2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/errno.h>
24 #include <linux/genhd.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/pci.h>
34 #include <linux/poison.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <linux/types.h>
38 #include <linux/version.h>
40 #define NVME_Q_DEPTH 1024
41 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
42 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
43 #define NVME_MINORS 64
45 static int nvme_major;
46 module_param(nvme_major, int, 0);
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0);
52 * Represents an NVM Express device. Each nvme_dev is a PCI function.
55 struct nvme_queue **queues;
57 struct pci_dev *pci_dev;
61 struct msix_entry *entry;
62 struct nvme_bar __iomem *bar;
63 struct list_head namespaces;
70 * An NVM Express namespace is equivalent to a SCSI LUN
73 struct list_head list;
76 struct request_queue *queue;
84 * An NVM Express queue. Each device has at least two (one for admin
85 * commands and one for I/O commands).
88 struct device *q_dmadev;
90 struct nvme_command *sq_cmds;
91 volatile struct nvme_completion *cqes;
92 dma_addr_t sq_dma_addr;
93 dma_addr_t cq_dma_addr;
94 wait_queue_head_t sq_full;
95 struct bio_list sq_cong;
103 unsigned long cmdid_data[];
107 * Check we didin't inadvertently grow the command struct
109 static inline void _nvme_check_size(void)
111 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
112 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
113 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
114 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
115 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
116 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
117 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
118 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
119 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
123 * alloc_cmdid - Allocate a Command ID
124 * @param nvmeq The queue that will be used for this command
125 * @param ctx A pointer that will be passed to the handler
126 * @param handler The ID of the handler to call
128 * Allocate a Command ID for a queue. The data passed in will
129 * be passed to the completion handler. This is implemented by using
130 * the bottom two bits of the ctx pointer to store the handler ID.
131 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
132 * We can change this if it becomes a problem.
134 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler)
136 int depth = nvmeq->q_depth;
137 unsigned long data = (unsigned long)ctx | handler;
140 BUG_ON((unsigned long)ctx & 3);
143 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
146 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
148 nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(depth)] = data;
152 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
156 wait_event_killable(nvmeq->sq_full,
157 (cmdid = alloc_cmdid(nvmeq, ctx, handler)) >= 0);
158 return (cmdid < 0) ? -EINTR : cmdid;
161 /* If you need more than four handlers, you'll need to change how
162 * alloc_cmdid and nvme_process_cq work. Consider using a special
163 * CMD_CTX value instead, if that works for your situation.
166 sync_completion_id = 0,
170 #define CMD_CTX_BASE (POISON_POINTER_DELTA + sync_completion_id)
171 #define CMD_CTX_CANCELLED (0x2008 + CMD_CTX_BASE)
173 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
177 data = nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(nvmeq->q_depth)];
178 clear_bit(cmdid, nvmeq->cmdid_data);
179 wake_up(&nvmeq->sq_full);
183 static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
185 nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(nvmeq->q_depth)] =
189 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
191 int qid, cpu = get_cpu();
192 if (cpu < ns->dev->queue_count)
195 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
196 return ns->dev->queues[qid];
199 static void put_nvmeq(struct nvme_queue *nvmeq)
205 * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
206 * @nvmeq: The queue to use
207 * @cmd: The command to send
209 * Safe to use from interrupt context
211 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
215 /* XXX: Need to check tail isn't going to overrun head */
216 spin_lock_irqsave(&nvmeq->q_lock, flags);
217 tail = nvmeq->sq_tail;
218 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
219 writel(tail, nvmeq->q_db);
220 if (++tail == nvmeq->q_depth)
222 nvmeq->sq_tail = tail;
223 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
228 struct nvme_req_info {
231 struct scatterlist sg[0];
234 /* XXX: use a mempool */
235 static struct nvme_req_info *alloc_info(unsigned nseg, gfp_t gfp)
237 return kmalloc(sizeof(struct nvme_req_info) +
238 sizeof(struct scatterlist) * nseg, gfp);
