NVMe: Fix interpretation of 'Number of Namespaces' field
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/pci.h>
35 #include <linux/poison.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/version.h>
40
41 #define NVME_Q_DEPTH 1024
42 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
43 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
44 #define NVME_MINORS 64
45 #define IO_TIMEOUT      (5 * HZ)
46 #define ADMIN_TIMEOUT   (60 * HZ)
47
48 static int nvme_major;
49 module_param(nvme_major, int, 0);
50
51 static int use_threaded_interrupts;
52 module_param(use_threaded_interrupts, int, 0);
53
54 static DEFINE_SPINLOCK(dev_list_lock);
55 static LIST_HEAD(dev_list);
56 static struct task_struct *nvme_thread;
57
58 /*
59  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
60  */
61 struct nvme_dev {
62         struct list_head node;
63         struct nvme_queue **queues;
64         u32 __iomem *dbs;
65         struct pci_dev *pci_dev;
66         struct dma_pool *prp_page_pool;
67         struct dma_pool *prp_small_pool;
68         int instance;
69         int queue_count;
70         u32 ctrl_config;
71         struct msix_entry *entry;
72         struct nvme_bar __iomem *bar;
73         struct list_head namespaces;
74         char serial[20];
75         char model[40];
76         char firmware_rev[8];
77 };
78
79 /*
80  * An NVM Express namespace is equivalent to a SCSI LUN
81  */
82 struct nvme_ns {
83         struct list_head list;
84
85         struct nvme_dev *dev;
86         struct request_queue *queue;
87         struct gendisk *disk;
88
89         int ns_id;
90         int lba_shift;
91 };
92
93 /*
94  * An NVM Express queue.  Each device has at least two (one for admin
95  * commands and one for I/O commands).
96  */
97 struct nvme_queue {
98         struct device *q_dmadev;
99         struct nvme_dev *dev;
100         spinlock_t q_lock;
101         struct nvme_command *sq_cmds;
102         volatile struct nvme_completion *cqes;
103         dma_addr_t sq_dma_addr;
104         dma_addr_t cq_dma_addr;
105         wait_queue_head_t sq_full;
106         wait_queue_t sq_cong_wait;
107         struct bio_list sq_cong;
108         u32 __iomem *q_db;
109         u16 q_depth;
110         u16 cq_vector;
111         u16 sq_head;
112         u16 sq_tail;
113         u16 cq_head;
114         u16 cq_phase;
115         unsigned long cmdid_data[];
116 };
117
118 /*
119  * Check we didin't inadvertently grow the command struct
120  */
121 static inline void _nvme_check_size(void)
122 {
123         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
124         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
125         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
126         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
127         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
128         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
129         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
130         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
131         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
132 }
133
134 struct nvme_cmd_info {
135         unsigned long ctx;
136         unsigned long timeout;
137 };
138
139 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
140 {
141         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
142 }
143
144 /**
145  * alloc_cmdid() - Allocate a Command ID
146  * @nvmeq: The queue that will be used for this command
147  * @ctx: A pointer that will be passed to the handler
148  * @handler: The ID of the handler to call
149  *
150  * Allocate a Command ID for a queue.  The data passed in will
151  * be passed to the completion handler.  This is implemented by using
152  * the bottom two bits of the ctx pointer to store the handler ID.
153  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
154  * We can change this if it becomes a problem.
155  */
156 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
157                                                         unsigned timeout)
158 {
159         int depth = nvmeq->q_depth - 1;
160         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
161         int cmdid;
162
163         BUG_ON((unsigned long)ctx & 3);
164
165         do {
166                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
167                 if (cmdid >= depth)
168                         return -EBUSY;
169         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
170
171         info[cmdid].ctx = (unsigned long)ctx | handler;
172         info[cmdid].timeout = jiffies + timeout;
173         return cmdid;
174 }
175
176 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
177                                                 int handler, unsigned timeout)
178 {
179         int cmdid;
180         wait_event_killable(nvmeq->sq_full,
181                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
182         return (cmdid < 0) ? -EINTR : cmdid;
183 }
184
185 /*
186  * If you need more than four handlers, you'll need to change how
187  * alloc_cmdid and nvme_process_cq work.  Consider using a special
188  * CMD_CTX value instead, if that works for your situation.
