dev);
4895 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4897 ret = rbd_bus_add_dev(rbd_dev);
4899 goto err_out_mapping;
4901 /* Everything's ready. Announce the disk to the world. */
4903 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4904 add_disk(rbd_dev->disk);
4906 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4907 (unsigned long long) rbd_dev->mapping.size);
4912 rbd_dev_mapping_clear(rbd_dev);
4914 rbd_free_disk(rbd_dev);
4917 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4919 rbd_dev_id_put(rbd_dev);
4920 rbd_dev_mapping_clear(rbd_dev);
4925 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4927 struct rbd_spec *spec = rbd_dev->spec;
4930 /* Record the header object name for this rbd image. */
4932 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4934 if (rbd_dev->image_format == 1)
4935 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4937 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4939 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4940 if (!rbd_dev->header_name)
4943 if (rbd_dev->image_format == 1)
4944 sprintf(rbd_dev->header_name, "%s%s",
4945 spec->image_name, RBD_SUFFIX);
4947 sprintf(rbd_dev->header_name, "%s%s",
4948 RBD_HEADER_PREFIX, spec->image_id);
4952 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4954 rbd_dev_unprobe(rbd_dev);
4955 kfree(rbd_dev->header_name);
4956 rbd_dev->header_name = NULL;
4957 rbd_dev->image_format = 0;
4958 kfree(rbd_dev->spec->image_id);
4959 rbd_dev->spec->image_id = NULL;
4961 rbd_dev_destroy(rbd_dev);
4965 * Probe for the existence of the header object for the given rbd
4966 * device. If this image is the one being mapped (i.e., not a
4967 * parent), initiate a watch on its header object before using that
4968 * object to get detailed information about the rbd image.
4970 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4975 * Get the id from the image id object. Unless there's an
4976 * error, rbd_dev->spec->image_id will be filled in with
4977 * a dynamically-allocated string, and rbd_dev->image_format
4978 * will be set to either 1 or 2.
4980 ret = rbd_dev_image_id(rbd_dev);
4983 rbd_assert(rbd_dev->spec->image_id);
4984 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4986 ret = rbd_dev_header_name(rbd_dev);
4988 goto err_out_format;
4991 ret = rbd_dev_header_watch_sync(rbd_dev);
4993 goto out_header_name;
4996 if (rbd_dev->image_format == 1)
4997 ret = rbd_dev_v1_header_info(rbd_dev);
4999 ret = rbd_dev_v2_header_info(rbd_dev);
5003 ret = rbd_dev_spec_update(rbd_dev);
5007 ret = rbd_dev_probe_parent(rbd_dev);
5011 dout("discovered format %u image, header name is %s\n",
5012 rbd_dev->image_format, rbd_dev->header_name);
5016 rbd_dev_unprobe(rbd_dev);
5019 rbd_dev_header_unwatch_sync(rbd_dev);
5021 kfree(rbd_dev->header_name);
5022 rbd_dev->header_name = NULL;
5024 rbd_dev->image_format = 0;
5025 kfree(rbd_dev->spec->image_id);
5026 rbd_dev->spec->image_id = NULL;
5028 dout("probe failed, returning %d\n", ret);
5033 static ssize_t do_rbd_add(struct bus_type *bus,
5037 struct rbd_device *rbd_dev = NULL;
5038 struct ceph_options *ceph_opts = NULL;
5039 struct rbd_options *rbd_opts = NULL;
5040 struct rbd_spec *spec = NULL;
5041 struct rbd_client *rbdc;
5042 struct ceph_osd_client *osdc;
5046 if (!try_module_get(THIS_MODULE))
5049 /* parse add command */
5050 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5052 goto err_out_module;
5053 read_only = rbd_opts->read_only;
5055 rbd_opts = NULL; /* done with this */
5057 rbdc = rbd_get_client(ceph_opts);
5064 osdc = &rbdc->client->osdc;
5065 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5067 goto err_out_client;
5068 spec->pool_id = (u64)rc;
5070 /* The ceph file layout needs to fit pool id in 32 bits */
5072 if (spec->pool_id > (u64)U32_MAX) {
5073 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5074 (unsigned long long)spec->pool_id, U32_MAX);
5076 goto err_out_client;
5079 rbd_dev = rbd_dev_create(rbdc, spec);
5081 goto err_out_client;
5082 rbdc = NULL; /* rbd_dev now owns this */
5083 spec = NULL; /* rbd_dev now owns this */
5085 rc = rbd_dev_image_probe(rbd_dev, true);
5087 goto err_out_rbd_dev;
5089 /* If we are mapping a snapshot it must be marked read-only */
5091 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5093 rbd_dev->mapping.read_only = read_only;
5095 rc = rbd_dev_device_setup(rbd_dev);
5098 * rbd_dev_header_unwatch_sync() can't be moved into
5099 * rbd_dev_image_release() without refactoring, see
5100 * commit 1f3ef78861ac.