241 static void free_info(struct nvme_req_info *info)
246 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
247 struct nvme_completion *cqe)
249 struct nvme_req_info *info = ctx;
250 struct bio *bio = info->bio;
251 u16 status = le16_to_cpup(&cqe->status) >> 1;
253 dma_unmap_sg(nvmeq->q_dmadev, info->sg, info->nents,
254 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
256 bio_endio(bio, status ? -EIO : 0);
259 /* length is in bytes */
260 static void nvme_setup_prps(struct nvme_common_command *cmd,
261 struct scatterlist *sg, int length)
263 int dma_len = sg_dma_len(sg);
264 u64 dma_addr = sg_dma_address(sg);
265 int offset = offset_in_page(dma_addr);
267 cmd->prp1 = cpu_to_le64(dma_addr);
268 length -= (PAGE_SIZE - offset);
272 dma_len -= (PAGE_SIZE - offset);
274 dma_addr += (PAGE_SIZE - offset);
277 dma_addr = sg_dma_address(sg);
278 dma_len = sg_dma_len(sg);
281 if (length <= PAGE_SIZE) {
282 cmd->prp2 = cpu_to_le64(dma_addr);
286 /* XXX: support PRP lists */
289 static int nvme_map_bio(struct device *dev, struct nvme_req_info *info,
290 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
292 struct bio_vec *bvec;
293 struct scatterlist *sg = info->sg;
296 sg_init_table(sg, psegs);
297 bio_for_each_segment(bvec, bio, i) {
298 sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
299 /* XXX: handle non-mergable here */
304 return dma_map_sg(dev, info->sg, info->nents, dma_dir);
307 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
310 struct nvme_command *cmnd;
311 struct nvme_req_info *info;
312 enum dma_data_direction dma_dir;
317 int psegs = bio_phys_segments(ns->queue, bio);
319 info = alloc_info(psegs, GFP_NOIO);
324 cmdid = alloc_cmdid(nvmeq, info, bio_completion_id);
325 if (unlikely(cmdid < 0))
329 if (bio->bi_rw & REQ_FUA)
330 control |= NVME_RW_FUA;
331 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
332 control |= NVME_RW_LR;
335 if (bio->bi_rw & REQ_RAHEAD)
336 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
338 spin_lock_irqsave(&nvmeq->q_lock, flags);
339 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
341 memset(cmnd, 0, sizeof(*cmnd));
342 if (bio_data_dir(bio)) {
343 cmnd->rw.opcode = nvme_cmd_write;
344 dma_dir = DMA_TO_DEVICE;
346 cmnd->rw.opcode = nvme_cmd_read;
347 dma_dir = DMA_FROM_DEVICE;
350 nvme_map_bio(nvmeq->q_dmadev, info, bio, dma_dir, psegs);
353 cmnd->rw.command_id = cmdid;
354 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
355 nvme_setup_prps(&cmnd->common, info->sg, bio->bi_size);
356 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
357 cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
358 cmnd->rw.control = cpu_to_le16(control);
359 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
361 writel(nvmeq->sq_tail, nvmeq->q_db);
362 if (++nvmeq->sq_tail == nvmeq->q_depth)
365 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
376 * NB: return value of non-zero would mean that we were a stacking driver.
377 * make_request must always succeed.
379 static int nvme_make_request(struct request_queue *q, struct bio *bio)
381 struct nvme_ns *ns = q->queuedata;
382 struct nvme_queue *nvmeq = get_nvmeq(ns);
384 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
385 blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
386 bio_list_add(&nvmeq->sq_cong, bio);
393 struct sync_cmd_info {
394 struct task_struct *task;
399 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
400 struct nvme_completion *cqe)
402 struct sync_cmd_info *cmdinfo = ctx;
403 if ((unsigned long)cmdinfo == CMD_CTX_CANCELLED)
405 cmdinfo->result = le32_to_cpup(&cqe->result);
406 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
407 wake_up_process(cmdinfo->task);
410 typedef void (*completion_fn)(struct nvme_queue *, void *,
411 struct nvme_completion *);
413 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
417 static const completion_fn completions[4] = {
418 [sync_completion_id] = sync_completion,
419 [bio_completion_id] = bio_completion,
422 head = nvmeq->cq_head;
423 phase = nvmeq->cq_phase;
428 unsigned char handler;
429 struct nvme_completion cqe = nvmeq->cqes[head];
430 if ((le16_to_cpu(cqe.status) & 1) != phase)
432 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
433 if (++head == nvmeq->q_depth) {
438 data = free_cmdid(nvmeq, cqe.command_id);
440 ptr = (void *)(data & ~3UL);
441 completions[handler](nvmeq, ptr, &cqe);
444 /* If the controller ignores the cq head doorbell and continuously
445 * writes to the queue, it is theoretically possible to wrap around
446 * the queue twice and mistakenly return IRQ_NONE. Linux only
447 * requires that 0.1% of your interrupts are handled, so this isn't
450 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
453 writel(head, nvmeq->q_db + 1);
