2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/version.h>
44 #define NVME_Q_DEPTH 1024
45 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
46 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
47 #define NVME_MINORS 64
48 #define NVME_IO_TIMEOUT (5 * HZ)
49 #define ADMIN_TIMEOUT (60 * HZ)
51 static int nvme_major;
52 module_param(nvme_major, int, 0);
54 static int use_threaded_interrupts;
55 module_param(use_threaded_interrupts, int, 0);
57 static DEFINE_SPINLOCK(dev_list_lock);
58 static LIST_HEAD(dev_list);
59 static struct task_struct *nvme_thread;
62 * Represents an NVM Express device. Each nvme_dev is a PCI function.
65 struct list_head node;
66 struct nvme_queue **queues;
68 struct pci_dev *pci_dev;
69 struct dma_pool *prp_page_pool;
70 struct dma_pool *prp_small_pool;
75 struct msix_entry *entry;
76 struct nvme_bar __iomem *bar;
77 struct list_head namespaces;
85 * An NVM Express namespace is equivalent to a SCSI LUN
88 struct list_head list;
91 struct request_queue *queue;
99 * An NVM Express queue. Each device has at least two (one for admin
100 * commands and one for I/O commands).
103 struct device *q_dmadev;
104 struct nvme_dev *dev;
106 struct nvme_command *sq_cmds;
107 volatile struct nvme_completion *cqes;
108 dma_addr_t sq_dma_addr;
109 dma_addr_t cq_dma_addr;
110 wait_queue_head_t sq_full;
111 wait_queue_t sq_cong_wait;
112 struct bio_list sq_cong;
120 unsigned long cmdid_data[];
124 * Check we didin't inadvertently grow the command struct
126 static inline void _nvme_check_size(void)
128 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
134 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
135 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
136 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
139 typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
140 struct nvme_completion *);
142 struct nvme_cmd_info {
143 nvme_completion_fn fn;
145 unsigned long timeout;
148 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
150 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
154 * alloc_cmdid() - Allocate a Command ID
155 * @nvmeq: The queue that will be used for this command
156 * @ctx: A pointer that will be passed to the handler
157 * @handler: The function to call on completion
159 * Allocate a Command ID for a queue. The data passed in will
160 * be passed to the completion handler. This is implemented by using
161 * the bottom two bits of the ctx pointer to store the handler ID.
162 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
163 * We can change this if it becomes a problem.
165 * May be called with local interrupts disabled and the q_lock held,
166 * or with interrupts enabled and no locks held.
168 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
169 nvme_completion_fn handler, unsigned timeout)
171 int depth = nvmeq->q_depth - 1;
172 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
176 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
179 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
181 info[cmdid].fn = handler;
182 info[cmdid].ctx = ctx;
183 info[cmdid].timeout = jiffies + timeout;
187 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
188 nvme_completion_fn handler, unsigned timeout)
191 wait_event_killable(nvmeq->sq_full,
192 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
193 return (cmdid < 0) ? -EINTR : cmdid;
196 /* Special values must be less than 0x1000 */
197 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
198 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
199 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
200 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
201 #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
203 static void special_completion(struct nvme_dev *dev, void *ctx,
204 struct nvme_completion *cqe)
206 if (ctx == CMD_CTX_CANCELLED)
208 if (ctx == CMD_CTX_FLUSH)
210 if (ctx == CMD_CTX_COMPLETED) {
211 dev_warn(&dev->pci_dev->dev,
212 "completed id %d twice on queue %d\n",
213 cqe->command_id, le16_to_cpup(&cqe->sq_id));
216 if (ctx == CMD_CTX_INVALID) {
217 dev_warn(&dev->pci_dev->dev,
218 "invalid id %d completed on queue %d\n",
219 cqe->command_id, le16_to_cpup(&cqe->sq_id));
223 dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
227 * Called with local interrupts disabled and the q_lock held. May not sleep.
