NVMe: Add NVME_IOCTL_SUBMIT_IO
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/pci.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/types.h>
37 #include <linux/version.h>
38
39 #define NVME_Q_DEPTH 1024
40 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
41 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
42 #define NVME_MINORS 64
43
44 static int nvme_major;
45 module_param(nvme_major, int, 0);
46
47 /*
48  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
49  */
50 struct nvme_dev {
51         struct list_head node;
52         struct nvme_queue **queues;
53         u32 __iomem *dbs;
54         struct pci_dev *pci_dev;
55         int instance;
56         int queue_count;
57         u32 ctrl_config;
58         struct msix_entry *entry;
59         struct nvme_bar __iomem *bar;
60         struct list_head namespaces;
61 };
62
63 /*
64  * An NVM Express namespace is equivalent to a SCSI LUN
65  */
66 struct nvme_ns {
67         struct list_head list;
68
69         struct nvme_dev *dev;
70         struct request_queue *queue;
71         struct gendisk *disk;
72
73         int ns_id;
74         int lba_shift;
75 };
76
77 /*
78  * An NVM Express queue.  Each device has at least two (one for admin
79  * commands and one for I/O commands).
80  */
81 struct nvme_queue {
82         struct device *q_dmadev;
83         spinlock_t q_lock;
84         struct nvme_command *sq_cmds;
85         volatile struct nvme_completion *cqes;
86         dma_addr_t sq_dma_addr;
87         dma_addr_t cq_dma_addr;
88         wait_queue_head_t sq_full;
89         struct bio_list sq_cong;
90         u32 __iomem *q_db;
91         u16 q_depth;
92         u16 cq_vector;
93         u16 sq_head;
94         u16 sq_tail;
95         u16 cq_head;
96         u16 cq_phase;
97         unsigned long cmdid_data[];
98 };
99
100 /*
101  * Check we didin't inadvertently grow the command struct
102  */
103 static inline void _nvme_check_size(void)
104 {
105         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
106         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
107         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
108         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
109         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
110         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
111         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
112         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
113         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
114 }
115
116 /**
117  * alloc_cmdid - Allocate a Command ID
118  * @param nvmeq The queue that will be used for this command
119  * @param ctx A pointer that will be passed to the handler
120  * @param handler The ID of the handler to call
121  *
122  * Allocate a Command ID for a queue.  The data passed in will
123  * be passed to the completion handler.  This is implemented by using
124  * the bottom two bits of the ctx pointer to store the handler ID.
125  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
126  * We can change this if it becomes a problem.
127  */
128 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler)
129 {
130         int depth = nvmeq->q_depth;
131         unsigned long data = (unsigned long)ctx | handler;
132         int cmdid;
133
134         BUG_ON((unsigned long)ctx & 3);
135
136         do {
137                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
138                 if (cmdid >= depth)
139                         return -EBUSY;
140         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
141
142         nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(depth)] = data;
143         return cmdid;
144 }
145
146 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
147                                                                 int handler)
148 {
149         int cmdid;
150         wait_event_killable(nvmeq->sq_full,
151                         (cmdid = alloc_cmdid(nvmeq, ctx, handler)) >= 0);
152         return (cmdid < 0) ? -EINTR : cmdid;
153 }
154
155 /* If you need more than four handlers, you'll need to change how
156  * alloc_cmdid and nvme_process_cq work
157  */
158 enum {
159         sync_completion_id = 0,
160         bio_completion_id,
161 };
162
163 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
164 {
165         unsigned long data;
166
167         data = nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(nvmeq->q_depth)];
168         clear_bit(cmdid, nvmeq->cmdid_data);
169         wake_up(&nvmeq->sq_full);
170         return data;
171 }
172
173 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
174 {
175         int qid, cpu = get_cpu();
176         if (cpu < ns->dev->queue_count)
177                 qid = cpu + 1;
178         else
179                 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
180         return ns->dev->queues[qid];
181 }
182
183 static void put_nvmeq(struct nvme_queue *nvmeq)
184 {
185         put_cpu();
186 }
187
188 /**
189  * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
190  * @nvmeq: The queue to use
191  * @cmd: The command to send
192  *
193  * Safe to use from interrupt context
194  */
195 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
196 {
197         unsigned long flags;
198         u16 tail;
199         /* XXX: Need to check tail isn't going to overrun head */
200         spin_lock_irqsave(&nvmeq->q_lock, flags);