454 nvmeq->cq_head = head;
455 nvmeq->cq_phase = phase;
460 static irqreturn_t nvme_irq(int irq, void *data)
462 return nvme_process_cq(data);
465 static irqreturn_t nvme_irq_thread(int irq, void *data)
468 struct nvme_queue *nvmeq = data;
469 spin_lock(&nvmeq->q_lock);
470 result = nvme_process_cq(nvmeq);
471 spin_unlock(&nvmeq->q_lock);
475 static irqreturn_t nvme_irq_check(int irq, void *data)
477 struct nvme_queue *nvmeq = data;
478 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
479 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
481 return IRQ_WAKE_THREAD;
484 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
486 spin_lock_irq(&nvmeq->q_lock);
487 cancel_cmdid_data(nvmeq, cmdid);
488 spin_unlock_irq(&nvmeq->q_lock);
492 * Returns 0 on success. If the result is negative, it's a Linux error code;
493 * if the result is positive, it's an NVM Express status code
495 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
496 struct nvme_command *cmd, u32 *result)
499 struct sync_cmd_info cmdinfo;
501 cmdinfo.task = current;
502 cmdinfo.status = -EINTR;
504 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id);
507 cmd->common.command_id = cmdid;
509 set_current_state(TASK_KILLABLE);
510 nvme_submit_cmd(nvmeq, cmd);
513 if (cmdinfo.status == -EINTR) {
514 nvme_abort_command(nvmeq, cmdid);
519 *result = cmdinfo.result;
521 return cmdinfo.status;
524 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
527 return nvme_submit_sync_cmd(dev->queues[0], cmd, result);
530 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
533 struct nvme_command c;
535 memset(&c, 0, sizeof(c));
536 c.delete_queue.opcode = opcode;
537 c.delete_queue.qid = cpu_to_le16(id);
539 status = nvme_submit_admin_cmd(dev, &c, NULL);
545 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
546 struct nvme_queue *nvmeq)
549 struct nvme_command c;
550 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
552 memset(&c, 0, sizeof(c));
553 c.create_cq.opcode = nvme_admin_create_cq;
554 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
555 c.create_cq.cqid = cpu_to_le16(qid);
556 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
557 c.create_cq.cq_flags = cpu_to_le16(flags);
558 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
560 status = nvme_submit_admin_cmd(dev, &c, NULL);
566 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
567 struct nvme_queue *nvmeq)
570 struct nvme_command c;
571 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
573 memset(&c, 0, sizeof(c));
574 c.create_sq.opcode = nvme_admin_create_sq;
575 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
576 c.create_sq.sqid = cpu_to_le16(qid);
577 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
578 c.create_sq.sq_flags = cpu_to_le16(flags);
579 c.create_sq.cqid = cpu_to_le16(qid);
581 status = nvme_submit_admin_cmd(dev, &c, NULL);
587 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
589 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
592 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
594 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
597 static void nvme_free_queue(struct nvme_dev *dev, int qid)
599 struct nvme_queue *nvmeq = dev->queues[qid];
601 free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
603 /* Don't tell the adapter to delete the admin queue */
605 adapter_delete_sq(dev, qid);
606 adapter_delete_cq(dev, qid);
609 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
610 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
611 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
612 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
616 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
617 int depth, int vector)
619 struct device *dmadev = &dev->pci_dev->dev;
620 unsigned extra = (depth + BITS_TO_LONGS(depth)) * sizeof(long);
621 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
625 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
626 &nvmeq->cq_dma_addr, GFP_KERNEL);
629 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
631 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
632 &nvmeq->sq_dma_addr, GFP_KERNEL);
636 nvmeq->q_dmadev = dmadev;
637 spin_lock_init(&nvmeq->q_lock);
640 init_waitqueue_head(&nvmeq->sq_full);
641 bio_list_init(&nvmeq->sq_cong);
642 nvmeq->q_db = &dev->dbs[qid * 2];
643 nvmeq->q_depth = depth;
644 nvmeq->cq_vector = vector;
649 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
656 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
659 if (use_threaded_interrupts)
660 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
661 nvme_irq_check, nvme_irq_thread,
662 IRQF_DISABLED | IRQF_SHARED,
664 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
665 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
