NVMe: Need to lock queue during interrupt handling
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/pci.h>
34 #include <linux/poison.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <linux/types.h>
38 #include <linux/version.h>
39
40 #define NVME_Q_DEPTH 1024
41 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
42 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
43 #define NVME_MINORS 64
44
45 static int nvme_major;
46 module_param(nvme_major, int, 0);
47
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0);
50
51 /*
52  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
53  */
54 struct nvme_dev {
55         struct nvme_queue **queues;
56         u32 __iomem *dbs;
57         struct pci_dev *pci_dev;
58         int instance;
59         int queue_count;
60         u32 ctrl_config;
61         struct msix_entry *entry;
62         struct nvme_bar __iomem *bar;
63         struct list_head namespaces;
64         char serial[20];
65         char model[40];
66         char firmware_rev[8];
67 };
68
69 /*
70  * An NVM Express namespace is equivalent to a SCSI LUN
71  */
72 struct nvme_ns {
73         struct list_head list;
74
75         struct nvme_dev *dev;
76         struct request_queue *queue;
77         struct gendisk *disk;
78
79         int ns_id;
80         int lba_shift;
81 };
82
83 /*
84  * An NVM Express queue.  Each device has at least two (one for admin
85  * commands and one for I/O commands).
86  */
87 struct nvme_queue {
88         struct device *q_dmadev;
89         spinlock_t q_lock;
90         struct nvme_command *sq_cmds;
91         volatile struct nvme_completion *cqes;
92         dma_addr_t sq_dma_addr;
93         dma_addr_t cq_dma_addr;
94         wait_queue_head_t sq_full;
95         struct bio_list sq_cong;
96         u32 __iomem *q_db;
97         u16 q_depth;
98         u16 cq_vector;
99         u16 sq_head;
100         u16 sq_tail;
101         u16 cq_head;
102         u16 cq_phase;
103         unsigned long cmdid_data[];
104 };
105
106 /*
107  * Check we didin't inadvertently grow the command struct
108  */
109 static inline void _nvme_check_size(void)
110 {
111         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
112         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
113         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
114         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
115         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
116         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
117         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
118         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
119         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
120 }
121
122 /**
123  * alloc_cmdid - Allocate a Command ID
124  * @param nvmeq The queue that will be used for this command
125  * @param ctx A pointer that will be passed to the handler
126  * @param handler The ID of the handler to call
127  *
128  * Allocate a Command ID for a queue.  The data passed in will
129  * be passed to the completion handler.  This is implemented by using
130  * the bottom two bits of the ctx pointer to store the handler ID.
131  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
132  * We can change this if it becomes a problem.
133  */
134 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler)
135 {
136         int depth = nvmeq->q_depth;
137         unsigned long data = (unsigned long)ctx | handler;
138         int cmdid;
139
140         BUG_ON((unsigned long)ctx & 3);
141
142         do {
143                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
144                 if (cmdid >= depth)
145                         return -EBUSY;
146         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
147
148         nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(depth)] = data;
149         return cmdid;
150 }
151
152 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
153                                                                 int handler)
154 {
155         int cmdid;
156         wait_event_killable(nvmeq->sq_full,
157                         (cmdid = alloc_cmdid(nvmeq, ctx, handler)) >= 0);
158         return (cmdid < 0) ? -EINTR : cmdid;
159 }
160
161 /* If you need more than four handlers, you'll need to change how
162  * alloc_cmdid and nvme_process_cq work.  Consider using a special
163  * CMD_CTX value instead, if that works for your situation.