189  */
190 enum {
191         sync_completion_id = 0,
192         bio_completion_id,
193 };
194
195 /* Special values must be a multiple of 4, and less than 0x1000 */
196 #define CMD_CTX_BASE            (POISON_POINTER_DELTA + sync_completion_id)
197 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
198 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
199 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
200 #define CMD_CTX_FLUSH           (0x318 + CMD_CTX_BASE)
201
202 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
203 {
204         unsigned long data;
205         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
206
207         if (cmdid >= nvmeq->q_depth)
208                 return CMD_CTX_INVALID;
209         data = info[cmdid].ctx;
210         info[cmdid].ctx = CMD_CTX_COMPLETED;
211         clear_bit(cmdid, nvmeq->cmdid_data);
212         wake_up(&nvmeq->sq_full);
213         return data;
214 }
215
216 static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
217 {
218         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
219         info[cmdid].ctx = CMD_CTX_CANCELLED;
220 }
221
222 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
223 {
224         int qid, cpu = get_cpu();
225         if (cpu < ns->dev->queue_count)
226                 qid = cpu + 1;
227         else
228                 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
229         return ns->dev->queues[qid];
230 }
231
232 static void put_nvmeq(struct nvme_queue *nvmeq)
233 {
234         put_cpu();
235 }
236
237 /**
238  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
239  * @nvmeq: The queue to use
240  * @cmd: The command to send
241  *
242  * Safe to use from interrupt context
243  */
244 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
245 {
246         unsigned long flags;
247         u16 tail;
248         spin_lock_irqsave(&nvmeq->q_lock, flags);
249         tail = nvmeq->sq_tail;
250         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
251         if (++tail == nvmeq->q_depth)
252                 tail = 0;
253         writel(tail, nvmeq->q_db);
254         nvmeq->sq_tail = tail;
255         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
256
257         return 0;
258 }
259
260 struct nvme_prps {
261         int npages;
262         dma_addr_t first_dma;
263         __le64 *list[0];
264 };
265
266 static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
267 {
268         const int last_prp = PAGE_SIZE / 8 - 1;
269         int i;
270         dma_addr_t prp_dma;
271
272         if (!prps)
273                 return;
274
275         prp_dma = prps->first_dma;
276
277         if (prps->npages == 0)
278                 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
279         for (i = 0; i < prps->npages; i++) {
280                 __le64 *prp_list = prps->list[i];
281                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
282                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
283                 prp_dma = next_prp_dma;
284         }
285         kfree(prps);
286 }
287
288 struct nvme_bio {
289         struct bio *bio;
290         int nents;
291         struct nvme_prps *prps;
292         struct scatterlist sg[0];
293 };
294
295 /* XXX: use a mempool */
296 static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
297 {
298         return kzalloc(sizeof(struct nvme_bio) +
299                         sizeof(struct scatterlist) * nseg, gfp);
300 }
301
302 static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
303 {
304         nvme_free_prps(nvmeq->dev, nbio->prps);
305         kfree(nbio);
306 }
307
308 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
309                                                 struct nvme_completion *cqe)
310 {
311         struct nvme_bio *nbio = ctx;
312         struct bio *bio = nbio->bio;
313         u16 status = le16_to_cpup(&cqe->status) >> 1;
314
315         dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
316                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
317         free_nbio(nvmeq, nbio);
318         if (status)
319                 bio_endio(bio, -EIO);
320         if (bio->bi_vcnt > bio->bi_idx) {
321                 bio_list_add(&nvmeq->sq_cong, bio);
322                 wake_up_process(nvme_thread);
323         } else {
324                 bio_endio(bio, 0);
325         }
326 }
327
328 /* length is in bytes */
329 static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
330                                         struct nvme_common_command *cmd,
331                                         struct scatterlist *sg, int length)
332 {
333         struct dma_pool *pool;
334         int dma_len = sg_dma_len(sg);
335         u64 dma_addr = sg_dma_address(sg);
336         int offset = offset_in_page(dma_addr);
337         __le64 *prp_list;
338         dma_addr_t prp_dma;
339         int nprps, npages, i, prp_page;
340         struct nvme_prps *prps = NULL;
341
342         cmd->prp1 = cpu_to_le64(dma_addr);
343         length -= (PAGE_SIZE - offset);
344         if (length <= 0)
345                 return prps;
346
347         dma_len -= (PAGE_SIZE - offset);
348         if (dma_len) {
349                 dma_addr += (PAGE_SIZE - offset);
350         } else {
351                 sg = sg_next(sg);
352                 dma_addr = sg_dma_address(sg);
353                 dma_len = sg_dma_len(sg);
354         }
355
356         if (length <= PAGE_SIZE) {
357                 cmd->prp2 = cpu_to_le64(dma_addr);
358                 return prps;
359         }
360
361         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
362         npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
363         prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC);
364         prp_page = 0;
365         if (nprps <= (256 / 8)) {
366                 pool = dev->prp_small_pool;
367                 prps->npages = 0;
368         } else {
369                 pool = dev->prp_page_pool;
370                 prps->npages = npages;
371         }
372
373         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
374         prps->list[prp_page++] = prp_list;
375         prps->first_dma = prp_dma;
376         cmd->prp2 = cpu_to_le64(prp_dma);
377         i = 0;
378         for (;;) {
379                 if (i == PAGE_SIZE / 8 - 1) {
380                         __le64 *old_prp_list = prp_list;
381                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
382                         prps->list[prp_page++] = prp_list;
383                         old_prp_list[i] = cpu_to_le64(prp_dma);
384                         i = 0;
385                 }
386                 prp_list[i++] = cpu_to_le64(dma_addr);
387                 dma_len -= PAGE_SIZE;
388                 dma_addr += PAGE_SIZE;
389                 length -= PAGE_SIZE;
390                 if (length <= 0)
391                         break;
392                 if (dma_len > 0)
393                         continue;
394                 BUG_ON(dma_len < 0);
395                 sg = sg_next(sg);
396                 dma_addr = sg_dma_address(sg);
397                 dma_len = sg_dma_len(sg);
398         }
399
400         return prps;
401 }
402
403 /* NVMe scatterlists require no holes in the virtual address */
404 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)   ((vec2)->bv_offset || \
405                         (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
406
407 static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
408                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
409 {
410         struct bio_vec *bvec, *bvprv = NULL;
411         struct scatterlist *sg = NULL;
412         int i, old_idx, length = 0, nsegs = 0;
413
414         sg_init_table(nbio->sg, psegs);
415         old_idx = bio->bi_idx;
416         bio_for_each_segment(bvec, bio, i) {
417                 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
418                         sg->length += bvec->bv_len;
419                 } else {
420                         if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
421                                 break;