229 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
230 nvme_completion_fn *fn)
233 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
235 if (cmdid >= nvmeq->q_depth) {
236 *fn = special_completion;
237 return CMD_CTX_INVALID;
239 *fn = info[cmdid].fn;
240 ctx = info[cmdid].ctx;
241 info[cmdid].fn = special_completion;
242 info[cmdid].ctx = CMD_CTX_COMPLETED;
243 clear_bit(cmdid, nvmeq->cmdid_data);
244 wake_up(&nvmeq->sq_full);
248 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
249 nvme_completion_fn *fn)
252 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
254 *fn = info[cmdid].fn;
255 ctx = info[cmdid].ctx;
256 info[cmdid].fn = special_completion;
257 info[cmdid].ctx = CMD_CTX_CANCELLED;
261 static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
263 return dev->queues[get_cpu() + 1];
266 static void put_nvmeq(struct nvme_queue *nvmeq)
272 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
273 * @nvmeq: The queue to use
274 * @cmd: The command to send
276 * Safe to use from interrupt context
278 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
282 spin_lock_irqsave(&nvmeq->q_lock, flags);
283 tail = nvmeq->sq_tail;
284 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
285 if (++tail == nvmeq->q_depth)
287 writel(tail, nvmeq->q_db);
288 nvmeq->sq_tail = tail;
289 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
295 * The nvme_iod describes the data in an I/O, including the list of PRP
296 * entries. You can't see it in this data structure because C doesn't let
297 * me express that. Use nvme_alloc_iod to ensure there's enough space
298 * allocated to store the PRP list.
301 void *private; /* For the use of the submitter of the I/O */
302 int npages; /* In the PRP list. 0 means small pool in use */
303 int offset; /* Of PRP list */
304 int nents; /* Used in scatterlist */
305 int length; /* Of data, in bytes */
306 dma_addr_t first_dma;
307 struct scatterlist sg[0];
310 static __le64 **iod_list(struct nvme_iod *iod)
312 return ((void *)iod) + iod->offset;
316 * Will slightly overestimate the number of pages needed. This is OK
317 * as it only leads to a small amount of wasted memory for the lifetime of
320 static int nvme_npages(unsigned size)
322 unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
323 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
326 static struct nvme_iod *
327 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
329 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
330 sizeof(__le64 *) * nvme_npages(nbytes) +
331 sizeof(struct scatterlist) * nseg, gfp);
334 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
336 iod->length = nbytes;
342 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
344 const int last_prp = PAGE_SIZE / 8 - 1;
346 __le64 **list = iod_list(iod);
347 dma_addr_t prp_dma = iod->first_dma;
349 if (iod->npages == 0)
350 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
351 for (i = 0; i < iod->npages; i++) {
352 __le64 *prp_list = list[i];
353 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
354 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
355 prp_dma = next_prp_dma;
360 static void requeue_bio(struct nvme_dev *dev, struct bio *bio)
362 struct nvme_queue *nvmeq = get_nvmeq(dev);
363 if (bio_list_empty(&nvmeq->sq_cong))
364 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
365 bio_list_add(&nvmeq->sq_cong, bio);
367 wake_up_process(nvme_thread);
370 static void bio_completion(struct nvme_dev *dev, void *ctx,
371 struct nvme_completion *cqe)
373 struct nvme_iod *iod = ctx;
374 struct bio *bio = iod->private;
375 u16 status = le16_to_cpup(&cqe->status) >> 1;
377 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
378 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
379 nvme_free_iod(dev, iod);
381 bio_endio(bio, -EIO);
382 } else if (bio->bi_vcnt > bio->bi_idx) {
383 requeue_bio(dev, bio);
389 /* length is in bytes. gfp flags indicates whether we may sleep. */
390 static int nvme_setup_prps(struct nvme_dev *dev,
391 struct nvme_common_command *cmd, struct nvme_iod *iod,
392 int total_len, gfp_t gfp)
394 struct dma_pool *pool;
395 int length = total_len;
396 struct scatterlist *sg = iod->sg;
397 int dma_len = sg_dma_len(sg);
398 u64 dma_addr = sg_dma_address(sg);
399 int offset = offset_in_page(dma_addr);
401 __le64 **list = iod_list(iod);
405 cmd->prp1 = cpu_to_le64(dma_addr);
406 length -= (PAGE_SIZE - offset);