668 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
669 int qid, int cq_size, int vector)
672 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
677 result = adapter_alloc_cq(dev, qid, nvmeq);
681 result = adapter_alloc_sq(dev, qid, nvmeq);
685 result = queue_request_irq(dev, nvmeq, "nvme");
692 adapter_delete_sq(dev, qid);
694 adapter_delete_cq(dev, qid);
696 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
697 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
698 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
699 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
704 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
708 struct nvme_queue *nvmeq;
710 dev->dbs = ((void __iomem *)dev->bar) + 4096;
712 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
716 aqa = nvmeq->q_depth - 1;
719 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
720 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
721 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
723 writel(0, &dev->bar->cc);
724 writel(aqa, &dev->bar->aqa);
725 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
726 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
727 writel(dev->ctrl_config, &dev->bar->cc);
729 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
731 if (fatal_signal_pending(current))
735 result = queue_request_irq(dev, nvmeq, "nvme admin");
736 dev->queues[0] = nvmeq;
740 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
741 unsigned long addr, unsigned length,
742 struct scatterlist **sgp)
744 int i, err, count, nents, offset;
745 struct scatterlist *sg;
753 offset = offset_in_page(addr);
754 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
755 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
757 err = get_user_pages_fast(addr, count, 1, pages);
764 sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
765 sg_init_table(sg, count);
766 sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
767 length -= (PAGE_SIZE - offset);
768 for (i = 1; i < count; i++) {
769 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
774 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
775 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
784 for (i = 0; i < count; i++)
790 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
791 unsigned long addr, int length,
792 struct scatterlist *sg, int nents)
796 count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
797 dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
799 for (i = 0; i < count; i++)
800 put_page(sg_page(&sg[i]));
803 static int nvme_submit_user_admin_command(struct nvme_dev *dev,
804 unsigned long addr, unsigned length,
805 struct nvme_command *cmd)
808 struct scatterlist *sg;
810 nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
813 nvme_setup_prps(&cmd->common, sg, length);
814 err = nvme_submit_admin_cmd(dev, cmd, NULL);
815 nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
816 return err ? -EIO : 0;
819 static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
821 struct nvme_command c;
823 memset(&c, 0, sizeof(c));
824 c.identify.opcode = nvme_admin_identify;
825 c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
826 c.identify.cns = cpu_to_le32(cns);
828 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
831 static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
833 struct nvme_command c;
835 memset(&c, 0, sizeof(c));
836 c.features.opcode = nvme_admin_get_features;
837 c.features.nsid = cpu_to_le32(ns->ns_id);
838 c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
840 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
843 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
845 struct nvme_dev *dev = ns->dev;
846 struct nvme_queue *nvmeq;
847 struct nvme_user_io io;
848 struct nvme_command c;
852 struct scatterlist *sg;
854 if (copy_from_user(&io, uio, sizeof(io)))
856 length = io.nblocks << io.block_shift;
857 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
861 memset(&c, 0, sizeof(c));
862 c.rw.opcode = io.opcode;
863 c.rw.flags = io.flags;
864 c.rw.nsid = cpu_to_le32(io.nsid);
865 c.rw.slba = cpu_to_le64(io.slba);
866 c.rw.length = cpu_to_le16(io.nblocks - 1);
867 c.rw.control = cpu_to_le16(io.control);
868 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
869 c.rw.reftag = cpu_to_le32(io.reftag); /* XXX: endian? */
870 c.rw.apptag = cpu_to_le16(io.apptag);
871 c.rw.appmask = cpu_to_le16(io.appmask);
873 nvme_setup_prps(&c.common, sg, length);
875 nvmeq = get_nvmeq(ns);
876 /* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
877 * disabled. We may be preempted at any point, and be rescheduled
878 * to a different CPU. That will cause cacheline bouncing, but no
879 * additional races since q_lock already protects against other CPUs.