164  */
165 enum {
166         sync_completion_id = 0,
167         bio_completion_id,
168 };
169
170 #define CMD_CTX_BASE            (POISON_POINTER_DELTA + sync_completion_id)
171 #define CMD_CTX_CANCELLED       (0x2008 + CMD_CTX_BASE)
172 #define CMD_CTX_COMPLETED       (0x2010 + CMD_CTX_BASE)
173 #define CMD_CTX_INVALID         (0x2014 + CMD_CTX_BASE)
174
175 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
176 {
177         unsigned long data;
178         unsigned offset = cmdid + BITS_TO_LONGS(nvmeq->q_depth);
179
180         if (cmdid > nvmeq->q_depth)
181                 return CMD_CTX_INVALID;
182         data = nvmeq->cmdid_data[offset];
183         nvmeq->cmdid_data[offset] = CMD_CTX_COMPLETED;
184         clear_bit(cmdid, nvmeq->cmdid_data);
185         wake_up(&nvmeq->sq_full);
186         return data;
187 }
188
189 static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
190 {
191         unsigned offset = cmdid + BITS_TO_LONGS(nvmeq->q_depth);
192         nvmeq->cmdid_data[offset] = CMD_CTX_CANCELLED;
193 }
194
195 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
196 {
197         int qid, cpu = get_cpu();
198         if (cpu < ns->dev->queue_count)
199                 qid = cpu + 1;
200         else
201                 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
202         return ns->dev->queues[qid];
203 }
204
205 static void put_nvmeq(struct nvme_queue *nvmeq)
206 {
207         put_cpu();
208 }
209
210 /**
211  * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
212  * @nvmeq: The queue to use
213  * @cmd: The command to send
214  *
215  * Safe to use from interrupt context
216  */
217 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
218 {
219         unsigned long flags;
220         u16 tail;
221         /* XXX: Need to check tail isn't going to overrun head */
222         spin_lock_irqsave(&nvmeq->q_lock, flags);
223         tail = nvmeq->sq_tail;
224         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
225         writel(tail, nvmeq->q_db);
226         if (++tail == nvmeq->q_depth)
227                 tail = 0;
228         nvmeq->sq_tail = tail;
229         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
230
231         return 0;
232 }
233
234 struct nvme_req_info {
235         struct bio *bio;
236         int nents;
237         struct scatterlist sg[0];
238 };
239
240 /* XXX: use a mempool */
241 static struct nvme_req_info *alloc_info(unsigned nseg, gfp_t gfp)
242 {
243         return kmalloc(sizeof(struct nvme_req_info) +
244                         sizeof(struct scatterlist) * nseg, gfp);
245 }
246
247 static void free_info(struct nvme_req_info *info)
248 {
249         kfree(info);
250 }
251
252 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
253                                                 struct nvme_completion *cqe)
254 {
255         struct nvme_req_info *info = ctx;
256         struct bio *bio = info->bio;
257         u16 status = le16_to_cpup(&cqe->status) >> 1;
258
259         dma_unmap_sg(nvmeq->q_dmadev, info->sg, info->nents,
260                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
261         free_info(info);
262         bio_endio(bio, status ? -EIO : 0);
263 }
264
265 /* length is in bytes */
266 static void nvme_setup_prps(struct nvme_common_command *cmd,
267                                         struct scatterlist *sg, int length)
268 {
269         int dma_len = sg_dma_len(sg);
270         u64 dma_addr = sg_dma_address(sg);
271         int offset = offset_in_page(dma_addr);
272
273         cmd->prp1 = cpu_to_le64(dma_addr);
274         length -= (PAGE_SIZE - offset);
275         if (length <= 0)
276                 return;
277
278         dma_len -= (PAGE_SIZE - offset);
279         if (dma_len) {
280                 dma_addr += (PAGE_SIZE - offset);
281         } else {
282                 sg = sg_next(sg);
283                 dma_addr = sg_dma_address(sg);
284                 dma_len = sg_dma_len(sg);
285         }
286
287         if (length <= PAGE_SIZE) {
288                 cmd->prp2 = cpu_to_le64(dma_addr);
289                 return;
290         }
291
292         /* XXX: support PRP lists */
293 }
294
295 static int nvme_map_bio(struct device *dev, struct nvme_req_info *info,
296                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
297 {
298         struct bio_vec *bvec;
299         struct scatterlist *sg = info->sg;
300         int i, nsegs;
301
302         sg_init_table(sg, psegs);
303         bio_for_each_segment(bvec, bio, i) {
304                 sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
305                 /* XXX: handle non-mergable here */
306                 nsegs++;
307         }
308         info->nents = nsegs;
309
310         return dma_map_sg(dev, info->sg, info->nents, dma_dir);
311 }
312
313 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
314                                                                 struct bio *bio)
315 {
316         struct nvme_command *cmnd;
317         struct nvme_req_info *info;
318         enum dma_data_direction dma_dir;
319         int cmdid;
320         u16 control;
321         u32 dsmgmt;
322         unsigned long flags;
323         int psegs = bio_phys_segments(ns->queue, bio);
324
325         info = alloc_info(psegs, GFP_NOIO);
326         if (!info)
327                 goto congestion;
328         info->bio = bio;
329
330         cmdid = alloc_cmdid(nvmeq, info, bio_completion_id);
331         if (unlikely(cmdid < 0))
332                 goto free_info;
333
334         control = 0;
335         if (bio->bi_rw & REQ_FUA)
336                 control |= NVME_RW_FUA;
337         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
338                 control |= NVME_RW_LR;
339
340         dsmgmt = 0;
341         if (bio->bi_rw & REQ_RAHEAD)
342                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
343
344         spin_lock_irqsave(&nvmeq->q_lock, flags);
345         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
346
347         memset(cmnd, 0, sizeof(*cmnd));
348         if (bio_data_dir(bio)) {
349                 cmnd->rw.opcode = nvme_cmd_write;
350                 dma_dir = DMA_TO_DEVICE;
351         } else {
352                 cmnd->rw.opcode = nvme_cmd_read;
353                 dma_dir = DMA_FROM_DEVICE;
354         }
355
356         nvme_map_bio(nvmeq->q_dmadev, info, bio, dma_dir, psegs);
357
358         cmnd->rw.flags = 1;
359         cmnd->rw.command_id = cmdid;
360         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
361         nvme_setup_prps(&cmnd->common, info->sg, bio->bi_size);
362         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
363         cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
364         cmnd->rw.control = cpu_to_le16(control);
365         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
366
367         writel(nvmeq->sq_tail, nvmeq->q_db);
368         if (++nvmeq->sq_tail == nvmeq->q_depth)
369                 nvmeq->sq_tail = 0;
370
371         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
372
373         return 0;
374
375  free_info:
376         free_info(info);
377  congestion:
378         return -EBUSY;
379 }
380
381 /*
382  * NB: return value of non-zero would mean that we were a stacking driver.
