rbd: fix cleanup in rbd_add()
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66         unsigned int counter;
67
68         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69         if (counter <= (unsigned int)INT_MAX)
70                 return (int)counter;
71
72         atomic_dec(v);
73
74         return -EINVAL;
75 }
76
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80         int counter;
81
82         counter = atomic_dec_return(v);
83         if (counter >= 0)
84                 return counter;
85
86         atomic_inc(v);
87
88         return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN   \
98                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME      "-"
103
104 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX    64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX  64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING    (1<<0)
115 #define RBD_FEATURE_STRIPINGV2  (1<<1)
116 #define RBD_FEATURES_ALL \
117             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
122
123 /*
124  * An RBD device name will be "rbd#", where the "rbd" comes from
125  * RBD_DRV_NAME above, and # is a unique integer identifier.
126  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127  * enough to hold all possible device names.
128  */
129 #define DEV_NAME_LEN            32
130 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133  * block device image metadata (in-memory version)
134  */
135 struct rbd_image_header {
136         /* These six fields never change for a given rbd image */
137         char *object_prefix;
138         __u8 obj_order;
139         __u8 crypt_type;
140         __u8 comp_type;
141         u64 stripe_unit;
142         u64 stripe_count;
143         u64 features;           /* Might be changeable someday? */
144
145         /* The remaining fields need to be updated occasionally */
146         u64 image_size;
147         struct ceph_snap_context *snapc;
148         char *snap_names;       /* format 1 only */
149         u64 *snap_sizes;        /* format 1 only */
150 };
151
152 /*
153  * An rbd image specification.
154  *
155  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156  * identify an image.  Each rbd_dev structure includes a pointer to
157  * an rbd_spec structure that encapsulates this identity.
158  *
159  * Each of the id's in an rbd_spec has an associated name.  For a
160  * user-mapped image, the names are supplied and the id's associated
161  * with them are looked up.  For a layered image, a parent image is
162  * defined by the tuple, and the names are looked up.
163  *
164  * An rbd_dev structure contains a parent_spec pointer which is
165  * non-null if the image it represents is a child in a layered
166  * image.  This pointer will refer to the rbd_spec structure used
167  * by the parent rbd_dev for its own identity (i.e., the structure
168  * is shared between the parent and child).
169  *
170  * Since these structures are populated once, during the discovery
171  * phase of image construction, they are effectively immutable so
172  * we make no effort to synchronize access to them.
173  *
174  * Note that code herein does not assume the image name is known (it
175  * could be a null pointer).
176  */
177 struct rbd_spec {
178         u64             pool_id;
179         const char      *pool_name;
180
181         const char      *image_id;
182         const char      *image_name;
183
184         u64             snap_id;
185         const char      *snap_name;
186
187         struct kref     kref;
188 };
189
190 /*
191  * an instance of the client.  multiple devices may share an rbd client.
192  */
193 struct rbd_client {
194         struct ceph_client      *client;
195         struct kref             kref;
196         struct list_head        node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
213         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
214         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
215         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219         const char              *object_name;
220         u64                     offset;         /* object start byte */
221         u64                     length;         /* bytes from offset */
222         unsigned long           flags;
223
224         /*
225          * An object request associated with an image will have its
226          * img_data flag set; a standalone object request will not.
227          *
228          * A standalone object request will have which == BAD_WHICH
229          * and a null obj_request pointer.
230          *
231          * An object request initiated in support of a layered image
232          * object (to check for its existence before a write) will
233          * have which == BAD_WHICH and a non-null obj_request pointer.
234          *
235          * Finally, an object request for rbd image data will have
236          * which != BAD_WHICH, and will have a non-null img_request
237          * pointer.  The value of which will be in the range
238          * 0..(img_request->obj_request_count-1).
239          */
240         union {
241                 struct rbd_obj_request  *obj_request;   /* STAT op */
242                 struct {
243                         struct rbd_img_request  *img_request;
244                         u64                     img_offset;
245                         /* links for img_request->obj_requests list */
246                         struct list_head        links;
247                 };
248         };
249         u32                     which;          /* posn image request list */
250
251         enum obj_request_type   type;
252         union {
253                 struct bio      *bio_list;
254                 struct {
255                         struct page     **pages;
256                         u32             page_count;
257                 };
258         };
259         struct page             **copyup_pages;
260         u32                     copyup_page_count;
261
262         struct ceph_osd_request *osd_req;
263
264         u64                     xferred;        /* bytes transferred */
265         int                     result;
266
267         rbd_obj_callback_t      callback;
268         struct completion       completion;
269
270         struct kref             kref;
271 };
272
273 enum img_req_flags {
274         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
275         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
276         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280         struct rbd_device       *rbd_dev;
281         u64                     offset; /* starting image byte offset */
282         u64                     length; /* byte count from offset */
283         unsigned long           flags;
284         union {
285                 u64                     snap_id;        /* for reads */
286                 struct ceph_snap_context *snapc;        /* for writes */
287         };
288         union {
289                 struct request          *rq;            /* block request */
290                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
291         };
292         struct page             **copyup_pages;
293         u32                     copyup_page_count;
294         spinlock_t              completion_lock;/* protects next_completion */
295         u32                     next_completion;
296         rbd_img_callback_t      callback;
297         u64                     xferred;/* aggregate bytes transferred */
298         int                     result; /* first nonzero obj_request result */
299
300         u32                     obj_request_count;
301         struct list_head        obj_requests;   /* rbd_obj_request structs */
302
303         struct kref             kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314         u64                     size;
315         u64                     features;
316         bool                    read_only;
317 };
318
319 /*
320  * a single device
321  */
322 struct rbd_device {
323         int                     dev_id;         /* blkdev unique id */
324
325         int                     major;          /* blkdev assigned major */
326         struct gendisk          *disk;          /* blkdev's gendisk and rq */
327
328         u32                     image_format;   /* Either 1 or 2 */
329         struct rbd_client       *rbd_client;
330
331         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333         spinlock_t              lock;           /* queue, flags, open_count */
334
335         struct rbd_image_header header;
336         unsigned long           flags;          /* possibly lock protected */
337         struct rbd_spec         *spec;
338
339         char                    *header_name;
340
341         struct ceph_file_layout layout;
342
343         struct ceph_osd_event   *watch_event;
344         struct rbd_obj_request  *watch_request;
345
346         struct rbd_spec         *parent_spec;
347         u64                     parent_overlap;
348         atomic_t                parent_ref;
349         struct rbd_device       *parent;
350
351         /* protects updating the header */
352         struct rw_semaphore     header_rwsem;
353
354         struct rbd_mapping      mapping;
355
356         struct list_head        node;
357
358         /* sysfs related */
359         struct device           dev;
360         unsigned long           open_count;     /* protected by lock */
361 };
362
363 /*
364  * Flag bits for rbd_dev->flags.  If atomicity is required,
365  * rbd_dev->lock is used to protect access.
366  *
367  * Currently, only the "removing" flag (which is coupled with the
368  * "open_count" field) requires atomic access.
369  */
370 enum rbd_dev_flags {
371         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
372         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
376
377 static LIST_HEAD(rbd_dev_list);    /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list);              /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache        *rbd_img_request_cache;
386 static struct kmem_cache        *rbd_obj_request_cache;
387 static struct kmem_cache        *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394                        size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396                           size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static struct bus_attribute rbd_bus_attrs[] = {
401         __ATTR(add, S_IWUSR, NULL, rbd_add),
402         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
403         __ATTR_NULL
404 };
405
406 static struct bus_type rbd_bus_type = {
407         .name           = "rbd",
408         .bus_attrs      = rbd_bus_attrs,
409 };
410
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414
415 static struct device rbd_root_dev = {
416         .init_name =    "rbd",
417         .release =      rbd_root_dev_release,
418 };
419
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423         struct va_format vaf;
424         va_list args;
425
426         va_start(args, fmt);
427         vaf.fmt = fmt;
428         vaf.va = &args;
429
430         if (!rbd_dev)
431                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432         else if (rbd_dev->disk)
433                 printk(KERN_WARNING "%s: %s: %pV\n",
434                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435         else if (rbd_dev->spec && rbd_dev->spec->image_name)
436                 printk(KERN_WARNING "%s: image %s: %pV\n",
437                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438         else if (rbd_dev->spec && rbd_dev->spec->image_id)
439                 printk(KERN_WARNING "%s: id %s: %pV\n",
440                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441         else    /* punt */
442                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443                         RBD_DRV_NAME, rbd_dev, &vaf);
444         va_end(args);
445 }
446
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr)                                                \
449                 if (unlikely(!(expr))) {                                \
450                         printk(KERN_ERR "\nAssertion failure in %s() "  \
451                                                 "at line %d:\n\n"       \
452                                         "\trbd_assert(%s);\n\n",        \
453                                         __func__, __LINE__, #expr);     \
454                         BUG();                                          \
455                 }
456 #else /* !RBD_DEBUG */
457 #  define rbd_assert(expr)      ((void) 0)
458 #endif /* !RBD_DEBUG */
459
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468                                         u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470                                 u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472                 u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478         bool removing = false;
479
480         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481                 return -EROFS;
482
483         spin_lock_irq(&rbd_dev->lock);
484         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485                 removing = true;
486         else
487                 rbd_dev->open_count++;
488         spin_unlock_irq(&rbd_dev->lock);
489         if (removing)
490                 return -ENOENT;
491
492         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
493         (void) get_device(&rbd_dev->dev);
494         set_device_ro(bdev, rbd_dev->mapping.read_only);
495         mutex_unlock(&ctl_mutex);
496
497         return 0;
498 }
499
500 static int rbd_release(struct gendisk *disk, fmode_t mode)
501 {
502         struct rbd_device *rbd_dev = disk->private_data;
503         unsigned long open_count_before;
504
505         spin_lock_irq(&rbd_dev->lock);
506         open_count_before = rbd_dev->open_count--;
507         spin_unlock_irq(&rbd_dev->lock);
508         rbd_assert(open_count_before > 0);
509
510         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
511         put_device(&rbd_dev->dev);
512         mutex_unlock(&ctl_mutex);
513
514         return 0;
515 }
516
517 static const struct block_device_operations rbd_bd_ops = {
518         .owner                  = THIS_MODULE,
519         .open                   = rbd_open,
520         .release                = rbd_release,
521 };
522
523 /*
524  * Initialize an rbd client instance.  Success or not, this function
525  * consumes ceph_opts.
526  */
527 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
528 {
529         struct rbd_client *rbdc;
530         int ret = -ENOMEM;
531
532         dout("%s:\n", __func__);
533         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
534         if (!rbdc)
535                 goto out_opt;
536
537         kref_init(&rbdc->kref);
538         INIT_LIST_HEAD(&rbdc->node);
539
540         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
541
542         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
543         if (IS_ERR(rbdc->client))
544                 goto out_mutex;
545         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
546
547         ret = ceph_open_session(rbdc->client);
548         if (ret < 0)
549                 goto out_err;
550
551         spin_lock(&rbd_client_list_lock);
552         list_add_tail(&rbdc->node, &rbd_client_list);
553         spin_unlock(&rbd_client_list_lock);
554
555         mutex_unlock(&ctl_mutex);
556         dout("%s: rbdc %p\n", __func__, rbdc);
557
558         return rbdc;
559
560 out_err:
561         ceph_destroy_client(rbdc->client);
562 out_mutex:
563         mutex_unlock(&ctl_mutex);
564         kfree(rbdc);
565 out_opt:
566         if (ceph_opts)
567                 ceph_destroy_options(ceph_opts);
568         dout("%s: error %d\n", __func__, ret);
569
570         return ERR_PTR(ret);
571 }
572
573 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
574 {
575         kref_get(&rbdc->kref);
576
577         return rbdc;
578 }
579
580 /*
581  * Find a ceph client with specific addr and configuration.  If
582  * found, bump its reference count.
583  */
584 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
585 {
586         struct rbd_client *client_node;
587         bool found = false;
588
589         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
590                 return NULL;
591
592         spin_lock(&rbd_client_list_lock);
593         list_for_each_entry(client_node, &rbd_client_list, node) {
594                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
595                         __rbd_get_client(client_node);
596
597                         found = true;
598                         break;
599                 }
600         }
601         spin_unlock(&rbd_client_list_lock);
602
603         return found ? client_node : NULL;
604 }
605
606 /*
607  * mount options
608  */
609 enum {
610         Opt_last_int,
611         /* int args above */
612         Opt_last_string,
613         /* string args above */
614         Opt_read_only,
615         Opt_read_write,
616         /* Boolean args above */
617         Opt_last_bool,
618 };
619
620 static match_table_t rbd_opts_tokens = {
621         /* int args above */
622         /* string args above */
623         {Opt_read_only, "read_only"},
624         {Opt_read_only, "ro"},          /* Alternate spelling */
625         {Opt_read_write, "read_write"},
626         {Opt_read_write, "rw"},         /* Alternate spelling */
627         /* Boolean args above */
628         {-1, NULL}
629 };
630
631 struct rbd_options {
632         bool    read_only;
633 };
634
635 #define RBD_READ_ONLY_DEFAULT   false
636
637 static int parse_rbd_opts_token(char *c, void *private)
638 {
639         struct rbd_options *rbd_opts = private;
640         substring_t argstr[MAX_OPT_ARGS];
641         int token, intval, ret;
642
643         token = match_token(c, rbd_opts_tokens, argstr);
644         if (token < 0)
645                 return -EINVAL;
646
647         if (token < Opt_last_int) {
648                 ret = match_int(&argstr[0], &intval);
649                 if (ret < 0) {
650                         pr_err("bad mount option arg (not int) "
651                                "at '%s'\n", c);
652                         return ret;
653                 }
654                 dout("got int token %d val %d\n", token, intval);
655         } else if (token > Opt_last_int && token < Opt_last_string) {
656                 dout("got string token %d val %s\n", token,
657                      argstr[0].from);
658         } else if (token > Opt_last_string && token < Opt_last_bool) {
659                 dout("got Boolean token %d\n", token);
660         } else {
661                 dout("got token %d\n", token);
662         }
663
664         switch (token) {
665         case Opt_read_only:
666                 rbd_opts->read_only = true;
667                 break;
668         case Opt_read_write:
669                 rbd_opts->read_only = false;
670                 break;
671         default:
672                 rbd_assert(false);
673                 break;
674         }
675         return 0;
676 }
677
678 /*
679  * Get a ceph client with specific addr and configuration, if one does
680  * not exist create it.  Either way, ceph_opts is consumed by this
681  * function.
682  */
683 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
684 {
685         struct rbd_client *rbdc;
686
687         rbdc = rbd_client_find(ceph_opts);
688         if (rbdc)       /* using an existing client */
689                 ceph_destroy_options(ceph_opts);
690         else
691                 rbdc = rbd_client_create(ceph_opts);
692
693         return rbdc;
694 }
695
696 /*
697  * Destroy ceph client
698  *
699  * Caller must hold rbd_client_list_lock.
700  */
701 static void rbd_client_release(struct kref *kref)
702 {
703         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
704
705         dout("%s: rbdc %p\n", __func__, rbdc);
706         spin_lock(&rbd_client_list_lock);
707         list_del(&rbdc->node);
708         spin_unlock(&rbd_client_list_lock);
709
710         ceph_destroy_client(rbdc->client);
711         kfree(rbdc);
712 }
713
714 /*
715  * Drop reference to ceph client node. If it's not referenced anymore, release
716  * it.
717  */
718 static void rbd_put_client(struct rbd_client *rbdc)
719 {
720         if (rbdc)
721                 kref_put(&rbdc->kref, rbd_client_release);
722 }
723
724 static bool rbd_image_format_valid(u32 image_format)
725 {
726         return image_format == 1 || image_format == 2;
727 }
728
729 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
730 {
731         size_t size;
732         u32 snap_count;
733
734         /* The header has to start with the magic rbd header text */
735         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
736                 return false;
737
738         /* The bio layer requires at least sector-sized I/O */
739
740         if (ondisk->options.order < SECTOR_SHIFT)
741                 return false;
742
743         /* If we use u64 in a few spots we may be able to loosen this */
744
745         if (ondisk->options.order > 8 * sizeof (int) - 1)
746                 return false;
747
748         /*
749          * The size of a snapshot header has to fit in a size_t, and
750          * that limits the number of snapshots.
751          */
752         snap_count = le32_to_cpu(ondisk->snap_count);
753         size = SIZE_MAX - sizeof (struct ceph_snap_context);
754         if (snap_count > size / sizeof (__le64))
755                 return false;
756
757         /*
758          * Not only that, but the size of the entire the snapshot
759          * header must also be representable in a size_t.
760          */
761         size -= snap_count * sizeof (__le64);
762         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
763                 return false;
764
765         return true;
766 }
767
768 /*
769  * Fill an rbd image header with information from the given format 1
770  * on-disk header.
771  */
772 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
773                                  struct rbd_image_header_ondisk *ondisk)
774 {
775         struct rbd_image_header *header = &rbd_dev->header;
776         bool first_time = header->object_prefix == NULL;
777         struct ceph_snap_context *snapc;
778         char *object_prefix = NULL;
779         char *snap_names = NULL;
780         u64 *snap_sizes = NULL;
781         u32 snap_count;
782         size_t size;
783         int ret = -ENOMEM;
784         u32 i;
785
786         /* Allocate this now to avoid having to handle failure below */
787
788         if (first_time) {
789                 size_t len;
790
791                 len = strnlen(ondisk->object_prefix,
792                                 sizeof (ondisk->object_prefix));
793                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
794                 if (!object_prefix)
795                         return -ENOMEM;
796                 memcpy(object_prefix, ondisk->object_prefix, len);
797                 object_prefix[len] = '\0';
798         }
799
800         /* Allocate the snapshot context and fill it in */
801
802         snap_count = le32_to_cpu(ondisk->snap_count);
803         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
804         if (!snapc)
805                 goto out_err;
806         snapc->seq = le64_to_cpu(ondisk->snap_seq);
807         if (snap_count) {
808                 struct rbd_image_snap_ondisk *snaps;
809                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
810
811                 /* We'll keep a copy of the snapshot names... */
812
813                 if (snap_names_len > (u64)SIZE_MAX)
814                         goto out_2big;
815                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
816                 if (!snap_names)
817                         goto out_err;
818
819                 /* ...as well as the array of their sizes. */
820
821                 size = snap_count * sizeof (*header->snap_sizes);
822                 snap_sizes = kmalloc(size, GFP_KERNEL);
823                 if (!snap_sizes)
824                         goto out_err;
825
826                 /*
827                  * Copy the names, and fill in each snapshot's id
828                  * and size.
829                  *
830                  * Note that rbd_dev_v1_header_info() guarantees the
831                  * ondisk buffer we're working with has
832                  * snap_names_len bytes beyond the end of the
833                  * snapshot id array, this memcpy() is safe.