410 dma_len -= (PAGE_SIZE - offset);
412 dma_addr += (PAGE_SIZE - offset);
415 dma_addr = sg_dma_address(sg);
416 dma_len = sg_dma_len(sg);
419 if (length <= PAGE_SIZE) {
420 cmd->prp2 = cpu_to_le64(dma_addr);
424 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
425 if (nprps <= (256 / 8)) {
426 pool = dev->prp_small_pool;
429 pool = dev->prp_page_pool;
433 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
435 cmd->prp2 = cpu_to_le64(dma_addr);
437 return (total_len - length) + PAGE_SIZE;
440 iod->first_dma = prp_dma;
441 cmd->prp2 = cpu_to_le64(prp_dma);
444 if (i == PAGE_SIZE / 8) {
445 __le64 *old_prp_list = prp_list;
446 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
448 return total_len - length;
449 list[iod->npages++] = prp_list;
450 prp_list[0] = old_prp_list[i - 1];
451 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
454 prp_list[i++] = cpu_to_le64(dma_addr);
455 dma_len -= PAGE_SIZE;
456 dma_addr += PAGE_SIZE;
464 dma_addr = sg_dma_address(sg);
465 dma_len = sg_dma_len(sg);
471 /* NVMe scatterlists require no holes in the virtual address */
472 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
473 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
475 static int nvme_map_bio(struct device *dev, struct nvme_iod *iod,
476 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
478 struct bio_vec *bvec, *bvprv = NULL;
479 struct scatterlist *sg = NULL;
480 int i, old_idx, length = 0, nsegs = 0;
482 sg_init_table(iod->sg, psegs);
483 old_idx = bio->bi_idx;
484 bio_for_each_segment(bvec, bio, i) {
485 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
486 sg->length += bvec->bv_len;
488 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
490 sg = sg ? sg + 1 : iod->sg;
491 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
495 length += bvec->bv_len;
501 if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) {
502 bio->bi_idx = old_idx;
508 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
511 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
513 memset(cmnd, 0, sizeof(*cmnd));
514 cmnd->common.opcode = nvme_cmd_flush;
515 cmnd->common.command_id = cmdid;
516 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
518 if (++nvmeq->sq_tail == nvmeq->q_depth)
520 writel(nvmeq->sq_tail, nvmeq->q_db);
525 static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
527 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
528 special_completion, NVME_IO_TIMEOUT);
529 if (unlikely(cmdid < 0))
532 return nvme_submit_flush(nvmeq, ns, cmdid);
536 * Called with local interrupts disabled and the q_lock held. May not sleep.
538 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
541 struct nvme_command *cmnd;
542 struct nvme_iod *iod;
543 enum dma_data_direction dma_dir;
544 int cmdid, length, result = -ENOMEM;
547 int psegs = bio_phys_segments(ns->queue, bio);
549 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
550 result = nvme_submit_flush_data(nvmeq, ns);
555 iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
561 cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
562 if (unlikely(cmdid < 0))
565 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
566 return nvme_submit_flush(nvmeq, ns, cmdid);
569 if (bio->bi_rw & REQ_FUA)
570 control |= NVME_RW_FUA;
571 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
572 control |= NVME_RW_LR;
575 if (bio->bi_rw & REQ_RAHEAD)
576 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
578 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
580 memset(cmnd, 0, sizeof(*cmnd));
581 if (bio_data_dir(bio)) {
582 cmnd->rw.opcode = nvme_cmd_write;
583 dma_dir = DMA_TO_DEVICE;
585 cmnd->rw.opcode = nvme_cmd_read;
586 dma_dir = DMA_FROM_DEVICE;
589 result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs);
594 cmnd->rw.command_id = cmdid;
595 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
596 length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
598 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
599 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
600 cmnd->rw.control = cpu_to_le16(control);
601 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
603 bio->bi_sector += length >> 9;
605 if (++nvmeq->sq_tail == nvmeq->q_depth)
607 writel(nvmeq->sq_tail, nvmeq->q_db);
612 nvme_free_iod(nvmeq->dev, iod);
618 * NB: return value of non-zero would mean that we were a stacking driver.
619 * make_request must always succeed.