383  * make_request must always succeed.
384  */
385 static int nvme_make_request(struct request_queue *q, struct bio *bio)
386 {
387         struct nvme_ns *ns = q->queuedata;
388         struct nvme_queue *nvmeq = get_nvmeq(ns);
389
390         if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
391                 blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
392                 bio_list_add(&nvmeq->sq_cong, bio);
393         }
394         put_nvmeq(nvmeq);
395
396         return 0;
397 }
398
399 struct sync_cmd_info {
400         struct task_struct *task;
401         u32 result;
402         int status;
403 };
404
405 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
406                                                 struct nvme_completion *cqe)
407 {
408         struct sync_cmd_info *cmdinfo = ctx;
409         if ((unsigned long)cmdinfo == CMD_CTX_CANCELLED)
410                 return;
411         if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
412                 dev_warn(nvmeq->q_dmadev,
413                                 "completed id %d twice on queue %d\n",
414                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
415                 return;
416         }
417         if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
418                 dev_warn(nvmeq->q_dmadev,
419                                 "invalid id %d completed on queue %d\n",
420                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
421                 return;
422         }
423         cmdinfo->result = le32_to_cpup(&cqe->result);
424         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
425         wake_up_process(cmdinfo->task);
426 }
427
428 typedef void (*completion_fn)(struct nvme_queue *, void *,
429                                                 struct nvme_completion *);
430
431 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
432 {
433         u16 head, phase;
434
435         static const completion_fn completions[4] = {
436                 [sync_completion_id] = sync_completion,
437                 [bio_completion_id]  = bio_completion,
438         };
439
440         head = nvmeq->cq_head;
441         phase = nvmeq->cq_phase;
442
443         for (;;) {
444                 unsigned long data;
445                 void *ptr;
446                 unsigned char handler;
447                 struct nvme_completion cqe = nvmeq->cqes[head];
448                 if ((le16_to_cpu(cqe.status) & 1) != phase)
449                         break;
450                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
451                 if (++head == nvmeq->q_depth) {
452                         head = 0;
453                         phase = !phase;
454                 }
455
456                 data = free_cmdid(nvmeq, cqe.command_id);
457                 handler = data & 3;
458                 ptr = (void *)(data & ~3UL);
459                 completions[handler](nvmeq, ptr, &cqe);
460         }
461
462         /* If the controller ignores the cq head doorbell and continuously
463          * writes to the queue, it is theoretically possible to wrap around
464          * the queue twice and mistakenly return IRQ_NONE.  Linux only
465          * requires that 0.1% of your interrupts are handled, so this isn't
466          * a big problem.