834                  */
835                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
836                 snaps = ondisk->snaps;
837                 for (i = 0; i < snap_count; i++) {
838                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
839                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
840                 }
841         }
842
843         /* We won't fail any more, fill in the header */
844
845         down_write(&rbd_dev->header_rwsem);
846         if (first_time) {
847                 header->object_prefix = object_prefix;
848                 header->obj_order = ondisk->options.order;
849                 header->crypt_type = ondisk->options.crypt_type;
850                 header->comp_type = ondisk->options.comp_type;
851                 /* The rest aren't used for format 1 images */
852                 header->stripe_unit = 0;
853                 header->stripe_count = 0;
854                 header->features = 0;
855         } else {
856                 ceph_put_snap_context(header->snapc);
857                 kfree(header->snap_names);
858                 kfree(header->snap_sizes);
859         }
860
861         /* The remaining fields always get updated (when we refresh) */
862
863         header->image_size = le64_to_cpu(ondisk->image_size);
864         header->snapc = snapc;
865         header->snap_names = snap_names;
866         header->snap_sizes = snap_sizes;
867
868         /* Make sure mapping size is consistent with header info */
869
870         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
871                 if (rbd_dev->mapping.size != header->image_size)
872                         rbd_dev->mapping.size = header->image_size;
873
874         up_write(&rbd_dev->header_rwsem);
875
876         return 0;
877 out_2big:
878         ret = -EIO;
879 out_err:
880         kfree(snap_sizes);
881         kfree(snap_names);
882         ceph_put_snap_context(snapc);
883         kfree(object_prefix);
884
885         return ret;
886 }
887
888 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
889 {
890         const char *snap_name;
891
892         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
893
894         /* Skip over names until we find the one we are looking for */
895
896         snap_name = rbd_dev->header.snap_names;
897         while (which--)
898                 snap_name += strlen(snap_name) + 1;
899
900         return kstrdup(snap_name, GFP_KERNEL);
901 }
902
903 /*
904  * Snapshot id comparison function for use with qsort()/bsearch().
905  * Note that result is for snapshots in *descending* order.
906  */
907 static int snapid_compare_reverse(const void *s1, const void *s2)
908 {
909         u64 snap_id1 = *(u64 *)s1;
910         u64 snap_id2 = *(u64 *)s2;
911
912         if (snap_id1 < snap_id2)
913                 return 1;
914         return snap_id1 == snap_id2 ? 0 : -1;
915 }
916
917 /*
918  * Search a snapshot context to see if the given snapshot id is
919  * present.
920  *
921  * Returns the position of the snapshot id in the array if it's found,
922  * or BAD_SNAP_INDEX otherwise.
923  *
924  * Note: The snapshot array is in kept sorted (by the osd) in
925  * reverse order, highest snapshot id first.
926  */
927 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
928 {
929         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
930         u64 *found;
931
932         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
933                                 sizeof (snap_id), snapid_compare_reverse);
934
935         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
936 }
937
938 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
939                                         u64 snap_id)
940 {
941         u32 which;
942
943         which = rbd_dev_snap_index(rbd_dev, snap_id);
944         if (which == BAD_SNAP_INDEX)
945                 return NULL;
946
947         return _rbd_dev_v1_snap_name(rbd_dev, which);
948 }
949
950 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
951 {
952         if (snap_id == CEPH_NOSNAP)
953                 return RBD_SNAP_HEAD_NAME;
954
955         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
956         if (rbd_dev->image_format == 1)
957                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
958
959         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
960 }
961
962 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
963                                 u64 *snap_size)
964 {
965         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
966         if (snap_id == CEPH_NOSNAP) {
967                 *snap_size = rbd_dev->header.image_size;
968         } else if (rbd_dev->image_format == 1) {
969                 u32 which;
970
971                 which = rbd_dev_snap_index(rbd_dev, snap_id);
972                 if (which == BAD_SNAP_INDEX)
973                         return -ENOENT;
974
975                 *snap_size = rbd_dev->header.snap_sizes[which];
976         } else {
977                 u64 size = 0;
978                 int ret;
979
980                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
981                 if (ret)
982                         return ret;
983
984                 *snap_size = size;
985         }
986         return 0;
987 }
988
989 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
990                         u64 *snap_features)
991 {
992         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
993         if (snap_id == CEPH_NOSNAP) {
994                 *snap_features = rbd_dev->header.features;
995         } else if (rbd_dev->image_format == 1) {
996                 *snap_features = 0;     /* No features for format 1 */
997         } else {
998                 u64 features = 0;
999                 int ret;
1000
1001                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1002                 if (ret)
1003                         return ret;
1004
1005                 *snap_features = features;
1006         }
1007         return 0;
1008 }
1009
1010 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1011 {
1012         u64 snap_id = rbd_dev->spec->snap_id;
1013         u64 size = 0;
1014         u64 features = 0;
1015         int ret;
1016
1017         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1018         if (ret)
1019                 return ret;
1020         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1021         if (ret)
1022                 return ret;
1023
1024         rbd_dev->mapping.size = size;
1025         rbd_dev->mapping.features = features;
1026
1027         return 0;
1028 }
1029
1030 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1031 {
1032         rbd_dev->mapping.size = 0;
1033         rbd_dev->mapping.features = 0;
1034 }
1035
1036 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1037 {
1038         char *name;
1039         u64 segment;
1040         int ret;
1041
1042         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1043         if (!name)
1044                 return NULL;
1045         segment = offset >> rbd_dev->header.obj_order;
1046         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
1047                         rbd_dev->header.object_prefix, segment);
1048         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1049                 pr_err("error formatting segment name for #%llu (%d)\n",
1050                         segment, ret);
1051                 kfree(name);
1052                 name = NULL;
1053         }
1054
1055         return name;
1056 }
1057
1058 static void rbd_segment_name_free(const char *name)
1059 {
1060         /* The explicit cast here is needed to drop the const qualifier */
1061
1062         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1063 }
1064
1065 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1066 {
1067         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1068
1069         return offset & (segment_size - 1);
1070 }
1071
1072 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1073                                 u64 offset, u64 length)
1074 {
1075         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1076
1077         offset &= segment_size - 1;
1078
1079         rbd_assert(length <= U64_MAX - offset);
1080         if (offset + length > segment_size)
1081                 length = segment_size - offset;
1082
1083         return length;
1084 }
1085
1086 /*
1087  * returns the size of an object in the image
1088  */
1089 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1090 {
1091         return 1 << header->obj_order;
1092 }
1093
1094 /*
1095  * bio helpers
1096  */
1097
1098 static void bio_chain_put(struct bio *chain)
1099 {
1100         struct bio *tmp;
1101
1102         while (chain) {
1103                 tmp = chain;
1104                 chain = chain->bi_next;
1105                 bio_put(tmp);
1106         }
1107 }
1108
1109 /*
1110  * zeros a bio chain, starting at specific offset
1111  */
1112 static void zero_bio_chain(struct bio *chain, int start_ofs)
1113 {
1114         struct bio_vec *bv;
1115         unsigned long flags;
1116         void *buf;
1117         int i;
1118         int pos = 0;
1119
1120         while (chain) {
1121                 bio_for_each_segment(bv, chain, i) {
1122                         if (pos + bv->bv_len > start_ofs) {
1123                                 int remainder = max(start_ofs - pos, 0);
1124                                 buf = bvec_kmap_irq(bv, &flags);
1125                                 memset(buf + remainder, 0,
1126                                        bv->bv_len - remainder);
1127                                 bvec_kunmap_irq(buf, &flags);
1128                         }
1129                         pos += bv->bv_len;
1130                 }
1131
1132                 chain = chain->bi_next;
1133         }
1134 }
1135
1136 /*
1137  * similar to zero_bio_chain(), zeros data defined by a page array,
1138  * starting at the given byte offset from the start of the array and
1139  * continuing up to the given end offset.  The pages array is
1140  * assumed to be big enough to hold all bytes up to the end.
1141  */
1142 static void zero_pages(struct page **pages, u64 offset, u64 end)
1143 {
1144         struct page **page = &pages[offset >> PAGE_SHIFT];
1145
1146         rbd_assert(end > offset);
1147         rbd_assert(end - offset <= (u64)SIZE_MAX);
1148         while (offset < end) {
1149                 size_t page_offset;
1150                 size_t length;
1151                 unsigned long flags;
1152                 void *kaddr;
1153
1154                 page_offset = (size_t)(offset & ~PAGE_MASK);
1155                 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1156                 local_irq_save(flags);
1157                 kaddr = kmap_atomic(*page);
1158                 memset(kaddr + page_offset, 0, length);
1159                 kunmap_atomic(kaddr);
1160                 local_irq_restore(flags);
1161
1162                 offset += length;
1163                 page++;
1164         }
1165 }
1166
1167 /*
1168  * Clone a portion of a bio, starting at the given byte offset
1169  * and continuing for the number of bytes indicated.
1170  */
1171 static struct bio *bio_clone_range(struct bio *bio_src,
1172                                         unsigned int offset,
1173                                         unsigned int len,
1174                                         gfp_t gfpmask)
1175 {
1176         struct bio_vec *bv;
1177         unsigned int resid;
1178         unsigned short idx;
1179         unsigned int voff;
1180         unsigned short end_idx;
1181         unsigned short vcnt;
1182         struct bio *bio;
1183
1184         /* Handle the easy case for the caller */
1185
1186         if (!offset && len == bio_src->bi_size)
1187                 return bio_clone(bio_src, gfpmask);
1188
1189         if (WARN_ON_ONCE(!len))
1190                 return NULL;
1191         if (WARN_ON_ONCE(len > bio_src->bi_size))
1192                 return NULL;
1193         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1194                 return NULL;
1195
1196         /* Find first affected segment... */
1197
1198         resid = offset;
1199         __bio_for_each_segment(bv, bio_src, idx, 0) {
1200                 if (resid < bv->bv_len)
1201                         break;
1202                 resid -= bv->bv_len;
1203         }
1204         voff = resid;
1205
1206         /* ...and the last affected segment */
1207
1208         resid += len;
1209         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1210                 if (resid <= bv->bv_len)
1211                         break;
1212                 resid -= bv->bv_len;
1213         }
1214         vcnt = end_idx - idx + 1;
1215
1216         /* Build the clone */
1217
1218         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1219         if (!bio)
1220                 return NULL;    /* ENOMEM */
1221
1222         bio->bi_bdev = bio_src->bi_bdev;
1223         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1224         bio->bi_rw = bio_src->bi_rw;
1225         bio->bi_flags |= 1 << BIO_CLONED;
1226
1227         /*
1228          * Copy over our part of the bio_vec, then update the first
1229          * and last (or only) entries.
1230          */
1231         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1232                         vcnt * sizeof (struct bio_vec));
1233         bio->bi_io_vec[0].bv_offset += voff;
1234         if (vcnt > 1) {
1235                 bio->bi_io_vec[0].bv_len -= voff;
1236                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1237         } else {
1238                 bio->bi_io_vec[0].bv_len = len;
1239         }
1240
1241         bio->bi_vcnt = vcnt;
1242         bio->bi_size = len;
1243         bio->bi_idx = 0;
1244
1245         return bio;
1246 }
1247
1248 /*
1249  * Clone a portion of a bio chain, starting at the given byte offset
1250  * into the first bio in the source chain and continuing for the
1251  * number of bytes indicated.  The result is another bio chain of
1252  * exactly the given length, or a null pointer on error.
1253  *
1254  * The bio_src and offset parameters are both in-out.  On entry they
1255  * refer to the first source bio and the offset into that bio where
1256  * the start of data to be cloned is located.
1257  *
1258  * On return, bio_src is updated to refer to the bio in the source
1259  * chain that contains first un-cloned byte, and *offset will
1260  * contain the offset of that byte within that bio.
1261  */
1262 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1263                                         unsigned int *offset,
1264                                         unsigned int len,
1265                                         gfp_t gfpmask)
1266 {
1267         struct bio *bi = *bio_src;
1268         unsigned int off = *offset;
1269         struct bio *chain = NULL;
1270         struct bio **end;
1271
1272         /* Build up a chain of clone bios up to the limit */
1273
1274         if (!bi || off >= bi->bi_size || !len)
1275                 return NULL;            /* Nothing to clone */
1276
1277         end = &chain;
1278         while (len) {
1279                 unsigned int bi_size;
1280                 struct bio *bio;
1281
1282                 if (!bi) {
1283                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1284                         goto out_err;   /* EINVAL; ran out of bio's */
1285                 }
1286                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1287                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1288                 if (!bio)
1289                         goto out_err;   /* ENOMEM */
1290
1291                 *end = bio;
1292                 end = &bio->bi_next;
1293
1294                 off += bi_size;
1295                 if (off == bi->bi_size) {
1296                         bi = bi->bi_next;
1297                         off = 0;
1298                 }
1299                 len -= bi_size;
1300         }
1301         *bio_src = bi;
1302         *offset = off;
1303
1304         return chain;
1305 out_err:
1306         bio_chain_put(chain);
1307
1308         return NULL;
1309 }
1310
1311 /*
1312  * The default/initial value for all object request flags is 0.  For
1313  * each flag, once its value is set to 1 it is never reset to 0
1314  * again.
1315  */
1316 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1317 {
1318         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1319                 struct rbd_device *rbd_dev;
1320
1321                 rbd_dev = obj_request->img_request->rbd_dev;
1322                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1323                         obj_request);
1324         }
1325 }
1326
1327 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1328 {
1329         smp_mb();
1330         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1331 }
1332
1333 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1334 {
1335         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1336                 struct rbd_device *rbd_dev = NULL;
1337
1338                 if (obj_request_img_data_test(obj_request))
1339                         rbd_dev = obj_request->img_request->rbd_dev;
1340                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1341                         obj_request);
1342         }
1343 }
1344
1345 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1346 {
1347         smp_mb();
1348         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1349 }
1350
1351 /*
1352  * This sets the KNOWN flag after (possibly) setting the EXISTS
1353  * flag.  The latter is set based on the "exists" value provided.
1354  *
1355  * Note that for our purposes once an object exists it never goes
1356  * away again.  It's possible that the response from two existence
1357  * checks are separated by the creation of the target object, and
1358  * the first ("doesn't exist") response arrives *after* the second
1359  * ("does exist").  In that case we ignore the second one.
1360  */
1361 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1362                                 bool exists)
1363 {
1364         if (exists)
1365                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1366         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1367         smp_mb();
1368 }
1369
1370 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1371 {
1372         smp_mb();
1373         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1374 }
1375
1376 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1377 {
1378         smp_mb();
1379         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1380 }
1381
1382 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1383 {
1384         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1385                 atomic_read(&obj_request->kref.refcount));
1386         kref_get(&obj_request->kref);
1387 }
1388
1389 static void rbd_obj_request_destroy(struct kref *kref);
1390 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1391 {
1392         rbd_assert(obj_request != NULL);
1393         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1394                 atomic_read(&obj_request->kref.refcount));
1395         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1396 }
1397
1398 static bool img_request_child_test(struct rbd_img_request *img_request);
1399 static void rbd_parent_request_destroy(struct kref *kref);
1400 static void rbd_img_request_destroy(struct kref *kref);
1401 static void rbd_img_request_put(struct rbd_img_request *img_request)
1402 {
1403         rbd_assert(img_request != NULL);
1404         dout("%s: img %p (was %d)\n", __func__, img_request,
1405                 atomic_read(&img_request->kref.refcount));
1406         if (img_request_child_test(img_request))
1407                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1408         else
1409                 kref_put(&img_request->kref, rbd_img_request_destroy);
1410 }
1411
1412 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1413                                         struct rbd_obj_request *obj_request)
1414 {
1415         rbd_assert(obj_request->img_request == NULL);
1416
1417         /* Image request now owns object's original reference */
1418         obj_request->img_request = img_request;
1419         obj_request->which = img_request->obj_request_count;
1420         rbd_assert(!obj_request_img_data_test(obj_request));
1421         obj_request_img_data_set(obj_request);
1422         rbd_assert(obj_request->which != BAD_WHICH);
1423         img_request->obj_request_count++;
1424         list_add_tail(&obj_request->links, &img_request->obj_requests);
1425         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1426                 obj_request->which);
1427 }
1428
1429 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1430                                         struct rbd_obj_request *obj_request)
1431 {
1432         rbd_assert(obj_request->which != BAD_WHICH);
1433
1434         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1435                 obj_request->which);
1436         list_del(&obj_request->links);
1437         rbd_assert(img_request->obj_request_count > 0);
1438         img_request->obj_request_count--;
1439         rbd_assert(obj_request->which == img_request->obj_request_count);
1440         obj_request->which = BAD_WHICH;
1441         rbd_assert(obj_request_img_data_test(obj_request));
1442         rbd_assert(obj_request->img_request == img_request);
1443         obj_request->img_request = NULL;
1444         obj_request->callback = NULL;
1445         rbd_obj_request_put(obj_request);
1446 }
1447
1448 static bool obj_request_type_valid(enum obj_request_type type)
1449 {
1450         switch (type) {
1451         case OBJ_REQUEST_NODATA:
1452         case OBJ_REQUEST_BIO:
1453         case OBJ_REQUEST_PAGES:
1454                 return true;
1455         default:
1456                 return false;
1457         }
1458 }
1459
1460 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1461                                 struct rbd_obj_request *obj_request)
1462 {
1463         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1464
1465         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1466 }
1467
1468 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1469 {
1470
1471         dout("%s: img %p\n", __func__, img_request);
1472
1473         /*
1474          * If no error occurred, compute the aggregate transfer
1475          * count for the image request.  We could instead use
1476          * atomic64_cmpxchg() to update it as each object request
1477          * completes; not clear which way is better off hand.
1478          */
1479         if (!img_request->result) {
1480                 struct rbd_obj_request *obj_request;
1481                 u64 xferred = 0;
1482
1483                 for_each_obj_request(img_request, obj_request)
1484                         xferred += obj_request->xferred;
1485                 img_request->xferred = xferred;
1486         }
1487
1488         if (img_request->callback)
1489                 img_request->callback(img_request);
1490         else
1491                 rbd_img_request_put(img_request);
1492 }
1493
1494 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1495
1496 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1497 {
1498         dout("%s: obj %p\n", __func__, obj_request);
1499
1500         return wait_for_completion_interruptible(&obj_request->completion);
1501 }
1502
1503 /*
1504  * The default/initial value for all image request flags is 0.  Each
1505  * is conditionally set to 1 at image request initialization time
1506  * and currently never change thereafter.