621 static int nvme_make_request(struct request_queue *q, struct bio *bio)
623 struct nvme_ns *ns = q->queuedata;
624 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
627 spin_lock_irq(&nvmeq->q_lock);
628 if (bio_list_empty(&nvmeq->sq_cong))
629 result = nvme_submit_bio_queue(nvmeq, ns, bio);
630 if (unlikely(result)) {
631 if (bio_list_empty(&nvmeq->sq_cong))
632 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
633 bio_list_add(&nvmeq->sq_cong, bio);
636 spin_unlock_irq(&nvmeq->q_lock);
642 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
646 head = nvmeq->cq_head;
647 phase = nvmeq->cq_phase;
651 nvme_completion_fn fn;
652 struct nvme_completion cqe = nvmeq->cqes[head];
653 if ((le16_to_cpu(cqe.status) & 1) != phase)
655 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
656 if (++head == nvmeq->q_depth) {
661 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
662 fn(nvmeq->dev, ctx, &cqe);
665 /* If the controller ignores the cq head doorbell and continuously
666 * writes to the queue, it is theoretically possible to wrap around
667 * the queue twice and mistakenly return IRQ_NONE. Linux only
668 * requires that 0.1% of your interrupts are handled, so this isn't
671 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
674 writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
675 nvmeq->cq_head = head;
676 nvmeq->cq_phase = phase;
681 static irqreturn_t nvme_irq(int irq, void *data)
684 struct nvme_queue *nvmeq = data;
685 spin_lock(&nvmeq->q_lock);
686 result = nvme_process_cq(nvmeq);
687 spin_unlock(&nvmeq->q_lock);
691 static irqreturn_t nvme_irq_check(int irq, void *data)
693 struct nvme_queue *nvmeq = data;
694 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
695 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
697 return IRQ_WAKE_THREAD;
700 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
702 spin_lock_irq(&nvmeq->q_lock);
703 cancel_cmdid(nvmeq, cmdid, NULL);
704 spin_unlock_irq(&nvmeq->q_lock);
707 struct sync_cmd_info {
708 struct task_struct *task;
713 static void sync_completion(struct nvme_dev *dev, void *ctx,
714 struct nvme_completion *cqe)
716 struct sync_cmd_info *cmdinfo = ctx;
717 cmdinfo->result = le32_to_cpup(&cqe->result);
718 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
719 wake_up_process(cmdinfo->task);
723 * Returns 0 on success. If the result is negative, it's a Linux error code;
724 * if the result is positive, it's an NVM Express status code
726 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
727 struct nvme_command *cmd, u32 *result, unsigned timeout)
730 struct sync_cmd_info cmdinfo;
732 cmdinfo.task = current;
733 cmdinfo.status = -EINTR;
735 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
739 cmd->common.command_id = cmdid;
741 set_current_state(TASK_KILLABLE);
742 nvme_submit_cmd(nvmeq, cmd);
745 if (cmdinfo.status == -EINTR) {
746 nvme_abort_command(nvmeq, cmdid);
751 *result = cmdinfo.result;
753 return cmdinfo.status;
756 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
759 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
762 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
765 struct nvme_command c;
767 memset(&c, 0, sizeof(c));
768 c.delete_queue.opcode = opcode;
769 c.delete_queue.qid = cpu_to_le16(id);
771 status = nvme_submit_admin_cmd(dev, &c, NULL);
777 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
778 struct nvme_queue *nvmeq)
781 struct nvme_command c;
782 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
784 memset(&c, 0, sizeof(c));
785 c.create_cq.opcode = nvme_admin_create_cq;
786 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
787 c.create_cq.cqid = cpu_to_le16(qid);
788 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
789 c.create_cq.cq_flags = cpu_to_le16(flags);
790 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
792 status = nvme_submit_admin_cmd(dev, &c, NULL);
798 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
799 struct nvme_queue *nvmeq)
802 struct nvme_command c;
803 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
805 memset(&c, 0, sizeof(c));
806 c.create_sq.opcode = nvme_admin_create_sq;
807 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
808 c.create_sq.sqid = cpu_to_le16(qid);
809 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
810 c.create_sq.sq_flags = cpu_to_le16(flags);
811 c.create_sq.cqid = cpu_to_le16(qid);
813 status = nvme_submit_admin_cmd(dev, &c, NULL);
819 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
821 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
824 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
826 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
829 static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
832 struct nvme_command c;
834 memset(&c, 0, sizeof(c));
835 c.identify.opcode = nvme_admin_identify;
836 c.identify.nsid = cpu_to_le32(nsid);
837 c.identify.prp1 = cpu_to_le64(dma_addr);
838 c.identify.cns = cpu_to_le32(cns);
840 return nvme_submit_admin_cmd(dev, &c, NULL);
843 static int nvme_get_features(struct nvme_dev *dev, unsigned fid,
844 unsigned nsid, dma_addr_t dma_addr)
846 struct nvme_command c;
848 memset(&c, 0, sizeof(c));
849 c.features.opcode = nvme_admin_get_features;
850 c.features.nsid = cpu_to_le32(nsid);
851 c.features.prp1 = cpu_to_le64(dma_addr);
852 c.features.fid = cpu_to_le32(fid);
854 return nvme_submit_admin_cmd(dev, &c, NULL);
857 static int nvme_set_features(struct nvme_dev *dev, unsigned fid,
858 unsigned dword11, dma_addr_t dma_addr, u32 *result)
860 struct nvme_command c;
862 memset(&c, 0, sizeof(c));
863 c.features.opcode = nvme_admin_set_features;
864 c.features.prp1 = cpu_to_le64(dma_addr);
865 c.features.fid = cpu_to_le32(fid);
866 c.features.dword11 = cpu_to_le32(dword11);
868 return nvme_submit_admin_cmd(dev, &c, result);
871 static void nvme_free_queue(struct nvme_dev *dev, int qid)
873 struct nvme_queue *nvmeq = dev->queues[qid];
874 int vector = dev->entry[nvmeq->cq_vector].vector;