467          */
468         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
469                 return IRQ_NONE;
470
471         writel(head, nvmeq->q_db + 1);
472         nvmeq->cq_head = head;
473         nvmeq->cq_phase = phase;
474
475         return IRQ_HANDLED;
476 }
477
478 static irqreturn_t nvme_irq(int irq, void *data)
479 {
480         irqreturn_t result;
481         struct nvme_queue *nvmeq = data;
482         spin_lock(&nvmeq->q_lock);
483         result = nvme_process_cq(nvmeq);
484         spin_unlock(&nvmeq->q_lock);
485         return result;
486 }
487
488 static irqreturn_t nvme_irq_check(int irq, void *data)
489 {
490         struct nvme_queue *nvmeq = data;
491         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
492         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
493                 return IRQ_NONE;
494         return IRQ_WAKE_THREAD;
495 }
496
497 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
498 {
499         spin_lock_irq(&nvmeq->q_lock);
500         cancel_cmdid_data(nvmeq, cmdid);
501         spin_unlock_irq(&nvmeq->q_lock);
502 }
503
504 /*
505  * Returns 0 on success.  If the result is negative, it's a Linux error code;
506  * if the result is positive, it's an NVM Express status code
507  */
508 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
509                                         struct nvme_command *cmd, u32 *result)
510 {
511         int cmdid;
512         struct sync_cmd_info cmdinfo;
513
514         cmdinfo.task = current;
515         cmdinfo.status = -EINTR;
516
517         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id);
518         if (cmdid < 0)
519                 return cmdid;
520         cmd->common.command_id = cmdid;
521
522         set_current_state(TASK_KILLABLE);
523         nvme_submit_cmd(nvmeq, cmd);
524         schedule();
525
526         if (cmdinfo.status == -EINTR) {
527                 nvme_abort_command(nvmeq, cmdid);
528                 return -EINTR;
529         }
530
531         if (result)
532                 *result = cmdinfo.result;
533
534         return cmdinfo.status;
535 }
536
537 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
538                                                                 u32 *result)
539 {
540         return nvme_submit_sync_cmd(dev->queues[0], cmd, result);
541 }
542
543 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
544 {
545         int status;
546         struct nvme_command c;
547
548         memset(&c, 0, sizeof(c));
549         c.delete_queue.opcode = opcode;
550         c.delete_queue.qid = cpu_to_le16(id);
551
552         status = nvme_submit_admin_cmd(dev, &c, NULL);
553         if (status)
554                 return -EIO;
555         return 0;
556 }
557
558 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
559                                                 struct nvme_queue *nvmeq)
560 {
561         int status;
562         struct nvme_command c;
563         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
564
565         memset(&c, 0, sizeof(c));
566         c.create_cq.opcode = nvme_admin_create_cq;
567         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
568         c.create_cq.cqid = cpu_to_le16(qid);
569         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
570         c.create_cq.cq_flags = cpu_to_le16(flags);
571         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
572
573         status = nvme_submit_admin_cmd(dev, &c, NULL);
574         if (status)
575                 return -EIO;
576         return 0;
577 }
578
579 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
580                                                 struct nvme_queue *nvmeq)
581 {
582         int status;
583         struct nvme_command c;
584         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
585
586         memset(&c, 0, sizeof(c));
587         c.create_sq.opcode = nvme_admin_create_sq;
588         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
589         c.create_sq.sqid = cpu_to_le16(qid);
590         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
591         c.create_sq.sq_flags = cpu_to_le16(flags);
592         c.create_sq.cqid = cpu_to_le16(qid);
593
594         status = nvme_submit_admin_cmd(dev, &c, NULL);
595         if (status)
596                 return -EIO;
597         return 0;
598 }
599
600 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
601 {
602         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
603 }
604
605 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
606 {
607         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
608 }
609
610 static void nvme_free_queue(struct nvme_dev *dev, int qid)
611 {
612         struct nvme_queue *nvmeq = dev->queues[qid];
613
614         free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
615
616         /* Don't tell the adapter to delete the admin queue */
617         if (qid) {
618                 adapter_delete_sq(dev, qid);
619                 adapter_delete_cq(dev, qid);
620         }
621
622         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
623                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
624         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
625                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
626         kfree(nvmeq);
627 }
628
629 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
630                                                         int depth, int vector)
631 {
632         struct device *dmadev = &dev->pci_dev->dev;
633         unsigned extra = (depth + BITS_TO_LONGS(depth)) * sizeof(long);
634         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
635         if (!nvmeq)
636                 return NULL;
637
638         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
639                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
640         if (!nvmeq->cqes)
641                 goto free_nvmeq;
642         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
643
644         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
645                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
646         if (!nvmeq->sq_cmds)
647                 goto free_cqdma;
648
649         nvmeq->q_dmadev = dmadev;
650         spin_lock_init(&nvmeq->q_lock);
651         nvmeq->cq_head = 0;
652         nvmeq->cq_phase = 1;
653         init_waitqueue_head(&nvmeq->sq_full);
654         bio_list_init(&nvmeq->sq_cong);
655         nvmeq->q_db = &dev->dbs[qid * 2];
656         nvmeq->q_depth = depth;
657         nvmeq->cq_vector = vector;
658
659         return nvmeq;
660
661  free_cqdma:
662         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
663                                                         nvmeq->cq_dma_addr);
664  free_nvmeq:
665         kfree(nvmeq);
666         return NULL;
667 }
668
669 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
670                                                         const char *name)
671 {
672         if (use_threaded_interrupts)
673                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
674                                         nvme_irq_check, nvme_irq,
675                                         IRQF_DISABLED | IRQF_SHARED,
676                                         name, nvmeq);
677         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
678                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
679 }
680
681 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