1507  */
1508 static void img_request_write_set(struct rbd_img_request *img_request)
1509 {
1510         set_bit(IMG_REQ_WRITE, &img_request->flags);
1511         smp_mb();
1512 }
1513
1514 static bool img_request_write_test(struct rbd_img_request *img_request)
1515 {
1516         smp_mb();
1517         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1518 }
1519
1520 static void img_request_child_set(struct rbd_img_request *img_request)
1521 {
1522         set_bit(IMG_REQ_CHILD, &img_request->flags);
1523         smp_mb();
1524 }
1525
1526 static void img_request_child_clear(struct rbd_img_request *img_request)
1527 {
1528         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1529         smp_mb();
1530 }
1531
1532 static bool img_request_child_test(struct rbd_img_request *img_request)
1533 {
1534         smp_mb();
1535         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1536 }
1537
1538 static void img_request_layered_set(struct rbd_img_request *img_request)
1539 {
1540         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1541         smp_mb();
1542 }
1543
1544 static void img_request_layered_clear(struct rbd_img_request *img_request)
1545 {
1546         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1547         smp_mb();
1548 }
1549
1550 static bool img_request_layered_test(struct rbd_img_request *img_request)
1551 {
1552         smp_mb();
1553         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1554 }
1555
1556 static void
1557 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1558 {
1559         u64 xferred = obj_request->xferred;
1560         u64 length = obj_request->length;
1561
1562         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1563                 obj_request, obj_request->img_request, obj_request->result,
1564                 xferred, length);
1565         /*
1566          * ENOENT means a hole in the image.  We zero-fill the
1567          * entire length of the request.  A short read also implies
1568          * zero-fill to the end of the request.  Either way we
1569          * update the xferred count to indicate the whole request
1570          * was satisfied.
1571          */
1572         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1573         if (obj_request->result == -ENOENT) {
1574                 if (obj_request->type == OBJ_REQUEST_BIO)
1575                         zero_bio_chain(obj_request->bio_list, 0);
1576                 else
1577                         zero_pages(obj_request->pages, 0, length);
1578                 obj_request->result = 0;
1579                 obj_request->xferred = length;
1580         } else if (xferred < length && !obj_request->result) {
1581                 if (obj_request->type == OBJ_REQUEST_BIO)
1582                         zero_bio_chain(obj_request->bio_list, xferred);
1583                 else
1584                         zero_pages(obj_request->pages, xferred, length);
1585                 obj_request->xferred = length;
1586         }
1587         obj_request_done_set(obj_request);
1588 }
1589
1590 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1591 {
1592         dout("%s: obj %p cb %p\n", __func__, obj_request,
1593                 obj_request->callback);
1594         if (obj_request->callback)
1595                 obj_request->callback(obj_request);
1596         else
1597                 complete_all(&obj_request->completion);
1598 }
1599
1600 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1601 {
1602         dout("%s: obj %p\n", __func__, obj_request);
1603         obj_request_done_set(obj_request);
1604 }
1605
1606 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1607 {
1608         struct rbd_img_request *img_request = NULL;
1609         struct rbd_device *rbd_dev = NULL;
1610         bool layered = false;
1611
1612         if (obj_request_img_data_test(obj_request)) {
1613                 img_request = obj_request->img_request;
1614                 layered = img_request && img_request_layered_test(img_request);
1615                 rbd_dev = img_request->rbd_dev;
1616         }
1617
1618         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1619                 obj_request, img_request, obj_request->result,
1620                 obj_request->xferred, obj_request->length);
1621         if (layered && obj_request->result == -ENOENT &&
1622                         obj_request->img_offset < rbd_dev->parent_overlap)
1623                 rbd_img_parent_read(obj_request);
1624         else if (img_request)
1625                 rbd_img_obj_request_read_callback(obj_request);
1626         else
1627                 obj_request_done_set(obj_request);
1628 }
1629
1630 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1631 {
1632         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1633                 obj_request->result, obj_request->length);
1634         /*
1635          * There is no such thing as a successful short write.  Set
1636          * it to our originally-requested length.
1637          */
1638         obj_request->xferred = obj_request->length;
1639         obj_request_done_set(obj_request);
1640 }
1641
1642 /*
1643  * For a simple stat call there's nothing to do.  We'll do more if
1644  * this is part of a write sequence for a layered image.
1645  */
1646 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1647 {
1648         dout("%s: obj %p\n", __func__, obj_request);
1649         obj_request_done_set(obj_request);
1650 }
1651
1652 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1653                                 struct ceph_msg *msg)
1654 {
1655         struct rbd_obj_request *obj_request = osd_req->r_priv;
1656         u16 opcode;
1657
1658         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1659         rbd_assert(osd_req == obj_request->osd_req);
1660         if (obj_request_img_data_test(obj_request)) {
1661                 rbd_assert(obj_request->img_request);
1662                 rbd_assert(obj_request->which != BAD_WHICH);
1663         } else {
1664                 rbd_assert(obj_request->which == BAD_WHICH);
1665         }
1666
1667         if (osd_req->r_result < 0)
1668                 obj_request->result = osd_req->r_result;
1669
1670         BUG_ON(osd_req->r_num_ops > 2);
1671
1672         /*
1673          * We support a 64-bit length, but ultimately it has to be
1674          * passed to blk_end_request(), which takes an unsigned int.
1675          */
1676         obj_request->xferred = osd_req->r_reply_op_len[0];
1677         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1678         opcode = osd_req->r_ops[0].op;
1679         switch (opcode) {
1680         case CEPH_OSD_OP_READ:
1681                 rbd_osd_read_callback(obj_request);
1682                 break;
1683         case CEPH_OSD_OP_WRITE:
1684                 rbd_osd_write_callback(obj_request);
1685                 break;
1686         case CEPH_OSD_OP_STAT:
1687                 rbd_osd_stat_callback(obj_request);
1688                 break;
1689         case CEPH_OSD_OP_CALL:
1690         case CEPH_OSD_OP_NOTIFY_ACK:
1691         case CEPH_OSD_OP_WATCH:
1692                 rbd_osd_trivial_callback(obj_request);
1693                 break;
1694         default:
1695                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1696                         obj_request->object_name, (unsigned short) opcode);
1697                 break;
1698         }
1699
1700         if (obj_request_done_test(obj_request))
1701                 rbd_obj_request_complete(obj_request);
1702 }
1703
1704 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1705 {
1706         struct rbd_img_request *img_request = obj_request->img_request;
1707         struct ceph_osd_request *osd_req = obj_request->osd_req;
1708         u64 snap_id;
1709
1710         rbd_assert(osd_req != NULL);
1711
1712         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1713         ceph_osdc_build_request(osd_req, obj_request->offset,
1714                         NULL, snap_id, NULL);
1715 }
1716
1717 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1718 {
1719         struct rbd_img_request *img_request = obj_request->img_request;
1720         struct ceph_osd_request *osd_req = obj_request->osd_req;
1721         struct ceph_snap_context *snapc;
1722         struct timespec mtime = CURRENT_TIME;
1723
1724         rbd_assert(osd_req != NULL);
1725
1726         snapc = img_request ? img_request->snapc : NULL;
1727         ceph_osdc_build_request(osd_req, obj_request->offset,
1728                         snapc, CEPH_NOSNAP, &mtime);
1729 }
1730
1731 static struct ceph_osd_request *rbd_osd_req_create(
1732                                         struct rbd_device *rbd_dev,
1733                                         bool write_request,
1734                                         struct rbd_obj_request *obj_request)
1735 {
1736         struct ceph_snap_context *snapc = NULL;
1737         struct ceph_osd_client *osdc;
1738         struct ceph_osd_request *osd_req;
1739
1740         if (obj_request_img_data_test(obj_request)) {
1741                 struct rbd_img_request *img_request = obj_request->img_request;
1742
1743                 rbd_assert(write_request ==
1744                                 img_request_write_test(img_request));
1745                 if (write_request)
1746                         snapc = img_request->snapc;
1747         }
1748
1749         /* Allocate and initialize the request, for the single op */
1750
1751         osdc = &rbd_dev->rbd_client->client->osdc;
1752         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1753         if (!osd_req)
1754                 return NULL;    /* ENOMEM */
1755
1756         if (write_request)
1757                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1758         else
1759                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1760
1761         osd_req->r_callback = rbd_osd_req_callback;
1762         osd_req->r_priv = obj_request;
1763
1764         osd_req->r_oid_len = strlen(obj_request->object_name);
1765         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1766         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1767
1768         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1769
1770         return osd_req;
1771 }
1772
1773 /*
1774  * Create a copyup osd request based on the information in the
1775  * object request supplied.  A copyup request has two osd ops,
1776  * a copyup method call, and a "normal" write request.
1777  */
1778 static struct ceph_osd_request *
1779 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1780 {
1781         struct rbd_img_request *img_request;
1782         struct ceph_snap_context *snapc;
1783         struct rbd_device *rbd_dev;
1784         struct ceph_osd_client *osdc;
1785         struct ceph_osd_request *osd_req;
1786
1787         rbd_assert(obj_request_img_data_test(obj_request));
1788         img_request = obj_request->img_request;
1789         rbd_assert(img_request);
1790         rbd_assert(img_request_write_test(img_request));
1791
1792         /* Allocate and initialize the request, for the two ops */
1793
1794         snapc = img_request->snapc;
1795         rbd_dev = img_request->rbd_dev;
1796         osdc = &rbd_dev->rbd_client->client->osdc;
1797         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1798         if (!osd_req)
1799                 return NULL;    /* ENOMEM */
1800
1801         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1802         osd_req->r_callback = rbd_osd_req_callback;
1803         osd_req->r_priv = obj_request;
1804
1805         osd_req->r_oid_len = strlen(obj_request->object_name);
1806         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1807         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1808
1809         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1810
1811         return osd_req;
1812 }
1813
1814
1815 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1816 {
1817         ceph_osdc_put_request(osd_req);
1818 }
1819
1820 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1821
1822 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1823                                                 u64 offset, u64 length,
1824                                                 enum obj_request_type type)
1825 {
1826         struct rbd_obj_request *obj_request;
1827         size_t size;
1828         char *name;
1829
1830         rbd_assert(obj_request_type_valid(type));
1831
1832         size = strlen(object_name) + 1;
1833         name = kmalloc(size, GFP_KERNEL);
1834         if (!name)
1835                 return NULL;
1836
1837         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1838         if (!obj_request) {
1839                 kfree(name);
1840                 return NULL;
1841         }
1842
1843         obj_request->object_name = memcpy(name, object_name, size);
1844         obj_request->offset = offset;
1845         obj_request->length = length;
1846         obj_request->flags = 0;
1847         obj_request->which = BAD_WHICH;
1848         obj_request->type = type;
1849         INIT_LIST_HEAD(&obj_request->links);
1850         init_completion(&obj_request->completion);
1851         kref_init(&obj_request->kref);
1852
1853         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1854                 offset, length, (int)type, obj_request);
1855
1856         return obj_request;
1857 }
1858
1859 static void rbd_obj_request_destroy(struct kref *kref)
1860 {
1861         struct rbd_obj_request *obj_request;
1862
1863         obj_request = container_of(kref, struct rbd_obj_request, kref);
1864
1865         dout("%s: obj %p\n", __func__, obj_request);
1866
1867         rbd_assert(obj_request->img_request == NULL);
1868         rbd_assert(obj_request->which == BAD_WHICH);
1869
1870         if (obj_request->osd_req)
1871                 rbd_osd_req_destroy(obj_request->osd_req);
1872
1873         rbd_assert(obj_request_type_valid(obj_request->type));
1874         switch (obj_request->type) {
1875         case OBJ_REQUEST_NODATA:
1876                 break;          /* Nothing to do */
1877         case OBJ_REQUEST_BIO:
1878                 if (obj_request->bio_list)
1879                         bio_chain_put(obj_request->bio_list);
1880                 break;
1881         case OBJ_REQUEST_PAGES:
1882                 if (obj_request->pages)
1883                         ceph_release_page_vector(obj_request->pages,
1884                                                 obj_request->page_count);
1885                 break;
1886         }
1887
1888         kfree(obj_request->object_name);
1889         obj_request->object_name = NULL;
1890         kmem_cache_free(rbd_obj_request_cache, obj_request);
1891 }
1892
1893 /* It's OK to call this for a device with no parent */
1894
1895 static void rbd_spec_put(struct rbd_spec *spec);
1896 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1897 {
1898         rbd_dev_remove_parent(rbd_dev);
1899         rbd_spec_put(rbd_dev->parent_spec);
1900         rbd_dev->parent_spec = NULL;
1901         rbd_dev->parent_overlap = 0;
1902 }
1903
1904 /*
1905  * Parent image reference counting is used to determine when an
1906  * image's parent fields can be safely torn down--after there are no
1907  * more in-flight requests to the parent image.  When the last
1908  * reference is dropped, cleaning them up is safe.
1909  */
1910 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1911 {
1912         int counter;
1913
1914         if (!rbd_dev->parent_spec)
1915                 return;
1916
1917         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1918         if (counter > 0)
1919                 return;
1920
1921         /* Last reference; clean up parent data structures */
1922
1923         if (!counter)
1924                 rbd_dev_unparent(rbd_dev);
1925         else
1926                 rbd_warn(rbd_dev, "parent reference underflow\n");
1927 }
1928
1929 /*
1930  * If an image has a non-zero parent overlap, get a reference to its
1931  * parent.
1932  *
1933  * We must get the reference before checking for the overlap to
1934  * coordinate properly with zeroing the parent overlap in
1935  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1936  * drop it again if there is no overlap.
1937  *
1938  * Returns true if the rbd device has a parent with a non-zero
1939  * overlap and a reference for it was successfully taken, or
1940  * false otherwise.
1941  */
1942 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1943 {
1944         int counter;
1945
1946         if (!rbd_dev->parent_spec)
1947                 return false;
1948
1949         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1950         if (counter > 0 && rbd_dev->parent_overlap)
1951                 return true;
1952
1953         /* Image was flattened, but parent is not yet torn down */
1954
1955         if (counter < 0)
1956                 rbd_warn(rbd_dev, "parent reference overflow\n");
1957
1958         return false;
1959 }
1960
1961 /*
1962  * Caller is responsible for filling in the list of object requests
1963  * that comprises the image request, and the Linux request pointer
1964  * (if there is one).
1965  */
1966 static struct rbd_img_request *rbd_img_request_create(
1967                                         struct rbd_device *rbd_dev,
1968                                         u64 offset, u64 length,
1969                                         bool write_request)
1970 {
1971         struct rbd_img_request *img_request;
1972
1973         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1974         if (!img_request)
1975                 return NULL;
1976
1977         if (write_request) {
1978                 down_read(&rbd_dev->header_rwsem);
1979                 ceph_get_snap_context(rbd_dev->header.snapc);
1980                 up_read(&rbd_dev->header_rwsem);
1981         }
1982
1983         img_request->rq = NULL;
1984         img_request->rbd_dev = rbd_dev;
1985         img_request->offset = offset;
1986         img_request->length = length;
1987         img_request->flags = 0;
1988         if (write_request) {
1989                 img_request_write_set(img_request);
1990                 img_request->snapc = rbd_dev->header.snapc;
1991         } else {
1992                 img_request->snap_id = rbd_dev->spec->snap_id;
1993         }
1994         if (rbd_dev_parent_get(rbd_dev))
1995                 img_request_layered_set(img_request);
1996         spin_lock_init(&img_request->completion_lock);
1997         img_request->next_completion = 0;
1998         img_request->callback = NULL;
1999         img_request->result = 0;
2000         img_request->obj_request_count = 0;
2001         INIT_LIST_HEAD(&img_request->obj_requests);
2002         kref_init(&img_request->kref);
2003
2004         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2005                 write_request ? "write" : "read", offset, length,
2006                 img_request);
2007
2008         return img_request;
2009 }
2010
2011 static void rbd_img_request_destroy(struct kref *kref)
2012 {
2013         struct rbd_img_request *img_request;
2014         struct rbd_obj_request *obj_request;
2015         struct rbd_obj_request *next_obj_request;
2016
2017         img_request = container_of(kref, struct rbd_img_request, kref);
2018
2019         dout("%s: img %p\n", __func__, img_request);
2020
2021         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2022                 rbd_img_obj_request_del(img_request, obj_request);
2023         rbd_assert(img_request->obj_request_count == 0);
2024
2025         if (img_request_layered_test(img_request)) {
2026                 img_request_layered_clear(img_request);
2027                 rbd_dev_parent_put(img_request->rbd_dev);
2028         }
2029
2030         if (img_request_write_test(img_request))
2031                 ceph_put_snap_context(img_request->snapc);
2032
2033         kmem_cache_free(rbd_img_request_cache, img_request);
2034 }
2035
2036 static struct rbd_img_request *rbd_parent_request_create(
2037                                         struct rbd_obj_request *obj_request,
2038                                         u64 img_offset, u64 length)
2039 {
2040         struct rbd_img_request *parent_request;
2041         struct rbd_device *rbd_dev;
2042
2043         rbd_assert(obj_request->img_request);
2044         rbd_dev = obj_request->img_request->rbd_dev;
2045
2046         parent_request = rbd_img_request_create(rbd_dev->parent,
2047                                                 img_offset, length, false);
2048         if (!parent_request)
2049                 return NULL;
2050
2051         img_request_child_set(parent_request);
2052         rbd_obj_request_get(obj_request);
2053         parent_request->obj_request = obj_request;
2054
2055         return parent_request;
2056 }
2057
2058 static void rbd_parent_request_destroy(struct kref *kref)
2059 {
2060         struct rbd_img_request *parent_request;
2061         struct rbd_obj_request *orig_request;
2062
2063         parent_request = container_of(kref, struct rbd_img_request, kref);
2064         orig_request = parent_request->obj_request;
2065
2066         parent_request->obj_request = NULL;
2067         rbd_obj_request_put(orig_request);
2068         img_request_child_clear(parent_request);
2069
2070         rbd_img_request_destroy(kref);
2071 }
2072
2073 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2074 {
2075         struct rbd_img_request *img_request;
2076         unsigned int xferred;
2077         int result;
2078         bool more;
2079
2080         rbd_assert(obj_request_img_data_test(obj_request));
2081         img_request = obj_request->img_request;
2082
2083         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2084         xferred = (unsigned int)obj_request->xferred;
2085         result = obj_request->result;
2086         if (result) {
2087                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2088
2089                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2090                         img_request_write_test(img_request) ? "write" : "read",
2091                         obj_request->length, obj_request->img_offset,
2092                         obj_request->offset);
2093                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2094                         result, xferred);
2095                 if (!img_request->result)
2096                         img_request->result = result;
2097         }
2098
2099         /* Image object requests don't own their page array */
2100
2101         if (obj_request->type == OBJ_REQUEST_PAGES) {
2102                 obj_request->pages = NULL;
2103                 obj_request->page_count = 0;
2104         }
2105
2106         if (img_request_child_test(img_request)) {
2107                 rbd_assert(img_request->obj_request != NULL);
2108                 more = obj_request->which < img_request->obj_request_count - 1;
2109         } else {
2110                 rbd_assert(img_request->rq != NULL);
2111                 more = blk_end_request(img_request->rq, result, xferred);
2112         }
2113
2114         return more;
2115 }
2116
2117 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2118 {
2119         struct rbd_img_request *img_request;
2120         u32 which = obj_request->which;
2121         bool more = true;
2122
2123         rbd_assert(obj_request_img_data_test(obj_request));
2124         img_request = obj_request->img_request;
2125
2126         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2127         rbd_assert(img_request != NULL);
2128         rbd_assert(img_request->obj_request_count > 0);
2129         rbd_assert(which != BAD_WHICH);
2130         rbd_assert(which < img_request->obj_request_count);
2131         rbd_assert(which >= img_request->next_completion);
2132
2133         spin_lock_irq(&img_request->completion_lock);
2134         if (which != img_request->next_completion)
2135                 goto out;
2136
2137         for_each_obj_request_from(img_request, obj_request) {
2138                 rbd_assert(more);
2139                 rbd_assert(which < img_request->obj_request_count);
2140
2141                 if (!obj_request_done_test(obj_request))
2142                         break;
2143                 more = rbd_img_obj_end_request(obj_request);
2144                 which++;
2145         }
2146
2147         rbd_assert(more ^ (which == img_request->obj_request_count));
2148         img_request->next_completion = which;
2149 out:
2150         spin_unlock_irq(&img_request->completion_lock);
2151
2152         if (!more)
2153                 rbd_img_request_complete(img_request);
2154 }
2155
2156 /*
2157  * Split up an image request into one or more object requests, each
2158  * to a different object.  The "type" parameter indicates whether
2159  * "data_desc" is the pointer to the head of a list of bio
2160  * structures, or the base of a page array.  In either case this
2161  * function assumes data_desc describes memory sufficient to hold
2162  * all data described by the image request.