422                         sg = sg ? sg + 1 : nbio->sg;
423                         sg_set_page(sg, bvec->bv_page, bvec->bv_len,
424                                                         bvec->bv_offset);
425                         nsegs++;
426                 }
427                 length += bvec->bv_len;
428                 bvprv = bvec;
429         }
430         bio->bi_idx = i;
431         nbio->nents = nsegs;
432         sg_mark_end(sg);
433         if (dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir) == 0) {
434                 bio->bi_idx = old_idx;
435                 return -ENOMEM;
436         }
437         return length;
438 }
439
440 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
441                                                                 int cmdid)
442 {
443         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
444
445         memset(cmnd, 0, sizeof(*cmnd));
446         cmnd->common.opcode = nvme_cmd_flush;
447         cmnd->common.command_id = cmdid;
448         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
449
450         if (++nvmeq->sq_tail == nvmeq->q_depth)
451                 nvmeq->sq_tail = 0;
452         writel(nvmeq->sq_tail, nvmeq->q_db);
453
454         return 0;
455 }
456
457 static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
458 {
459         int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
460                                                 sync_completion_id, IO_TIMEOUT);
461         if (unlikely(cmdid < 0))
462                 return cmdid;
463
464         return nvme_submit_flush(nvmeq, ns, cmdid);
465 }
466
467 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
468                                                                 struct bio *bio)
469 {
470         struct nvme_command *cmnd;
471         struct nvme_bio *nbio;
472         enum dma_data_direction dma_dir;
473         int cmdid, length, result = -ENOMEM;
474         u16 control;
475         u32 dsmgmt;
476         int psegs = bio_phys_segments(ns->queue, bio);
477
478         if ((bio->bi_rw & REQ_FLUSH) && psegs) {
479                 result = nvme_submit_flush_data(nvmeq, ns);
480                 if (result)
481                         return result;
482         }
483
484         nbio = alloc_nbio(psegs, GFP_ATOMIC);
485         if (!nbio)
486                 goto nomem;
487         nbio->bio = bio;
488
489         result = -EBUSY;
490         cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
491         if (unlikely(cmdid < 0))
492                 goto free_nbio;
493
494         if ((bio->bi_rw & REQ_FLUSH) && !psegs)
495                 return nvme_submit_flush(nvmeq, ns, cmdid);
496
497         control = 0;
498         if (bio->bi_rw & REQ_FUA)
499                 control |= NVME_RW_FUA;
500         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
501                 control |= NVME_RW_LR;
502
503         dsmgmt = 0;
504         if (bio->bi_rw & REQ_RAHEAD)
505                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
506
507         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
508
509         memset(cmnd, 0, sizeof(*cmnd));
510         if (bio_data_dir(bio)) {
511                 cmnd->rw.opcode = nvme_cmd_write;
512                 dma_dir = DMA_TO_DEVICE;
513         } else {
514                 cmnd->rw.opcode = nvme_cmd_read;
515                 dma_dir = DMA_FROM_DEVICE;
516         }
517
518         result = nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs);
519         if (result < 0)
520                 goto free_nbio;
521         length = result;
522
523         cmnd->rw.command_id = cmdid;
524         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
525         nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
526                                                                 length);
527         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
528         cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
529         cmnd->rw.control = cpu_to_le16(control);
530         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
531
532         bio->bi_sector += length >> 9;
533
534         if (++nvmeq->sq_tail == nvmeq->q_depth)
535                 nvmeq->sq_tail = 0;
536         writel(nvmeq->sq_tail, nvmeq->q_db);
537
538         return 0;
539
540  free_nbio:
541         free_nbio(nvmeq, nbio);
542  nomem:
543         return result;
544 }
545
546 /*
547  * NB: return value of non-zero would mean that we were a stacking driver.
548  * make_request must always succeed.
549  */
550 static int nvme_make_request(struct request_queue *q, struct bio *bio)
551 {
552         struct nvme_ns *ns = q->queuedata;
553         struct nvme_queue *nvmeq = get_nvmeq(ns);
554         int result = -EBUSY;
555
556         spin_lock_irq(&nvmeq->q_lock);
557         if (bio_list_empty(&nvmeq->sq_cong))
558                 result = nvme_submit_bio_queue(nvmeq, ns, bio);
559         if (unlikely(result)) {
560                 if (bio_list_empty(&nvmeq->sq_cong))
561                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
562                 bio_list_add(&nvmeq->sq_cong, bio);
563         }
564
565         spin_unlock_irq(&nvmeq->q_lock);
566         put_nvmeq(nvmeq);
567
568         return 0;
569 }
570
571 struct sync_cmd_info {
572         struct task_struct *task;
573         u32 result;
574         int status;
575 };
576
577 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
578                                                 struct nvme_completion *cqe)
579 {
580         struct sync_cmd_info *cmdinfo = ctx;
581         if (unlikely((unsigned long)cmdinfo == CMD_CTX_CANCELLED))
582                 return;
583         if ((unsigned long)cmdinfo == CMD_CTX_FLUSH)
584                 return;
585         if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
586                 dev_warn(nvmeq->q_dmadev,
587                                 "completed id %d twice on queue %d\n",
588                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
589                 return;
590         }
591         if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
592                 dev_warn(nvmeq->q_dmadev,
593                                 "invalid id %d completed on queue %d\n",
594                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
595                 return;
596         }
597         cmdinfo->result = le32_to_cpup(&cqe->result);
598         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
599         wake_up_process(cmdinfo->task);
600 }
601
602 typedef void (*completion_fn)(struct nvme_queue *, void *,
603                                                 struct nvme_completion *);
604
605 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
606 {
607         u16 head, phase;
608
609         static const completion_fn completions[4] = {
610                 [sync_completion_id] = sync_completion,
611                 [bio_completion_id]  = bio_completion,
612         };
613
614         head = nvmeq->cq_head;
615         phase = nvmeq->cq_phase;
616
617         for (;;) {
618                 unsigned long data;
619                 void *ptr;
620                 unsigned char handler;
621                 struct nvme_completion cqe = nvmeq->cqes[head];
622                 if ((le16_to_cpu(cqe.status) & 1) != phase)
623                         break;
624                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
625                 if (++head == nvmeq->q_depth) {
626                         head = 0;
627                         phase = !phase;
628                 }
629
630                 data = free_cmdid(nvmeq, cqe.command_id);
631                 handler = data & 3;
632                 ptr = (void *)(data & ~3UL);
633                 completions[handler](nvmeq, ptr, &cqe);
634         }
635
636         /* If the controller ignores the cq head doorbell and continuously
637          * writes to the queue, it is theoretically possible to wrap around
638          * the queue twice and mistakenly return IRQ_NONE.  Linux only
639          * requires that 0.1% of your interrupts are handled, so this isn't
640          * a big problem.