682                                         int qid, int cq_size, int vector)
683 {
684         int result;
685         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
686
687         if (!nvmeq)
688                 return NULL;
689
690         result = adapter_alloc_cq(dev, qid, nvmeq);
691         if (result < 0)
692                 goto free_nvmeq;
693
694         result = adapter_alloc_sq(dev, qid, nvmeq);
695         if (result < 0)
696                 goto release_cq;
697
698         result = queue_request_irq(dev, nvmeq, "nvme");
699         if (result < 0)
700                 goto release_sq;
701
702         return nvmeq;
703
704  release_sq:
705         adapter_delete_sq(dev, qid);
706  release_cq:
707         adapter_delete_cq(dev, qid);
708  free_nvmeq:
709         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
710                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
711         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
712                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
713         kfree(nvmeq);
714         return NULL;
715 }
716
717 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
718 {
719         int result;
720         u32 aqa;
721         struct nvme_queue *nvmeq;
722
723         dev->dbs = ((void __iomem *)dev->bar) + 4096;
724
725         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
726         if (!nvmeq)
727                 return -ENOMEM;
728
729         aqa = nvmeq->q_depth - 1;
730         aqa |= aqa << 16;
731
732         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
733         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
734         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
735
736         writel(0, &dev->bar->cc);
737         writel(aqa, &dev->bar->aqa);
738         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
739         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
740         writel(dev->ctrl_config, &dev->bar->cc);
741
742         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
743                 msleep(100);
744                 if (fatal_signal_pending(current))
745                         return -EINTR;
746         }
747
748         result = queue_request_irq(dev, nvmeq, "nvme admin");
749         dev->queues[0] = nvmeq;
750         return result;
751 }
752
753 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
754                                 unsigned long addr, unsigned length,
755                                 struct scatterlist **sgp)
756 {
757         int i, err, count, nents, offset;
758         struct scatterlist *sg;
759         struct page **pages;
760
761         if (addr & 3)
762                 return -EINVAL;
763         if (!length)
764                 return -EINVAL;
765
766         offset = offset_in_page(addr);
767         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
768         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
769
770         err = get_user_pages_fast(addr, count, 1, pages);
771         if (err < count) {
772                 count = err;
773                 err = -EFAULT;
774                 goto put_pages;
775         }
776
777         sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
778         sg_init_table(sg, count);
779         sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
780         length -= (PAGE_SIZE - offset);
781         for (i = 1; i < count; i++) {
782                 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
783                 length -= PAGE_SIZE;
784         }
785
786         err = -ENOMEM;
787         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
788                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
789         if (!nents)
790                 goto put_pages;
791
792         kfree(pages);
793         *sgp = sg;
794         return nents;
795
796  put_pages:
797         for (i = 0; i < count; i++)
798                 put_page(pages[i]);
799         kfree(pages);
800         return err;
801 }
802
803 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
804                                 unsigned long addr, int length,
805                                 struct scatterlist *sg, int nents)
806 {
807         int i, count;
808
809         count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
810         dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
811
812         for (i = 0; i < count; i++)
813                 put_page(sg_page(&sg[i]));
814 }
815
816 static int nvme_submit_user_admin_command(struct nvme_dev *dev,
817                                         unsigned long addr, unsigned length,
818                                         struct nvme_command *cmd)
819 {
820         int err, nents;
821         struct scatterlist *sg;
822
823         nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
824         if (nents < 0)
825                 return nents;
826         nvme_setup_prps(&cmd->common, sg, length);
827         err = nvme_submit_admin_cmd(dev, cmd, NULL);
828         nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
829         return err ? -EIO : 0;
830 }
831
832 static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
833 {
834         struct nvme_command c;
835
836         memset(&c, 0, sizeof(c));
837         c.identify.opcode = nvme_admin_identify;
838         c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
839         c.identify.cns = cpu_to_le32(cns);
840
841         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
842 }
843
844 static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
845 {
846         struct nvme_command c;
847
848         memset(&c, 0, sizeof(c));
849         c.features.opcode = nvme_admin_get_features;
850         c.features.nsid = cpu_to_le32(ns->ns_id);
851         c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
852
853         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
854 }
855
856 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
857 {
858         struct nvme_dev *dev = ns->dev;
859         struct nvme_queue *nvmeq;
860         struct nvme_user_io io;
861         struct nvme_command c;
862         unsigned length;
863         u32 result;
864         int nents, status;
865         struct scatterlist *sg;
866
867         if (copy_from_user(&io, uio, sizeof(io)))
868                 return -EFAULT;
869         length = io.nblocks << io.block_shift;
870         nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
871         if (nents < 0)
872                 return nents;
873
874         memset(&c, 0, sizeof(c));
875         c.rw.opcode = io.opcode;
876         c.rw.flags = io.flags;
877         c.rw.nsid = cpu_to_le32(io.nsid);
878         c.rw.slba = cpu_to_le64(io.slba);
879         c.rw.length = cpu_to_le16(io.nblocks - 1);
880         c.rw.control = cpu_to_le16(io.control);
881         c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
882         c.rw.reftag = cpu_to_le32(io.reftag);   /* XXX: endian? */
883         c.rw.apptag = cpu_to_le16(io.apptag);
884         c.rw.appmask = cpu_to_le16(io.appmask);
885         /* XXX: metadata */
886         nvme_setup_prps(&c.common, sg, length);
887
888         nvmeq = get_nvmeq(ns);
889         /* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
890          * disabled.  We may be preempted at any point, and be rescheduled
891          * to a different CPU.  That will cause cacheline bouncing, but no
892          * additional races since q_lock already protects against other CPUs.