876 irq_set_affinity_hint(vector, NULL);
877 free_irq(vector, nvmeq);
879 /* Don't tell the adapter to delete the admin queue */
881 adapter_delete_sq(dev, qid);
882 adapter_delete_cq(dev, qid);
885 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
886 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
887 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
888 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
892 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
893 int depth, int vector)
895 struct device *dmadev = &dev->pci_dev->dev;
896 unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
897 sizeof(struct nvme_cmd_info));
898 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
902 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
903 &nvmeq->cq_dma_addr, GFP_KERNEL);
906 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
908 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
909 &nvmeq->sq_dma_addr, GFP_KERNEL);
913 nvmeq->q_dmadev = dmadev;
915 spin_lock_init(&nvmeq->q_lock);
918 init_waitqueue_head(&nvmeq->sq_full);
919 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
920 bio_list_init(&nvmeq->sq_cong);
921 nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
922 nvmeq->q_depth = depth;
923 nvmeq->cq_vector = vector;
928 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
935 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
938 if (use_threaded_interrupts)
939 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
940 nvme_irq_check, nvme_irq,
941 IRQF_DISABLED | IRQF_SHARED,
943 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
944 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
947 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
948 int qid, int cq_size, int vector)
951 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
954 return ERR_PTR(-ENOMEM);
956 result = adapter_alloc_cq(dev, qid, nvmeq);
960 result = adapter_alloc_sq(dev, qid, nvmeq);
964 result = queue_request_irq(dev, nvmeq, "nvme");
971 adapter_delete_sq(dev, qid);
973 adapter_delete_cq(dev, qid);
975 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
976 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
977 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
978 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
980 return ERR_PTR(result);
983 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
988 unsigned long timeout;
989 struct nvme_queue *nvmeq;
991 dev->dbs = ((void __iomem *)dev->bar) + 4096;
993 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
997 aqa = nvmeq->q_depth - 1;
1000 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1001 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1002 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1003 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1005 writel(0, &dev->bar->cc);
1006 writel(aqa, &dev->bar->aqa);
1007 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1008 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1009 writel(dev->ctrl_config, &dev->bar->cc);
1011 cap = readq(&dev->bar->cap);
1012 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1013 dev->db_stride = NVME_CAP_STRIDE(cap);
1015 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
1017 if (fatal_signal_pending(current))
1019 if (time_after(jiffies, timeout)) {
1020 dev_err(&dev->pci_dev->dev,
1021 "Device not ready; aborting initialisation\n");
1026 result = queue_request_irq(dev, nvmeq, "nvme admin");
1027 dev->queues[0] = nvmeq;
1031 static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1032 unsigned long addr, unsigned length)
1034 int i, err, count, nents, offset;
1035 struct scatterlist *sg;
1036 struct page **pages;
1037 struct nvme_iod *iod;
1040 return ERR_PTR(-EINVAL);
1042 return ERR_PTR(-EINVAL);
1044 offset = offset_in_page(addr);
1045 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1046 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1048 return ERR_PTR(-ENOMEM);
1050 err = get_user_pages_fast(addr, count, 1, pages);
1057 iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1059 sg_init_table(sg, count);
1060 for (i = 0; i < count; i++) {
1061 sg_set_page(&sg[i], pages[i],
1062 min_t(int, length, PAGE_SIZE - offset), offset);
1063 length -= (PAGE_SIZE - offset);
1066 sg_mark_end(&sg[i - 1]);
1070 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1071 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1081 for (i = 0; i < count; i++)
1084 return ERR_PTR(err);
1087 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1088 struct nvme_iod *iod)
1092 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1093 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1095 for (i = 0; i < iod->nents; i++)
1096 put_page(sg_page(&iod->sg[i]));
1099 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1101 struct nvme_dev *dev = ns->dev;
1102 struct nvme_queue *nvmeq;
1103 struct nvme_user_io io;
1104 struct nvme_command c;
1107 struct nvme_iod *iod;
1109 if (copy_from_user(&io, uio, sizeof(io)))
1111 length = (io.nblocks + 1) << ns->lba_shift;
1113 switch (io.opcode) {
1114 case nvme_cmd_write:
1116 case nvme_cmd_compare:
1117 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1124 return PTR_ERR(iod);
1126 memset(&c, 0, sizeof(c));
1127 c.rw.opcode = io.opcode;
1128 c.rw.flags = io.flags;
1129 c.rw.nsid = cpu_to_le32(ns->ns_id);
1130 c.rw.slba = cpu_to_le64(io.slba);
1131 c.rw.length = cpu_to_le16(io.nblocks);
1132 c.rw.control = cpu_to_le16(io.control);
1133 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1134 c.rw.reftag = io.reftag;
1135 c.rw.apptag = io.apptag;
1136 c.rw.appmask = io.appmask;
1138 length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1140 nvmeq = get_nvmeq(dev);
1142 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1143 * disabled. We may be preempted at any point, and be rescheduled
1144 * to a different CPU. That will cause cacheline bouncing, but no
1145 * additional races since q_lock already protects against other CPUs.