641          */
642         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
643                 return IRQ_NONE;
644
645         writel(head, nvmeq->q_db + 1);
646         nvmeq->cq_head = head;
647         nvmeq->cq_phase = phase;
648
649         return IRQ_HANDLED;
650 }
651
652 static irqreturn_t nvme_irq(int irq, void *data)
653 {
654         irqreturn_t result;
655         struct nvme_queue *nvmeq = data;
656         spin_lock(&nvmeq->q_lock);
657         result = nvme_process_cq(nvmeq);
658         spin_unlock(&nvmeq->q_lock);
659         return result;
660 }
661
662 static irqreturn_t nvme_irq_check(int irq, void *data)
663 {
664         struct nvme_queue *nvmeq = data;
665         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
666         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
667                 return IRQ_NONE;
668         return IRQ_WAKE_THREAD;
669 }
670
671 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
672 {
673         spin_lock_irq(&nvmeq->q_lock);
674         cancel_cmdid_data(nvmeq, cmdid);
675         spin_unlock_irq(&nvmeq->q_lock);
676 }
677
678 /*
679  * Returns 0 on success.  If the result is negative, it's a Linux error code;
680  * if the result is positive, it's an NVM Express status code
681  */
682 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
683                         struct nvme_command *cmd, u32 *result, unsigned timeout)
684 {
685         int cmdid;
686         struct sync_cmd_info cmdinfo;
687
688         cmdinfo.task = current;
689         cmdinfo.status = -EINTR;
690
691         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
692                                                                 timeout);
693         if (cmdid < 0)
694                 return cmdid;
695         cmd->common.command_id = cmdid;
696
697         set_current_state(TASK_KILLABLE);
698         nvme_submit_cmd(nvmeq, cmd);
699         schedule();
700
701         if (cmdinfo.status == -EINTR) {
702                 nvme_abort_command(nvmeq, cmdid);
703                 return -EINTR;
704         }
705
706         if (result)
707                 *result = cmdinfo.result;
708
709         return cmdinfo.status;
710 }
711
712 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
713                                                                 u32 *result)
714 {
715         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
716 }
717
718 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
719 {
720         int status;
721         struct nvme_command c;
722
723         memset(&c, 0, sizeof(c));
724         c.delete_queue.opcode = opcode;
725         c.delete_queue.qid = cpu_to_le16(id);
726
727         status = nvme_submit_admin_cmd(dev, &c, NULL);
728         if (status)
729                 return -EIO;
730         return 0;
731 }
732
733 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
734                                                 struct nvme_queue *nvmeq)
735 {
736         int status;
737         struct nvme_command c;
738         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
739
740         memset(&c, 0, sizeof(c));
741         c.create_cq.opcode = nvme_admin_create_cq;
742         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
743         c.create_cq.cqid = cpu_to_le16(qid);
744         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
745         c.create_cq.cq_flags = cpu_to_le16(flags);
746         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
747
748         status = nvme_submit_admin_cmd(dev, &c, NULL);
749         if (status)
750                 return -EIO;
751         return 0;
752 }
753
754 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
755                                                 struct nvme_queue *nvmeq)
756 {
757         int status;
758         struct nvme_command c;
759         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
760
761         memset(&c, 0, sizeof(c));
762         c.create_sq.opcode = nvme_admin_create_sq;
763         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
764         c.create_sq.sqid = cpu_to_le16(qid);
765         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
766         c.create_sq.sq_flags = cpu_to_le16(flags);
767         c.create_sq.cqid = cpu_to_le16(qid);
768
769         status = nvme_submit_admin_cmd(dev, &c, NULL);
770         if (status)
771                 return -EIO;
772         return 0;
773 }
774
775 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
776 {
777         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
778 }
779
780 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
781 {
782         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
783 }
784
785 static void nvme_free_queue(struct nvme_dev *dev, int qid)
786 {
787         struct nvme_queue *nvmeq = dev->queues[qid];
788
789         free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
790
791         /* Don't tell the adapter to delete the admin queue */
792         if (qid) {
793                 adapter_delete_sq(dev, qid);
794                 adapter_delete_cq(dev, qid);
795         }
796
797         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
798                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
799         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
800                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
801         kfree(nvmeq);
802 }
803
804 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
805                                                         int depth, int vector)
806 {
807         struct device *dmadev = &dev->pci_dev->dev;
808         unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
809         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
810         if (!nvmeq)
811                 return NULL;
812
813         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
814                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
815         if (!nvmeq->cqes)
816                 goto free_nvmeq;
817         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
818
819         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
820                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
821         if (!nvmeq->sq_cmds)
822                 goto free_cqdma;
823
824         nvmeq->q_dmadev = dmadev;
825         nvmeq->dev = dev;
826         spin_lock_init(&nvmeq->q_lock);
827         nvmeq->cq_head = 0;
828         nvmeq->cq_phase = 1;
829         init_waitqueue_head(&nvmeq->sq_full);
830         init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
831         bio_list_init(&nvmeq->sq_cong);
832         nvmeq->q_db = &dev->dbs[qid * 2];
833         nvmeq->q_depth = depth;
834         nvmeq->cq_vector = vector;
835
836         return nvmeq;
837
838  free_cqdma:
839         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
840                                                         nvmeq->cq_dma_addr);
841  free_nvmeq:
842         kfree(nvmeq);
843         return NULL;
844 }
845
846 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
847                                                         const char *name)
848 {
849         if (use_threaded_interrupts)
850                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
851                                         nvme_irq_check, nvme_irq,
852                                         IRQF_DISABLED | IRQF_SHARED,
853                                         name, nvmeq);
854         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
855                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
856 }
857
858 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