893          */
894         put_nvmeq(nvmeq);
895         status = nvme_submit_sync_cmd(nvmeq, &c, &result);
896
897         nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
898         put_user(result, &uio->result);
899         return status;
900 }
901
902 static int nvme_download_firmware(struct nvme_ns *ns,
903                                                 struct nvme_dlfw __user *udlfw)
904 {
905         struct nvme_dev *dev = ns->dev;
906         struct nvme_dlfw dlfw;
907         struct nvme_command c;
908         int nents, status;
909         struct scatterlist *sg;
910
911         if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
912                 return -EFAULT;
913         if (dlfw.length >= (1 << 30))
914                 return -EINVAL;
915
916         nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
917         if (nents < 0)
918                 return nents;
919
920         memset(&c, 0, sizeof(c));
921         c.dlfw.opcode = nvme_admin_download_fw;
922         c.dlfw.numd = cpu_to_le32(dlfw.length);
923         c.dlfw.offset = cpu_to_le32(dlfw.offset);
924         nvme_setup_prps(&c.common, sg, dlfw.length * 4);
925
926         status = nvme_submit_admin_cmd(dev, &c, NULL);
927         nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
928         return status;
929 }
930
931 static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
932 {
933         struct nvme_dev *dev = ns->dev;
934         struct nvme_command c;
935
936         memset(&c, 0, sizeof(c));
937         c.common.opcode = nvme_admin_activate_fw;
938         c.common.rsvd10[0] = cpu_to_le32(arg);
939
940         return nvme_submit_admin_cmd(dev, &c, NULL);
941 }
942
943 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
944                                                         unsigned long arg)
945 {
946         struct nvme_ns *ns = bdev->bd_disk->private_data;
947
948         switch (cmd) {
949         case NVME_IOCTL_IDENTIFY_NS:
950                 return nvme_identify(ns, arg, 0);
951         case NVME_IOCTL_IDENTIFY_CTRL:
952                 return nvme_identify(ns, arg, 1);
953         case NVME_IOCTL_GET_RANGE_TYPE:
954                 return nvme_get_range_type(ns, arg);
955         case NVME_IOCTL_SUBMIT_IO:
956                 return nvme_submit_io(ns, (void __user *)arg);
957         case NVME_IOCTL_DOWNLOAD_FW:
958                 return nvme_download_firmware(ns, (void __user *)arg);
959         case NVME_IOCTL_ACTIVATE_FW:
960                 return nvme_activate_firmware(ns, arg);
961         default:
962                 return -ENOTTY;
963         }
964 }
965
966 static const struct block_device_operations nvme_fops = {
967         .owner          = THIS_MODULE,
968         .ioctl          = nvme_ioctl,
969 };
970
971 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
972                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
973 {
974         struct nvme_ns *ns;
975         struct gendisk *disk;
976         int lbaf;
977
978         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
979                 return NULL;
980
981         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
982         if (!ns)
983                 return NULL;
984         ns->queue = blk_alloc_queue(GFP_KERNEL);
985         if (!ns->queue)
986                 goto out_free_ns;
987         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
988                                 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
989         blk_queue_make_request(ns->queue, nvme_make_request);
990         ns->dev = dev;
991         ns->queue->queuedata = ns;
992
993         disk = alloc_disk(NVME_MINORS);
994         if (!disk)
995                 goto out_free_queue;
996         ns->ns_id = index;
997         ns->disk = disk;
998         lbaf = id->flbas & 0xf;
999         ns->lba_shift = id->lbaf[lbaf].ds;
1000
1001         disk->major = nvme_major;
1002         disk->minors = NVME_MINORS;
1003         disk->first_minor = NVME_MINORS * index;
1004         disk->fops = &nvme_fops;
1005         disk->private_data = ns;
1006         disk->queue = ns->queue;
1007         disk->driverfs_dev = &dev->pci_dev->dev;
1008         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1009         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1010
1011         return ns;
1012
1013  out_free_queue:
1014         blk_cleanup_queue(ns->queue);
1015  out_free_ns:
1016         kfree(ns);
1017         return NULL;
1018 }
1019
1020 static void nvme_ns_free(struct nvme_ns *ns)
1021 {
1022         put_disk(ns->disk);
1023         blk_cleanup_queue(ns->queue);
1024         kfree(ns);
1025 }
1026
1027 static int set_queue_count(struct nvme_dev *dev, int count)
1028 {
1029         int status;
1030         u32 result;
1031         struct nvme_command c;
1032         u32 q_count = (count - 1) | ((count - 1) << 16);
1033
1034         memset(&c, 0, sizeof(c));
1035         c.features.opcode = nvme_admin_get_features;
1036         c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1037         c.features.dword11 = cpu_to_le32(q_count);
1038
1039         status = nvme_submit_admin_cmd(dev, &c, &result);
1040         if (status)