201         tail = nvmeq->sq_tail;
202         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
203         writel(tail, nvmeq->q_db);
204         if (++tail == nvmeq->q_depth)
205                 tail = 0;
206         nvmeq->sq_tail = tail;
207         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
208
209         return 0;
210 }
211
212 struct nvme_req_info {
213         struct bio *bio;
214         int nents;
215         struct scatterlist sg[0];
216 };
217
218 /* XXX: use a mempool */
219 static struct nvme_req_info *alloc_info(unsigned nseg, gfp_t gfp)
220 {
221         return kmalloc(sizeof(struct nvme_req_info) +
222                         sizeof(struct scatterlist) * nseg, gfp);
223 }
224
225 static void free_info(struct nvme_req_info *info)
226 {
227         kfree(info);
228 }
229
230 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
231                                                 struct nvme_completion *cqe)
232 {
233         struct nvme_req_info *info = ctx;
234         struct bio *bio = info->bio;
235         u16 status = le16_to_cpup(&cqe->status) >> 1;
236
237         dma_unmap_sg(nvmeq->q_dmadev, info->sg, info->nents,
238                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
239         free_info(info);
240         bio_endio(bio, status ? -EIO : 0);
241 }
242
243 /* length is in bytes */
244 static void nvme_setup_prps(struct nvme_common_command *cmd,
245                                         struct scatterlist *sg, int length)
246 {
247         int dma_len = sg_dma_len(sg);
248         u64 dma_addr = sg_dma_address(sg);
249         int offset = offset_in_page(dma_addr);
250
251         cmd->prp1 = cpu_to_le64(dma_addr);
252         length -= (PAGE_SIZE - offset);
253         if (length <= 0)
254                 return;
255
256         dma_len -= (PAGE_SIZE - offset);
257         if (dma_len) {
258                 dma_addr += (PAGE_SIZE - offset);
259         } else {
260                 sg = sg_next(sg);
261                 dma_addr = sg_dma_address(sg);
262                 dma_len = sg_dma_len(sg);
263         }
264
265         if (length <= PAGE_SIZE) {
266                 cmd->prp2 = cpu_to_le64(dma_addr);
267                 return;
268         }
269
270         /* XXX: support PRP lists */
271 }
272
273 static int nvme_map_bio(struct device *dev, struct nvme_req_info *info,
274                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
275 {
276         struct bio_vec *bvec;
277         struct scatterlist *sg = info->sg;
278         int i, nsegs;
279
280         sg_init_table(sg, psegs);
281         bio_for_each_segment(bvec, bio, i) {
282                 sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
283                 /* XXX: handle non-mergable here */
284                 nsegs++;
285         }
286         info->nents = nsegs;
287
288         return dma_map_sg(dev, info->sg, info->nents, dma_dir);
289 }
290
291 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
292                                                                 struct bio *bio)
293 {
294         struct nvme_command *cmnd;
295         struct nvme_req_info *info;
296         enum dma_data_direction dma_dir;
297         int cmdid;
298         u16 control;
299         u32 dsmgmt;
300         unsigned long flags;
301         int psegs = bio_phys_segments(ns->queue, bio);
302
303         info = alloc_info(psegs, GFP_NOIO);
304         if (!info)
305                 goto congestion;
306         info->bio = bio;
307
308         cmdid = alloc_cmdid(nvmeq, info, bio_completion_id);
309         if (unlikely(cmdid < 0))
310                 goto free_info;
311
312         control = 0;
313         if (bio->bi_rw & REQ_FUA)
314                 control |= NVME_RW_FUA;
315         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
316                 control |= NVME_RW_LR;
317
318         dsmgmt = 0;
319         if (bio->bi_rw & REQ_RAHEAD)
320                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
321
322         spin_lock_irqsave(&nvmeq->q_lock, flags);
323         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
324
325         memset(cmnd, 0, sizeof(*cmnd));
326         if (bio_data_dir(bio)) {
327                 cmnd->rw.opcode = nvme_cmd_write;
328                 dma_dir = DMA_TO_DEVICE;
329         } else {
330                 cmnd->rw.opcode = nvme_cmd_read;
331                 dma_dir = DMA_FROM_DEVICE;
332         }
333
334         nvme_map_bio(nvmeq->q_dmadev, info, bio, dma_dir, psegs);
335
336         cmnd->rw.flags = 1;
337         cmnd->rw.command_id = cmdid;
338         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
339         nvme_setup_prps(&cmnd->common, info->sg, bio->bi_size);
340         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
341         cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
342         cmnd->rw.control = cpu_to_le16(control);
343         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
344
345         writel(nvmeq->sq_tail, nvmeq->q_db);
346         if (++nvmeq->sq_tail == nvmeq->q_depth)
347                 nvmeq->sq_tail = 0;
348
349         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
350
351         return 0;
352
353  free_info:
354         free_info(info);
355  congestion:
356         return -EBUSY;
357 }
358
359 /*
360  * NB: return value of non-zero would mean that we were a stacking driver.