1148 if (length != (io.nblocks + 1) << ns->lba_shift)
1151 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1153 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1154 nvme_free_iod(dev, iod);
1158 static int nvme_user_admin_cmd(struct nvme_dev *dev,
1159 struct nvme_admin_cmd __user *ucmd)
1161 struct nvme_admin_cmd cmd;
1162 struct nvme_command c;
1164 struct nvme_iod *uninitialized_var(iod);
1166 if (!capable(CAP_SYS_ADMIN))
1168 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1171 memset(&c, 0, sizeof(c));
1172 c.common.opcode = cmd.opcode;
1173 c.common.flags = cmd.flags;
1174 c.common.nsid = cpu_to_le32(cmd.nsid);
1175 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1176 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1177 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1178 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1179 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1180 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1181 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1182 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1184 length = cmd.data_len;
1186 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1189 return PTR_ERR(iod);
1190 length = nvme_setup_prps(dev, &c.common, iod, length,
1194 if (length != cmd.data_len)
1197 status = nvme_submit_admin_cmd(dev, &c, NULL);
1200 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1201 nvme_free_iod(dev, iod);
1206 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1209 struct nvme_ns *ns = bdev->bd_disk->private_data;
1214 case NVME_IOCTL_ADMIN_CMD:
1215 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1216 case NVME_IOCTL_SUBMIT_IO:
1217 return nvme_submit_io(ns, (void __user *)arg);
1223 static const struct block_device_operations nvme_fops = {
1224 .owner = THIS_MODULE,
1225 .ioctl = nvme_ioctl,
1226 .compat_ioctl = nvme_ioctl,
1229 static void nvme_timeout_ios(struct nvme_queue *nvmeq)
1231 int depth = nvmeq->q_depth - 1;
1232 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1233 unsigned long now = jiffies;
1236 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1238 nvme_completion_fn fn;
1239 static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, };
1241 if (!time_after(now, info[cmdid].timeout))
1243 dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid);
1244 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1245 fn(nvmeq->dev, ctx, &cqe);
1249 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1251 while (bio_list_peek(&nvmeq->sq_cong)) {
1252 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1253 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1254 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1255 bio_list_add_head(&nvmeq->sq_cong, bio);
1258 if (bio_list_empty(&nvmeq->sq_cong))
1259 remove_wait_queue(&nvmeq->sq_full,
1260 &nvmeq->sq_cong_wait);
1264 static int nvme_kthread(void *data)
1266 struct nvme_dev *dev;
1268 while (!kthread_should_stop()) {
1269 __set_current_state(TASK_RUNNING);
1270 spin_lock(&dev_list_lock);
1271 list_for_each_entry(dev, &dev_list, node) {
1273 for (i = 0; i < dev->queue_count; i++) {
1274 struct nvme_queue *nvmeq = dev->queues[i];
1277 spin_lock_irq(&nvmeq->q_lock);
1278 if (nvme_process_cq(nvmeq))
1279 printk("process_cq did something\n");
1280 nvme_timeout_ios(nvmeq);
1281 nvme_resubmit_bios(nvmeq);
1282 spin_unlock_irq(&nvmeq->q_lock);
1285 spin_unlock(&dev_list_lock);
1286 set_current_state(TASK_INTERRUPTIBLE);
1287 schedule_timeout(HZ);
1292 static DEFINE_IDA(nvme_index_ida);
1294 static int nvme_get_ns_idx(void)
1299 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1302 spin_lock(&dev_list_lock);
1303 error = ida_get_new(&nvme_index_ida, &index);
1304 spin_unlock(&dev_list_lock);
1305 } while (error == -EAGAIN);
1312 static void nvme_put_ns_idx(int index)
1314 spin_lock(&dev_list_lock);
1315 ida_remove(&nvme_index_ida, index);
1316 spin_unlock(&dev_list_lock);
1319 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1320 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1323 struct gendisk *disk;
1326 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1329 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1332 ns->queue = blk_alloc_queue(GFP_KERNEL);
1335 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1336 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1337 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1338 /* queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); */