2163  */
2164 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2165                                         enum obj_request_type type,
2166                                         void *data_desc)
2167 {
2168         struct rbd_device *rbd_dev = img_request->rbd_dev;
2169         struct rbd_obj_request *obj_request = NULL;
2170         struct rbd_obj_request *next_obj_request;
2171         bool write_request = img_request_write_test(img_request);
2172         struct bio *bio_list;
2173         unsigned int bio_offset = 0;
2174         struct page **pages;
2175         u64 img_offset;
2176         u64 resid;
2177         u16 opcode;
2178
2179         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2180                 (int)type, data_desc);
2181
2182         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2183         img_offset = img_request->offset;
2184         resid = img_request->length;
2185         rbd_assert(resid > 0);
2186
2187         if (type == OBJ_REQUEST_BIO) {
2188                 bio_list = data_desc;
2189                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2190         } else {
2191                 rbd_assert(type == OBJ_REQUEST_PAGES);
2192                 pages = data_desc;
2193         }
2194
2195         while (resid) {
2196                 struct ceph_osd_request *osd_req;
2197                 const char *object_name;
2198                 u64 offset;
2199                 u64 length;
2200
2201                 object_name = rbd_segment_name(rbd_dev, img_offset);
2202                 if (!object_name)
2203                         goto out_unwind;
2204                 offset = rbd_segment_offset(rbd_dev, img_offset);
2205                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2206                 obj_request = rbd_obj_request_create(object_name,
2207                                                 offset, length, type);
2208                 /* object request has its own copy of the object name */
2209                 rbd_segment_name_free(object_name);
2210                 if (!obj_request)
2211                         goto out_unwind;
2212
2213                 if (type == OBJ_REQUEST_BIO) {
2214                         unsigned int clone_size;
2215
2216                         rbd_assert(length <= (u64)UINT_MAX);
2217                         clone_size = (unsigned int)length;
2218                         obj_request->bio_list =
2219                                         bio_chain_clone_range(&bio_list,
2220                                                                 &bio_offset,
2221                                                                 clone_size,
2222                                                                 GFP_ATOMIC);
2223                         if (!obj_request->bio_list)
2224                                 goto out_partial;
2225                 } else {
2226                         unsigned int page_count;
2227
2228                         obj_request->pages = pages;
2229                         page_count = (u32)calc_pages_for(offset, length);
2230                         obj_request->page_count = page_count;
2231                         if ((offset + length) & ~PAGE_MASK)
2232                                 page_count--;   /* more on last page */
2233                         pages += page_count;
2234                 }
2235
2236                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2237                                                 obj_request);
2238                 if (!osd_req)
2239                         goto out_partial;
2240                 obj_request->osd_req = osd_req;
2241                 obj_request->callback = rbd_img_obj_callback;
2242
2243                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2244                                                 0, 0);
2245                 if (type == OBJ_REQUEST_BIO)
2246                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2247                                         obj_request->bio_list, length);
2248                 else
2249                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2250                                         obj_request->pages, length,
2251                                         offset & ~PAGE_MASK, false, false);
2252
2253                 if (write_request)
2254                         rbd_osd_req_format_write(obj_request);
2255                 else
2256                         rbd_osd_req_format_read(obj_request);
2257
2258                 obj_request->img_offset = img_offset;
2259                 rbd_img_obj_request_add(img_request, obj_request);
2260
2261                 img_offset += length;
2262                 resid -= length;
2263         }
2264
2265         return 0;
2266
2267 out_partial:
2268         rbd_obj_request_put(obj_request);
2269 out_unwind:
2270         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2271                 rbd_obj_request_put(obj_request);
2272
2273         return -ENOMEM;
2274 }
2275
2276 static void
2277 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2278 {
2279         struct rbd_img_request *img_request;
2280         struct rbd_device *rbd_dev;
2281         struct page **pages;
2282         u32 page_count;
2283
2284         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2285         rbd_assert(obj_request_img_data_test(obj_request));
2286         img_request = obj_request->img_request;
2287         rbd_assert(img_request);
2288
2289         rbd_dev = img_request->rbd_dev;
2290         rbd_assert(rbd_dev);
2291
2292         pages = obj_request->copyup_pages;
2293         rbd_assert(pages != NULL);
2294         obj_request->copyup_pages = NULL;
2295         page_count = obj_request->copyup_page_count;
2296         rbd_assert(page_count);
2297         obj_request->copyup_page_count = 0;
2298         ceph_release_page_vector(pages, page_count);
2299
2300         /*
2301          * We want the transfer count to reflect the size of the
2302          * original write request.  There is no such thing as a
2303          * successful short write, so if the request was successful
2304          * we can just set it to the originally-requested length.
2305          */
2306         if (!obj_request->result)
2307                 obj_request->xferred = obj_request->length;
2308
2309         /* Finish up with the normal image object callback */
2310
2311         rbd_img_obj_callback(obj_request);
2312 }
2313
2314 static void
2315 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2316 {
2317         struct rbd_obj_request *orig_request;
2318         struct ceph_osd_request *osd_req;
2319         struct ceph_osd_client *osdc;
2320         struct rbd_device *rbd_dev;
2321         struct page **pages;
2322         u32 page_count;
2323         int img_result;
2324         u64 parent_length;
2325         u64 offset;
2326         u64 length;
2327
2328         rbd_assert(img_request_child_test(img_request));
2329
2330         /* First get what we need from the image request */
2331
2332         pages = img_request->copyup_pages;
2333         rbd_assert(pages != NULL);
2334         img_request->copyup_pages = NULL;
2335         page_count = img_request->copyup_page_count;
2336         rbd_assert(page_count);
2337         img_request->copyup_page_count = 0;
2338
2339         orig_request = img_request->obj_request;
2340         rbd_assert(orig_request != NULL);
2341         rbd_assert(obj_request_type_valid(orig_request->type));
2342         img_result = img_request->result;
2343         parent_length = img_request->length;
2344         rbd_assert(parent_length == img_request->xferred);
2345         rbd_img_request_put(img_request);
2346
2347         rbd_assert(orig_request->img_request);
2348         rbd_dev = orig_request->img_request->rbd_dev;
2349         rbd_assert(rbd_dev);
2350
2351         /*
2352          * If the overlap has become 0 (most likely because the
2353          * image has been flattened) we need to free the pages
2354          * and re-submit the original write request.
2355          */
2356         if (!rbd_dev->parent_overlap) {
2357                 struct ceph_osd_client *osdc;
2358
2359                 ceph_release_page_vector(pages, page_count);
2360                 osdc = &rbd_dev->rbd_client->client->osdc;
2361                 img_result = rbd_obj_request_submit(osdc, orig_request);
2362                 if (!img_result)
2363                         return;
2364         }
2365
2366         if (img_result)
2367                 goto out_err;
2368
2369         /*
2370          * The original osd request is of no use to use any more.
2371          * We need a new one that can hold the two ops in a copyup
2372          * request.  Allocate the new copyup osd request for the
2373          * original request, and release the old one.
2374          */
2375         img_result = -ENOMEM;
2376         osd_req = rbd_osd_req_create_copyup(orig_request);
2377         if (!osd_req)
2378                 goto out_err;
2379         rbd_osd_req_destroy(orig_request->osd_req);
2380         orig_request->osd_req = osd_req;
2381         orig_request->copyup_pages = pages;
2382         orig_request->copyup_page_count = page_count;
2383
2384         /* Initialize the copyup op */
2385
2386         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2387         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2388                                                 false, false);
2389
2390         /* Then the original write request op */
2391
2392         offset = orig_request->offset;
2393         length = orig_request->length;
2394         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2395                                         offset, length, 0, 0);
2396         if (orig_request->type == OBJ_REQUEST_BIO)
2397                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2398                                         orig_request->bio_list, length);
2399         else
2400                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2401                                         orig_request->pages, length,
2402                                         offset & ~PAGE_MASK, false, false);
2403
2404         rbd_osd_req_format_write(orig_request);
2405
2406         /* All set, send it off. */
2407
2408         orig_request->callback = rbd_img_obj_copyup_callback;
2409         osdc = &rbd_dev->rbd_client->client->osdc;
2410         img_result = rbd_obj_request_submit(osdc, orig_request);
2411         if (!img_result)
2412                 return;
2413 out_err:
2414         /* Record the error code and complete the request */
2415
2416         orig_request->result = img_result;
2417         orig_request->xferred = 0;
2418         obj_request_done_set(orig_request);
2419         rbd_obj_request_complete(orig_request);
2420 }
2421
2422 /*
2423  * Read from the parent image the range of data that covers the
2424  * entire target of the given object request.  This is used for
2425  * satisfying a layered image write request when the target of an
2426  * object request from the image request does not exist.
2427  *
2428  * A page array big enough to hold the returned data is allocated
2429  * and supplied to rbd_img_request_fill() as the "data descriptor."
2430  * When the read completes, this page array will be transferred to
2431  * the original object request for the copyup operation.
2432  *
2433  * If an error occurs, record it as the result of the original
2434  * object request and mark it done so it gets completed.
2435  */
2436 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2437 {
2438         struct rbd_img_request *img_request = NULL;
2439         struct rbd_img_request *parent_request = NULL;
2440         struct rbd_device *rbd_dev;
2441         u64 img_offset;
2442         u64 length;
2443         struct page **pages = NULL;
2444         u32 page_count;
2445         int result;
2446
2447         rbd_assert(obj_request_img_data_test(obj_request));
2448         rbd_assert(obj_request_type_valid(obj_request->type));
2449
2450         img_request = obj_request->img_request;
2451         rbd_assert(img_request != NULL);
2452         rbd_dev = img_request->rbd_dev;
2453         rbd_assert(rbd_dev->parent != NULL);
2454
2455         /*
2456          * Determine the byte range covered by the object in the
2457          * child image to which the original request was to be sent.
2458          */
2459         img_offset = obj_request->img_offset - obj_request->offset;
2460         length = (u64)1 << rbd_dev->header.obj_order;
2461
2462         /*
2463          * There is no defined parent data beyond the parent
2464          * overlap, so limit what we read at that boundary if
2465          * necessary.
2466          */
2467         if (img_offset + length > rbd_dev->parent_overlap) {
2468                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2469                 length = rbd_dev->parent_overlap - img_offset;
2470         }
2471
2472         /*
2473          * Allocate a page array big enough to receive the data read
2474          * from the parent.
2475          */
2476         page_count = (u32)calc_pages_for(0, length);
2477         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2478         if (IS_ERR(pages)) {
2479                 result = PTR_ERR(pages);
2480                 pages = NULL;
2481                 goto out_err;
2482         }
2483
2484         result = -ENOMEM;
2485         parent_request = rbd_parent_request_create(obj_request,
2486                                                 img_offset, length);
2487         if (!parent_request)
2488                 goto out_err;
2489
2490         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2491         if (result)
2492                 goto out_err;
2493         parent_request->copyup_pages = pages;
2494         parent_request->copyup_page_count = page_count;
2495
2496         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2497         result = rbd_img_request_submit(parent_request);
2498         if (!result)
2499                 return 0;
2500
2501         parent_request->copyup_pages = NULL;
2502         parent_request->copyup_page_count = 0;
2503         parent_request->obj_request = NULL;
2504         rbd_obj_request_put(obj_request);
2505 out_err:
2506         if (pages)
2507                 ceph_release_page_vector(pages, page_count);
2508         if (parent_request)
2509                 rbd_img_request_put(parent_request);
2510         obj_request->result = result;
2511         obj_request->xferred = 0;
2512         obj_request_done_set(obj_request);
2513
2514         return result;
2515 }
2516
2517 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2518 {
2519         struct rbd_obj_request *orig_request;
2520         struct rbd_device *rbd_dev;
2521         int result;
2522
2523         rbd_assert(!obj_request_img_data_test(obj_request));
2524
2525         /*
2526          * All we need from the object request is the original
2527          * request and the result of the STAT op.  Grab those, then
2528          * we're done with the request.
2529          */
2530         orig_request = obj_request->obj_request;
2531         obj_request->obj_request = NULL;
2532         rbd_assert(orig_request);
2533         rbd_assert(orig_request->img_request);
2534
2535         result = obj_request->result;
2536         obj_request->result = 0;
2537
2538         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2539                 obj_request, orig_request, result,
2540                 obj_request->xferred, obj_request->length);
2541         rbd_obj_request_put(obj_request);
2542
2543         /*
2544          * If the overlap has become 0 (most likely because the
2545          * image has been flattened) we need to free the pages
2546          * and re-submit the original write request.
2547          */
2548         rbd_dev = orig_request->img_request->rbd_dev;
2549         if (!rbd_dev->parent_overlap) {
2550                 struct ceph_osd_client *osdc;
2551
2552                 rbd_obj_request_put(orig_request);
2553                 osdc = &rbd_dev->rbd_client->client->osdc;
2554                 result = rbd_obj_request_submit(osdc, orig_request);
2555                 if (!result)
2556                         return;
2557         }
2558
2559         /*
2560          * Our only purpose here is to determine whether the object
2561          * exists, and we don't want to treat the non-existence as
2562          * an error.  If something else comes back, transfer the
2563          * error to the original request and complete it now.
2564          */
2565         if (!result) {
2566                 obj_request_existence_set(orig_request, true);
2567         } else if (result == -ENOENT) {
2568                 obj_request_existence_set(orig_request, false);
2569         } else if (result) {
2570                 orig_request->result = result;
2571                 goto out;
2572         }
2573
2574         /*
2575          * Resubmit the original request now that we have recorded
2576          * whether the target object exists.
2577          */
2578         orig_request->result = rbd_img_obj_request_submit(orig_request);
2579 out:
2580         if (orig_request->result)
2581                 rbd_obj_request_complete(orig_request);
2582         rbd_obj_request_put(orig_request);
2583 }
2584
2585 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2586 {
2587         struct rbd_obj_request *stat_request;
2588         struct rbd_device *rbd_dev;
2589         struct ceph_osd_client *osdc;
2590         struct page **pages = NULL;
2591         u32 page_count;
2592         size_t size;
2593         int ret;
2594
2595         /*
2596          * The response data for a STAT call consists of:
2597          *     le64 length;
2598          *     struct {
2599          *         le32 tv_sec;
2600          *         le32 tv_nsec;
2601          *     } mtime;
2602          */
2603         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2604         page_count = (u32)calc_pages_for(0, size);
2605         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2606         if (IS_ERR(pages))
2607                 return PTR_ERR(pages);
2608
2609         ret = -ENOMEM;
2610         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2611                                                         OBJ_REQUEST_PAGES);
2612         if (!stat_request)
2613                 goto out;
2614
2615         rbd_obj_request_get(obj_request);
2616         stat_request->obj_request = obj_request;
2617         stat_request->pages = pages;
2618         stat_request->page_count = page_count;
2619
2620         rbd_assert(obj_request->img_request);
2621         rbd_dev = obj_request->img_request->rbd_dev;
2622         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2623                                                 stat_request);
2624         if (!stat_request->osd_req)
2625                 goto out;
2626         stat_request->callback = rbd_img_obj_exists_callback;
2627
2628         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2629         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2630                                         false, false);
2631         rbd_osd_req_format_read(stat_request);
2632
2633         osdc = &rbd_dev->rbd_client->client->osdc;
2634         ret = rbd_obj_request_submit(osdc, stat_request);
2635 out:
2636         if (ret)
2637                 rbd_obj_request_put(obj_request);
2638
2639         return ret;
2640 }
2641
2642 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2643 {
2644         struct rbd_img_request *img_request;
2645         struct rbd_device *rbd_dev;
2646         bool known;
2647
2648         rbd_assert(obj_request_img_data_test(obj_request));
2649
2650         img_request = obj_request->img_request;
2651         rbd_assert(img_request);
2652         rbd_dev = img_request->rbd_dev;
2653
2654         /*
2655          * Only writes to layered images need special handling.
2656          * Reads and non-layered writes are simple object requests.
2657          * Layered writes that start beyond the end of the overlap
2658          * with the parent have no parent data, so they too are
2659          * simple object requests.  Finally, if the target object is
2660          * known to already exist, its parent data has already been
2661          * copied, so a write to the object can also be handled as a
2662          * simple object request.
2663          */
2664         if (!img_request_write_test(img_request) ||
2665                 !img_request_layered_test(img_request) ||
2666                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2667                 ((known = obj_request_known_test(obj_request)) &&
2668                         obj_request_exists_test(obj_request))) {
2669
2670                 struct rbd_device *rbd_dev;
2671                 struct ceph_osd_client *osdc;
2672
2673                 rbd_dev = obj_request->img_request->rbd_dev;
2674                 osdc = &rbd_dev->rbd_client->client->osdc;
2675
2676                 return rbd_obj_request_submit(osdc, obj_request);
2677         }
2678
2679         /*
2680          * It's a layered write.  The target object might exist but
2681          * we may not know that yet.  If we know it doesn't exist,
2682          * start by reading the data for the full target object from
2683          * the parent so we can use it for a copyup to the target.