361  * make_request must always succeed.
362  */
363 static int nvme_make_request(struct request_queue *q, struct bio *bio)
364 {
365         struct nvme_ns *ns = q->queuedata;
366         struct nvme_queue *nvmeq = get_nvmeq(ns);
367
368         if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
369                 blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
370                 bio_list_add(&nvmeq->sq_cong, bio);
371         }
372         put_nvmeq(nvmeq);
373
374         return 0;
375 }
376
377 struct sync_cmd_info {
378         struct task_struct *task;
379         u32 result;
380         int status;
381 };
382
383 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
384                                                 struct nvme_completion *cqe)
385 {
386         struct sync_cmd_info *cmdinfo = ctx;
387         cmdinfo->result = le32_to_cpup(&cqe->result);
388         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
389         wake_up_process(cmdinfo->task);
390 }
391
392 typedef void (*completion_fn)(struct nvme_queue *, void *,
393                                                 struct nvme_completion *);
394
395 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
396 {
397         u16 head, phase;
398
399         static const completion_fn completions[4] = {
400                 [sync_completion_id] = sync_completion,
401                 [bio_completion_id]  = bio_completion,
402         };
403
404         head = nvmeq->cq_head;
405         phase = nvmeq->cq_phase;
406
407         for (;;) {
408                 unsigned long data;
409                 void *ptr;
410                 unsigned char handler;
411                 struct nvme_completion cqe = nvmeq->cqes[head];
412                 if ((le16_to_cpu(cqe.status) & 1) != phase)
413                         break;
414                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
415                 if (++head == nvmeq->q_depth) {
416                         head = 0;
417                         phase = !phase;
418                 }
419
420                 data = free_cmdid(nvmeq, cqe.command_id);
421                 handler = data & 3;
422                 ptr = (void *)(data & ~3UL);
423                 completions[handler](nvmeq, ptr, &cqe);
424         }
425
426         /* If the controller ignores the cq head doorbell and continuously
427          * writes to the queue, it is theoretically possible to wrap around
428          * the queue twice and mistakenly return IRQ_NONE.  Linux only
429          * requires that 0.1% of your interrupts are handled, so this isn't
430          * a big problem.