1339 blk_queue_make_request(ns->queue, nvme_make_request);
1341 ns->queue->queuedata = ns;
1343 disk = alloc_disk(NVME_MINORS);
1345 goto out_free_queue;
1348 lbaf = id->flbas & 0xf;
1349 ns->lba_shift = id->lbaf[lbaf].ds;
1350 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1351 if (dev->max_hw_sectors)
1352 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1354 disk->major = nvme_major;
1355 disk->minors = NVME_MINORS;
1356 disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1357 disk->fops = &nvme_fops;
1358 disk->private_data = ns;
1359 disk->queue = ns->queue;
1360 disk->driverfs_dev = &dev->pci_dev->dev;
1361 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1362 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1367 blk_cleanup_queue(ns->queue);
1373 static void nvme_ns_free(struct nvme_ns *ns)
1375 int index = ns->disk->first_minor / NVME_MINORS;
1377 nvme_put_ns_idx(index);
1378 blk_cleanup_queue(ns->queue);
1382 static int set_queue_count(struct nvme_dev *dev, int count)
1386 u32 q_count = (count - 1) | ((count - 1) << 16);
1388 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1392 return min(result & 0xffff, result >> 16) + 1;
1395 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1397 int result, cpu, i, nr_io_queues, db_bar_size, q_depth;
1399 nr_io_queues = num_online_cpus();
1400 result = set_queue_count(dev, nr_io_queues);
1403 if (result < nr_io_queues)
1404 nr_io_queues = result;
1406 /* Deregister the admin queue's interrupt */
1407 free_irq(dev->entry[0].vector, dev->queues[0]);
1409 db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1410 if (db_bar_size > 8192) {
1412 dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
1414 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1415 dev->queues[0]->q_db = dev->dbs;
1418 for (i = 0; i < nr_io_queues; i++)
1419 dev->entry[i].entry = i;
1421 result = pci_enable_msix(dev->pci_dev, dev->entry,
1425 } else if (result > 0) {
1426 nr_io_queues = result;
1434 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1435 /* XXX: handle failure here */
1437 cpu = cpumask_first(cpu_online_mask);
1438 for (i = 0; i < nr_io_queues; i++) {
1439 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1440 cpu = cpumask_next(cpu, cpu_online_mask);
1443 q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1445 for (i = 0; i < nr_io_queues; i++) {
1446 dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
1447 if (IS_ERR(dev->queues[i + 1]))
1448 return PTR_ERR(dev->queues[i + 1]);
1452 for (; i < num_possible_cpus(); i++) {
1453 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1454 dev->queues[i + 1] = dev->queues[target + 1];
1460 static void nvme_free_queues(struct nvme_dev *dev)
1464 for (i = dev->queue_count - 1; i >= 0; i--)
1465 nvme_free_queue(dev, i);
1468 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1471 struct nvme_ns *ns, *next;
1472 struct nvme_id_ctrl *ctrl;
1473 struct nvme_id_ns *id_ns;
1475 dma_addr_t dma_addr;
1477 res = nvme_setup_io_queues(dev);
1481 mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1484 res = nvme_identify(dev, 0, 1, dma_addr);
1491 nn = le32_to_cpup(&ctrl->nn);
1492 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1493 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1494 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1496 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
1497 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
1501 for (i = 1; i <= nn; i++) {
1502 res = nvme_identify(dev, i, 0, dma_addr);
1506 if (id_ns->ncap == 0)
1509 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1514 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1516 list_add_tail(&ns->list, &dev->namespaces);
1518 list_for_each_entry(ns, &dev->namespaces, list)
1524 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1525 list_del(&ns->list);
1530 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1534 static int nvme_dev_remove(struct nvme_dev *dev)
1536 struct nvme_ns *ns, *next;
1538 spin_lock(&dev_list_lock);
1539 list_del(&dev->node);
1540 spin_unlock(&dev_list_lock);
1542 /* TODO: wait all I/O finished or cancel them */
1544 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1545 list_del(&ns->list);
1546 del_gendisk(ns->disk);
1550 nvme_free_queues(dev);
1555 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1557 struct device *dmadev = &dev->pci_dev->dev;