2684          */
2685         if (known)
2686                 return rbd_img_obj_parent_read_full(obj_request);
2687
2688         /* We don't know whether the target exists.  Go find out. */
2689
2690         return rbd_img_obj_exists_submit(obj_request);
2691 }
2692
2693 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2694 {
2695         struct rbd_obj_request *obj_request;
2696         struct rbd_obj_request *next_obj_request;
2697
2698         dout("%s: img %p\n", __func__, img_request);
2699         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2700                 int ret;
2701
2702                 ret = rbd_img_obj_request_submit(obj_request);
2703                 if (ret)
2704                         return ret;
2705         }
2706
2707         return 0;
2708 }
2709
2710 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2711 {
2712         struct rbd_obj_request *obj_request;
2713         struct rbd_device *rbd_dev;
2714         u64 obj_end;
2715         u64 img_xferred;
2716         int img_result;
2717
2718         rbd_assert(img_request_child_test(img_request));
2719
2720         /* First get what we need from the image request and release it */
2721
2722         obj_request = img_request->obj_request;
2723         img_xferred = img_request->xferred;
2724         img_result = img_request->result;
2725         rbd_img_request_put(img_request);
2726
2727         /*
2728          * If the overlap has become 0 (most likely because the
2729          * image has been flattened) we need to re-submit the
2730          * original request.
2731          */
2732         rbd_assert(obj_request);
2733         rbd_assert(obj_request->img_request);
2734         rbd_dev = obj_request->img_request->rbd_dev;
2735         if (!rbd_dev->parent_overlap) {
2736                 struct ceph_osd_client *osdc;
2737
2738                 osdc = &rbd_dev->rbd_client->client->osdc;
2739                 img_result = rbd_obj_request_submit(osdc, obj_request);
2740                 if (!img_result)
2741                         return;
2742         }
2743
2744         obj_request->result = img_result;
2745         if (obj_request->result)
2746                 goto out;
2747
2748         /*
2749          * We need to zero anything beyond the parent overlap
2750          * boundary.  Since rbd_img_obj_request_read_callback()
2751          * will zero anything beyond the end of a short read, an
2752          * easy way to do this is to pretend the data from the
2753          * parent came up short--ending at the overlap boundary.
2754          */
2755         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2756         obj_end = obj_request->img_offset + obj_request->length;
2757         if (obj_end > rbd_dev->parent_overlap) {
2758                 u64 xferred = 0;
2759
2760                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2761                         xferred = rbd_dev->parent_overlap -
2762                                         obj_request->img_offset;
2763
2764                 obj_request->xferred = min(img_xferred, xferred);
2765         } else {
2766                 obj_request->xferred = img_xferred;
2767         }
2768 out:
2769         rbd_img_obj_request_read_callback(obj_request);
2770         rbd_obj_request_complete(obj_request);
2771 }
2772
2773 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2774 {
2775         struct rbd_img_request *img_request;
2776         int result;
2777
2778         rbd_assert(obj_request_img_data_test(obj_request));
2779         rbd_assert(obj_request->img_request != NULL);
2780         rbd_assert(obj_request->result == (s32) -ENOENT);
2781         rbd_assert(obj_request_type_valid(obj_request->type));
2782
2783         /* rbd_read_finish(obj_request, obj_request->length); */
2784         img_request = rbd_parent_request_create(obj_request,
2785                                                 obj_request->img_offset,
2786                                                 obj_request->length);
2787         result = -ENOMEM;
2788         if (!img_request)
2789                 goto out_err;
2790
2791         if (obj_request->type == OBJ_REQUEST_BIO)
2792                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2793                                                 obj_request->bio_list);
2794         else
2795                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2796                                                 obj_request->pages);
2797         if (result)
2798                 goto out_err;
2799
2800         img_request->callback = rbd_img_parent_read_callback;
2801         result = rbd_img_request_submit(img_request);
2802         if (result)
2803                 goto out_err;
2804
2805         return;
2806 out_err:
2807         if (img_request)
2808                 rbd_img_request_put(img_request);
2809         obj_request->result = result;
2810         obj_request->xferred = 0;
2811         obj_request_done_set(obj_request);
2812 }
2813
2814 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2815 {
2816         struct rbd_obj_request *obj_request;
2817         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2818         int ret;
2819
2820         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2821                                                         OBJ_REQUEST_NODATA);
2822         if (!obj_request)
2823                 return -ENOMEM;
2824
2825         ret = -ENOMEM;
2826         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2827         if (!obj_request->osd_req)
2828                 goto out;
2829         obj_request->callback = rbd_obj_request_put;
2830
2831         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2832                                         notify_id, 0, 0);
2833         rbd_osd_req_format_read(obj_request);
2834
2835         ret = rbd_obj_request_submit(osdc, obj_request);
2836 out:
2837         if (ret)
2838                 rbd_obj_request_put(obj_request);
2839
2840         return ret;
2841 }
2842
2843 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2844 {
2845         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2846         int ret;
2847
2848         if (!rbd_dev)
2849                 return;
2850
2851         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2852                 rbd_dev->header_name, (unsigned long long)notify_id,
2853                 (unsigned int)opcode);
2854         ret = rbd_dev_refresh(rbd_dev);
2855         if (ret)
2856                 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2857
2858         rbd_obj_notify_ack(rbd_dev, notify_id);
2859 }
2860
2861 /*
2862  * Request sync osd watch/unwatch.  The value of "start" determines
2863  * whether a watch request is being initiated or torn down.
2864  */
2865 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2866 {
2867         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2868         struct rbd_obj_request *obj_request;
2869         int ret;
2870
2871         rbd_assert(start ^ !!rbd_dev->watch_event);
2872         rbd_assert(start ^ !!rbd_dev->watch_request);
2873
2874         if (start) {
2875                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2876                                                 &rbd_dev->watch_event);
2877                 if (ret < 0)
2878                         return ret;
2879                 rbd_assert(rbd_dev->watch_event != NULL);
2880         }
2881
2882         ret = -ENOMEM;
2883         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2884                                                         OBJ_REQUEST_NODATA);
2885         if (!obj_request)
2886                 goto out_cancel;
2887
2888         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2889         if (!obj_request->osd_req)
2890                 goto out_cancel;
2891
2892         if (start)
2893                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2894         else
2895                 ceph_osdc_unregister_linger_request(osdc,
2896                                         rbd_dev->watch_request->osd_req);
2897
2898         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2899                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2900         rbd_osd_req_format_write(obj_request);
2901
2902         ret = rbd_obj_request_submit(osdc, obj_request);
2903         if (ret)
2904                 goto out_cancel;
2905         ret = rbd_obj_request_wait(obj_request);
2906         if (ret)
2907                 goto out_cancel;
2908         ret = obj_request->result;
2909         if (ret)
2910                 goto out_cancel;
2911
2912         /*
2913          * A watch request is set to linger, so the underlying osd
2914          * request won't go away until we unregister it.  We retain
2915          * a pointer to the object request during that time (in
2916          * rbd_dev->watch_request), so we'll keep a reference to
2917          * it.  We'll drop that reference (below) after we've
2918          * unregistered it.
2919          */
2920         if (start) {
2921                 rbd_dev->watch_request = obj_request;
2922
2923                 return 0;
2924         }
2925
2926         /* We have successfully torn down the watch request */
2927
2928         rbd_obj_request_put(rbd_dev->watch_request);
2929         rbd_dev->watch_request = NULL;
2930 out_cancel:
2931         /* Cancel the event if we're tearing down, or on error */
2932         ceph_osdc_cancel_event(rbd_dev->watch_event);
2933         rbd_dev->watch_event = NULL;
2934         if (obj_request)
2935                 rbd_obj_request_put(obj_request);
2936
2937         return ret;
2938 }
2939
2940 /*
2941  * Synchronous osd object method call.  Returns the number of bytes
2942  * returned in the outbound buffer, or a negative error code.
2943  */
2944 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2945                              const char *object_name,
2946                              const char *class_name,
2947                              const char *method_name,
2948                              const void *outbound,
2949                              size_t outbound_size,
2950                              void *inbound,
2951                              size_t inbound_size)
2952 {
2953         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2954         struct rbd_obj_request *obj_request;
2955         struct page **pages;
2956         u32 page_count;
2957         int ret;
2958
2959         /*
2960          * Method calls are ultimately read operations.  The result
2961          * should placed into the inbound buffer provided.  They
2962          * also supply outbound data--parameters for the object
2963          * method.  Currently if this is present it will be a
2964          * snapshot id.
2965          */
2966         page_count = (u32)calc_pages_for(0, inbound_size);
2967         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2968         if (IS_ERR(pages))
2969                 return PTR_ERR(pages);
2970
2971         ret = -ENOMEM;
2972         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2973                                                         OBJ_REQUEST_PAGES);
2974         if (!obj_request)
2975                 goto out;
2976
2977         obj_request->pages = pages;
2978         obj_request->page_count = page_count;
2979
2980         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2981         if (!obj_request->osd_req)
2982                 goto out;
2983
2984         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2985                                         class_name, method_name);
2986         if (outbound_size) {
2987                 struct ceph_pagelist *pagelist;
2988
2989                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2990                 if (!pagelist)
2991                         goto out;
2992
2993                 ceph_pagelist_init(pagelist);
2994                 ceph_pagelist_append(pagelist, outbound, outbound_size);
2995                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2996                                                 pagelist);
2997         }
2998         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
2999                                         obj_request->pages, inbound_size,
3000                                         0, false, false);
3001         rbd_osd_req_format_read(obj_request);
3002
3003         ret = rbd_obj_request_submit(osdc, obj_request);
3004         if (ret)
3005                 goto out;
3006         ret = rbd_obj_request_wait(obj_request);
3007         if (ret)
3008                 goto out;
3009
3010         ret = obj_request->result;
3011         if (ret < 0)
3012                 goto out;
3013
3014         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3015         ret = (int)obj_request->xferred;
3016         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3017 out:
3018         if (obj_request)
3019                 rbd_obj_request_put(obj_request);
3020         else
3021                 ceph_release_page_vector(pages, page_count);
3022
3023         return ret;
3024 }
3025
3026 static void rbd_request_fn(struct request_queue *q)
3027                 __releases(q->queue_lock) __acquires(q->queue_lock)
3028 {
3029         struct rbd_device *rbd_dev = q->queuedata;
3030         bool read_only = rbd_dev->mapping.read_only;
3031         struct request *rq;
3032         int result;
3033
3034         while ((rq = blk_fetch_request(q))) {
3035                 bool write_request = rq_data_dir(rq) == WRITE;
3036                 struct rbd_img_request *img_request;
3037                 u64 offset;
3038                 u64 length;
3039
3040                 /* Ignore any non-FS requests that filter through. */
3041
3042                 if (rq->cmd_type != REQ_TYPE_FS) {
3043                         dout("%s: non-fs request type %d\n", __func__,
3044                                 (int) rq->cmd_type);
3045                         __blk_end_request_all(rq, 0);
3046                         continue;
3047                 }
3048
3049                 /* Ignore/skip any zero-length requests */
3050
3051                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3052                 length = (u64) blk_rq_bytes(rq);
3053
3054                 if (!length) {
3055                         dout("%s: zero-length request\n", __func__);
3056                         __blk_end_request_all(rq, 0);
3057                         continue;
3058                 }
3059
3060                 spin_unlock_irq(q->queue_lock);
3061
3062                 /* Disallow writes to a read-only device */
3063
3064                 if (write_request) {
3065                         result = -EROFS;
3066                         if (read_only)
3067                                 goto end_request;
3068                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3069                 }
3070
3071                 /*
3072                  * Quit early if the mapped snapshot no longer
3073                  * exists.  It's still possible the snapshot will
3074                  * have disappeared by the time our request arrives
3075                  * at the osd, but there's no sense in sending it if
3076                  * we already know.
3077                  */
3078                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3079                         dout("request for non-existent snapshot");
3080                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3081                         result = -ENXIO;
3082                         goto end_request;
3083                 }
3084
3085                 result = -EINVAL;
3086                 if (offset && length > U64_MAX - offset + 1) {
3087                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3088                                 offset, length);
3089                         goto end_request;       /* Shouldn't happen */
3090                 }
3091
3092                 result = -EIO;
3093                 if (offset + length > rbd_dev->mapping.size) {
3094                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3095                                 offset, length, rbd_dev->mapping.size);
3096                         goto end_request;
3097                 }
3098
3099                 result = -ENOMEM;
3100                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3101                                                         write_request);
3102                 if (!img_request)
3103                         goto end_request;
3104
3105                 img_request->rq = rq;
3106
3107                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3108                                                 rq->bio);
3109                 if (!result)
3110                         result = rbd_img_request_submit(img_request);
3111                 if (result)
3112                         rbd_img_request_put(img_request);
3113 end_request:
3114                 spin_lock_irq(q->queue_lock);
3115                 if (result < 0) {
3116                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3117                                 write_request ? "write" : "read",
3118                                 length, offset, result);
3119
3120                         __blk_end_request_all(rq, result);
3121                 }
3122         }
3123 }
3124
3125 /*
3126  * a queue callback. Makes sure that we don't create a bio that spans across
3127  * multiple osd objects. One exception would be with a single page bios,
3128  * which we handle later at bio_chain_clone_range()
3129  */
3130 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3131                           struct bio_vec *bvec)
3132 {
3133         struct rbd_device *rbd_dev = q->queuedata;
3134         sector_t sector_offset;
3135         sector_t sectors_per_obj;
3136         sector_t obj_sector_offset;
3137         int ret;
3138
3139         /*
3140          * Find how far into its rbd object the partition-relative
3141          * bio start sector is to offset relative to the enclosing
3142          * device.
3143          */
3144         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3145         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3146         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3147
3148         /*
3149          * Compute the number of bytes from that offset to the end
3150          * of the object.  Account for what's already used by the bio.
3151          */
3152         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3153         if (ret > bmd->bi_size)
3154                 ret -= bmd->bi_size;
3155         else
3156                 ret = 0;
3157
3158         /*
3159          * Don't send back more than was asked for.  And if the bio
3160          * was empty, let the whole thing through because:  "Note
3161          * that a block device *must* allow a single page to be
3162          * added to an empty bio."
3163          */
3164         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3165         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3166                 ret = (int) bvec->bv_len;
3167
3168         return ret;
3169 }
3170
3171 static void rbd_free_disk(struct rbd_device *rbd_dev)
3172 {
3173         struct gendisk *disk = rbd_dev->disk;
3174
3175         if (!disk)
3176                 return;
3177
3178         rbd_dev->disk = NULL;
3179         if (disk->flags & GENHD_FL_UP) {
3180                 del_gendisk(disk);
3181                 if (disk->queue)
3182                         blk_cleanup_queue(disk->queue);
3183         }
3184         put_disk(disk);
3185 }
3186
3187 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3188                                 const char *object_name,
3189                                 u64 offset, u64 length, void *buf)
3190
3191 {
3192         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3193         struct rbd_obj_request *obj_request;
3194         struct page **pages = NULL;
3195         u32 page_count;
3196         size_t size;
3197         int ret;
3198
3199         page_count = (u32) calc_pages_for(offset, length);
3200         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3201         if (IS_ERR(pages))
3202                 ret = PTR_ERR(pages);
3203
3204         ret = -ENOMEM;
3205         obj_request = rbd_obj_request_create(object_name, offset, length,
3206                                                         OBJ_REQUEST_PAGES);
3207         if (!obj_request)
3208                 goto out;
3209
3210         obj_request->pages = pages;
3211         obj_request->page_count = page_count;
3212
3213         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3214         if (!obj_request->osd_req)
3215                 goto out;
3216
3217         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3218                                         offset, length, 0, 0);
3219         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3220                                         obj_request->pages,
3221                                         obj_request->length,
3222                                         obj_request->offset & ~PAGE_MASK,
3223                                         false, false);
3224         rbd_osd_req_format_read(obj_request);
3225
3226         ret = rbd_obj_request_submit(osdc, obj_request);
3227         if (ret)
3228                 goto out;
3229         ret = rbd_obj_request_wait(obj_request);
3230         if (ret)
3231                 goto out;
3232
3233         ret = obj_request->result;
3234         if (ret < 0)
3235                 goto out;
3236
3237         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3238         size = (size_t) obj_request->xferred;
3239         ceph_copy_from_page_vector(pages, buf, 0, size);
3240         rbd_assert(size <= (size_t)INT_MAX);
3241         ret = (int)size;
3242 out:
3243         if (obj_request)
3244                 rbd_obj_request_put(obj_request);
3245         else
3246                 ceph_release_page_vector(pages, page_count);
3247
3248         return ret;
3249 }
3250
3251 /*
3252  * Read the complete header for the given rbd device.  On successful
3253  * return, the rbd_dev->header field will contain up-to-date
3254  * information about the image.
3255  */
3256 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3257 {
3258         struct rbd_image_header_ondisk *ondisk = NULL;
3259         u32 snap_count = 0;
3260         u64 names_size = 0;
3261         u32 want_count;
3262         int ret;
3263
3264         /*
3265          * The complete header will include an array of its 64-bit
3266          * snapshot ids, followed by the names of those snapshots as
3267          * a contiguous block of NUL-terminated strings.  Note that
3268          * the number of snapshots could change by the time we read
3269          * it in, in which case we re-read it.
3270          */
3271         do {
3272                 size_t size;
3273
3274                 kfree(ondisk);
3275
3276                 size = sizeof (*ondisk);
3277                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3278                 size += names_size;
3279                 ondisk = kmalloc(size, GFP_KERNEL);
3280                 if (!ondisk)
3281                         return -ENOMEM;
3282
3283                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3284                                        0, size, ondisk);
3285                 if (ret < 0)
3286                         goto out;
3287                 if ((size_t)ret < size) {
3288                         ret = -ENXIO;
3289                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3290                                 size, ret);
3291                         goto out;
3292                 }
3293                 if (!rbd_dev_ondisk_valid(ondisk)) {
3294                         ret = -ENXIO;
3295                         rbd_warn(rbd_dev, "invalid header");
3296                         goto out;
3297                 }
3298
3299                 names_size = le64_to_cpu(ondisk->snap_names_len);
3300                 want_count = snap_count;
3301                 snap_count = le32_to_cpu(ondisk->snap_count);
3302         } while (snap_count != want_count);
3303
3304         ret = rbd_header_from_disk(rbd_dev, ondisk);
3305 out:
3306         kfree(ondisk);
3307
3308         return ret;
3309 }
3310
3311 /*
3312  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3313  * has disappeared from the (just updated) snapshot context.