431          */
432         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
433                 return IRQ_NONE;
434
435         writel(head, nvmeq->q_db + 1);
436         nvmeq->cq_head = head;
437         nvmeq->cq_phase = phase;
438
439         return IRQ_HANDLED;
440 }
441
442 static irqreturn_t nvme_irq(int irq, void *data)
443 {
444         return nvme_process_cq(data);
445 }
446
447 /*
448  * Returns 0 on success.  If the result is negative, it's a Linux error code;
449  * if the result is positive, it's an NVM Express status code
450  */
451 static int nvme_submit_sync_cmd(struct nvme_queue *q, struct nvme_command *cmd,
452                                                                 u32 *result)
453 {
454         int cmdid;
455         struct sync_cmd_info cmdinfo;
456
457         cmdinfo.task = current;
458         cmdinfo.status = -EINTR;
459
460         cmdid = alloc_cmdid_killable(q, &cmdinfo, sync_completion_id);
461         if (cmdid < 0)
462                 return cmdid;
463         cmd->common.command_id = cmdid;
464
465         set_current_state(TASK_UNINTERRUPTIBLE);
466         nvme_submit_cmd(q, cmd);
467         schedule();
468
469         if (result)
470                 *result = cmdinfo.result;
471
472         return cmdinfo.status;
473 }
474
475 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
476                                                                 u32 *result)
477 {
478         return nvme_submit_sync_cmd(dev->queues[0], cmd, result);
479 }
480
481 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
482 {
483         int status;
484         struct nvme_command c;
485
486         memset(&c, 0, sizeof(c));
487         c.delete_queue.opcode = opcode;
488         c.delete_queue.qid = cpu_to_le16(id);
489
490         status = nvme_submit_admin_cmd(dev, &c, NULL);
491         if (status)
492                 return -EIO;
493         return 0;
494 }
495
496 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
497                                                 struct nvme_queue *nvmeq)
498 {
499         int status;
500         struct nvme_command c;
501         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
502
503         memset(&c, 0, sizeof(c));
504         c.create_cq.opcode = nvme_admin_create_cq;
505         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
506         c.create_cq.cqid = cpu_to_le16(qid);
507         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
508         c.create_cq.cq_flags = cpu_to_le16(flags);
509         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
510
511         status = nvme_submit_admin_cmd(dev, &c, NULL);
512         if (status)
513                 return -EIO;
514         return 0;
515 }
516
517 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
518                                                 struct nvme_queue *nvmeq)
519 {
520         int status;
521         struct nvme_command c;
522         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
523
524         memset(&c, 0, sizeof(c));
525         c.create_sq.opcode = nvme_admin_create_sq;
526         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
527         c.create_sq.sqid = cpu_to_le16(qid);
528         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
529         c.create_sq.sq_flags = cpu_to_le16(flags);
530         c.create_sq.cqid = cpu_to_le16(qid);
531
532         status = nvme_submit_admin_cmd(dev, &c, NULL);
533         if (status)
534                 return -EIO;
535         return 0;
536 }
537
538 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
539 {
540         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
541 }
542
543 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
544 {
545         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
546 }
547
548 static void nvme_free_queue(struct nvme_dev *dev, int qid)
549 {
550         struct nvme_queue *nvmeq = dev->queues[qid];
551
552         free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
553
554         /* Don't tell the adapter to delete the admin queue */
555         if (qid) {
556                 adapter_delete_sq(dev, qid);
557                 adapter_delete_cq(dev, qid);
558         }
559
560         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
561                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
562         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
563                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
564         kfree(nvmeq);
565 }
566
567 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
568                                                         int depth, int vector)
569 {
570         struct device *dmadev = &dev->pci_dev->dev;
571         unsigned extra = (depth + BITS_TO_LONGS(depth)) * sizeof(long);
572         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
573         if (!nvmeq)
574                 return NULL;
575
576         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
577                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
578         if (!nvmeq->cqes)
579                 goto free_nvmeq;
580         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
581
582         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