1558 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1559 PAGE_SIZE, PAGE_SIZE, 0);
1560 if (!dev->prp_page_pool)
1563 /* Optimisation for I/Os between 4k and 128k */
1564 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1566 if (!dev->prp_small_pool) {
1567 dma_pool_destroy(dev->prp_page_pool);
1573 static void nvme_release_prp_pools(struct nvme_dev *dev)
1575 dma_pool_destroy(dev->prp_page_pool);
1576 dma_pool_destroy(dev->prp_small_pool);
1579 static DEFINE_IDA(nvme_instance_ida);
1581 static int nvme_set_instance(struct nvme_dev *dev)
1583 int instance, error;
1586 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1589 spin_lock(&dev_list_lock);
1590 error = ida_get_new(&nvme_instance_ida, &instance);
1591 spin_unlock(&dev_list_lock);
1592 } while (error == -EAGAIN);
1597 dev->instance = instance;
1601 static void nvme_release_instance(struct nvme_dev *dev)
1603 spin_lock(&dev_list_lock);
1604 ida_remove(&nvme_instance_ida, dev->instance);
1605 spin_unlock(&dev_list_lock);
1608 static int __devinit nvme_probe(struct pci_dev *pdev,
1609 const struct pci_device_id *id)
1611 int bars, result = -ENOMEM;
1612 struct nvme_dev *dev;
1614 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1617 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1621 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1626 if (pci_enable_device_mem(pdev))
1628 pci_set_master(pdev);
1629 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1630 if (pci_request_selected_regions(pdev, bars, "nvme"))
1633 INIT_LIST_HEAD(&dev->namespaces);
1634 dev->pci_dev = pdev;
1635 pci_set_drvdata(pdev, dev);
1636 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1637 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1638 result = nvme_set_instance(dev);
1642 dev->entry[0].vector = pdev->irq;
1644 result = nvme_setup_prp_pools(dev);
1648 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1654 result = nvme_configure_admin_queue(dev);
1659 spin_lock(&dev_list_lock);
1660 list_add(&dev->node, &dev_list);
1661 spin_unlock(&dev_list_lock);
1663 result = nvme_dev_add(dev);
1670 spin_lock(&dev_list_lock);
1671 list_del(&dev->node);
1672 spin_unlock(&dev_list_lock);
1674 nvme_free_queues(dev);
1678 pci_disable_msix(pdev);
1679 nvme_release_instance(dev);
1680 nvme_release_prp_pools(dev);
1682 pci_disable_device(pdev);
1683 pci_release_regions(pdev);
1691 static void __devexit nvme_remove(struct pci_dev *pdev)
1693 struct nvme_dev *dev = pci_get_drvdata(pdev);
1694 nvme_dev_remove(dev);
1695 pci_disable_msix(pdev);
1697 nvme_release_instance(dev);
1698 nvme_release_prp_pools(dev);
1699 pci_disable_device(pdev);
1700 pci_release_regions(pdev);
1706 /* These functions are yet to be implemented */
1707 #define nvme_error_detected NULL
1708 #define nvme_dump_registers NULL
1709 #define nvme_link_reset NULL
1710 #define nvme_slot_reset NULL
1711 #define nvme_error_resume NULL
1712 #define nvme_suspend NULL
1713 #define nvme_resume NULL
1715 static struct pci_error_handlers nvme_err_handler = {
1716 .error_detected = nvme_error_detected,
1717 .mmio_enabled = nvme_dump_registers,
1718 .link_reset = nvme_link_reset,
1719 .slot_reset = nvme_slot_reset,
1720 .resume = nvme_error_resume,
1723 /* Move to pci_ids.h later */
1724 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
1726 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1727 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1730 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1732 static struct pci_driver nvme_driver = {
1734 .id_table = nvme_id_table,
1735 .probe = nvme_probe,
1736 .remove = __devexit_p(nvme_remove),
1737 .suspend = nvme_suspend,
1738 .resume = nvme_resume,
1739 .err_handler = &nvme_err_handler,
1742 static int __init nvme_init(void)
1746 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1747 if (IS_ERR(nvme_thread))
1748 return PTR_ERR(nvme_thread);
1750 result = register_blkdev(nvme_major, "nvme");
1753 else if (result > 0)
1754 nvme_major = result;
1756 result = pci_register_driver(&nvme_driver);
1758 goto unregister_blkdev;
1762 unregister_blkdev(nvme_major, "nvme");
1764 kthread_stop(nvme_thread);
1768 static void __exit nvme_exit(void)
1770 pci_unregister_driver(&nvme_driver);
1771 unregister_blkdev(nvme_major, "nvme");
1772 kthread_stop(nvme_thread);
1775 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1776 MODULE_LICENSE("GPL");
1777 MODULE_VERSION("0.8");
1778 module_init(nvme_init);
1779 module_exit(nvme_exit);