3314  */
3315 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3316 {
3317         u64 snap_id;
3318
3319         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3320                 return;
3321
3322         snap_id = rbd_dev->spec->snap_id;
3323         if (snap_id == CEPH_NOSNAP)
3324                 return;
3325
3326         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3327                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3328 }
3329
3330 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3331 {
3332         u64 mapping_size;
3333         int ret;
3334
3335         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3336         mapping_size = rbd_dev->mapping.size;
3337         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3338         if (rbd_dev->image_format == 1)
3339                 ret = rbd_dev_v1_header_info(rbd_dev);
3340         else
3341                 ret = rbd_dev_v2_header_info(rbd_dev);
3342
3343         /* If it's a mapped snapshot, validate its EXISTS flag */
3344
3345         rbd_exists_validate(rbd_dev);
3346         mutex_unlock(&ctl_mutex);
3347         if (mapping_size != rbd_dev->mapping.size) {
3348                 sector_t size;
3349
3350                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3351                 dout("setting size to %llu sectors", (unsigned long long)size);
3352                 set_capacity(rbd_dev->disk, size);
3353                 revalidate_disk(rbd_dev->disk);
3354         }
3355
3356         return ret;
3357 }
3358
3359 static int rbd_init_disk(struct rbd_device *rbd_dev)
3360 {
3361         struct gendisk *disk;
3362         struct request_queue *q;
3363         u64 segment_size;
3364
3365         /* create gendisk info */
3366         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3367         if (!disk)
3368                 return -ENOMEM;
3369
3370         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3371                  rbd_dev->dev_id);
3372         disk->major = rbd_dev->major;
3373         disk->first_minor = 0;
3374         disk->fops = &rbd_bd_ops;
3375         disk->private_data = rbd_dev;
3376
3377         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3378         if (!q)
3379                 goto out_disk;
3380
3381         /* We use the default size, but let's be explicit about it. */
3382         blk_queue_physical_block_size(q, SECTOR_SIZE);
3383
3384         /* set io sizes to object size */
3385         segment_size = rbd_obj_bytes(&rbd_dev->header);
3386         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3387         blk_queue_max_segment_size(q, segment_size);
3388         blk_queue_io_min(q, segment_size);
3389         blk_queue_io_opt(q, segment_size);
3390
3391         blk_queue_merge_bvec(q, rbd_merge_bvec);
3392         disk->queue = q;
3393
3394         q->queuedata = rbd_dev;
3395
3396         rbd_dev->disk = disk;
3397
3398         return 0;
3399 out_disk:
3400         put_disk(disk);
3401
3402         return -ENOMEM;
3403 }
3404
3405 /*
3406   sysfs
3407 */
3408
3409 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3410 {
3411         return container_of(dev, struct rbd_device, dev);
3412 }
3413
3414 static ssize_t rbd_size_show(struct device *dev,
3415                              struct device_attribute *attr, char *buf)
3416 {
3417         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3418
3419         return sprintf(buf, "%llu\n",
3420                 (unsigned long long)rbd_dev->mapping.size);
3421 }
3422
3423 /*
3424  * Note this shows the features for whatever's mapped, which is not
3425  * necessarily the base image.
3426  */
3427 static ssize_t rbd_features_show(struct device *dev,
3428                              struct device_attribute *attr, char *buf)
3429 {
3430         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3431
3432         return sprintf(buf, "0x%016llx\n",
3433                         (unsigned long long)rbd_dev->mapping.features);
3434 }
3435
3436 static ssize_t rbd_major_show(struct device *dev,
3437                               struct device_attribute *attr, char *buf)
3438 {
3439         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3440
3441         if (rbd_dev->major)
3442                 return sprintf(buf, "%d\n", rbd_dev->major);
3443
3444         return sprintf(buf, "(none)\n");
3445
3446 }
3447
3448 static ssize_t rbd_client_id_show(struct device *dev,
3449                                   struct device_attribute *attr, char *buf)
3450 {
3451         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3452
3453         return sprintf(buf, "client%lld\n",
3454                         ceph_client_id(rbd_dev->rbd_client->client));
3455 }
3456
3457 static ssize_t rbd_pool_show(struct device *dev,
3458                              struct device_attribute *attr, char *buf)
3459 {
3460         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3461
3462         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3463 }
3464
3465 static ssize_t rbd_pool_id_show(struct device *dev,
3466                              struct device_attribute *attr, char *buf)
3467 {
3468         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3469
3470         return sprintf(buf, "%llu\n",
3471                         (unsigned long long) rbd_dev->spec->pool_id);
3472 }
3473
3474 static ssize_t rbd_name_show(struct device *dev,
3475                              struct device_attribute *attr, char *buf)
3476 {
3477         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3478
3479         if (rbd_dev->spec->image_name)
3480                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3481
3482         return sprintf(buf, "(unknown)\n");
3483 }
3484
3485 static ssize_t rbd_image_id_show(struct device *dev,
3486                              struct device_attribute *attr, char *buf)
3487 {
3488         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3489
3490         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3491 }
3492
3493 /*
3494  * Shows the name of the currently-mapped snapshot (or
3495  * RBD_SNAP_HEAD_NAME for the base image).
3496  */
3497 static ssize_t rbd_snap_show(struct device *dev,
3498                              struct device_attribute *attr,
3499                              char *buf)
3500 {
3501         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3502
3503         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3504 }
3505
3506 /*
3507  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3508  * for the parent image.  If there is no parent, simply shows
3509  * "(no parent image)".
3510  */
3511 static ssize_t rbd_parent_show(struct device *dev,
3512                              struct device_attribute *attr,
3513                              char *buf)
3514 {
3515         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3516         struct rbd_spec *spec = rbd_dev->parent_spec;
3517         int count;
3518         char *bufp = buf;
3519
3520         if (!spec)
3521                 return sprintf(buf, "(no parent image)\n");
3522
3523         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3524                         (unsigned long long) spec->pool_id, spec->pool_name);
3525         if (count < 0)
3526                 return count;
3527         bufp += count;
3528
3529         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3530                         spec->image_name ? spec->image_name : "(unknown)");
3531         if (count < 0)
3532                 return count;
3533         bufp += count;
3534
3535         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3536                         (unsigned long long) spec->snap_id, spec->snap_name);
3537         if (count < 0)
3538                 return count;
3539         bufp += count;
3540
3541         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3542         if (count < 0)
3543                 return count;
3544         bufp += count;
3545
3546         return (ssize_t) (bufp - buf);
3547 }
3548
3549 static ssize_t rbd_image_refresh(struct device *dev,
3550                                  struct device_attribute *attr,
3551                                  const char *buf,
3552                                  size_t size)
3553 {
3554         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3555         int ret;
3556
3557         ret = rbd_dev_refresh(rbd_dev);
3558         if (ret)
3559                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3560
3561         return ret < 0 ? ret : size;
3562 }
3563
3564 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3565 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3566 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3567 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3568 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3569 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3570 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3571 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3572 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3573 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3574 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3575
3576 static struct attribute *rbd_attrs[] = {
3577         &dev_attr_size.attr,
3578         &dev_attr_features.attr,
3579         &dev_attr_major.attr,
3580         &dev_attr_client_id.attr,
3581         &dev_attr_pool.attr,
3582         &dev_attr_pool_id.attr,
3583         &dev_attr_name.attr,
3584         &dev_attr_image_id.attr,
3585         &dev_attr_current_snap.attr,
3586         &dev_attr_parent.attr,
3587         &dev_attr_refresh.attr,
3588         NULL
3589 };
3590
3591 static struct attribute_group rbd_attr_group = {
3592         .attrs = rbd_attrs,
3593 };
3594
3595 static const struct attribute_group *rbd_attr_groups[] = {
3596         &rbd_attr_group,
3597         NULL
3598 };
3599
3600 static void rbd_sysfs_dev_release(struct device *dev)
3601 {
3602 }
3603
3604 static struct device_type rbd_device_type = {
3605         .name           = "rbd",
3606         .groups         = rbd_attr_groups,
3607         .release        = rbd_sysfs_dev_release,
3608 };
3609
3610 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3611 {
3612         kref_get(&spec->kref);
3613
3614         return spec;
3615 }
3616
3617 static void rbd_spec_free(struct kref *kref);
3618 static void rbd_spec_put(struct rbd_spec *spec)
3619 {
3620         if (spec)
3621                 kref_put(&spec->kref, rbd_spec_free);
3622 }
3623
3624 static struct rbd_spec *rbd_spec_alloc(void)
3625 {
3626         struct rbd_spec *spec;
3627
3628         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3629         if (!spec)
3630                 return NULL;
3631         kref_init(&spec->kref);
3632
3633         return spec;
3634 }
3635
3636 static void rbd_spec_free(struct kref *kref)
3637 {
3638         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3639
3640         kfree(spec->pool_name);
3641         kfree(spec->image_id);
3642         kfree(spec->image_name);
3643         kfree(spec->snap_name);
3644         kfree(spec);
3645 }
3646
3647 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3648                                 struct rbd_spec *spec)
3649 {
3650         struct rbd_device *rbd_dev;
3651
3652         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3653         if (!rbd_dev)
3654                 return NULL;
3655
3656         spin_lock_init(&rbd_dev->lock);
3657         rbd_dev->flags = 0;
3658         atomic_set(&rbd_dev->parent_ref, 0);
3659         INIT_LIST_HEAD(&rbd_dev->node);
3660         init_rwsem(&rbd_dev->header_rwsem);
3661
3662         rbd_dev->spec = spec;
3663         rbd_dev->rbd_client = rbdc;
3664
3665         /* Initialize the layout used for all rbd requests */
3666
3667         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3668         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3669         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3670         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3671
3672         return rbd_dev;
3673 }
3674
3675 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3676 {
3677         rbd_put_client(rbd_dev->rbd_client);
3678         rbd_spec_put(rbd_dev->spec);
3679         kfree(rbd_dev);
3680 }
3681
3682 /*
3683  * Get the size and object order for an image snapshot, or if
3684  * snap_id is CEPH_NOSNAP, gets this information for the base
3685  * image.
3686  */
3687 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3688                                 u8 *order, u64 *snap_size)
3689 {
3690         __le64 snapid = cpu_to_le64(snap_id);
3691         int ret;
3692         struct {
3693                 u8 order;
3694                 __le64 size;
3695         } __attribute__ ((packed)) size_buf = { 0 };
3696
3697         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3698                                 "rbd", "get_size",
3699                                 &snapid, sizeof (snapid),
3700                                 &size_buf, sizeof (size_buf));
3701         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3702         if (ret < 0)
3703                 return ret;
3704         if (ret < sizeof (size_buf))
3705                 return -ERANGE;
3706
3707         if (order)
3708                 *order = size_buf.order;
3709         *snap_size = le64_to_cpu(size_buf.size);
3710
3711         dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
3712                 (unsigned long long)snap_id, (unsigned int)*order,
3713                 (unsigned long long)*snap_size);
3714
3715         return 0;
3716 }
3717
3718 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3719 {
3720         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3721                                         &rbd_dev->header.obj_order,
3722                                         &rbd_dev->header.image_size);
3723 }
3724
3725 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3726 {
3727         void *reply_buf;
3728         int ret;
3729         void *p;
3730
3731         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3732         if (!reply_buf)
3733                 return -ENOMEM;
3734
3735         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3736                                 "rbd", "get_object_prefix", NULL, 0,
3737                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3738         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3739         if (ret < 0)
3740                 goto out;
3741
3742         p = reply_buf;
3743         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3744                                                 p + ret, NULL, GFP_NOIO);
3745         ret = 0;
3746
3747         if (IS_ERR(rbd_dev->header.object_prefix)) {
3748                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3749                 rbd_dev->header.object_prefix = NULL;
3750         } else {
3751                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3752         }
3753 out:
3754         kfree(reply_buf);
3755
3756         return ret;
3757 }
3758
3759 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3760                 u64 *snap_features)
3761 {
3762         __le64 snapid = cpu_to_le64(snap_id);
3763         struct {
3764                 __le64 features;
3765                 __le64 incompat;
3766         } __attribute__ ((packed)) features_buf = { 0 };
3767         u64 incompat;
3768         int ret;
3769
3770         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3771                                 "rbd", "get_features",
3772                                 &snapid, sizeof (snapid),
3773                                 &features_buf, sizeof (features_buf));
3774         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3775         if (ret < 0)
3776                 return ret;
3777         if (ret < sizeof (features_buf))
3778                 return -ERANGE;
3779
3780         incompat = le64_to_cpu(features_buf.incompat);
3781         if (incompat & ~RBD_FEATURES_SUPPORTED)
3782                 return -ENXIO;
3783
3784         *snap_features = le64_to_cpu(features_buf.features);
3785
3786         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3787                 (unsigned long long)snap_id,
3788                 (unsigned long long)*snap_features,
3789                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3790
3791         return 0;
3792 }
3793
3794 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3795 {
3796         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3797                                                 &rbd_dev->header.features);
3798 }
3799
3800 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3801 {
3802         struct rbd_spec *parent_spec;
3803         size_t size;
3804         void *reply_buf = NULL;
3805         __le64 snapid;
3806         void *p;
3807         void *end;
3808         u64 pool_id;
3809         char *image_id;
3810         u64 overlap;
3811         int ret;
3812
3813         parent_spec = rbd_spec_alloc();
3814         if (!parent_spec)
3815                 return -ENOMEM;
3816
3817         size = sizeof (__le64) +                                /* pool_id */
3818                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3819                 sizeof (__le64) +                               /* snap_id */
3820                 sizeof (__le64);                                /* overlap */
3821         reply_buf = kmalloc(size, GFP_KERNEL);
3822         if (!reply_buf) {
3823                 ret = -ENOMEM;
3824                 goto out_err;
3825         }
3826
3827         snapid = cpu_to_le64(CEPH_NOSNAP);
3828         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3829                                 "rbd", "get_parent",
3830                                 &snapid, sizeof (snapid),
3831                                 reply_buf, size);
3832         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3833         if (ret < 0)
3834                 goto out_err;
3835
3836         p = reply_buf;
3837         end = reply_buf + ret;
3838         ret = -ERANGE;
3839         ceph_decode_64_safe(&p, end, pool_id, out_err);
3840         if (pool_id == CEPH_NOPOOL) {
3841                 /*
3842                  * Either the parent never existed, or we have
3843                  * record of it but the image got flattened so it no
3844                  * longer has a parent.  When the parent of a
3845                  * layered image disappears we immediately set the
3846                  * overlap to 0.  The effect of this is that all new
3847                  * requests will be treated as if the image had no
3848                  * parent.
3849                  */
3850                 if (rbd_dev->parent_overlap) {
3851                         rbd_dev->parent_overlap = 0;
3852                         smp_mb();
3853                         rbd_dev_parent_put(rbd_dev);
3854                         pr_info("%s: clone image has been flattened\n",
3855                                 rbd_dev->disk->disk_name);
3856                 }
3857
3858                 goto out;       /* No parent?  No problem. */
3859         }
3860
3861         /* The ceph file layout needs to fit pool id in 32 bits */
3862
3863         ret = -EIO;
3864         if (pool_id > (u64)U32_MAX) {
3865                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3866                         (unsigned long long)pool_id, U32_MAX);
3867                 goto out_err;
3868         }
3869         parent_spec->pool_id = pool_id;
3870
3871         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3872         if (IS_ERR(image_id)) {
3873                 ret = PTR_ERR(image_id);
3874                 goto out_err;
3875         }
3876         parent_spec->image_id = image_id;
3877         ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3878         ceph_decode_64_safe(&p, end, overlap, out_err);
3879
3880         if (overlap) {
3881                 rbd_spec_put(rbd_dev->parent_spec);
3882                 rbd_dev->parent_spec = parent_spec;
3883                 parent_spec = NULL;     /* rbd_dev now owns this */
3884                 rbd_dev->parent_overlap = overlap;
3885         } else {
3886                 rbd_warn(rbd_dev, "ignoring parent of clone with overlap 0\n");
3887         }
3888 out:
3889         ret = 0;
3890 out_err:
3891         kfree(reply_buf);
3892         rbd_spec_put(parent_spec);
3893
3894         return ret;
3895 }
3896
3897 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3898 {
3899         struct {
3900                 __le64 stripe_unit;
3901                 __le64 stripe_count;
3902         } __attribute__ ((packed)) striping_info_buf = { 0 };
3903         size_t size = sizeof (striping_info_buf);
3904         void *p;
3905         u64 obj_size;
3906         u64 stripe_unit;
3907         u64 stripe_count;
3908         int ret;
3909
3910         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3911                                 "rbd", "get_stripe_unit_count", NULL, 0,
3912                                 (char *)&striping_info_buf, size);
3913         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3914         if (ret < 0)
3915                 return ret;
3916         if (ret < size)
3917                 return -ERANGE;
3918
3919         /*
3920          * We don't actually support the "fancy striping" feature
3921          * (STRIPINGV2) yet, but if the striping sizes are the
3922          * defaults the behavior is the same as before.  So find
3923          * out, and only fail if the image has non-default values.
3924          */
3925         ret = -EINVAL;
3926         obj_size = (u64)1 << rbd_dev->header.obj_order;
3927         p = &striping_info_buf;
3928         stripe_unit = ceph_decode_64(&p);
3929         if (stripe_unit != obj_size) {
3930                 rbd_warn(rbd_dev, "unsupported stripe unit "
3931                                 "(got %llu want %llu)",
3932                                 stripe_unit, obj_size);
3933                 return -EINVAL;
3934         }
3935         stripe_count = ceph_decode_64(&p);
3936         if (stripe_count != 1) {
3937                 rbd_warn(rbd_dev, "unsupported stripe count "
3938                                 "(got %llu want 1)", stripe_count);
3939                 return -EINVAL;
3940         }
3941         rbd_dev->header.stripe_unit = stripe_unit;
3942         rbd_dev->header.stripe_count = stripe_count;
3943
3944         return 0;
3945 }
3946
3947 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3948 {
3949         size_t image_id_size;
3950         char *image_id;
3951         void *p;
3952         void *end;
3953         size_t size;
3954         void *reply_buf = NULL;
3955         size_t len = 0;
3956         char *image_name = NULL;
3957         int ret;
3958
3959         rbd_assert(!rbd_dev->spec->image_name);
3960
3961         len = strlen(rbd_dev->spec->image_id);
3962         image_id_size = sizeof (__le32) + len;
3963         image_id = kmalloc(image_id_size, GFP_KERNEL);
3964         if (!image_id)
3965                 return NULL;
3966
3967         p = image_id;
3968         end = image_id + image_id_size;
3969         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3970
3971         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3972         reply_buf = kmalloc(size, GFP_KERNEL);
3973         if (!reply_buf)
3974                 goto out;
3975
3976         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3977                                 "rbd", "dir_get_name",
3978                                 image_id, image_id_size,
3979                                 reply_buf, size);
3980         if (ret < 0)
3981                 goto out;
3982         p = reply_buf;
3983         end = reply_buf + ret;
3984
3985         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3986         if (IS_ERR(image_name))
3987                 image_name = NULL;
3988         else
3989                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3990 out:
3991         kfree(reply_buf);
3992         kfree(image_id);
3993
3994         return image_name;
3995 }
3996
3997 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
3998 {
3999         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4000         const char *snap_name;
4001         u32 which = 0;
4002
4003         /* Skip over names until we find the one we are looking for */
4004
4005         snap_name = rbd_dev->header.snap_names;
4006         while (which < snapc->num_snaps) {
4007                 if (!strcmp(name, snap_name))
4008                         return snapc->snaps[which];
4009                 snap_name += strlen(snap_name) + 1;
4010                 which++;
4011         }
4012         return CEPH_NOSNAP;
4013 }
4014
4015 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4016 {
4017         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4018         u32 which;
4019         bool found = false;
4020         u64 snap_id;
4021
4022         for (which = 0; !found && which < snapc->num_snaps; which++) {
4023                 const char *snap_name;
4024
4025                 snap_id = snapc->snaps[which];
4026                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4027                 if (IS_ERR(snap_name))
4028                         break;
4029                 found = !strcmp(name, snap_name);
4030                 kfree(snap_name);
4031         }
4032         return found ? snap_id : CEPH_NOSNAP;
4033 }
4034
4035 /*
4036  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4037  * no snapshot by that name is found, or if an error occurs.