583                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
584         if (!nvmeq->sq_cmds)
585                 goto free_cqdma;
586
587         nvmeq->q_dmadev = dmadev;
588         spin_lock_init(&nvmeq->q_lock);
589         nvmeq->cq_head = 0;
590         nvmeq->cq_phase = 1;
591         init_waitqueue_head(&nvmeq->sq_full);
592         bio_list_init(&nvmeq->sq_cong);
593         nvmeq->q_db = &dev->dbs[qid * 2];
594         nvmeq->q_depth = depth;
595         nvmeq->cq_vector = vector;
596
597         return nvmeq;
598
599  free_cqdma:
600         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
601                                                         nvmeq->cq_dma_addr);
602  free_nvmeq:
603         kfree(nvmeq);
604         return NULL;
605 }
606
607 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
608                                                         const char *name)
609 {
610         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
611                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
612 }
613
614 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
615                                         int qid, int cq_size, int vector)
616 {
617         int result;
618         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
619
620         result = adapter_alloc_cq(dev, qid, nvmeq);
621         if (result < 0)
622                 goto free_nvmeq;
623
624         result = adapter_alloc_sq(dev, qid, nvmeq);
625         if (result < 0)
626                 goto release_cq;
627
628         result = queue_request_irq(dev, nvmeq, "nvme");
629         if (result < 0)
630                 goto release_sq;
631
632         return nvmeq;
633
634  release_sq:
635         adapter_delete_sq(dev, qid);
636  release_cq:
637         adapter_delete_cq(dev, qid);
638  free_nvmeq:
639         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
640                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
641         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
642                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
643         kfree(nvmeq);
644         return NULL;
645 }
646
647 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
648 {
649         int result;
650         u32 aqa;
651         struct nvme_queue *nvmeq;
652
653         dev->dbs = ((void __iomem *)dev->bar) + 4096;
654
655         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
656
657         aqa = nvmeq->q_depth - 1;
658         aqa |= aqa << 16;
659
660         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
661         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
662         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
663
664         writel(aqa, &dev->bar->aqa);
665         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
666         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
667         writel(dev->ctrl_config, &dev->bar->cc);
668
669         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
670                 msleep(100);
671                 if (fatal_signal_pending(current))
672                         return -EINTR;
673         }
674
675         result = queue_request_irq(dev, nvmeq, "nvme admin");
676         dev->queues[0] = nvmeq;
677         return result;
678 }
679
680 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
681                                 unsigned long addr, unsigned length,
682                                 struct scatterlist **sgp)
683 {
684         int i, err, count, nents, offset;
685         struct scatterlist *sg;
686         struct page **pages;
687
688         if (addr & 3)
689                 return -EINVAL;
690         if (!length)
691                 return -EINVAL;
692
693         offset = offset_in_page(addr);
694         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
695         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
696
697         err = get_user_pages_fast(addr, count, 1, pages);
698         if (err < count) {
699                 count = err;
700                 err = -EFAULT;
701                 goto put_pages;
702         }
703
704         sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
705         sg_init_table(sg, count);
706         sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
707         length -= (PAGE_SIZE - offset);
708         for (i = 1; i < count; i++) {
709                 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
710                 length -= PAGE_SIZE;
711         }
712
713         err = -ENOMEM;
714         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
715                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
716         if (!nents)
717                 goto put_pages;
718
719         kfree(pages);
720         *sgp = sg;
721         return nents;
722
723  put_pages:
724         for (i = 0; i < count; i++)
725                 put_page(pages[i]);
726         kfree(pages);
727         return err;
728 }
729
730 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
731                                 unsigned long addr, int length,
732                                 struct scatterlist *sg, int nents)
733 {
734         int i, count;
735
736         count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