859                                         int qid, int cq_size, int vector)
860 {
861         int result;
862         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
863
864         if (!nvmeq)
865                 return NULL;
866
867         result = adapter_alloc_cq(dev, qid, nvmeq);
868         if (result < 0)
869                 goto free_nvmeq;
870
871         result = adapter_alloc_sq(dev, qid, nvmeq);
872         if (result < 0)
873                 goto release_cq;
874
875         result = queue_request_irq(dev, nvmeq, "nvme");
876         if (result < 0)
877                 goto release_sq;
878
879         return nvmeq;
880
881  release_sq:
882         adapter_delete_sq(dev, qid);
883  release_cq:
884         adapter_delete_cq(dev, qid);
885  free_nvmeq:
886         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
887                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
888         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
889                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
890         kfree(nvmeq);
891         return NULL;
892 }
893
894 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
895 {
896         int result;
897         u32 aqa;
898         struct nvme_queue *nvmeq;
899
900         dev->dbs = ((void __iomem *)dev->bar) + 4096;
901
902         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
903         if (!nvmeq)
904                 return -ENOMEM;
905
906         aqa = nvmeq->q_depth - 1;
907         aqa |= aqa << 16;
908
909         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
910         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
911         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
912
913         writel(0, &dev->bar->cc);
914         writel(aqa, &dev->bar->aqa);
915         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
916         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
917         writel(dev->ctrl_config, &dev->bar->cc);
918
919         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
920                 msleep(100);
921                 if (fatal_signal_pending(current))
922                         return -EINTR;
923         }
924
925         result = queue_request_irq(dev, nvmeq, "nvme admin");
926         dev->queues[0] = nvmeq;
927         return result;
928 }
929
930 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
931                                 unsigned long addr, unsigned length,
932                                 struct scatterlist **sgp)
933 {
934         int i, err, count, nents, offset;
935         struct scatterlist *sg;
936         struct page **pages;
937
938         if (addr & 3)
939                 return -EINVAL;
940         if (!length)
941                 return -EINVAL;
942
943         offset = offset_in_page(addr);
944         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
945         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
946
947         err = get_user_pages_fast(addr, count, 1, pages);
948         if (err < count) {
949                 count = err;
950                 err = -EFAULT;
951                 goto put_pages;
952         }
953
954         sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
955         sg_init_table(sg, count);
956         sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
957         length -= (PAGE_SIZE - offset);
958         for (i = 1; i < count; i++) {
959                 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
960                 length -= PAGE_SIZE;
961         }
962
963         err = -ENOMEM;
964         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
965                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
966         if (!nents)
967                 goto put_pages;
968
969         kfree(pages);
970         *sgp = sg;
971         return nents;
972
973  put_pages:
974         for (i = 0; i < count; i++)
975                 put_page(pages[i]);
976         kfree(pages);
977         return err;
978 }
979
980 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
981                                 unsigned long addr, int length,
982                                 struct scatterlist *sg, int nents)
983 {
984         int i, count;
985
986         count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
987         dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
988
989         for (i = 0; i < count; i++)
990                 put_page(sg_page(&sg[i]));
991 }
992
993 static int nvme_submit_user_admin_command(struct nvme_dev *dev,
994                                         unsigned long addr, unsigned length,
995                                         struct nvme_command *cmd)
996 {
997         int err, nents;
998         struct scatterlist *sg;
999         struct nvme_prps *prps;
1000
1001         nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
1002         if (nents < 0)
1003                 return nents;
1004         prps = nvme_setup_prps(dev, &cmd->common, sg, length);
1005         err = nvme_submit_admin_cmd(dev, cmd, NULL);
1006         nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
1007         nvme_free_prps(dev, prps);
1008         return err ? -EIO : 0;
1009 }
1010
1011 static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
1012 {
1013         struct nvme_command c;
1014
1015         memset(&c, 0, sizeof(c));
1016         c.identify.opcode = nvme_admin_identify;
1017         c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
1018         c.identify.cns = cpu_to_le32(cns);
1019
1020         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
1021 }
1022
1023 static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
1024 {
1025         struct nvme_command c;
1026
1027         memset(&c, 0, sizeof(c));
1028         c.features.opcode = nvme_admin_get_features;
1029         c.features.nsid = cpu_to_le32(ns->ns_id);
1030         c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1031
1032         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
1033 }
1034
1035 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1036 {
1037         struct nvme_dev *dev = ns->dev;
1038         struct nvme_queue *nvmeq;
1039         struct nvme_user_io io;
1040         struct nvme_command c;
1041         unsigned length;
1042         u32 result;
1043         int nents, status;
1044         struct scatterlist *sg;
1045         struct nvme_prps *prps;
1046
1047         if (copy_from_user(&io, uio, sizeof(io)))
1048                 return -EFAULT;
1049         length = io.nblocks << io.block_shift;
1050         nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
1051         if (nents < 0)
1052                 return nents;
1053
1054         memset(&c, 0, sizeof(c));
1055         c.rw.opcode = io.opcode;
1056         c.rw.flags = io.flags;
1057         c.rw.nsid = cpu_to_le32(io.nsid);
1058         c.rw.slba = cpu_to_le64(io.slba);
1059         c.rw.length = cpu_to_le16(io.nblocks - 1);
1060         c.rw.control = cpu_to_le16(io.control);
1061         c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1062         c.rw.reftag = cpu_to_le32(io.reftag);   /* XXX: endian? */
1063         c.rw.apptag = cpu_to_le16(io.apptag);
1064         c.rw.appmask = cpu_to_le16(io.appmask);
1065         /* XXX: metadata */
1066         prps = nvme_setup_prps(dev, &c.common, sg, length);
1067
1068         nvmeq = get_nvmeq(ns);
1069         /*
1070          * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1071          * disabled.  We may be preempted at any point, and be rescheduled
1072          * to a different CPU.  That will cause cacheline bouncing, but no
1073          * additional races since q_lock already protects against other CPUs.