4038  */
4039 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4040 {
4041         if (rbd_dev->image_format == 1)
4042                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4043
4044         return rbd_v2_snap_id_by_name(rbd_dev, name);
4045 }
4046
4047 /*
4048  * When an rbd image has a parent image, it is identified by the
4049  * pool, image, and snapshot ids (not names).  This function fills
4050  * in the names for those ids.  (It's OK if we can't figure out the
4051  * name for an image id, but the pool and snapshot ids should always
4052  * exist and have names.)  All names in an rbd spec are dynamically
4053  * allocated.
4054  *
4055  * When an image being mapped (not a parent) is probed, we have the
4056  * pool name and pool id, image name and image id, and the snapshot
4057  * name.  The only thing we're missing is the snapshot id.
4058  */
4059 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4060 {
4061         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4062         struct rbd_spec *spec = rbd_dev->spec;
4063         const char *pool_name;
4064         const char *image_name;
4065         const char *snap_name;
4066         int ret;
4067
4068         /*
4069          * An image being mapped will have the pool name (etc.), but
4070          * we need to look up the snapshot id.
4071          */
4072         if (spec->pool_name) {
4073                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4074                         u64 snap_id;
4075
4076                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4077                         if (snap_id == CEPH_NOSNAP)
4078                                 return -ENOENT;
4079                         spec->snap_id = snap_id;
4080                 } else {
4081                         spec->snap_id = CEPH_NOSNAP;
4082                 }
4083
4084                 return 0;
4085         }
4086
4087         /* Get the pool name; we have to make our own copy of this */
4088
4089         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4090         if (!pool_name) {
4091                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4092                 return -EIO;
4093         }
4094         pool_name = kstrdup(pool_name, GFP_KERNEL);
4095         if (!pool_name)
4096                 return -ENOMEM;
4097
4098         /* Fetch the image name; tolerate failure here */
4099
4100         image_name = rbd_dev_image_name(rbd_dev);
4101         if (!image_name)
4102                 rbd_warn(rbd_dev, "unable to get image name");
4103
4104         /* Look up the snapshot name, and make a copy */
4105
4106         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4107         if (!snap_name) {
4108                 ret = -ENOMEM;
4109                 goto out_err;
4110         }
4111
4112         spec->pool_name = pool_name;
4113         spec->image_name = image_name;
4114         spec->snap_name = snap_name;
4115
4116         return 0;
4117 out_err:
4118         kfree(image_name);
4119         kfree(pool_name);
4120
4121         return ret;
4122 }
4123
4124 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4125 {
4126         size_t size;
4127         int ret;
4128         void *reply_buf;
4129         void *p;
4130         void *end;
4131         u64 seq;
4132         u32 snap_count;
4133         struct ceph_snap_context *snapc;
4134         u32 i;
4135
4136         /*
4137          * We'll need room for the seq value (maximum snapshot id),
4138          * snapshot count, and array of that many snapshot ids.
4139          * For now we have a fixed upper limit on the number we're
4140          * prepared to receive.
4141          */
4142         size = sizeof (__le64) + sizeof (__le32) +
4143                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4144         reply_buf = kzalloc(size, GFP_KERNEL);
4145         if (!reply_buf)
4146                 return -ENOMEM;
4147
4148         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4149                                 "rbd", "get_snapcontext", NULL, 0,
4150                                 reply_buf, size);
4151         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4152         if (ret < 0)
4153                 goto out;
4154
4155         p = reply_buf;
4156         end = reply_buf + ret;
4157         ret = -ERANGE;
4158         ceph_decode_64_safe(&p, end, seq, out);
4159         ceph_decode_32_safe(&p, end, snap_count, out);
4160
4161         /*
4162          * Make sure the reported number of snapshot ids wouldn't go
4163          * beyond the end of our buffer.  But before checking that,
4164          * make sure the computed size of the snapshot context we
4165          * allocate is representable in a size_t.
4166          */
4167         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4168                                  / sizeof (u64)) {
4169                 ret = -EINVAL;
4170                 goto out;
4171         }
4172         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4173                 goto out;
4174         ret = 0;
4175
4176         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4177         if (!snapc) {
4178                 ret = -ENOMEM;
4179                 goto out;
4180         }
4181         snapc->seq = seq;
4182         for (i = 0; i < snap_count; i++)
4183                 snapc->snaps[i] = ceph_decode_64(&p);
4184
4185         ceph_put_snap_context(rbd_dev->header.snapc);
4186         rbd_dev->header.snapc = snapc;
4187
4188         dout("  snap context seq = %llu, snap_count = %u\n",
4189                 (unsigned long long)seq, (unsigned int)snap_count);
4190 out:
4191         kfree(reply_buf);
4192
4193         return ret;
4194 }
4195
4196 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4197                                         u64 snap_id)
4198 {
4199         size_t size;
4200         void *reply_buf;
4201         __le64 snapid;
4202         int ret;
4203         void *p;
4204         void *end;
4205         char *snap_name;
4206
4207         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4208         reply_buf = kmalloc(size, GFP_KERNEL);
4209         if (!reply_buf)
4210                 return ERR_PTR(-ENOMEM);
4211
4212         snapid = cpu_to_le64(snap_id);
4213         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4214                                 "rbd", "get_snapshot_name",
4215                                 &snapid, sizeof (snapid),
4216                                 reply_buf, size);
4217         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4218         if (ret < 0) {
4219                 snap_name = ERR_PTR(ret);
4220                 goto out;
4221         }
4222
4223         p = reply_buf;
4224         end = reply_buf + ret;
4225         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4226         if (IS_ERR(snap_name))
4227                 goto out;
4228
4229         dout("  snap_id 0x%016llx snap_name = %s\n",
4230                 (unsigned long long)snap_id, snap_name);
4231 out:
4232         kfree(reply_buf);
4233
4234         return snap_name;
4235 }
4236
4237 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4238 {
4239         bool first_time = rbd_dev->header.object_prefix == NULL;
4240         int ret;
4241
4242         down_write(&rbd_dev->header_rwsem);
4243
4244         if (first_time) {
4245                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4246                 if (ret)
4247                         goto out;
4248         }
4249
4250         /*
4251          * If the image supports layering, get the parent info.  We
4252          * need to probe the first time regardless.  Thereafter we
4253          * only need to if there's a parent, to see if it has
4254          * disappeared due to the mapped image getting flattened.
4255          */
4256         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4257                         (first_time || rbd_dev->parent_spec)) {
4258                 bool warn;
4259
4260                 ret = rbd_dev_v2_parent_info(rbd_dev);
4261                 if (ret)
4262                         goto out;
4263
4264                 /*
4265                  * Print a warning if this is the initial probe and
4266                  * the image has a parent.  Don't print it if the
4267                  * image now being probed is itself a parent.  We
4268                  * can tell at this point because we won't know its
4269                  * pool name yet (just its pool id).
4270                  */
4271                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4272                 if (first_time && warn)
4273                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4274                                         "is EXPERIMENTAL!");
4275         }
4276
4277         ret = rbd_dev_v2_image_size(rbd_dev);
4278         if (ret)
4279                 goto out;
4280
4281         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4282                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4283                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4284
4285         ret = rbd_dev_v2_snap_context(rbd_dev);
4286         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4287 out:
4288         up_write(&rbd_dev->header_rwsem);
4289
4290         return ret;
4291 }
4292
4293 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4294 {
4295         struct device *dev;
4296         int ret;
4297
4298         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4299
4300         dev = &rbd_dev->dev;
4301         dev->bus = &rbd_bus_type;
4302         dev->type = &rbd_device_type;
4303         dev->parent = &rbd_root_dev;
4304         dev->release = rbd_dev_device_release;
4305         dev_set_name(dev, "%d", rbd_dev->dev_id);
4306         ret = device_register(dev);
4307
4308         mutex_unlock(&ctl_mutex);
4309
4310         return ret;
4311 }
4312
4313 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4314 {
4315         device_unregister(&rbd_dev->dev);
4316 }
4317
4318 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4319
4320 /*
4321  * Get a unique rbd identifier for the given new rbd_dev, and add
4322  * the rbd_dev to the global list.  The minimum rbd id is 1.
4323  */
4324 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4325 {
4326         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4327
4328         spin_lock(&rbd_dev_list_lock);
4329         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4330         spin_unlock(&rbd_dev_list_lock);
4331         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4332                 (unsigned long long) rbd_dev->dev_id);
4333 }
4334
4335 /*
4336  * Remove an rbd_dev from the global list, and record that its
4337  * identifier is no longer in use.
4338  */
4339 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4340 {
4341         struct list_head *tmp;
4342         int rbd_id = rbd_dev->dev_id;
4343         int max_id;
4344
4345         rbd_assert(rbd_id > 0);
4346
4347         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4348                 (unsigned long long) rbd_dev->dev_id);
4349         spin_lock(&rbd_dev_list_lock);
4350         list_del_init(&rbd_dev->node);
4351
4352         /*
4353          * If the id being "put" is not the current maximum, there
4354          * is nothing special we need to do.
4355          */
4356         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4357                 spin_unlock(&rbd_dev_list_lock);
4358                 return;
4359         }
4360
4361         /*
4362          * We need to update the current maximum id.  Search the
4363          * list to find out what it is.  We're more likely to find
4364          * the maximum at the end, so search the list backward.
4365          */
4366         max_id = 0;
4367         list_for_each_prev(tmp, &rbd_dev_list) {
4368                 struct rbd_device *rbd_dev;
4369
4370                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4371                 if (rbd_dev->dev_id > max_id)
4372                         max_id = rbd_dev->dev_id;
4373         }
4374         spin_unlock(&rbd_dev_list_lock);
4375
4376         /*
4377          * The max id could have been updated by rbd_dev_id_get(), in
4378          * which case it now accurately reflects the new maximum.
4379          * Be careful not to overwrite the maximum value in that
4380          * case.
4381          */
4382         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4383         dout("  max dev id has been reset\n");
4384 }
4385
4386 /*
4387  * Skips over white space at *buf, and updates *buf to point to the
4388  * first found non-space character (if any). Returns the length of
4389  * the token (string of non-white space characters) found.  Note
4390  * that *buf must be terminated with '\0'.
4391  */
4392 static inline size_t next_token(const char **buf)
4393 {
4394         /*
4395         * These are the characters that produce nonzero for
4396         * isspace() in the "C" and "POSIX" locales.
4397         */
4398         const char *spaces = " \f\n\r\t\v";
4399
4400         *buf += strspn(*buf, spaces);   /* Find start of token */
4401
4402         return strcspn(*buf, spaces);   /* Return token length */
4403 }
4404
4405 /*
4406  * Finds the next token in *buf, and if the provided token buffer is
4407  * big enough, copies the found token into it.  The result, if
4408  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4409  * must be terminated with '\0' on entry.
4410  *
4411  * Returns the length of the token found (not including the '\0').
4412  * Return value will be 0 if no token is found, and it will be >=
4413  * token_size if the token would not fit.
4414  *
4415  * The *buf pointer will be updated to point beyond the end of the
4416  * found token.  Note that this occurs even if the token buffer is
4417  * too small to hold it.
4418  */
4419 static inline size_t copy_token(const char **buf,
4420                                 char *token,
4421                                 size_t token_size)
4422 {
4423         size_t len;
4424
4425         len = next_token(buf);
4426         if (len < token_size) {
4427                 memcpy(token, *buf, len);
4428                 *(token + len) = '\0';
4429         }
4430         *buf += len;
4431
4432         return len;
4433 }
4434
4435 /*
4436  * Finds the next token in *buf, dynamically allocates a buffer big
4437  * enough to hold a copy of it, and copies the token into the new
4438  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4439  * that a duplicate buffer is created even for a zero-length token.
4440  *
4441  * Returns a pointer to the newly-allocated duplicate, or a null
4442  * pointer if memory for the duplicate was not available.  If
4443  * the lenp argument is a non-null pointer, the length of the token
4444  * (not including the '\0') is returned in *lenp.
4445  *
4446  * If successful, the *buf pointer will be updated to point beyond
4447  * the end of the found token.
4448  *
4449  * Note: uses GFP_KERNEL for allocation.
4450  */
4451 static inline char *dup_token(const char **buf, size_t *lenp)
4452 {
4453         char *dup;
4454         size_t len;
4455
4456         len = next_token(buf);
4457         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4458         if (!dup)
4459                 return NULL;
4460         *(dup + len) = '\0';
4461         *buf += len;
4462
4463         if (lenp)
4464                 *lenp = len;
4465
4466         return dup;
4467 }
4468
4469 /*
4470  * Parse the options provided for an "rbd add" (i.e., rbd image
4471  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4472  * and the data written is passed here via a NUL-terminated buffer.
4473  * Returns 0 if successful or an error code otherwise.
4474  *
4475  * The information extracted from these options is recorded in
4476  * the other parameters which return dynamically-allocated
4477  * structures:
4478  *  ceph_opts
4479  *      The address of a pointer that will refer to a ceph options
4480  *      structure.  Caller must release the returned pointer using
4481  *      ceph_destroy_options() when it is no longer needed.
4482  *  rbd_opts
4483  *      Address of an rbd options pointer.  Fully initialized by
4484  *      this function; caller must release with kfree().
4485  *  spec
4486  *      Address of an rbd image specification pointer.  Fully
4487  *      initialized by this function based on parsed options.
4488  *      Caller must release with rbd_spec_put().
4489  *
4490  * The options passed take this form:
4491  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4492  * where:
4493  *  <mon_addrs>
4494  *      A comma-separated list of one or more monitor addresses.
4495  *      A monitor address is an ip address, optionally followed
4496  *      by a port number (separated by a colon).
4497  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4498  *  <options>
4499  *      A comma-separated list of ceph and/or rbd options.
4500  *  <pool_name>
4501  *      The name of the rados pool containing the rbd image.
4502  *  <image_name>
4503  *      The name of the image in that pool to map.
4504  *  <snap_id>
4505  *      An optional snapshot id.  If provided, the mapping will
4506  *      present data from the image at the time that snapshot was
4507  *      created.  The image head is used if no snapshot id is
4508  *      provided.  Snapshot mappings are always read-only.
4509  */
4510 static int rbd_add_parse_args(const char *buf,
4511                                 struct ceph_options **ceph_opts,
4512                                 struct rbd_options **opts,
4513                                 struct rbd_spec **rbd_spec)
4514 {
4515         size_t len;
4516         char *options;
4517         const char *mon_addrs;
4518         char *snap_name;
4519         size_t mon_addrs_size;
4520         struct rbd_spec *spec = NULL;
4521         struct rbd_options *rbd_opts = NULL;
4522         struct ceph_options *copts;
4523         int ret;
4524
4525         /* The first four tokens are required */
4526
4527         len = next_token(&buf);
4528         if (!len) {
4529                 rbd_warn(NULL, "no monitor address(es) provided");
4530                 return -EINVAL;
4531         }
4532         mon_addrs = buf;
4533         mon_addrs_size = len + 1;
4534         buf += len;
4535
4536         ret = -EINVAL;
4537         options = dup_token(&buf, NULL);
4538         if (!options)
4539                 return -ENOMEM;
4540         if (!*options) {
4541                 rbd_warn(NULL, "no options provided");
4542                 goto out_err;
4543         }
4544
4545         spec = rbd_spec_alloc();
4546         if (!spec)
4547                 goto out_mem;
4548
4549         spec->pool_name = dup_token(&buf, NULL);
4550         if (!spec->pool_name)
4551                 goto out_mem;
4552         if (!*spec->pool_name) {
4553                 rbd_warn(NULL, "no pool name provided");
4554                 goto out_err;
4555         }
4556
4557         spec->image_name = dup_token(&buf, NULL);
4558         if (!spec->image_name)
4559                 goto out_mem;
4560         if (!*spec->image_name) {
4561                 rbd_warn(NULL, "no image name provided");
4562                 goto out_err;
4563         }
4564
4565         /*
4566          * Snapshot name is optional; default is to use "-"
4567          * (indicating the head/no snapshot).
4568          */
4569         len = next_token(&buf);
4570         if (!len) {
4571                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4572                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4573         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4574                 ret = -ENAMETOOLONG;
4575                 goto out_err;
4576         }
4577         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4578         if (!snap_name)
4579                 goto out_mem;
4580         *(snap_name + len) = '\0';
4581         spec->snap_name = snap_name;
4582
4583         /* Initialize all rbd options to the defaults */
4584
4585         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4586         if (!rbd_opts)
4587                 goto out_mem;
4588
4589         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4590
4591         copts = ceph_parse_options(options, mon_addrs,
4592                                         mon_addrs + mon_addrs_size - 1,
4593                                         parse_rbd_opts_token, rbd_opts);
4594         if (IS_ERR(copts)) {
4595                 ret = PTR_ERR(copts);
4596                 goto out_err;
4597         }
4598         kfree(options);
4599
4600         *ceph_opts = copts;
4601         *opts = rbd_opts;
4602         *rbd_spec = spec;
4603
4604         return 0;
4605 out_mem:
4606         ret = -ENOMEM;
4607 out_err:
4608         kfree(rbd_opts);
4609         rbd_spec_put(spec);
4610         kfree(options);
4611
4612         return ret;
4613 }
4614
4615 /*
4616  * An rbd format 2 image has a unique identifier, distinct from the
4617  * name given to it by the user.  Internally, that identifier is
4618  * what's used to specify the names of objects related to the image.
4619  *
4620  * A special "rbd id" object is used to map an rbd image name to its
4621  * id.  If that object doesn't exist, then there is no v2 rbd image
4622  * with the supplied name.
4623  *
4624  * This function will record the given rbd_dev's image_id field if
4625  * it can be determined, and in that case will return 0.  If any
4626  * errors occur a negative errno will be returned and the rbd_dev's
4627  * image_id field will be unchanged (and should be NULL).
4628  */
4629 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4630 {
4631         int ret;
4632         size_t size;
4633         char *object_name;
4634         void *response;
4635         char *image_id;
4636
4637         /*
4638          * When probing a parent image, the image id is already
4639          * known (and the image name likely is not).  There's no
4640          * need to fetch the image id again in this case.  We
4641          * do still need to set the image format though.