737         dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
738
739         for (i = 0; i < count; i++)
740                 put_page(sg_page(&sg[i]));
741 }
742
743 static int nvme_submit_user_admin_command(struct nvme_dev *dev,
744                                         unsigned long addr, unsigned length,
745                                         struct nvme_command *cmd)
746 {
747         int err, nents;
748         struct scatterlist *sg;
749
750         nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
751         if (nents < 0)
752                 return nents;
753         nvme_setup_prps(&cmd->common, sg, length);
754         err = nvme_submit_admin_cmd(dev, cmd, NULL);
755         nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
756         return err ? -EIO : 0;
757 }
758
759 static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
760 {
761         struct nvme_command c;
762
763         memset(&c, 0, sizeof(c));
764         c.identify.opcode = nvme_admin_identify;
765         c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
766         c.identify.cns = cpu_to_le32(cns);
767
768         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
769 }
770
771 static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
772 {
773         struct nvme_command c;
774
775         memset(&c, 0, sizeof(c));
776         c.features.opcode = nvme_admin_get_features;
777         c.features.nsid = cpu_to_le32(ns->ns_id);
778         c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
779
780         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
781 }
782
783 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
784 {
785         struct nvme_dev *dev = ns->dev;
786         struct nvme_queue *nvmeq;
787         struct nvme_user_io io;
788         struct nvme_command c;
789         unsigned length;
790         u32 result;
791         int nents, status;
792         struct scatterlist *sg;
793
794         if (copy_from_user(&io, uio, sizeof(io)))
795                 return -EFAULT;
796         length = io.nblocks << io.block_shift;
797         nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
798         if (nents < 0)
799                 return nents;
800
801         memset(&c, 0, sizeof(c));
802         c.rw.opcode = io.opcode;
803         c.rw.flags = io.flags;
804         c.rw.nsid = cpu_to_le32(io.nsid);
805         c.rw.slba = cpu_to_le64(io.slba);
806         c.rw.length = cpu_to_le16(io.nblocks - 1);
807         c.rw.control = cpu_to_le16(io.control);
808         c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
809         c.rw.reftag = cpu_to_le32(io.reftag);   /* XXX: endian? */
810         c.rw.apptag = cpu_to_le16(io.apptag);
811         c.rw.appmask = cpu_to_le16(io.appmask);
812         /* XXX: metadata */
813         nvme_setup_prps(&c.common, sg, length);
814
815         nvmeq = get_nvmeq(ns);
816         status = nvme_submit_sync_cmd(nvmeq, &c, &result);
817         put_nvmeq(nvmeq);
818
819         nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
820         put_user(result, &uio->result);
821         return status;
822 }
823
824 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
825                                                         unsigned long arg)
826 {
827         struct nvme_ns *ns = bdev->bd_disk->private_data;
828
829         switch (cmd) {
830         case NVME_IOCTL_IDENTIFY_NS:
831                 return nvme_identify(ns, arg, 0);
832         case NVME_IOCTL_IDENTIFY_CTRL:
833                 return nvme_identify(ns, arg, 1);
834         case NVME_IOCTL_GET_RANGE_TYPE:
835                 return nvme_get_range_type(ns, arg);
836         case NVME_IOCTL_SUBMIT_IO:
837                 return nvme_submit_io(ns, (void __user *)arg);
838         default:
839                 return -ENOTTY;
840         }
841 }
842
843 static const struct block_device_operations nvme_fops = {
844         .owner          = THIS_MODULE,
845         .ioctl          = nvme_ioctl,
846 };
847
848 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
849                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
850 {
851         struct nvme_ns *ns;
852         struct gendisk *disk;
853         int lbaf;
854
855         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
856                 return NULL;
857
858         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
859         if (!ns)
860                 return NULL;
861         ns->queue = blk_alloc_queue(GFP_KERNEL);
862         if (!ns->queue)
863                 goto out_free_ns;
864         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
865                                 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
866         blk_queue_make_request(ns->queue, nvme_make_request);
867         ns->dev = dev;
868         ns->queue->queuedata = ns;
869
870         disk = alloc_disk(NVME_MINORS);
871         if (!disk)
872                 goto out_free_queue;
873         ns->ns_id = index;
874         ns->disk = disk;
875         lbaf = id->flbas & 0xf;
876         ns->lba_shift = id->lbaf[lbaf].ds;
877
878         disk->major = nvme_major;
879         disk->minors = NVME_MINORS;
880         disk->first_minor = NVME_MINORS * index;
881         disk->fops = &nvme_fops;
882         disk->private_data = ns;