1074          */
1075         put_nvmeq(nvmeq);
1076         status = nvme_submit_sync_cmd(nvmeq, &c, &result, IO_TIMEOUT);
1077
1078         nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
1079         nvme_free_prps(dev, prps);
1080         put_user(result, &uio->result);
1081         return status;
1082 }
1083
1084 static int nvme_download_firmware(struct nvme_ns *ns,
1085                                                 struct nvme_dlfw __user *udlfw)
1086 {
1087         struct nvme_dev *dev = ns->dev;
1088         struct nvme_dlfw dlfw;
1089         struct nvme_command c;
1090         int nents, status;
1091         struct scatterlist *sg;
1092         struct nvme_prps *prps;
1093
1094         if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
1095                 return -EFAULT;
1096         if (dlfw.length >= (1 << 30))
1097                 return -EINVAL;
1098
1099         nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
1100         if (nents < 0)
1101                 return nents;
1102
1103         memset(&c, 0, sizeof(c));
1104         c.dlfw.opcode = nvme_admin_download_fw;
1105         c.dlfw.numd = cpu_to_le32(dlfw.length);
1106         c.dlfw.offset = cpu_to_le32(dlfw.offset);
1107         prps = nvme_setup_prps(dev, &c.common, sg, dlfw.length * 4);
1108
1109         status = nvme_submit_admin_cmd(dev, &c, NULL);
1110         nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
1111         nvme_free_prps(dev, prps);
1112         return status;
1113 }
1114
1115 static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
1116 {
1117         struct nvme_dev *dev = ns->dev;
1118         struct nvme_command c;
1119
1120         memset(&c, 0, sizeof(c));
1121         c.common.opcode = nvme_admin_activate_fw;
1122         c.common.rsvd10[0] = cpu_to_le32(arg);
1123
1124         return nvme_submit_admin_cmd(dev, &c, NULL);
1125 }
1126
1127 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1128                                                         unsigned long arg)
1129 {
1130         struct nvme_ns *ns = bdev->bd_disk->private_data;
1131
1132         switch (cmd) {
1133         case NVME_IOCTL_IDENTIFY_NS:
1134                 return nvme_identify(ns, arg, 0);
1135         case NVME_IOCTL_IDENTIFY_CTRL:
1136                 return nvme_identify(ns, arg, 1);
1137         case NVME_IOCTL_GET_RANGE_TYPE:
1138                 return nvme_get_range_type(ns, arg);
1139         case NVME_IOCTL_SUBMIT_IO:
1140                 return nvme_submit_io(ns, (void __user *)arg);
1141         case NVME_IOCTL_DOWNLOAD_FW:
1142                 return nvme_download_firmware(ns, (void __user *)arg);
1143         case NVME_IOCTL_ACTIVATE_FW:
1144                 return nvme_activate_firmware(ns, arg);
1145         default:
1146                 return -ENOTTY;
1147         }
1148 }
1149
1150 static const struct block_device_operations nvme_fops = {
1151         .owner          = THIS_MODULE,
1152         .ioctl          = nvme_ioctl,
1153 };
1154
1155 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1156 {
1157         while (bio_list_peek(&nvmeq->sq_cong)) {
1158                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1159                 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1160                 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1161                         bio_list_add_head(&nvmeq->sq_cong, bio);
1162                         break;
1163                 }
1164         }
1165 }
1166
1167 static int nvme_kthread(void *data)
1168 {
1169         struct nvme_dev *dev;
1170
1171         while (!kthread_should_stop()) {
1172                 __set_current_state(TASK_RUNNING);
1173                 spin_lock(&dev_list_lock);
1174                 list_for_each_entry(dev, &dev_list, node) {
1175                         int i;
1176                         for (i = 0; i < dev->queue_count; i++) {
1177                                 struct nvme_queue *nvmeq = dev->queues[i];
1178                                 if (!nvmeq)
1179                                         continue;
1180                                 spin_lock_irq(&nvmeq->q_lock);
1181                                 if (nvme_process_cq(nvmeq))
1182                                         printk("process_cq did something\n");
1183                                 nvme_resubmit_bios(nvmeq);
1184                                 spin_unlock_irq(&nvmeq->q_lock);
1185                         }
1186                 }
1187                 spin_unlock(&dev_list_lock);
1188                 set_current_state(TASK_INTERRUPTIBLE);
1189                 schedule_timeout(HZ);
1190         }
1191         return 0;
1192 }
1193
1194 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
1195                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1196 {
1197         struct nvme_ns *ns;
1198         struct gendisk *disk;
1199         int lbaf;
1200
1201         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1202                 return NULL;
1203
1204         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1205         if (!ns)
1206                 return NULL;
1207         ns->queue = blk_alloc_queue(GFP_KERNEL);
1208         if (!ns->queue)
1209                 goto out_free_ns;
1210         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1211                                 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1212         blk_queue_make_request(ns->queue, nvme_make_request);
1213         ns->dev = dev;
1214         ns->queue->queuedata = ns;
1215
1216         disk = alloc_disk(NVME_MINORS);
1217         if (!disk)
1218                 goto out_free_queue;
1219         ns->ns_id = index;
1220         ns->disk = disk;
1221         lbaf = id->flbas & 0xf;
1222         ns->lba_shift = id->lbaf[lbaf].ds;
1223
1224         disk->major = nvme_major;
1225         disk->minors = NVME_MINORS;
1226         disk->first_minor = NVME_MINORS * index;
1227         disk->fops = &nvme_fops;
1228         disk->private_data = ns;
1229         disk->queue = ns->queue;
1230         disk->driverfs_dev = &dev->pci_dev->dev;
1231         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1232         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1233
1234         return ns;
1235
1236  out_free_queue:
1237         blk_cleanup_queue(ns->queue);
1238  out_free_ns:
1239         kfree(ns);
1240         return NULL;
1241 }
1242
1243 static void nvme_ns_free(struct nvme_ns *ns)
1244 {
1245         put_disk(ns->disk);