1041                 return -EIO;
1042         return min(result & 0xffff, result >> 16) + 1;
1043 }
1044
1045 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1046 {
1047         int result, cpu, i, nr_queues;
1048
1049         nr_queues = num_online_cpus();
1050         result = set_queue_count(dev, nr_queues);
1051         if (result < 0)
1052                 return result;
1053         if (result < nr_queues)
1054                 nr_queues = result;
1055
1056         /* Deregister the admin queue's interrupt */
1057         free_irq(dev->entry[0].vector, dev->queues[0]);
1058
1059         for (i = 0; i < nr_queues; i++)
1060                 dev->entry[i].entry = i;
1061         for (;;) {
1062                 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
1063                 if (result == 0) {
1064                         break;
1065                 } else if (result > 0) {
1066                         nr_queues = result;
1067                         continue;
1068                 } else {
1069                         nr_queues = 1;
1070                         break;
1071                 }
1072         }
1073
1074         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1075         /* XXX: handle failure here */
1076
1077         cpu = cpumask_first(cpu_online_mask);
1078         for (i = 0; i < nr_queues; i++) {
1079                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1080                 cpu = cpumask_next(cpu, cpu_online_mask);
1081         }
1082
1083         for (i = 0; i < nr_queues; i++) {
1084                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1085                                                         NVME_Q_DEPTH, i);
1086                 if (!dev->queues[i + 1])
1087                         return -ENOMEM;
1088                 dev->queue_count++;
1089         }
1090
1091         return 0;
1092 }
1093
1094 static void nvme_free_queues(struct nvme_dev *dev)
1095 {
1096         int i;
1097
1098         for (i = dev->queue_count - 1; i >= 0; i--)
1099                 nvme_free_queue(dev, i);
1100 }
1101
1102 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1103 {
1104         int res, nn, i;
1105         struct nvme_ns *ns, *next;
1106         struct nvme_id_ctrl *ctrl;
1107         void *id;
1108         dma_addr_t dma_addr;
1109         struct nvme_command cid, crt;
1110
1111         res = nvme_setup_io_queues(dev);
1112         if (res)
1113                 return res;
1114
1115         /* XXX: Switch to a SG list once prp2 works */
1116         id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1117                                                                 GFP_KERNEL);
1118
1119         memset(&cid, 0, sizeof(cid));
1120         cid.identify.opcode = nvme_admin_identify;
1121         cid.identify.nsid = 0;
1122         cid.identify.prp1 = cpu_to_le64(dma_addr);
1123         cid.identify.cns = cpu_to_le32(1);
1124
1125         res = nvme_submit_admin_cmd(dev, &cid, NULL);
1126         if (res) {
1127                 res = -EIO;
1128                 goto out_free;
1129         }
1130
1131         ctrl = id;
1132         nn = le32_to_cpup(&ctrl->nn);
1133         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1134         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1135         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1136
1137         cid.identify.cns = 0;
1138         memset(&crt, 0, sizeof(crt));
1139         crt.features.opcode = nvme_admin_get_features;
1140         crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1141         crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1142
1143         for (i = 0; i < nn; i++) {
1144                 cid.identify.nsid = cpu_to_le32(i);
1145                 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1146                 if (res)
1147                         continue;
1148
1149                 if (((struct nvme_id_ns *)id)->ncap == 0)
1150                         continue;
1151
1152                 crt.features.nsid = cpu_to_le32(i);
1153                 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1154                 if (res)
1155                         continue;
1156
1157                 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1158                 if (ns)
1159                         list_add_tail(&ns->list, &dev->namespaces);
1160         }
1161         list_for_each_entry(ns, &dev->namespaces, list)
1162                 add_disk(ns->disk);
1163
1164         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1165         return 0;
1166
1167  out_free:
1168         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1169                 list_del(&ns->list);
1170                 nvme_ns_free(ns);
1171         }
1172
1173         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1174         return res;
1175 }
1176
1177 static int nvme_dev_remove(struct nvme_dev *dev)
1178 {
1179         struct nvme_ns *ns, *next;
1180
1181         /* TODO: wait all I/O finished or cancel them */
1182
1183         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1184                 list_del(&ns->list);
1185                 del_gendisk(ns->disk);
1186                 nvme_ns_free(ns);