4642          */
4643         if (rbd_dev->spec->image_id) {
4644                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4645
4646                 return 0;
4647         }
4648
4649         /*
4650          * First, see if the format 2 image id file exists, and if
4651          * so, get the image's persistent id from it.
4652          */
4653         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4654         object_name = kmalloc(size, GFP_NOIO);
4655         if (!object_name)
4656                 return -ENOMEM;
4657         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4658         dout("rbd id object name is %s\n", object_name);
4659
4660         /* Response will be an encoded string, which includes a length */
4661
4662         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4663         response = kzalloc(size, GFP_NOIO);
4664         if (!response) {
4665                 ret = -ENOMEM;
4666                 goto out;
4667         }
4668
4669         /* If it doesn't exist we'll assume it's a format 1 image */
4670
4671         ret = rbd_obj_method_sync(rbd_dev, object_name,
4672                                 "rbd", "get_id", NULL, 0,
4673                                 response, RBD_IMAGE_ID_LEN_MAX);
4674         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4675         if (ret == -ENOENT) {
4676                 image_id = kstrdup("", GFP_KERNEL);
4677                 ret = image_id ? 0 : -ENOMEM;
4678                 if (!ret)
4679                         rbd_dev->image_format = 1;
4680         } else if (ret > sizeof (__le32)) {
4681                 void *p = response;
4682
4683                 image_id = ceph_extract_encoded_string(&p, p + ret,
4684                                                 NULL, GFP_NOIO);
4685                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4686                 if (!ret)
4687                         rbd_dev->image_format = 2;
4688         } else {
4689                 ret = -EINVAL;
4690         }
4691
4692         if (!ret) {
4693                 rbd_dev->spec->image_id = image_id;
4694                 dout("image_id is %s\n", image_id);
4695         }
4696 out:
4697         kfree(response);
4698         kfree(object_name);
4699
4700         return ret;
4701 }
4702
4703 /*
4704  * Undo whatever state changes are made by v1 or v2 header info
4705  * call.
4706  */
4707 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4708 {
4709         struct rbd_image_header *header;
4710
4711         /* Drop parent reference unless it's already been done (or none) */
4712
4713         if (rbd_dev->parent_overlap)
4714                 rbd_dev_parent_put(rbd_dev);
4715
4716         /* Free dynamic fields from the header, then zero it out */
4717
4718         header = &rbd_dev->header;
4719         ceph_put_snap_context(header->snapc);
4720         kfree(header->snap_sizes);
4721         kfree(header->snap_names);
4722         kfree(header->object_prefix);
4723         memset(header, 0, sizeof (*header));
4724 }
4725
4726 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4727 {
4728         int ret;
4729
4730         ret = rbd_dev_v2_object_prefix(rbd_dev);
4731         if (ret)
4732                 goto out_err;
4733
4734         /*
4735          * Get the and check features for the image.  Currently the
4736          * features are assumed to never change.
4737          */
4738         ret = rbd_dev_v2_features(rbd_dev);
4739         if (ret)
4740                 goto out_err;
4741
4742         /* If the image supports fancy striping, get its parameters */
4743
4744         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4745                 ret = rbd_dev_v2_striping_info(rbd_dev);
4746                 if (ret < 0)
4747                         goto out_err;
4748         }
4749         /* No support for crypto and compression type format 2 images */
4750
4751         return 0;
4752 out_err:
4753         rbd_dev->header.features = 0;
4754         kfree(rbd_dev->header.object_prefix);
4755         rbd_dev->header.object_prefix = NULL;
4756
4757         return ret;
4758 }
4759
4760 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4761 {
4762         struct rbd_device *parent = NULL;
4763         struct rbd_spec *parent_spec;
4764         struct rbd_client *rbdc;
4765         int ret;
4766
4767         if (!rbd_dev->parent_spec)
4768                 return 0;
4769         /*
4770          * We need to pass a reference to the client and the parent
4771          * spec when creating the parent rbd_dev.  Images related by
4772          * parent/child relationships always share both.
4773          */
4774         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4775         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4776
4777         ret = -ENOMEM;
4778         parent = rbd_dev_create(rbdc, parent_spec);
4779         if (!parent)
4780                 goto out_err;
4781
4782         ret = rbd_dev_image_probe(parent, false);
4783         if (ret < 0)
4784                 goto out_err;
4785         rbd_dev->parent = parent;
4786         atomic_set(&rbd_dev->parent_ref, 1);
4787
4788         return 0;
4789 out_err:
4790         if (parent) {
4791                 rbd_dev_unparent(rbd_dev);
4792                 kfree(rbd_dev->header_name);
4793                 rbd_dev_destroy(parent);
4794         } else {
4795                 rbd_put_client(rbdc);
4796                 rbd_spec_put(parent_spec);
4797         }
4798
4799         return ret;
4800 }
4801
4802 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4803 {
4804         int ret;
4805
4806         /* generate unique id: find highest unique id, add one */
4807         rbd_dev_id_get(rbd_dev);
4808
4809         /* Fill in the device name, now that we have its id. */
4810         BUILD_BUG_ON(DEV_NAME_LEN
4811                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4812         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4813
4814         /* Get our block major device number. */
4815
4816         ret = register_blkdev(0, rbd_dev->name);
4817         if (ret < 0)
4818                 goto err_out_id;
4819         rbd_dev->major = ret;
4820
4821         /* Set up the blkdev mapping. */
4822
4823         ret = rbd_init_disk(rbd_dev);
4824         if (ret)
4825                 goto err_out_blkdev;
4826
4827         ret = rbd_dev_mapping_set(rbd_dev);
4828         if (ret)
4829                 goto err_out_disk;
4830         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4831
4832         ret = rbd_bus_add_dev(rbd_dev);
4833         if (ret)
4834                 goto err_out_mapping;
4835
4836         /* Everything's ready.  Announce the disk to the world. */
4837
4838         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4839         add_disk(rbd_dev->disk);
4840
4841         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4842                 (unsigned long long) rbd_dev->mapping.size);
4843
4844         return ret;
4845
4846 err_out_mapping:
4847         rbd_dev_mapping_clear(rbd_dev);
4848 err_out_disk:
4849         rbd_free_disk(rbd_dev);
4850 err_out_blkdev:
4851         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4852 err_out_id:
4853         rbd_dev_id_put(rbd_dev);
4854         rbd_dev_mapping_clear(rbd_dev);
4855
4856         return ret;
4857 }
4858
4859 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4860 {
4861         struct rbd_spec *spec = rbd_dev->spec;
4862         size_t size;
4863
4864         /* Record the header object name for this rbd image. */
4865
4866         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4867
4868         if (rbd_dev->image_format == 1)
4869                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4870         else
4871                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4872
4873         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4874         if (!rbd_dev->header_name)
4875                 return -ENOMEM;
4876
4877         if (rbd_dev->image_format == 1)
4878                 sprintf(rbd_dev->header_name, "%s%s",
4879                         spec->image_name, RBD_SUFFIX);
4880         else
4881                 sprintf(rbd_dev->header_name, "%s%s",
4882                         RBD_HEADER_PREFIX, spec->image_id);
4883         return 0;
4884 }
4885
4886 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4887 {
4888         rbd_dev_unprobe(rbd_dev);
4889         kfree(rbd_dev->header_name);
4890         rbd_dev->header_name = NULL;
4891         rbd_dev->image_format = 0;
4892         kfree(rbd_dev->spec->image_id);
4893         rbd_dev->spec->image_id = NULL;
4894
4895         rbd_dev_destroy(rbd_dev);
4896 }
4897
4898 /*
4899  * Probe for the existence of the header object for the given rbd
4900  * device.  If this image is the one being mapped (i.e., not a
4901  * parent), initiate a watch on its header object before using that
4902  * object to get detailed information about the rbd image.
4903  */
4904 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4905 {
4906         int ret;
4907         int tmp;
4908
4909         /*
4910          * Get the id from the image id object.  Unless there's an
4911          * error, rbd_dev->spec->image_id will be filled in with
4912          * a dynamically-allocated string, and rbd_dev->image_format
4913          * will be set to either 1 or 2.
4914          */
4915         ret = rbd_dev_image_id(rbd_dev);
4916         if (ret)
4917                 return ret;
4918         rbd_assert(rbd_dev->spec->image_id);
4919         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4920
4921         ret = rbd_dev_header_name(rbd_dev);
4922         if (ret)
4923                 goto err_out_format;
4924
4925         if (mapping) {
4926                 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4927                 if (ret)
4928                         goto out_header_name;
4929         }
4930
4931         if (rbd_dev->image_format == 1)
4932                 ret = rbd_dev_v1_header_info(rbd_dev);
4933         else
4934                 ret = rbd_dev_v2_header_info(rbd_dev);
4935         if (ret)
4936                 goto err_out_watch;
4937
4938         ret = rbd_dev_spec_update(rbd_dev);
4939         if (ret)
4940                 goto err_out_probe;
4941
4942         ret = rbd_dev_probe_parent(rbd_dev);
4943         if (ret)
4944                 goto err_out_probe;
4945
4946         dout("discovered format %u image, header name is %s\n",
4947                 rbd_dev->image_format, rbd_dev->header_name);
4948
4949         return 0;
4950 err_out_probe:
4951         rbd_dev_unprobe(rbd_dev);
4952 err_out_watch:
4953         if (mapping) {
4954                 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
4955                 if (tmp)
4956                         rbd_warn(rbd_dev, "unable to tear down "
4957                                         "watch request (%d)\n", tmp);
4958         }
4959 out_header_name:
4960         kfree(rbd_dev->header_name);
4961         rbd_dev->header_name = NULL;
4962 err_out_format:
4963         rbd_dev->image_format = 0;
4964         kfree(rbd_dev->spec->image_id);
4965         rbd_dev->spec->image_id = NULL;
4966
4967         dout("probe failed, returning %d\n", ret);
4968
4969         return ret;
4970 }
4971
4972 static ssize_t rbd_add(struct bus_type *bus,
4973                        const char *buf,
4974                        size_t count)
4975 {
4976         struct rbd_device *rbd_dev = NULL;
4977         struct ceph_options *ceph_opts = NULL;
4978         struct rbd_options *rbd_opts = NULL;
4979         struct rbd_spec *spec = NULL;
4980         struct rbd_client *rbdc;
4981         struct ceph_osd_client *osdc;
4982         bool read_only;
4983         int rc = -ENOMEM;
4984
4985         if (!try_module_get(THIS_MODULE))
4986                 return -ENODEV;
4987
4988         /* parse add command */
4989         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4990         if (rc < 0)
4991                 goto err_out_module;
4992         read_only = rbd_opts->read_only;
4993         kfree(rbd_opts);
4994         rbd_opts = NULL;        /* done with this */
4995
4996         rbdc = rbd_get_client(ceph_opts);
4997         if (IS_ERR(rbdc)) {
4998                 rc = PTR_ERR(rbdc);
4999                 goto err_out_args;
5000         }
5001
5002         /* pick the pool */
5003         osdc = &rbdc->client->osdc;
5004         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5005         if (rc < 0)
5006                 goto err_out_client;
5007         spec->pool_id = (u64)rc;
5008
5009         /* The ceph file layout needs to fit pool id in 32 bits */
5010
5011         if (spec->pool_id > (u64)U32_MAX) {
5012                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5013                                 (unsigned long long)spec->pool_id, U32_MAX);
5014                 rc = -EIO;
5015                 goto err_out_client;
5016         }
5017
5018         rbd_dev = rbd_dev_create(rbdc, spec);
5019         if (!rbd_dev)
5020                 goto err_out_client;
5021         rbdc = NULL;            /* rbd_dev now owns this */
5022         spec = NULL;            /* rbd_dev now owns this */
5023
5024         rc = rbd_dev_image_probe(rbd_dev, true);
5025         if (rc < 0)
5026                 goto err_out_rbd_dev;
5027
5028         /* If we are mapping a snapshot it must be marked read-only */
5029
5030         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5031                 read_only = true;
5032         rbd_dev->mapping.read_only = read_only;
5033
5034         rc = rbd_dev_device_setup(rbd_dev);
5035         if (rc) {
5036                 rbd_dev_image_release(rbd_dev);
5037                 goto err_out_module;
5038         }
5039
5040         return count;
5041
5042 err_out_rbd_dev:
5043         rbd_dev_destroy(rbd_dev);
5044 err_out_client:
5045         rbd_put_client(rbdc);
5046 err_out_args:
5047         rbd_spec_put(spec);
5048 err_out_module:
5049         module_put(THIS_MODULE);
5050
5051         dout("Error adding device %s\n", buf);
5052
5053         return (ssize_t)rc;
5054 }
5055
5056 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
5057 {
5058         struct list_head *tmp;
5059         struct rbd_device *rbd_dev;
5060
5061         spin_lock(&rbd_dev_list_lock);
5062         list_for_each(tmp, &rbd_dev_list) {
5063                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5064                 if (rbd_dev->dev_id == dev_id) {
5065                         spin_unlock(&rbd_dev_list_lock);
5066                         return rbd_dev;
5067                 }
5068         }
5069         spin_unlock(&rbd_dev_list_lock);
5070         return NULL;
5071 }
5072
5073 static void rbd_dev_device_release(struct device *dev)
5074 {
5075         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5076
5077         rbd_free_disk(rbd_dev);
5078         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5079         rbd_dev_mapping_clear(rbd_dev);
5080         unregister_blkdev(rbd_dev->major, rbd_dev->name);
5081         rbd_dev->major = 0;
5082         rbd_dev_id_put(rbd_dev);
5083         rbd_dev_mapping_clear(rbd_dev);
5084 }
5085
5086 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5087 {
5088         while (rbd_dev->parent) {
5089                 struct rbd_device *first = rbd_dev;
5090                 struct rbd_device *second = first->parent;
5091                 struct rbd_device *third;
5092
5093                 /*
5094                  * Follow to the parent with no grandparent and
5095                  * remove it.
5096                  */
5097                 while (second && (third = second->parent)) {
5098                         first = second;
5099                         second = third;
5100                 }
5101                 rbd_assert(second);
5102                 rbd_dev_image_release(second);
5103                 first->parent = NULL;
5104                 first->parent_overlap = 0;
5105
5106                 rbd_assert(first->parent_spec);
5107                 rbd_spec_put(first->parent_spec);
5108                 first->parent_spec = NULL;
5109         }
5110 }
5111
5112 static ssize_t rbd_remove(struct bus_type *bus,
5113                           const char *buf,
5114                           size_t count)
5115 {
5116         struct rbd_device *rbd_dev = NULL;
5117         int target_id;
5118         unsigned long ul;
5119         int ret;
5120
5121         ret = strict_strtoul(buf, 10, &ul);
5122         if (ret)
5123                 return ret;
5124
5125         /* convert to int; abort if we lost anything in the conversion */
5126         target_id = (int) ul;
5127         if (target_id != ul)
5128                 return -EINVAL;
5129
5130         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5131
5132         rbd_dev = __rbd_get_dev(target_id);
5133         if (!rbd_dev) {
5134                 ret = -ENOENT;
5135                 goto done;
5136         }
5137
5138         spin_lock_irq(&rbd_dev->lock);
5139         if (rbd_dev->open_count)
5140                 ret = -EBUSY;
5141         else
5142                 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
5143         spin_unlock_irq(&rbd_dev->lock);
5144         if (ret < 0)
5145                 goto done;
5146         rbd_bus_del_dev(rbd_dev);
5147         ret = rbd_dev_header_watch_sync(rbd_dev, false);
5148         if (ret)
5149                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5150         rbd_dev_image_release(rbd_dev);
5151         module_put(THIS_MODULE);
5152         ret = count;
5153 done:
5154         mutex_unlock(&ctl_mutex);
5155
5156         return ret;
5157 }
5158
5159 /*
5160  * create control files in sysfs
5161  * /sys/bus/rbd/...
5162  */
5163 static int rbd_sysfs_init(void)
5164 {
5165         int ret;
5166
5167         ret = device_register(&rbd_root_dev);
5168         if (ret < 0)
5169                 return ret;
5170
5171         ret = bus_register(&rbd_bus_type);
5172         if (ret < 0)
5173                 device_unregister(&rbd_root_dev);
5174
5175         return ret;
5176 }
5177
5178 static void rbd_sysfs_cleanup(void)
5179 {
5180         bus_unregister(&rbd_bus_type);
5181         device_unregister(&rbd_root_dev);
5182 }
5183
5184 static int rbd_slab_init(void)
5185 {
5186         rbd_assert(!rbd_img_request_cache);
5187         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5188                                         sizeof (struct rbd_img_request),
5189                                         __alignof__(struct rbd_img_request),
5190                                         0, NULL);
5191         if (!rbd_img_request_cache)
5192                 return -ENOMEM;
5193
5194         rbd_assert(!rbd_obj_request_cache);
5195         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5196                                         sizeof (struct rbd_obj_request),
5197                                         __alignof__(struct rbd_obj_request),
5198                                         0, NULL);
5199         if (!rbd_obj_request_cache)
5200                 goto out_err;
5201
5202         rbd_assert(!rbd_segment_name_cache);
5203         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5204                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5205         if (rbd_segment_name_cache)
5206                 return 0;
5207 out_err:
5208         if (rbd_obj_request_cache) {
5209                 kmem_cache_destroy(rbd_obj_request_cache);
5210                 rbd_obj_request_cache = NULL;
5211         }
5212
5213         kmem_cache_destroy(rbd_img_request_cache);
5214         rbd_img_request_cache = NULL;
5215
5216         return -ENOMEM;
5217 }
5218
5219 static void rbd_slab_exit(void)
5220 {
5221         rbd_assert(rbd_segment_name_cache);
5222         kmem_cache_destroy(rbd_segment_name_cache);
5223         rbd_segment_name_cache = NULL;
5224
5225         rbd_assert(rbd_obj_request_cache);
5226         kmem_cache_destroy(rbd_obj_request_cache);
5227         rbd_obj_request_cache = NULL;
5228
5229         rbd_assert(rbd_img_request_cache);
5230         kmem_cache_destroy(rbd_img_request_cache);
5231         rbd_img_request_cache = NULL;
5232 }
5233
5234 static int __init rbd_init(void)
5235 {
5236         int rc;
5237
5238         if (!libceph_compatible(NULL)) {
5239                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5240
5241                 return -EINVAL;
5242         }
5243         rc = rbd_slab_init();
5244         if (rc)
5245                 return rc;
5246         rc = rbd_sysfs_init();
5247         if (rc)
5248                 rbd_slab_exit();
5249         else
5250                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5251
5252         return rc;
5253 }
5254
5255 static void __exit rbd_exit(void)
5256 {
5257         rbd_sysfs_cleanup();
5258         rbd_slab_exit();
5259 }
5260
5261 module_init(rbd_init);
5262 module_exit(rbd_exit);
5263
5264 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5265 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5266 MODULE_DESCRIPTION("rados block device");
5267
5268 /* following authorship retained from original osdblk.c */
5269 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5270
5271 MODULE_LICENSE("GPL");