1246         blk_cleanup_queue(ns->queue);
1247         kfree(ns);
1248 }
1249
1250 static int set_queue_count(struct nvme_dev *dev, int count)
1251 {
1252         int status;
1253         u32 result;
1254         struct nvme_command c;
1255         u32 q_count = (count - 1) | ((count - 1) << 16);
1256
1257         memset(&c, 0, sizeof(c));
1258         c.features.opcode = nvme_admin_get_features;
1259         c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1260         c.features.dword11 = cpu_to_le32(q_count);
1261
1262         status = nvme_submit_admin_cmd(dev, &c, &result);
1263         if (status)
1264                 return -EIO;
1265         return min(result & 0xffff, result >> 16) + 1;
1266 }
1267
1268 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1269 {
1270         int result, cpu, i, nr_io_queues;
1271
1272         nr_io_queues = num_online_cpus();
1273         result = set_queue_count(dev, nr_io_queues);
1274         if (result < 0)
1275                 return result;
1276         if (result < nr_io_queues)
1277                 nr_io_queues = result;
1278
1279         /* Deregister the admin queue's interrupt */
1280         free_irq(dev->entry[0].vector, dev->queues[0]);
1281
1282         for (i = 0; i < nr_io_queues; i++)
1283                 dev->entry[i].entry = i;
1284         for (;;) {
1285                 result = pci_enable_msix(dev->pci_dev, dev->entry,
1286                                                                 nr_io_queues);
1287                 if (result == 0) {
1288                         break;
1289                 } else if (result > 0) {
1290                         nr_io_queues = result;
1291                         continue;
1292                 } else {
1293                         nr_io_queues = 1;
1294                         break;
1295                 }
1296         }
1297
1298         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1299         /* XXX: handle failure here */
1300
1301         cpu = cpumask_first(cpu_online_mask);
1302         for (i = 0; i < nr_io_queues; i++) {
1303                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1304                 cpu = cpumask_next(cpu, cpu_online_mask);
1305         }
1306
1307         for (i = 0; i < nr_io_queues; i++) {
1308                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1309                                                         NVME_Q_DEPTH, i);
1310                 if (!dev->queues[i + 1])
1311                         return -ENOMEM;
1312                 dev->queue_count++;
1313         }
1314
1315         return 0;
1316 }
1317
1318 static void nvme_free_queues(struct nvme_dev *dev)
1319 {
1320         int i;
1321
1322         for (i = dev->queue_count - 1; i >= 0; i--)
1323                 nvme_free_queue(dev, i);
1324 }
1325
1326 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1327 {
1328         int res, nn, i;
1329         struct nvme_ns *ns, *next;
1330         struct nvme_id_ctrl *ctrl;
1331         void *id;
1332         dma_addr_t dma_addr;
1333         struct nvme_command cid, crt;
1334
1335         res = nvme_setup_io_queues(dev);
1336         if (res)
1337                 return res;
1338
1339         /* XXX: Switch to a SG list once prp2 works */
1340         id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1341                                                                 GFP_KERNEL);
1342
1343         memset(&cid, 0, sizeof(cid));
1344         cid.identify.opcode = nvme_admin_identify;
1345         cid.identify.nsid = 0;
1346         cid.identify.prp1 = cpu_to_le64(dma_addr);
1347         cid.identify.cns = cpu_to_le32(1);
1348
1349         res = nvme_submit_admin_cmd(dev, &cid, NULL);
1350         if (res) {
1351                 res = -EIO;
1352                 goto out_free;
1353         }
1354
1355         ctrl = id;
1356         nn = le32_to_cpup(&ctrl->nn);
1357         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1358         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1359         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1360
1361         cid.identify.cns = 0;
1362         memset(&crt, 0, sizeof(crt));
1363         crt.features.opcode = nvme_admin_get_features;
1364         crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1365         crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1366
1367         for (i = 0; i <= nn; i++) {
1368                 cid.identify.nsid = cpu_to_le32(i);
1369                 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1370                 if (res)
1371                         continue;
1372
1373                 if (((struct nvme_id_ns *)id)->ncap == 0)
1374                         continue;
1375
1376                 crt.features.nsid = cpu_to_le32(i);
1377                 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1378                 if (res)
1379                         continue;
1380
1381                 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1382                 if (ns)
1383                         list_add_tail(&ns->list, &dev->namespaces);
1384         }
1385         list_for_each_entry(ns, &dev->namespaces, list)
1386                 add_disk(ns->disk);
1387
1388         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1389         return 0;
1390
1391  out_free:
1392         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1393                 list_del(&ns->list);
1394                 nvme_ns_free(ns);
1395         }
1396
1397         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1398         return res;
1399 }
1400
1401 static int nvme_dev_remove(struct nvme_dev *dev)
1402 {
1403         struct nvme_ns *ns, *next;
1404
1405         spin_lock(&dev_list_lock);
1406         list_del(&dev->node);
1407         spin_unlock(&dev_list_lock);
1408
1409         /* TODO: wait all I/O finished or cancel them */
1410
1411         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1412                 list_del(&ns->list);
1413                 del_gendisk(ns->disk);
1414                 nvme_ns_free(ns);
1415         }
1416
1417         nvme_free_queues(dev);
1418
1419         return 0;
1420 }
1421
1422 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1423 {
1424         struct device *dmadev = &dev->pci_dev->dev;
1425         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1426                                                 PAGE_SIZE, PAGE_SIZE, 0);
1427         if (!dev->prp_page_pool)