5102 rbd_dev_header_unwatch_sync(rbd_dev);
5103 rbd_dev_image_release(rbd_dev);
5104 goto err_out_module;
5110 rbd_dev_destroy(rbd_dev);
5112 rbd_put_client(rbdc);
5116 module_put(THIS_MODULE);
5118 dout("Error adding device %s\n", buf);
5123 static ssize_t rbd_add(struct bus_type *bus,
5130 return do_rbd_add(bus, buf, count);
5133 static ssize_t rbd_add_single_major(struct bus_type *bus,
5137 return do_rbd_add(bus, buf, count);
5140 static void rbd_dev_device_release(struct device *dev)
5142 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5144 rbd_free_disk(rbd_dev);
5145 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5146 rbd_dev_mapping_clear(rbd_dev);
5148 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5149 rbd_dev_id_put(rbd_dev);
5150 rbd_dev_mapping_clear(rbd_dev);
5153 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5155 while (rbd_dev->parent) {
5156 struct rbd_device *first = rbd_dev;
5157 struct rbd_device *second = first->parent;
5158 struct rbd_device *third;
5161 * Follow to the parent with no grandparent and
5164 while (second && (third = second->parent)) {
5169 rbd_dev_image_release(second);
5170 first->parent = NULL;
5171 first->parent_overlap = 0;
5173 rbd_assert(first->parent_spec);
5174 rbd_spec_put(first->parent_spec);
5175 first->parent_spec = NULL;
5179 static ssize_t do_rbd_remove(struct bus_type *bus,
5183 struct rbd_device *rbd_dev = NULL;
5184 struct list_head *tmp;
5187 bool already = false;
5190 ret = kstrtoul(buf, 10, &ul);
5194 /* convert to int; abort if we lost anything in the conversion */
5200 spin_lock(&rbd_dev_list_lock);
5201 list_for_each(tmp, &rbd_dev_list) {
5202 rbd_dev = list_entry(tmp, struct rbd_device, node);
5203 if (rbd_dev->dev_id == dev_id) {
5209 spin_lock_irq(&rbd_dev->lock);
5210 if (rbd_dev->open_count)
5213 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5215 spin_unlock_irq(&rbd_dev->lock);
5217 spin_unlock(&rbd_dev_list_lock);
5218 if (ret < 0 || already)
5221 rbd_dev_header_unwatch_sync(rbd_dev);
5223 * flush remaining watch callbacks - these must be complete
5224 * before the osd_client is shutdown
5226 dout("%s: flushing notifies", __func__);
5227 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5230 * Don't free anything from rbd_dev->disk until after all
5231 * notifies are completely processed. Otherwise
5232 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5233 * in a potential use after free of rbd_dev->disk or rbd_dev.
5235 rbd_bus_del_dev(rbd_dev);
5236 rbd_dev_image_release(rbd_dev);
5237 module_put(THIS_MODULE);
5242 static ssize_t rbd_remove(struct bus_type *bus,
5249 return do_rbd_remove(bus, buf, count);
5252 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5256 return do_rbd_remove(bus, buf, count);
5260 * create control files in sysfs
5263 static int rbd_sysfs_init(void)
5267 ret = device_register(&rbd_root_dev);
5271 ret = bus_register(&rbd_bus_type);
5273 device_unregister(&rbd_root_dev);
5278 static void rbd_sysfs_cleanup(void)
5280 bus_unregister(&rbd_bus_type);
5281 device_unregister(&rbd_root_dev);
5284 static int rbd_slab_init(void)
5286 rbd_assert(!rbd_img_request_cache);
5287 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5288 sizeof (struct rbd_img_request),
5289 __alignof__(struct rbd_img_request),
5291 if (!rbd_img_request_cache)
5294 rbd_assert(!rbd_obj_request_cache);
5295 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5296 sizeof (struct rbd_obj_request),
5297 __alignof__(struct rbd_obj_request),
5299 if (!rbd_obj_request_cache)
5302 rbd_assert(!rbd_segment_name_cache);
5303 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5304 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5305 if (rbd_segment_name_cache)
5308 if (rbd_obj_request_cache) {
5309 kmem_cache_destroy(rbd_obj_request_cache);
5310 rbd_obj_request_cache = NULL;
5313 kmem_cache_destroy(rbd_img_request_cache);
5314 rbd_img_request_cache = NULL;
5319 static void rbd_slab_exit(void)
5321 rbd_assert(rbd_segment_name_cache);
5322 kmem_cache_destroy(rbd_segment_name_cache);
5323 rbd_segment_name_cache = NULL;
5325 rbd_assert(rbd_obj_request_cache);
5326 kmem_cache_destroy(rbd_obj_request_cache);
5327 rbd_obj_request_cache = NULL;
5329 rbd_assert(rbd_img_request_cache);
5330 kmem_cache_destroy(rbd_img_request_cache);
5331 rbd_img_request_cache = NULL;
5334 static int __init rbd_init(void)
5338 if (!libceph_compatible(NULL)) {
5339 rbd_warn(NULL, "libceph incompatibility (quitting)");
5343 rc = rbd_slab_init();
5348 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5349 if (rbd_major < 0) {
5355 rc = rbd_sysfs_init();
5357 goto err_out_blkdev;
5360 pr_info("loaded (major %d)\n", rbd_major);
5362 pr_info("loaded\n");
5368 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5374 static void __exit rbd_exit(void)
5376 rbd_sysfs_cleanup();
5378 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5382 module_init(rbd_init);
5383 module_exit(rbd_exit);
5385 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5386 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5387 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5388 /* following authorship retained from original osdblk.c */
5389 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5391 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5392 MODULE_LICENSE("GPL");