1187         }
1188
1189         nvme_free_queues(dev);
1190
1191         return 0;
1192 }
1193
1194 /* XXX: Use an ida or something to let remove / add work correctly */
1195 static void nvme_set_instance(struct nvme_dev *dev)
1196 {
1197         static int instance;
1198         dev->instance = instance++;
1199 }
1200
1201 static void nvme_release_instance(struct nvme_dev *dev)
1202 {
1203 }
1204
1205 static int __devinit nvme_probe(struct pci_dev *pdev,
1206                                                 const struct pci_device_id *id)
1207 {
1208         int bars, result = -ENOMEM;
1209         struct nvme_dev *dev;
1210
1211         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1212         if (!dev)
1213                 return -ENOMEM;
1214         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1215                                                                 GFP_KERNEL);
1216         if (!dev->entry)
1217                 goto free;
1218         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1219                                                                 GFP_KERNEL);
1220         if (!dev->queues)
1221                 goto free;
1222
1223         if (pci_enable_device_mem(pdev))
1224                 goto free;
1225         pci_set_master(pdev);
1226         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1227         if (pci_request_selected_regions(pdev, bars, "nvme"))
1228                 goto disable;
1229
1230         INIT_LIST_HEAD(&dev->namespaces);
1231         dev->pci_dev = pdev;
1232         pci_set_drvdata(pdev, dev);
1233         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1234         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1235         nvme_set_instance(dev);
1236         dev->entry[0].vector = pdev->irq;
1237
1238         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1239         if (!dev->bar) {
1240                 result = -ENOMEM;
1241                 goto disable_msix;
1242         }
1243
1244         result = nvme_configure_admin_queue(dev);
1245         if (result)
1246                 goto unmap;
1247         dev->queue_count++;
1248
1249         result = nvme_dev_add(dev);
1250         if (result)
1251                 goto delete;
1252         return 0;
1253
1254  delete:
1255         nvme_free_queues(dev);
1256  unmap:
1257         iounmap(dev->bar);
1258  disable_msix:
1259         pci_disable_msix(pdev);
1260         nvme_release_instance(dev);
1261  disable:
1262         pci_disable_device(pdev);
1263         pci_release_regions(pdev);
1264  free:
1265         kfree(dev->queues);
1266         kfree(dev->entry);
1267         kfree(dev);
1268         return result;
1269 }
1270
1271 static void __devexit nvme_remove(struct pci_dev *pdev)
1272 {
1273         struct nvme_dev *dev = pci_get_drvdata(pdev);
1274         nvme_dev_remove(dev);
1275         pci_disable_msix(pdev);
1276         iounmap(dev->bar);
1277         nvme_release_instance(dev);
1278         pci_disable_device(pdev);
1279         pci_release_regions(pdev);
1280         kfree(dev->queues);
1281         kfree(dev->entry);
1282         kfree(dev);
1283 }
1284
1285 /* These functions are yet to be implemented */
1286 #define nvme_error_detected NULL
1287 #define nvme_dump_registers NULL
1288 #define nvme_link_reset NULL
1289 #define nvme_slot_reset NULL
1290 #define nvme_error_resume NULL
1291 #define nvme_suspend NULL
1292 #define nvme_resume NULL
1293
1294 static struct pci_error_handlers nvme_err_handler = {
1295         .error_detected = nvme_error_detected,
1296         .mmio_enabled   = nvme_dump_registers,
1297         .link_reset     = nvme_link_reset,
1298         .slot_reset     = nvme_slot_reset,
1299         .resume         = nvme_error_resume,
1300 };
1301
1302 /* Move to pci_ids.h later */
1303 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1304
1305 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1306         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1307         { 0, }
1308 };
1309 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1310
1311 static struct pci_driver nvme_driver = {
1312         .name           = "nvme",
1313         .id_table       = nvme_id_table,
1314         .probe          = nvme_probe,
1315         .remove         = __devexit_p(nvme_remove),
1316         .suspend        = nvme_suspend,
1317         .resume         = nvme_resume,
1318         .err_handler    = &nvme_err_handler,
1319 };
1320
1321 static int __init nvme_init(void)
1322 {
1323         int result;
1324
1325         nvme_major = register_blkdev(nvme_major, "nvme");
1326         if (nvme_major <= 0)
1327                 return -EBUSY;
1328
1329         result = pci_register_driver(&nvme_driver);
1330         if (!result)
1331                 return 0;
1332
1333         unregister_blkdev(nvme_major, "nvme");
1334         return result;
1335 }
1336
1337 static void __exit nvme_exit(void)
1338 {
1339         pci_unregister_driver(&nvme_driver);
1340         unregister_blkdev(nvme_major, "nvme");
1341 }
1342
1343 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1344 MODULE_LICENSE("GPL");
1345 MODULE_VERSION("0.2");
1346 module_init(nvme_init);
1347 module_exit(nvme_exit);