1428                 return -ENOMEM;
1429
1430         /* Optimisation for I/Os between 4k and 128k */
1431         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1432                                                 256, 256, 0);
1433         if (!dev->prp_small_pool) {
1434                 dma_pool_destroy(dev->prp_page_pool);
1435                 return -ENOMEM;
1436         }
1437         return 0;
1438 }
1439
1440 static void nvme_release_prp_pools(struct nvme_dev *dev)
1441 {
1442         dma_pool_destroy(dev->prp_page_pool);
1443         dma_pool_destroy(dev->prp_small_pool);
1444 }
1445
1446 /* XXX: Use an ida or something to let remove / add work correctly */
1447 static void nvme_set_instance(struct nvme_dev *dev)
1448 {
1449         static int instance;
1450         dev->instance = instance++;
1451 }
1452
1453 static void nvme_release_instance(struct nvme_dev *dev)
1454 {
1455 }
1456
1457 static int __devinit nvme_probe(struct pci_dev *pdev,
1458                                                 const struct pci_device_id *id)
1459 {
1460         int bars, result = -ENOMEM;
1461         struct nvme_dev *dev;
1462
1463         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1464         if (!dev)
1465                 return -ENOMEM;
1466         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1467                                                                 GFP_KERNEL);
1468         if (!dev->entry)
1469                 goto free;
1470         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1471                                                                 GFP_KERNEL);
1472         if (!dev->queues)
1473                 goto free;
1474
1475         if (pci_enable_device_mem(pdev))
1476                 goto free;
1477         pci_set_master(pdev);
1478         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1479         if (pci_request_selected_regions(pdev, bars, "nvme"))
1480                 goto disable;
1481
1482         INIT_LIST_HEAD(&dev->namespaces);
1483         dev->pci_dev = pdev;
1484         pci_set_drvdata(pdev, dev);
1485         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1486         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1487         nvme_set_instance(dev);
1488         dev->entry[0].vector = pdev->irq;
1489
1490         result = nvme_setup_prp_pools(dev);
1491         if (result)
1492                 goto disable_msix;
1493
1494         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1495         if (!dev->bar) {
1496                 result = -ENOMEM;
1497                 goto disable_msix;
1498         }
1499
1500         result = nvme_configure_admin_queue(dev);
1501         if (result)
1502                 goto unmap;
1503         dev->queue_count++;
1504
1505         spin_lock(&dev_list_lock);
1506         list_add(&dev->node, &dev_list);
1507         spin_unlock(&dev_list_lock);
1508
1509         result = nvme_dev_add(dev);
1510         if (result)
1511                 goto delete;
1512
1513         return 0;
1514
1515  delete:
1516         spin_lock(&dev_list_lock);
1517         list_del(&dev->node);
1518         spin_unlock(&dev_list_lock);
1519
1520         nvme_free_queues(dev);
1521  unmap:
1522         iounmap(dev->bar);
1523  disable_msix:
1524         pci_disable_msix(pdev);
1525         nvme_release_instance(dev);
1526         nvme_release_prp_pools(dev);
1527  disable:
1528         pci_disable_device(pdev);
1529         pci_release_regions(pdev);
1530  free:
1531         kfree(dev->queues);
1532         kfree(dev->entry);
1533         kfree(dev);
1534         return result;
1535 }
1536
1537 static void __devexit nvme_remove(struct pci_dev *pdev)
1538 {
1539         struct nvme_dev *dev = pci_get_drvdata(pdev);
1540         nvme_dev_remove(dev);
1541         pci_disable_msix(pdev);
1542         iounmap(dev->bar);
1543         nvme_release_instance(dev);
1544         nvme_release_prp_pools(dev);
1545         pci_disable_device(pdev);
1546         pci_release_regions(pdev);
1547         kfree(dev->queues);
1548         kfree(dev->entry);
1549         kfree(dev);
1550 }
1551
1552 /* These functions are yet to be implemented */
1553 #define nvme_error_detected NULL
1554 #define nvme_dump_registers NULL
1555 #define nvme_link_reset NULL
1556 #define nvme_slot_reset NULL
1557 #define nvme_error_resume NULL
1558 #define nvme_suspend NULL
1559 #define nvme_resume NULL
1560
1561 static struct pci_error_handlers nvme_err_handler = {
1562         .error_detected = nvme_error_detected,
1563         .mmio_enabled   = nvme_dump_registers,
1564         .link_reset     = nvme_link_reset,
1565         .slot_reset     = nvme_slot_reset,
1566         .resume         = nvme_error_resume,
1567 };
1568
1569 /* Move to pci_ids.h later */
1570 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1571
1572 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1573         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1574         { 0, }
1575 };
1576 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1577
1578 static struct pci_driver nvme_driver = {
1579         .name           = "nvme",
1580         .id_table       = nvme_id_table,
1581         .probe          = nvme_probe,
1582         .remove         = __devexit_p(nvme_remove),
1583         .suspend        = nvme_suspend,
1584         .resume         = nvme_resume,
1585         .err_handler    = &nvme_err_handler,
1586 };
1587
1588 static int __init nvme_init(void)
1589 {
1590         int result = -EBUSY;
1591
1592         nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1593         if (IS_ERR(nvme_thread))
1594                 return PTR_ERR(nvme_thread);
1595
1596         nvme_major = register_blkdev(nvme_major, "nvme");
1597         if (nvme_major <= 0)
1598                 goto kill_kthread;
1599
1600         result = pci_register_driver(&nvme_driver);
1601         if (result)
1602                 goto unregister_blkdev;
1603         return 0;
1604
1605  unregister_blkdev:
1606         unregister_blkdev(nvme_major, "nvme");
1607  kill_kthread:
1608         kthread_stop(nvme_thread);
1609         return result;
1610 }
1611
1612 static void __exit nvme_exit(void)
1613 {
1614         pci_unregister_driver(&nvme_driver);
1615         unregister_blkdev(nvme_major, "nvme");
1616         kthread_stop(nvme_thread);
1617 }
1618
1619 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1620 MODULE_LICENSE("GPL");
1621 MODULE_VERSION("0.4");
1622 module_init(nvme_init);
1623 module_exit(nvme_exit);