882 status = nvme_submit_sync_cmd(nvmeq, &c, &result);
884 nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
885 put_user(result, &uio->result);
889 static int nvme_download_firmware(struct nvme_ns *ns,
890 struct nvme_dlfw __user *udlfw)
892 struct nvme_dev *dev = ns->dev;
893 struct nvme_dlfw dlfw;
894 struct nvme_command c;
896 struct scatterlist *sg;
898 if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
900 if (dlfw.length >= (1 << 30))
903 nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
907 memset(&c, 0, sizeof(c));
908 c.dlfw.opcode = nvme_admin_download_fw;
909 c.dlfw.numd = cpu_to_le32(dlfw.length);
910 c.dlfw.offset = cpu_to_le32(dlfw.offset);
911 nvme_setup_prps(&c.common, sg, dlfw.length * 4);
913 status = nvme_submit_admin_cmd(dev, &c, NULL);
914 nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
918 static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
920 struct nvme_dev *dev = ns->dev;
921 struct nvme_command c;
923 memset(&c, 0, sizeof(c));
924 c.common.opcode = nvme_admin_activate_fw;
925 c.common.rsvd10[0] = cpu_to_le32(arg);
927 return nvme_submit_admin_cmd(dev, &c, NULL);
930 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
933 struct nvme_ns *ns = bdev->bd_disk->private_data;
936 case NVME_IOCTL_IDENTIFY_NS:
937 return nvme_identify(ns, arg, 0);
938 case NVME_IOCTL_IDENTIFY_CTRL:
939 return nvme_identify(ns, arg, 1);
940 case NVME_IOCTL_GET_RANGE_TYPE:
941 return nvme_get_range_type(ns, arg);
942 case NVME_IOCTL_SUBMIT_IO:
943 return nvme_submit_io(ns, (void __user *)arg);
944 case NVME_IOCTL_DOWNLOAD_FW:
945 return nvme_download_firmware(ns, (void __user *)arg);
946 case NVME_IOCTL_ACTIVATE_FW:
947 return nvme_activate_firmware(ns, arg);
953 static const struct block_device_operations nvme_fops = {
954 .owner = THIS_MODULE,
958 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
959 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
962 struct gendisk *disk;
965 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
968 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
971 ns->queue = blk_alloc_queue(GFP_KERNEL);
974 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
975 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
976 blk_queue_make_request(ns->queue, nvme_make_request);
978 ns->queue->queuedata = ns;
980 disk = alloc_disk(NVME_MINORS);
985 lbaf = id->flbas & 0xf;
986 ns->lba_shift = id->lbaf[lbaf].ds;
988 disk->major = nvme_major;
989 disk->minors = NVME_MINORS;
990 disk->first_minor = NVME_MINORS * index;
991 disk->fops = &nvme_fops;
992 disk->private_data = ns;
993 disk->queue = ns->queue;
994 disk->driverfs_dev = &dev->pci_dev->dev;
995 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
996 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1001 blk_cleanup_queue(ns->queue);
1007 static void nvme_ns_free(struct nvme_ns *ns)
1010 blk_cleanup_queue(ns->queue);
1014 static int set_queue_count(struct nvme_dev *dev, int count)
1018 struct nvme_command c;
1019 u32 q_count = (count - 1) | ((count - 1) << 16);
1021 memset(&c, 0, sizeof(c));
1022 c.features.opcode = nvme_admin_get_features;
1023 c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1024 c.features.dword11 = cpu_to_le32(q_count);
1026 status = nvme_submit_admin_cmd(dev, &c, &result);
1029 return min(result & 0xffff, result >> 16) + 1;
1032 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1034 int result, cpu, i, nr_queues;
1036 nr_queues = num_online_cpus();
1037 result = set_queue_count(dev, nr_queues);
1040 if (result < nr_queues)
1043 /* Deregister the admin queue's interrupt */
1044 free_irq(dev->entry[0].vector, dev->queues[0]);
1046 for (i = 0; i < nr_queues; i++)
1047 dev->entry[i].entry = i;
1049 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
1052 } else if (result > 0) {
1061 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1062 /* XXX: handle failure here */
1064 cpu = cpumask_first(cpu_online_mask);
1065 for (i = 0; i < nr_queues; i++) {
1066 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1067 cpu = cpumask_next(cpu, cpu_online_mask);
1070 for (i = 0; i < nr_queues; i++) {
1071 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1073 if (!dev->queues[i + 1])
1081 static void nvme_free_queues(struct nvme_dev *dev)
1085 for (i = dev->queue_count - 1; i >= 0; i--)
1086 nvme_free_queue(dev, i);
1089 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1092 struct nvme_ns *ns, *next;
1093 struct nvme_id_ctrl *ctrl;
1095 dma_addr_t dma_addr;
1096 struct nvme_command cid, crt;
1098 res = nvme_setup_io_queues(dev);
1102 /* XXX: Switch to a SG list once prp2 works */
1103 id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1106 memset(&cid, 0, sizeof(cid));