883         disk->queue = ns->queue;
884         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
885         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
886
887         return ns;
888
889  out_free_queue:
890         blk_cleanup_queue(ns->queue);
891  out_free_ns:
892         kfree(ns);
893         return NULL;
894 }
895
896 static void nvme_ns_free(struct nvme_ns *ns)
897 {
898         put_disk(ns->disk);
899         blk_cleanup_queue(ns->queue);
900         kfree(ns);
901 }
902
903 static int set_queue_count(struct nvme_dev *dev, int count)
904 {
905         int status;
906         u32 result;
907         struct nvme_command c;
908         u32 q_count = (count - 1) | ((count - 1) << 16);
909
910         memset(&c, 0, sizeof(c));
911         c.features.opcode = nvme_admin_get_features;
912         c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
913         c.features.dword11 = cpu_to_le32(q_count);
914
915         status = nvme_submit_admin_cmd(dev, &c, &result);
916         if (status)
917                 return -EIO;
918         return min(result & 0xffff, result >> 16) + 1;
919 }
920
921 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
922 {
923         int result, cpu, i, nr_queues;
924
925         nr_queues = num_online_cpus();
926         result = set_queue_count(dev, nr_queues);
927         if (result < 0)
928                 return result;
929         if (result < nr_queues)
930                 nr_queues = result;
931
932         /* Deregister the admin queue's interrupt */
933         free_irq(dev->entry[0].vector, dev->queues[0]);
934
935         for (i = 0; i < nr_queues; i++)
936                 dev->entry[i].entry = i;
937         for (;;) {
938                 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
939                 if (result == 0) {
940                         break;
941                 } else if (result > 0) {
942                         nr_queues = result;
943                         continue;
944                 } else {
945                         nr_queues = 1;
946                         break;
947                 }
948         }
949
950         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
951         /* XXX: handle failure here */
952
953         cpu = cpumask_first(cpu_online_mask);
954         for (i = 0; i < nr_queues; i++) {
955                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
956                 cpu = cpumask_next(cpu, cpu_online_mask);
957         }
958
959         for (i = 0; i < nr_queues; i++) {
960                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
961                                                         NVME_Q_DEPTH, i);
962                 if (!dev->queues[i + 1])
963                         return -ENOMEM;
964                 dev->queue_count++;
965         }
966
967         return 0;
968 }
969
970 static void nvme_free_queues(struct nvme_dev *dev)
971 {
972         int i;
973
974         for (i = dev->queue_count - 1; i >= 0; i--)
975                 nvme_free_queue(dev, i);
976 }
977
978 static int __devinit nvme_dev_add(struct nvme_dev *dev)
979 {
980         int res, nn, i;
981         struct nvme_ns *ns, *next;
982         void *id;
983         dma_addr_t dma_addr;
984         struct nvme_command cid, crt;
985
986         res = nvme_setup_io_queues(dev);
987         if (res)
988                 return res;
989
990         /* XXX: Switch to a SG list once prp2 works */
991         id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
992                                                                 GFP_KERNEL);
993
994         memset(&cid, 0, sizeof(cid));
995         cid.identify.opcode = nvme_admin_identify;
996         cid.identify.nsid = 0;
997         cid.identify.prp1 = cpu_to_le64(dma_addr);
998         cid.identify.cns = cpu_to_le32(1);
999
1000         res = nvme_submit_admin_cmd(dev, &cid, NULL);
1001         if (res) {
1002                 res = -EIO;
1003                 goto out_free;
1004         }
1005
1006         nn = le32_to_cpup(&((struct nvme_id_ctrl *)id)->nn);
1007
1008         cid.identify.cns = 0;
1009         memset(&crt, 0, sizeof(crt));
1010         crt.features.opcode = nvme_admin_get_features;
1011         crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1012         crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1013
1014         for (i = 0; i < nn; i++) {
1015                 cid.identify.nsid = cpu_to_le32(i);
1016                 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1017                 if (res)
1018                         continue;
1019
1020                 if (((struct nvme_id_ns *)id)->ncap == 0)
1021                         continue;
1022
1023                 crt.features.nsid = cpu_to_le32(i);
1024                 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1025                 if (res)
1026                         continue;
1027
1028                 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1029                 if (ns)
1030                         list_add_tail(&ns->list, &dev->namespaces);
1031         }
1032         list_for_each_entry(ns, &dev->namespaces, list)
1033                 add_disk(ns->disk);
1034
1035         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1036         return 0;
1037
1038  out_free:
1039         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1040                 list_del(&ns->list);
1041                 nvme_ns_free(ns);
1042         }
1043
1044         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1045         return res;
1046 }
1047
1048 static int nvme_dev_remove(struct nvme_dev *dev)
1049 {
1050         struct nvme_ns *ns, *next;
1051
1052         /* TODO: wait all I/O finished or cancel them */
1053
1054         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1055                 list_del(&ns->list);
1056                 del_gendisk(ns->disk);
1057                 nvme_ns_free(ns);
1058         }
1059
1060         nvme_free_queues(dev);
1061
1062         return 0;
1063 }
1064
1065 /* XXX: Use an ida or something to let remove / add work correctly */
1066 static void nvme_set_instance(struct nvme_dev *dev)
1067 {
1068         static int instance;
1069         dev->instance = instance++;
1070 }
1071
1072 static void nvme_release_instance(struct nvme_dev *dev)
1073 {
1074 }
1075
1076 static int __devinit nvme_probe(struct pci_dev *pdev,
1077                                                 const struct pci_device_id *id)
1078 {
1079         int result = -ENOMEM;
1080         struct nvme_dev *dev;
1081
1082         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1083         if (!dev)
1084                 return -ENOMEM;
1085         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1086                                                                 GFP_KERNEL);
1087         if (!dev->entry)
1088                 goto free;
1089         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1090                                                                 GFP_KERNEL);
1091         if (!dev->queues)
1092                 goto free;
1093
1094         INIT_LIST_HEAD(&dev->namespaces);
1095         dev->pci_dev = pdev;
1096         pci_set_drvdata(pdev, dev);
1097         dma_set_mask(&dev->pci_dev->dev, DMA_BIT_MASK(64));
1098         nvme_set_instance(dev);
1099         dev->entry[0].vector = pdev->irq;
1100
1101         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1102         if (!dev->bar) {
1103                 result = -ENOMEM;
1104                 goto disable;
1105         }
1106
1107         result = nvme_configure_admin_queue(dev);
1108         if (result)
1109                 goto unmap;
1110         dev->queue_count++;
1111
1112         result = nvme_dev_add(dev);
1113         if (result)
1114                 goto delete;
1115         return 0;
1116
1117  delete:
1118         nvme_free_queues(dev);
1119  unmap:
1120         iounmap(dev->bar);
1121  disable:
1122         pci_disable_msix(pdev);
1123         nvme_release_instance(dev);
1124  free:
1125         kfree(dev->queues);
1126         kfree(dev->entry);
1127         kfree(dev);
1128         return result;
1129 }
1130
1131 static void __devexit nvme_remove(struct pci_dev *pdev)
1132 {
1133         struct nvme_dev *dev = pci_get_drvdata(pdev);
1134         nvme_dev_remove(dev);
1135         pci_disable_msix(pdev);
1136         iounmap(dev->bar);
1137         nvme_release_instance(dev);
1138         kfree(dev->queues);
1139         kfree(dev->entry);
1140         kfree(dev);
1141 }
1142
1143 /* These functions are yet to be implemented */
1144 #define nvme_error_detected NULL
1145 #define nvme_dump_registers NULL
1146 #define nvme_link_reset NULL
1147 #define nvme_slot_reset NULL
1148 #define nvme_error_resume NULL
1149 #define nvme_suspend NULL
1150 #define nvme_resume NULL
1151
1152 static struct pci_error_handlers nvme_err_handler = {
1153         .error_detected = nvme_error_detected,
1154         .mmio_enabled   = nvme_dump_registers,
1155         .link_reset     = nvme_link_reset,
1156         .slot_reset     = nvme_slot_reset,
1157         .resume         = nvme_error_resume,
1158 };
1159
1160 /* Move to pci_ids.h later */
1161 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1162
1163 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1164         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1165         { 0, }
1166 };
1167 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1168
1169 static struct pci_driver nvme_driver = {
1170         .name           = "nvme",
1171         .id_table       = nvme_id_table,
1172         .probe          = nvme_probe,
1173         .remove         = __devexit_p(nvme_remove),
1174         .suspend        = nvme_suspend,
1175         .resume         = nvme_resume,
1176         .err_handler    = &nvme_err_handler,
1177 };
1178
1179 static int __init nvme_init(void)
1180 {
1181         int result;
1182
1183         nvme_major = register_blkdev(nvme_major, "nvme");
1184         if (nvme_major <= 0)
1185                 return -EBUSY;
1186
1187         result = pci_register_driver(&nvme_driver);
1188         if (!result)
1189                 return 0;
1190
1191         unregister_blkdev(nvme_major, "nvme");
1192         return result;
1193 }
1194
1195 static void __exit nvme_exit(void)
1196 {
1197         pci_unregister_driver(&nvme_driver);
1198         unregister_blkdev(nvme_major, "nvme");
1199 }
1200
1201 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1202 MODULE_LICENSE("GPL");
1203 MODULE_VERSION("0.1");
1204 module_init(nvme_init);
1205 module_exit(nvme_exit);