1107 cid.identify.opcode = nvme_admin_identify;
1108 cid.identify.nsid = 0;
1109 cid.identify.prp1 = cpu_to_le64(dma_addr);
1110 cid.identify.cns = cpu_to_le32(1);
1112 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1119 nn = le32_to_cpup(&ctrl->nn);
1120 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1121 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1122 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1124 cid.identify.cns = 0;
1125 memset(&crt, 0, sizeof(crt));
1126 crt.features.opcode = nvme_admin_get_features;
1127 crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1128 crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1130 for (i = 0; i < nn; i++) {
1131 cid.identify.nsid = cpu_to_le32(i);
1132 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1136 if (((struct nvme_id_ns *)id)->ncap == 0)
1139 crt.features.nsid = cpu_to_le32(i);
1140 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1144 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1146 list_add_tail(&ns->list, &dev->namespaces);
1148 list_for_each_entry(ns, &dev->namespaces, list)
1151 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1155 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1156 list_del(&ns->list);
1160 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1164 static int nvme_dev_remove(struct nvme_dev *dev)
1166 struct nvme_ns *ns, *next;
1168 /* TODO: wait all I/O finished or cancel them */
1170 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1171 list_del(&ns->list);
1172 del_gendisk(ns->disk);
1176 nvme_free_queues(dev);
1181 /* XXX: Use an ida or something to let remove / add work correctly */
1182 static void nvme_set_instance(struct nvme_dev *dev)
1184 static int instance;
1185 dev->instance = instance++;
1188 static void nvme_release_instance(struct nvme_dev *dev)
1192 static int __devinit nvme_probe(struct pci_dev *pdev,
1193 const struct pci_device_id *id)
1195 int bars, result = -ENOMEM;
1196 struct nvme_dev *dev;
1198 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1201 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1205 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1210 if (pci_enable_device_mem(pdev))
1212 pci_set_master(pdev);
1213 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1214 if (pci_request_selected_regions(pdev, bars, "nvme"))
1217 INIT_LIST_HEAD(&dev->namespaces);
1218 dev->pci_dev = pdev;
1219 pci_set_drvdata(pdev, dev);
1220 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1221 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1222 nvme_set_instance(dev);
1223 dev->entry[0].vector = pdev->irq;
1225 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1231 result = nvme_configure_admin_queue(dev);
1236 result = nvme_dev_add(dev);
1242 nvme_free_queues(dev);
1246 pci_disable_msix(pdev);
1247 nvme_release_instance(dev);
1249 pci_disable_device(pdev);
1250 pci_release_regions(pdev);
1258 static void __devexit nvme_remove(struct pci_dev *pdev)
1260 struct nvme_dev *dev = pci_get_drvdata(pdev);
1261 nvme_dev_remove(dev);
1262 pci_disable_msix(pdev);
1264 nvme_release_instance(dev);
1265 pci_disable_device(pdev);
1266 pci_release_regions(pdev);
1272 /* These functions are yet to be implemented */
1273 #define nvme_error_detected NULL
1274 #define nvme_dump_registers NULL
1275 #define nvme_link_reset NULL
1276 #define nvme_slot_reset NULL
1277 #define nvme_error_resume NULL
1278 #define nvme_suspend NULL
1279 #define nvme_resume NULL
1281 static struct pci_error_handlers nvme_err_handler = {
1282 .error_detected = nvme_error_detected,
1283 .mmio_enabled = nvme_dump_registers,
1284 .link_reset = nvme_link_reset,
1285 .slot_reset = nvme_slot_reset,
1286 .resume = nvme_error_resume,
1289 /* Move to pci_ids.h later */
1290 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
1292 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1293 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1296 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1298 static struct pci_driver nvme_driver = {
1300 .id_table = nvme_id_table,
1301 .probe = nvme_probe,
1302 .remove = __devexit_p(nvme_remove),
1303 .suspend = nvme_suspend,
1304 .resume = nvme_resume,
1305 .err_handler = &nvme_err_handler,
1308 static int __init nvme_init(void)
1312 nvme_major = register_blkdev(nvme_major, "nvme");
1313 if (nvme_major <= 0)
1316 result = pci_register_driver(&nvme_driver);
1320 unregister_blkdev(nvme_major, "nvme");
1324 static void __exit nvme_exit(void)
1326 pci_unregister_driver(&nvme_driver);
1327 unregister_blkdev(nvme_major, "nvme");
1330 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1331 MODULE_LICENSE("GPL");
1332 MODULE_VERSION("0.2");
1333 module_init(nvme_init);
1334 module_exit(nvme_exit);